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Abstract

The role of time is intrinsically different between Quantum Mechanics and General
Relativity: while the former associates time with an external observer, the latter
unifies time and space, making them indistinguishable in a covariant framework. The
absence of a clear time variable in GR stems from its symmetry and parametrized
nature, resulting in the so-called frozen formalism. For this reason, the search
for a theory of Quantum Gravity must face the challenge of time absence in the
Wheeler-de Witt equation. Efforts to quantize gravity have led to various approaches
to define time, categorized into pre-quantization, post-quantization, and timeless
proposals. This thesis focuses on post-quantization time constructions, particularly
within the Wentzel-Kramers-Brillouin approach, which perturbatively expands the
wave function to derive dynamical equations. Previous attempts have shown that
the introduction of an internal clock from gravitational variables yields non-unitary
dynamical effects on the matter sector at the next order.

This thesis implements a Born-Oppenheimer-like scheme that separates the
matter and gravitational sectors, leveraging their distinct energy scales: the matter’s
faster evolution is contrasted with the slower gravitational field, both properly
quantum. Two novel time constructions are proposed, making use of a fast component
derived from introducing the kinematical action or (reparametrized) Gaussian frame
fixing respectively; the discussion of their geometrical and physical meaning proves
that both are essentially tied to the concept of a reference system. These clocks
for the matter subsystem overcome previous non-unitarity concerns, resulting in
an Hermitian dynamics at the first order where quantum-gravitational corrections
emerge. A direct equivalence between the two implementations is proved in the
homogeneous minisuperspace setting.

The present investigation also faces the challenge posed by the dependence
of the matter wave functional on intrinsically quantum gravitational components,
particularly evident in the cosmological context. To address this, a more rigorous
Born-Oppenheimer separation of dynamics is proposed, distinguishing the classical
gravitational background from its small quantum fluctuations (i.e. gravitons) and
then proper quantum matter contributions. By introducing an appropriate gauge
choice for the gravitons’ sector, the zero-th order of this model allows to recover the
standard Quantum Field Theory dynamics. We show how this refined scheme can be
combined with the concept of a reference fluid time (or equivalently the kinematical
action one), offering a unitary evolution for the quantum matter subsystem with
quantum gravity corrections, free of previously mentioned concerns. Such unified
approach clarifies the quantum nature of gravitational components and shows how
gauge requirements address the emergence of quantum gravity effects in subsequent
orders of the expansion.

The central achievement of the present thesis is the development of a suitable
Born-Oppenheimer scheme for the quantum gravity-matter system, in which the
matter’s evolution modified by quantum gravitational effects has a unitary character.
This framework offers insights into how quantum gravity influences our understanding
of the universe and contributes to a deeper comprehension of gravitational phenomena.
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Introduction

The following PhD thesis faces the frozen formalism in Quantum Gravity and
Cosmology, discussing and developing different techniques to recover a dynamical
description at the Quantum Field Theory (QFT) level and compute small corrections
due to the quantum nature of the gravitational interaction, which could play a role
in early cosmological settings. This “Chapter 0” serves as an introduction to the
context necessary for understanding the development of Quantum Physics and the
search for a quantum gravitational theory. Here, we present the core concepts that
will thread through the following chapters, inviting the reader to reflect on some
posed questions, which are at the basis of our investigation.

The most immediate contrast between Quantum Mechanics (QM) and General
Relativity (GR) is the role of the time parameter, which results to be intrinsically
different. For QM, time is associated to an external (essentially classical) observer
which describes the changes inside a certain system and assigns labels to each
snapshot. On the other hand, in GR time and the physical space are deeply tied
together in a unified formalism, and one cannot in principle distinguish between
moving in a certain direction (such as up or down) and forward/backwards in time.
The “lack of time” in GR is essentially just a consequence of its symmetry: it is a
parametrized theory, whose action is invariant under coordinate transformations
(including time). This is the key property at the base of the Principle of General
Covariance. Therefore, one of the biggest ambitions of today’s physics is the
development of a theory that combines GR and QM into Quantum Gravity (QG)
and how this theory would reconnect with classical aspects.

When attempting a quantization of the gravitational interaction, one faces many
technical and interpretative challenges.

At the quantum level, the classical Einstein equations are replaced by the
Wheeler-de Witt (WdW) equation. In this formulation the Hamiltonian of gravity is
a combination of constraints known as superHamiltonian and supermomentum ones.
In this view, the quantum wave function of the Universe depends on a “3-geometry”
reflecting the equivalence class of metrics under 3-diffeomorphisms, regardless of
the specific metric tensor coordinates. Thus the WDW equation stands out for its
absence of a time variable. This peculiarity mirrors the classical Hamilton-Jacobi
formulation of GR, which has no clock for the observable Universe, therefore inviting
a quantum interpretation of cosmic evolution. Indeed, it has been shown in literature
that the WDW equation can be recast as a quantum Schrödinger-like one with
suitable time constructions.
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The approaches developed to define a clock can be cast into three main categories:
i) times introduced before the quantization scheme, usually recovering the reduced
phase space picture, ii) times after quantization based on approximate methods, or iii)
timeless proposals describing the system evolution via the evolving relation between
observables. The present thesis focuses on the second path, implementing the Wentzel-
Kramers-Brillouin (WKB) approach: a perturbative expansion of the system’s wave
function in a chosen parameter that allows, by looking at increasing orders, to obtain
dynamical (approximate) equations starting from the initial constraint. Such path
is particularly promising for the study of quantum-gravity-induced effects on the
standard QFT dynamics, since it is naturally valid in a perturbative low-energy
setting of the matter content and allows for phenomenological investigations.

The first proposal to overcome the frozen formalism via a WKB scheme identified
a small quantum subsystem from the quasi-classical (gravitational) background; a
relational clock was there introduced from the gravitational variables themselves,
recovering both a meaningful dynamics at the QFT order and the probabilistic
interpretation for the Universe wave function. However, an interesting question is to
delve deeper and explore whether such expansion can infer quantum gravitational
corrections to the matter dynamics that are not described by QFT. This point was
addressed through a WKB expansion in a different (Planckian) parameter developed
to the next order, where such QG effects have to arise. The main shortcoming was
the emergence of a non-unitary modified evolution (i.e. non-Hermitian operators
enter the dynamics), leaving its physical interpretation not consistent. In this
respect, possible solutions to the problem of time in QG represent a crucial tool of
investigation in the cosmological framework: indeed, limiting our attention to the
first two orders of WKB approximation, the procedure gives meaningful insights on
the primordial Universe evolution.

A later Born-Oppenheimer (B-O)-like WKB reformulation of the problem jux-
taposed the “fast” matter contribution with the slower gravitational sector, the
latter experiencing an averaged backreaction. However, this scheme was unable to
provide a consistent definition of the Hilbert space for the system dynamics, not
fully solving in this sense the non-unitarity problem. Actually, it was shown that a
specific condition must be identified to recover the standard QFT dynamics and at
the same time preserve the desired algebraic structure.

A variation of the problem adopts the de Broglie-Bohm (dBB) interpretation,
eliminating the need for an external observer. Here classical trajectories are adjusted
for quantum corrections via a “quantum potential” derived from the system’s wave
functional in the Hamilton-Jacobi equation. This paradigm offers insights into the
emergence of bounces in the universe evolution and addresses fundamental questions
on the ontology and measurement process.

It is important to remark that in the mentioned WKB approaches the time
parameter was always defined via the dependence of the matter subsystem on
the “slow” gravitational variables. Such feature suggests to look for a possible
implementation based on a different, “fast” matter time.

The present thesis focuses on a WKB perturbative treatment of the WDW
equation for gravity and matter, defining a time after the total constraint is fully
quantized. We develop a B-O-like scheme based on the observation that the typical
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energy scale of the gravitational sector (of Planckian size) is clearly separated from
the corresponding values of matter fields. This situation is analogous to the dynamics
in molecular physics, where the (light) electrons orbit around the slow heavy nuclei.
In the same way, we consider the matter content to develop at a faster scale than
the gravitational field, having quantized all degrees of freedom. Differently from
previous approaches, we make use of the difference in scales to derive “adiabatic”
conditions on the wave functionals: they quantify the fast matter evolution through
its small dependence on the gravitational variables (which are almost fixed, as the
heavy atoms).

In this scheme, we propose two novel constructions of a time coordinate from the
fast matter component. The first one is based on the so-called kinematical action,
which can be formulated as an additional constraint recovering the geometrical
meaning of the space-time foliation; in the second one, the reparametrized choice
of a Gaussian reference frame “materializes” as a fluid in the theory, so giving a
candidate for the time parameter.

These two formulations allow to define suitable clocks for the matter subsys-
tem. Indeed, when the kinematical action or Gaussian fluid terms are regarded
as fast contributions at the same level of the matter content, they emerge in the
Hamiltonian formalism via terms that are parabolic in their conjugate momenta.
Thus, these additional terms to the system’s constraints provide an escape from the
frozen formalism, effectively acting as a clock for the matter component living on
a quantized gravitational background. The main outcome of such proposals, when
WKB expanded, is that a unitary Schrödinger functional equation emerges also at
the next order, where one finds QG-induced effects on the matter dynamics. Thus,
the kinematical action or reference fluid are both related to the core concept of a
reference frame and provide a physical clock for the matter subsystem, overcoming
the unitarity concerns of previous proposals. Actually, we prove a direct correspon-
dence between the two procedures in homogeneous minisuperspace settings. We
examine a cosmological implementation of such analysis, de facto valid for both time
constructions, showing the consistency of the procedure.

A delicate question can be outlined from this investigation, that is the dependence
of the matter wave functional on an intrinsically quantum gravitational component,
which corresponds in the application to the cosmic scale factor of the isotropic
Universe. This feature, absent in previous cosmological applications of WKB
schemes, must indeed be addressed for phenomenological studies if one wishes to
take into account the quantum nature of the gravitational sector. We therefore
illustrate a model based on an extended B-O separation of the dynamics: we
consider a classical gravitational background, small “slow” gravitational fluctuations,
and a “fast” quantum matter contribution. By other words, we characterize the
quantum gravitational sector made up of additional (independent) degrees of freedom,
corresponding to tensor fluctuations. Clearly, such an approach requires an averaging
procedure to remove the dependence of the matter field on the arbitrary fluctuations,
in the spirit of an effective field theory. We first show that, if one wishes to preserve
the WKB time as the dependence on the (now completely classical) gravitational
background, an appropriate gauge choice allows to recover the standard QFT
dynamics at the zero-th order. Such requirement consists of a specific rescaling of
both the gravitational and matter wave functionals, by a phase dependent on the
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background quantities (that is exactly the geometric phase of the B-O separation).
However the next-order predictions of such model would give, with this time definition,
the same non-unitarity contributions of the previous WKB proposals.

For this reason, we later merge this refined B-O scheme with the proposal of the
reference fluid clock (analogous to the kinematical action one in the minisuperspace).
The model is still WKB expanded in a single Planckian parameter, but we develop
the analysis up to the first order of QG effects. The unitary modified dynamics
exactly matches, after the averaging procedure, the one obtained using only the
Gaussian fluid time without considering the gravitons degrees of freedom. The only
requirement for this result is to modify the gauge-fixing condition of the arbitrary
graviton fluctuations, which is no more the WDW gravitational constraint. Therefore
the treatment of the gravity-matter quantized system in an extended B-O picture is
consistent with the physical Gaussian fluid clock which describes a unitary evolution.

The overall result of this thesis is to provide a clearer physical picture of the
reconstruction of QFT in the presence of graviton corrections in the B-O approxima-
tion: at the next order of WKB expansion, the time evolution of the matter sector
is amended for quantum-gravitational effects, but still regains a unitary formulation
with a suitable reference clock. More so, the gravitational component is fully charac-
terized in its quantum nature by assigning different variables and properties to the
classical part and the small fluctuations. The two procedures are unified in a clear
formulation, showing that the gauge freedom allows to recover, at the next order,
the same QG effects that one would find without such B-O extension.

The resulting unitary dynamics emerging from this expanded model represents
the starting point to investigate how QG can affect (in the appropriate WKB limit)
the evolution of the matter content in our Universe. Through the investigation
of such small corrections, we are able to expand our knowledge closer to a fuller
understanding of QG.

The thesis is structured as follows. In Chapter 1, we review the Hamiltonian
formalism of gravity through its covariant ADM formulation, showing that it is
a constrained theory. In Chapter 2, we introduce its canonical quantization and
discuss the frozen formalism, together with previous proposals to overcome it via
the WKB expansion and their main concerns. From the third Chapter onward, the
original content of the thesis begins. In Chapter 3, we first unify the previous WKB
approaches which draw non-unitarity; then we construct a B-O-like model that
predicts a unitary evolution with QG corrections using the kinematical action as a
time. In Chapter 4, we develop an analogous model constructing the physical clock
via the (reparametrized) Gaussian reference frame fixing in the B-O picture, still
describing a unitary evolution amended for QG effects. Chapter 5 is dedicated to
the predictions of such model in cosmology: we compute how these QG corrections
modify the early evolution of our Universe, with particular focus on the inflationary
spectrum of primordial perturbations. In Chapter 6, we develop the B-O-extended
procedure to take into account the quantum nature of the gravitational sector,
making use of the related gauge symmetry to properly recover the QFT limit. We
first apply this reformulation to previous WKB time constructions at the zero-th
order and then unify the B-O extension with the Gaussian fluid time proposal,



Introduction 5

demonstrating in the latter case that the next-order dynamics with QG corrections
is obtained after an average procedure and is indeed unitary. We apply this extended
formulation to calculate the deviation from the standard scale-invariant primordial
power spectrum in the exact de Sitter phase. Finally, in Chapter 7 we propose an
alternative view of the quantum gravity-matter evolution in the Bohmian picture,
finding that the modified trajectory causes a mode-dependent deformation of the
primordial power spectrum associated to inflaton perturbations in a de Sitter phase
of the universe.

The core results of this thesis are contained in the following papers, published or
in preparation, which will also be referenced during the text:

• F. Di Gioia, G. Maniccia, G. Montani, and J. Niedda (2021). Nonunitarity
problem in quantum gravity corrections to quantum field theory with Born-
Oppenheimer approximation. Phys. Rev. D 103, p. 103 511. DOI: 10.1103/
PhysRevD.103.103511.

• G. Maniccia and G. Montani (2022). Quantum gravity corrections to the matter
dynamics in the presence of a reference fluid. Phys. Rev. D 105, p. 086 014.
DOI: 10.1103/PhysRevD.105.086014.

• G. Maniccia, M. De Angelis, and G. Montani (2022). WKB approaches to
restore time in quantum cosmology: Predictions and shortcomings. Universe 8,
11, p. 556. DOI: 10.3390/universe8110556.

• G. Maniccia and G. Montani (2023) WKB approach to the gravity-matter
dynamics: A cosmological implementation. In The Sixteenth Marcel Grossmann
Meeting, World Scientific. DOI: 10.1142/9789811269776_0345.

• G. Maniccia, G. Montani, and L. Torcellini (2023). Study of the inflationary
spectrum in the presence of quantum gravity corrections. Universe 9, 4, p. 169.
DOI: 10.3390/universe9040169.

• G. Maniccia, G. Montani, and S. Antonini (2023). QFT in curved spacetime
from quantum gravity: Proper WKB decomposition of the gravitational compo-
nent. Phys. Rev. D 107, L061901. DOI: 10.1103/PhysRevD.107.l061901.

• G. Maniccia, G, Montani, M. Tosoni (2024). Modified minisuperspace dynamics
from a Kuchař-Torre clock with graviton fluctuations. To be submitted to
Physical Review D.

• G. Maniccia, G. Montani (2024). Quantum Gravity Corrections to the infla-
tionary spectrum in a Bohmian approach. To be submitted to Symmetry.

• G. Maniccia, P. Peter (2024). Trajectory approach in cosmology with a Kuchař-
Torre fluid. In preparation.

10.1103/PhysRevD.103.103511
10.1103/PhysRevD.103.103511
10.1103/PhysRevD.105.086014
10.3390/universe8110556
10.1142/9789811269776_0345
10.3390/universe9040169
10.1103/PhysRevD.107.l061901
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Notations, conventions and acronyms
In this thesis we will use the following notation (unless differently specified n

specific points):

Spacetime metric signature (− + + +)

Four-dimensional indices µ, ν, ρ, σ . . . = 0, 1, 2, 3

Three-dimensional (spatial) indices i, j, k, l . . . = 1, 2, 3

Partial derivatives ∂
∂xµ f ≡ ∂µf

Covariant derivatives ∇∂/∂xµf ≡ ∇µf

Functional derivatives δ
δA(x)f ≡ δA(x)f

Vectors V with components V i or V µ

Tensors Aν1ν2...νn
µ1µ2...µm

Poisson brackets
(N -dimensional system k = 1, 2, . . . N)

{f, g}q,p = ∂f
∂qk

∂g
∂pk
− ∂f

∂pk

∂g
∂qk

Commutator brackets [A,B] = AB −BA

Lagrangian, Hamiltonian density L,H

Lagrangian, Hamiltonian function L,H

ADM Super-Hamiltonian H(hij ,Πij , ϕn)

ADM Super-momentum Hi(hij ,Πij , ϕn)

Table 0.1. Notation and conventions used in the thesis.
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We will follow the Einstein convention for summation over repeated indices, and
use in many calculations natural units c = 1. A number of short-hand acronyms will
be used, listed below:

Acronym Meaning

GR General Relativity

QFT Quantum Field Theory

QG Quantum Gravity

CQG Canonical Quantum Gravity

QC Quantum Cosmology

ΛCDM Λ-Cold-Dark-Matter

BO Born-Oppenheimer

ADM Arnowitt-Deser-Misner

WKB Wentzel-Kramers-Brillouin

FLRW Friedmann-Lemaitre-Robertson-Walker

dBB de Broglie-Bohm

Table 0.2. List of acronyms used in the text.
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Chapter 1

Hamiltonian formulation of
gravity

This chapter is devoted to the description of geometrodynamics, i.e. the dynam-
ical representation of the gravitational theory. As in Classical Field Theory, this
requires to provide two elements both the set of equations governing the dynamics
and an initial configuration for the system. The Hamiltonian formulation of gravity,
which is based on the Arnowitt-Deser-Misner (ADM) decomposition, provides a
suitable framework for this purpose. A remarkable advantage of such formalism,
based on a spacetime foliation into hypersurfaces, is its ability to still preserve
covariance, despite its apparent departure from the standard tensorial approach of
GR. It will also be the fundamental building block for the quantization process, as
we will see in the next chapter. We here introduce the basic concepts for the ADM
and Hamiltonian formulation of gravity.

1.1 The historical success of General Relativity

Albert Einstein’s General Theory of Relativity (GR), formulated in 1915, has
stood the test of time and continues to be one of the most successful and influential
theories in the history of physics. The core of the theory stands in the Einstein’s
equations:

Gµν + Λgµν = 8πG
c4 Tµν , (1.1)

which are a set of ten tensorial equations (due to symmetry properties) involving two
main objects. Gµν = Rµν − 1

2gµνR is the Einstein tensor describing the spacetime
curvature, while Tµν is the stress-energy tensor of the matter content within that
same spacetime. We also take into account the presence of a cosmological constant,
acting as a “dark energy” source (this aspect will be cleared in Chapter 5) in the
gravitational sector; on the right-hand side, G ≃ 6.674 · 10−11 N m2 kg−2 is Newton’s
gravitational constant and c ≃ 2.998 · 108 m s−1 is the speed of light. The curvature
terms in Gµν , and so all the left-hand side of (1.1), depend on the tensor field gµν ,
which is the spacetime metric of a manifold M describing its geometry i.e. how
such manifold “curves”. Essentially, the law (1.1) relates (locally) the geometry of
spacetime to the distribution of matter within it.
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The most basic principle on which GR is based is the Principle of General
Covariance:

Physical laws must be invariant in form under an arbitrary differential
transformation of coordinates., i.e. they must be the same in any frame
(inertial or accelerating).

While there are many restatements of this principle, the core idea can be summarized
in the following: we tend to describe and label events using coordinates, however
coordinates themselves do not exist a priori in nature, hence they should play no role
in the formulation of fundamental physical laws. Those laws must keep the same form
under any (differentiable) change of coordinates. The answer to this puzzle stands
in the tensor formulation (1.1) of GR, which allows for a coordinate-independent
formulation of physical laws. Indeed, if we are able to write tensorial equations of
motion, then the transformation laws of such elements will assure the form of those
equations to be preserved: this is the case of (1.1), where both the right-hand and
left-hand sides transform as tensors.

By this principle, an equation holds in a general gravitational field if both
following conditions are satisfied [1]:

1) it holds in the absence of gravitation, that is the Special Relativity case (the
metric tensor gµν is nothing else than the Minkowski tensor (−1,+1,+1,+1);

2) it is covariant under a general coordinate transformation x→ x′.

We remark that the term “covariance” generally indicates that the physical laws
maintain the same form under a specified group of transformations. Specifying
such group gives different level of the covariance (or equivalence) requirement.
Indeed, the group of Galilean coordinate transformations identifies laws of Classical
Mechanics, while Lorentz coordinate transformations correspond to the Special
Relativity case. General Covariance takes its name from the group of arbitrary
differentiable coordinate transformations, and it is in this sense the most general
formulation of the Equivalence Principle.

The successes of GR extend across a wide range of astronomical, astrophysical,
and cosmological phenomena, yielding insights and predictions that have been
consistently verified through empirical observation. Noteworthy examples include
the confirmation of gravitational lensing (with Sir Arthur Eddington’s landmark
experiment during the 1919 solar eclipse, where the deflection of starlight near
the sun was measured), the time dilation effect (with the precision tests involving
atomic clocks on orbiting satellites), the emission and detection of Gravitational
Waves (with the groundbreaking achievement of LIGO and VIRGO in 2015 [2]),
the synchronization of satellite clocks for the GPS systems, and the measure of
gravitational redshift via observations of light from distant astronomical objects.

The original formulation of GR, based on the field equations (1.1), emerged as
a generalization of Poisson’s equation for Newtonian gravity; the relation between
geometry and matter is expressed via tensor equations, but no other fundamental
objects are defined. Following from its successes, many years of scientific production
were dedicated to a recast of GR into more abstract frameworks, i.e. those used in
Classical and Quantum Field Theory. The Lagrangian formulation was developed
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by David Hilbert and others in 1915-1916 and came as an alternative representa-
tion of the theory in the Lagrangian language; it describes the dynamics via the
action principle in terms of the spacetime metric and its derivatives, therefore it is
particularly useful in the context of variational principles and quantum field theory.
The Hamiltonian formulation, which is closely related to the Lagrangian one, also
emerged later from the works of Arnowitt, Deser and Misner [3] as another way to
express the theory in a canonical context; it is based on the metric and its conjugate
momenta and addresses in a clearer way the constraints arising from diffeomorphism
invariance. Indeed, gravity is a constrained theory, a property following from the
requirement of General Covariance. This feature has important repercussions at the
dynamical level, most of all leading to the so-called frozen formalism, as we will
discuss in the next chapter.

Before delving into the Lagrangian and Hamiltonian formulation of gravity, it is
useful to remark some aspects of the general theory of constrained systems. We will
also introduce some concepts on geometry, curvature and foliations on manifolds,
which are contained in the following sections.

1.2 Preliminaries on Lagrangian and Hamiltonian for-
mulations

In Classical Mechanics, one can identify trajectories solving the motion by the
variational principle, or principle of least action, stating that the path followed by a
physical system is the one which minimizes the action functional. More specifically,
in Maupertuis’s version [4], one should minimize the action integral

S̃[q(t)] :=
∫

p · dq (1.2)

over the generalized coordinates q = (q1, q2, . . . qN ), requiring conservation of energy
; equivalently, in Hamilton’s version the action

S[q(t)] =
∫ t2

t1
L(qk, q̇k, t) dt (1.3)

is the time integral of the Lagrangian L(qk, q̇k, t) of the system (being qk generalized
configuration coordinates) and it is varied between two fixed endtimes t1, t2 and
endpoints q1, q2 such that δqk(t1) = δqk(t2) = 0. In both cases, the action is a
functional S : function space→ R, i.e. it returns a value when a function is given as
an input. We here focus on Hamilton’s formulation of the variational principle for
clarity.

It is well known that the stationarity condition δS = 0 of S[q(t)] is a necessary and
sufficient condition to obtain the equations of motion for an N -dimensional physical
system (with coordinates qi, i = 1, 2, . . . N), i.e. the Euler-Lagrange equations

∂L
∂qk
− d

dt

∂L
∂q̇k

= 0 . (1.4)

One can here understand why the Lagrangian is defined up to boundary terms: such
terms can arise when one derives (1.4) from (1.3) from integration by parts, but
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they will not affect the dynamics at all. Eqs. (1.4) represent a set of N second-order
differential equations, therefore the associated Cauchy problem requires to give
initial values for the coordinates and velocities. While equations of the second order
present more difficulties to reach an analytical exact solution, this approach has
two important features. Firstly, only the qk are varied, i.e. the velocities q̇k are
not treated as independent degrees of freedom. Secondly, the Lagrangian formalism
is already covariant by definition under coordinate transformations, therefore the
stationarity condition of the action determines the physical trajectories irrespective of
the coordinate system. In other words, different parametrizations in the configuration
space give the same physical content of the theory, that is dictated by the Euler-
Lagrange equations.

Whenever the Lagrangian does not depend explicitly on a configuration coordi-
nate, labeled cyclical variable, one of the eqs. (1.4) turns out to be

d

dt

∂L
∂q̇i

(qk, q̇k, t) = 0→ f(qk, q̇k, t) = const. (1.5)

The conserved quantity f is a first integral of motion. Such conservation can be
written as a condition of the form C(qk, q̇k, t) = 0, which identifies a constrained
system. The relation between constraints and symmetries in gauge theories will be
discussed in Sec. 1.3.

The Hamiltonian formulation proposes an alternative to the Lagrangian one,
which replaces the N second-order eqs. (1.4) with 2N differential equations of the
first order. This formulation is obtained by defining the conjugate momenta (we
restrict here to time-independent Lagrangians for simplicity):

pi(qk, q̇k) = ∂L
∂q̇i

(qk, q̇k) (1.6)

which are N new variables to be used instead of the velocities q̇k. This is possible if
the relation (1.6) is invertible, i.e.

det

(
∂2L
∂q̇i∂q̇l

)
= det

(
∂pi
∂q̇l

)
̸= 0 (1.7)

One then performs the Legendre transformation from the configuration space (qk, q̇k)
to the phase space (qk, pk), where each pair satisfies the canonical commutation
relations {qi, pj}q,p = δij and {qi, qj}q,p = {pi, pj}q,p = 0 by definition1. In this way,
one obtains the Hamiltonian as

H(qk, pk) = pk q̇
k(qi, pi)− L(qk, q̇k(qi, pi)) (1.8)

and the action functional (1.3) can be equivalently written as

S[qi, pi] =
∫ t2

t1
dt
(
pk q̇

k(qi, pi)−H(qi, pi)
)
. (1.9)

1The symbol {·, ·}q,p denotes the Poisson brackets of two quantities with respect to the phase-
space variables qk, pk as defined in Table 0.1. They are proportional to the commutator brackets by
the coefficient 1/iℏ.
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The equations of motion are simply obtained via the variations δqS = 0, δpS = 0
and are referred as Hamilton’s equations:

q̇k = ∂H
∂pk

, ṗk = − ∂H
∂qk

. (1.10)

It is useful to note that in this framework one does not have automatic covariance
under coordinates changes; indeed, those would modify the evolution of the system
expressed by (1.10) unless also the conjugate momenta are transformed at the same
time in a compatible way. The group of time-independent transformations that
preserve the Hamilton’s equations (1.10) are the so-called canonical transformations
(q,p) → (Q,P), i.e. they transform an Hamiltonian system H(qk, pk) to a new
Hamiltonian system with H′(Qk, Pk). More specifically, the map describing the
transformation must be such that the form pdq −PdQ is an exact differential dF ,
which allows to write a generating function F for the transformation. An extension to
time-dependent canonical transformations (and therefore time-dependent generating
functions) is possible; in any case, the new Hamiltonian is related to the old one by

H′(Qk, Pk, t) = H
(
qk(Qi, P i, t), pk(Qi, P i, t)

)
+ ∂F

∂t
(1.11)

To stress the departure from the Lagrangian case, we can consider the example
of a generating function of the first type F1(qk, Qk)2, which express a change from
the old coordinates q to new ones Q, satisfying the condition det

(
∂2F1
∂qi∂Qj

)
̸= 0. This

change is a canonical transformation if and only if the old and new momenta are
defined as the following

pk = ∂F1
∂qk

, Pk = − ∂F1
∂Qk

. (1.12)

Therefore in Hamiltonian formalism, which is not automatically covariant, we cannot
perform arbitrary coordinate changes without changing the Hamiltonian structure
and so dynamics of the system. Actually this is an advantage, since we are allowed
to perform a more general class of transformations: indeed, the coordinate changes
of the Lagrangian level are recovered in the limit Qk = fk(qi) i.e. requiring the
new variables Qk to be functions of the old coordinates only. The class of canonical
transformation is more general and allows for “mixed” transformations which combine
together coordinates and momenta. This feature is particularly useful when solving
physical systems via the Hamilton-Jacobi method: by finding a suitable generating
function, one obtains a new Hamiltonian system in which all new phase-space
variables are constants of motion (H′ = 0) [5] or all the new coordinates are cyclic
(H′(P k)) [6], and then traces back the solutions for the starting system.

The nature of (1.5) is clearer in the Hamiltonian formulation, since the conserved
quantities correspond exactly to momenta of the system by the definition (1.6): if
the Hamiltonian is independent of a variable qk then its associated momentum pk is
conserved. We remark that the presence of a symmetry related to a first integral
actually reduces by two the dimensionality of the system (1.10) from R2N to R2N−2

2We do not list here the other three types of generating functions, however they can be obtained
from F1 via Legendre transformations.
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(since we have both the independence from qk and one pk which can be trivially
integrated) therefore they represent a powerful tool in this formalism. Another
way to find first integrals is to look at the evolution of observables, which can be
expressed via the Poisson brackets as

d

dt
f(qi, pi, t) = ∂f(qi, pi, t)

∂t
+ {f,H}q,p . (1.13)

We here referred to the Lagrangian and Hamiltonian functions, however one can
also work with their (spatial) density equivalents L(q, q̇) and H(q, p), as will be done
in Sec. 1.5.

1.3 Theory of constrained systems

Gauge theories, i.e. those that present a gauge symmetry, frequently emerge in
the understanding of fundamental forces and particle interactions. Gauge symmetry
groups are associated to transformations caused by a change of the arbitrary reference
frame which leave the system’s physical variables (or observables) unchanged; in
other words, they cause physically irrelevant ambiguities. The quantities which
are not modified by these transformations are labeled as gauge-invariant. Due to
the arbitrariness in the choice of reference frame, not all canonical variables of a
gauge theory will be independent; when possible, it is more convenient to work with
gauge-invariant quantities directly (we will see an application of this method in
Chap. 5).

As elucidated by Noether’s theorem [7], each invariance under a transformation
group corresponds to the conservation of a physical quantity associated to the
generator of that symmetry group. A simple example is a system invariant under the
Lie group of 3d rotations SO(3): in that case, angles will be cyclical coordinates and
the three components of the angular momentum Lx, Ly, Lz (which correspond to the
generators of the Lie algebra in the coordinate representation) will be associated to
the Casimir invariant L2 [8]. In other words, a system invariant under 3d rotations
will conserve its angular momentum.

A direct consequence of symmetry is that gauge theories are represented by
constrained Hamiltonian systems [5], of which we discuss the main points. The
first observation is that condition (1.7) is not satisfied in presence of constraints,
therefore we cannot invert all the velocities q̇k in terms of the conjugate momenta
pk. Then, some canonical variables will be constrained by relations of the form

ϕm(qk, pk) = 0 , m = 1, 2, . . .M (1.14)

being M the number of constraints. The conditions (1.14) are referred to as primary
constraints, since they emerge first without applying the equations of motion. Let
us assume for simplicity that all Eqs. (1.14) are independent and that they define
a smoothly embedded submanifold of phase space, which has dimension 2N −M .
The system will evolve on this manifold, i.e. the primary constraint hypersurface.

From the variational point of view, the constraints are guaranteed by the sta-
tionarity condition of the action if one adds M new independent variables λm as the
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following:

S[qi, pi, λm] =
∫ t2

t1
dt
(
pk q̇

k(qi, pi)−H(qi, pi) + λmϕm(qi, pi)
)
. (1.15)

Here the λm clearly act as Lagrange multipliers, enforcing the conditions (1.14). It
follows from (1.15) that the equations of motion are modified as

q̇k = ∂H
∂pk

+ λm{qk, ϕm}q,p ,

ṗk = − ∂H
∂qk

+ λm{pk, ϕm}q,p .
(1.16)

The definition of the Hamiltonian itself is possible, even if some pk cannot be written
as functions of the q̇k, by using Lagrange multipliers to replace each non-invertible
q̇k; this procedure gives an action functional with a well-defined Hamiltonian, i.e.
function of all invertible pk. We remark that the Hamiltonian is well-defined only
on the constraints surface, i.e. up to a linear combination of such constraints:

H→ H + cm(qk, pk)ϕm(qk, pk) (1.17)

being cm arbitrary coefficients. The natural requirement that primary constraints
are preserved by the system’s evolution leads to the following conditions

ϕ̇m = {ϕm,H}q,p + λn{ϕm, ϕn}q,p = 0 (1.18)

being m,n = 1, 2, . . .M . If the Eqs. (1.18) turn out to be independent of the λm,
they cannot be expressed as linear combinations of the primary constraints; therefore,
we have new restrictions on the system, which are labeled as secondary constraints:
Xm(qk, pk) = 0 3.

The classification into primary and secondary constraints is very insightful at the
dynamical level and will appear in the discussion of the ADM formalism in the next
section. However, an alternative formulation is possible, more linked to the gauge
transformations causing the constraints in gauge theories: this the classification into
first-class and second-class.

A function the phase-space variables is said to be first-class if and only if its
Poisson brackets with the entire set of constraints weakly vanish:

{f(qk, pk), ϕm}q,p ≈ 0 ∀ m = 1, 2, . . .M . (1.19)

If instead there is at least one constraint for which (1.19) does not hold, the function
f is said to be second-class. It is possible to define a Hamiltonian which is first-class
only, when Eqs. (1.18) act as a restriction on the Lagrange multipliers, see for
example [9].

First-class constraints are postulated to generate gauge transformations, ac-
cording to the so-called Dirac’s conjecture [10, 5]. At the geometrical level, trans-
formations generated by first-class constraints are tangential to the constraints

3Analogously, requiring the conservation of secondary constraints might also give tertiary
constraints, and so on until no new constraints arise; we will not discuss those types in this thesis.
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hypersurface, while this is not true for second-class ones. With this classification,
one can count the number of true degrees of freedom of a physical system with the
formula

Nphys = 1
2 (Nt −Ns − 2Nf ) (1.20)

where Nt is the total number of phase-space coordinates and Nf and Ns count the
number of first- and second-class constraints respectively. We remark that first-class
constraints “strike twice” since they reduce by one the number of degrees of freedom
and also require observables to be gauge-invariant.

1.4 Manifolds and geometry

GR is based on a covariant formalism, with physical properties described by
four-dimensional tensor objects that satisfy precise transformation laws, as we will
clarify below. One describes spacetime as a four-dimensional pseudo-Riemannian
manifold M4, whose metric gµν embodies the gravitational field’s information: it
dictates the measurement of distances between events and establishes gravity’s
influence on the trajectories of all objects.

We recall that a pseudo-Riemannian manifold (Mn, g) is a smooth manifoldMn

of dimension n equipped with a Riemannian metric g, which is a smooth tensor
field that defines a symmetric non-degenerate inner product on the tangent space
Tp(Mn) at each point p. More specifically, given any two vectors v,u ∈ Tp(Mn)
we can compute g(v,u) that satisfies the properties of symmetry and linearity
[11]. This quantity allows us to compute distances, angles, and volumes on the
manifold. It is therefore a generalization of our experience of the flat 3d Euclidean
metric diag(+1,+1,+1) and of the Minkowski metric of special relativity ηµν =
diag(−1,+1,+1,+1) the latter one casting space and time together but with zero
curvature.

The spacetime metric tensor gµν is the fundamental field, as can be seen from the
Einstein equations (1.1). As will be shown in the next section, the 3+1 formulation of
gravity developed by Arnowitt, Deser and Misner [3] allows to obtain its Hamiltonian
formulation in a covariant way. This formulation makes use of a foliation procedure
to identify a “reduced” metric, containing a limited amount of information. In
order to better understand this picture, we here remind the basics of the embedding
procedure, i.e. the process of representing a lower-dimensional manifold or space
within a higher-dimensional space.

Embedding From the mathematical point of view, the embedding procedure is
a technique employed to study the properties of manifolds embedded in higher-
dimensional ones by a map F : M ↪→ M. If M is a Riemannian manifold, this
procedure induces a new Riemannian metric on M [12]; it is actually a way to
construct interesting Riemannian metrics starting from some other Riemannian
manifold [11].

For example, it is possible to embed a 4d manifold (representing spacetime)
into a a 5d flat space M5, see Figure 1.1. We stress that this does not apply for
space-times that are solution of Einstein’s vacuum equations, in which case one needs
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a higher dimensional space [13], but it is a useful example to illustrate how the metric
and affine properties naturally emerge in such procedure. Given a differentiable 4d
manifold M4 embedded in a Minkowskian 5d space M5 endowed with the natural
scalar product and with signature (−,+,+,+,+), one can define an adapted basis
bµ(u) for M4, where uµ are generic coordinates (we refer for the details to [9]).

M5

M4

p

bµ

X

Figure 1.1. Parametric representation of the embedding of M4 in 5d Minkowskian space
via a 5d vector X. The vectors bµ act as a basis on the space tangent to M4 in the
point p.

Now a vector V ∈ M4 can be expressed as V = V µ(u) bµ(u). Applying an
invertible coordinate transformation uµ → zµ = zµ(u), the basis transforms as:

bµ′(z) = bα(u) ∂u
α

∂zµ′ (1.21)

that is the transformation law of covariant objects onM4, i.e. with the Jacobian ma-
trix Λαµ′ of the inverse transformation. The law for contravariant objects immediately
follows by

V = V α(u) · bα(u) = V α(u)∂z
µ′

∂uα
bµ′(z) = V µ′(z(u)) bµ′(z(u)) (1.22)

i.e. with the Jacobian matrix of the direct transformation.
It is a fundamental property of tensor formalism that all covariant and contravari-

ant quantities, and so all tensor components, must transform following one of the two
rules (1.21), (1.22). Scalar quantities are independent of coordinate transformations.
This enforces the principle of General Covariance (Sec. 1.1): once a physical law is
written in tensorial form (with all covariant and contravariant indices contracted),
the respective components will balance out and its form will be preserved under
coordinate transformations.

The action of the ordinary derivative on a vector

∂Vα(u)
∂uρ

= ∂zµ
′

∂uρ
∂

∂zµ′

(
Vν′(z)∂z

ν′

∂uα

)
= ∂zµ

′

∂uρ
∂zν

′

∂uα
∂Vν′(z)
∂zµ′ + Vν′(z) ∂2zν

′

∂uα∂uρ
(1.23)

clearly behaves as a pseudo-tensor, i.e. it acts as a tensor under linear coordinate
transformations only. This ill behavior stems from the local definition of Tp(M4):
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in curved space, given two close tangent vectors it is not clear how to compute the
distance between the two, since they belong to different tangent spaces Tp(M4) and
Tp′(M4) and the corresponding bases are different4. The derivative of the basis
vectors bµ can be expanded on a basis of the environment manifold M5 via

∂bµ(u)
∂uν

= Γρµν(u) bρ(u) + Πµν(u) n(u) , (1.24)

where n ⊥ bµ belongs to M5. Here we have two new objects: Γρµν(u) is the affine
connection, describing the variation of the basis onto M4, and Πµν(u) is a tensor
called extrinsic curvature, representing the curvature of the tangent hypersurface as
seen from the environment manifold M5. The latter only exists since we are consid-
ering a manifold embedded into another space, and carries the “extra” information
of the embedding in such space.

In the following Section, we will see how the embedding procedure gives rise
to the 3+1 formalism of the Arnowitt-Deser-Misner formulation of gravity. Let us
briefly recall how the spacetime curvature appearing in the Einstein’s equations (1.1)
emerges in this formalism. Given a space-time metric gµν , the affine connection is

Γρµν = 1
2g

ργ(∂µgγν + ∂νgµγ − ∂γgµν) (1.25)

and is symmetric under the exchange of its lower indices. One then introduces the
notion of parallel transport, that is the transport conserving the angle between the
vector itself and the curved surface along which the coordinates vary, and then the
covariant derivative

∇µV ρ(u) = ∂V ρ

∂uµ
+ ΓρµνV ν(u) , (1.26)

∇µVν(u) = ∂Vν
∂uµ

− ΓρµνV ρ(u) (1.27)

for contravariant and covariant vectors respectively.
From the commutator of the covariant derivatives one can obtain the Riemann

tensor Rµνρσ = gµϵR
ϵ
νρσ via

(∇ρ∇σ −∇σ∇ρ)V µ = RµνρσV
ν , (1.28)

satisfying the following properties

Rµνρσ = −Rνµρσ , Rµνρσ = −Rµνσρ , Rµνρσ = Rρσµν (1.29)

and the Bianchi identity

Rµνρσ +Rµσνρ +Rµρσν = 0 . (1.30)

Since (1.29) and (1.30) are tensor equations, they are true in all coordinate systems.
From a geometrical point of view, the commutator in (1.28) expresses the parallel

4An immediate example of this problem is the sphere Sn, where there is no automatic way to
define a derivative for tangent vectors that behaves the same way in all directions. Indeed the
parallel transport of a tangent vector along a closed curve on Sn does not return the vector pointing
in the original direction, but it rotates it.
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transport of the vector V µ along an infinitesimal closed path. If the vector results to
be changed when computed back in the same starting point, this is an effect effect
of the spacetime curvature and we have a non-vanishing Riemann tensor; in the
Minkowskian flat space-time, the covariant derivatives reduce to ordinary ones and
we have that the commutator identically vanishes so Rµνρσ is zero.

The (symmetric) Ricci tensor and curvature scalar

Rµν = gρσRρµσν , (1.31)
R = gµνRµν , (1.32)

are the objects entering in the Einstein tensor Gµν (1.1):

Gµν = Rµν −
1
2gµνR (1.33)

which conveys how the spacetime geometry influences (and is influenced by) the
matter content of the universe.

1.5 The ADM formulation
We now apply the concepts contained in the previous sections to present the

Lagrangian and Hamiltonian formulations of gravity. A peculiar feature of GR is
that many different Lagrangian formulations are possible, corresponding to different
boundary conditions of the integration domain (as we have seen in Sec. 1.2, any
Lagrangian density is defined up to a boundary term). In defining the corresponding
action functional as a gauge-invariant object, the integration volume element depends
on the metric itself. When the variation of such gravitational action with respect
to gµν is required to vanish, one must obtain the field equations (1.1); in doing so,
standard boundary conditions are not enough since the first derivatives of gµν must
also be fixed on the boundary:

δgµν |∂M = 0 , δ(∂ρgµν)|∂M = 0 . (1.34)

This is a stark difference from QFT, in which the field dynamics is derived by
variation of the corresponding action with boundary conditions applied on the field
alone. A number of different Lagrangian densities exist to solve this issue by requiring
only gµν to be fixed on the boundary [9]; however, not all of them present the desired
symmetries. For example, one might construct a Lagrangian without second-order
derivatives of the metric, so that only the first condition in (1.34) is needed: this is
the case of the ΓΓ formulation, which is however not scalar nor covariant. We will
here refer to the Einstein-Hilbert Lagrangian (and action), which is indeed scalar
and covariant.

We start from the Einstein-Hilbert action functional

SEH [gµν ] = c4

16πG

∫
M
d4x
√
−g (R− 2Λ) (1.35)

corresponding to the following Lagrangian density for GR

LEH = c4

16πG
√
−g (R− 2Λ) , (1.36)
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where a cosmological constant contribution is taken into account for generality (its
role will be discussed in Chap. 5). By considering (1.35) along with the inclusion of
matter sources through a Lagrangian density Lm, one can verify that the Einstein
equations (1.1) involving the matter stress-energy tensor

Tµν = 2√
−g

(
δ(
√
−gLm)
δgµν

− ∂

∂xρ
δ(
√
−gLm)

δ(∂ρgµν)

)
(1.37)

arise from the stationarity condition δS = 0 upon varying the metric tensor. This
variation encompasses contributions from δ

√
−g, δgµν , and δRµν .5. Also, since LEH

does not depend on the matter fields, varying the total action with respect to them
will give the same equations as the variation of the matter action only.

To obtain the Hamiltonian formulation via the Legendre transformation, one
needs to identify a time variable or at least a time “direction”, apparently breaking
the General Covariance of GR. However, Arnowitt, Deser and Misner developed
a diffeomorphism-invariant Hamiltonian description of gravity, achieved with the
so-called ADM splitting (or foliation) of spacetime [3].

In the general picture, a foliation consists of decomposing a manifold into a
collection of submanifolds (or leaves of the foliation) which are required to be smooth
and non-overlapping 6. In GR, the ADM formalism illustrates how to slice the 4d
manifold M4 into a family of 3d space-like hypersurfaces of equal time, each one
representing a “snapshot” of space at a specific instant. Being these hypersurfaces
space-like, events within each one are connected by spatial distances i.e. with no time-
like separation. This is why the parameterization of time across these hypersurfaces
provides a convenient way to describe the evolution of the gravitational field in terms
of spatial geometry. We stress that this is possible only with globally hyperbolic
spacetimes [14], for which it is possible a decomposition of the form Σx0⊗R (necessary
to have a well-posed initial-value formulation for the metric).

Let us introduce a time-like vector field n on M4 and identify the hypersurfaces
Σx0 as those normal to the time-like direction. Following the formalism of Sec. 1.4,
these 3d hypersurfaces are embedded in M4 [15].

We describe the one-parameter family of hypersurfaces Σx0 ≡ Tx0(M4) via
parametric equations:

yµ = yµ(xi;x0) . (1.38)
Such hypersurfaces are in the general case curved, hence we will have an induced
metric associated to an intrinsic curvature, and a non-zero extrinsic curvature, i.e.
the information of the metric tensor gµν will be split into these two objects. Given
the basis vectors eµ of M4, we define a new basis on Σx0 via

bi = ∂yµ

∂xi
eµ . (1.39)

Together with the time-like vector n = nµeµ, they form a basis {bi,n} for the
environment (space-time) manifold.

5This term gives a boundary contribution, containing the first derivatives of the variation of gµν

so it does not vanish when δgµν |∂M = 0. It is however possible to choose a class of manifolds where
this contribution vanishes, such as asymptotically Minkowskian manifolds.

6An introductory description of foliation for generic manifolds can be found in the textbook [12],
however we here restrict ourselves to the spacetime foliation.
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Σx0+dx0

Σx0

xi
′

xi

N

N j

N

Figure 1.2. Foliation of space-time into space-like hypersurfaces. The deformation vector
N connects two points with the same spatial coordinates xi ≡ xi′ on hypersurfaces
separated by dx0. We also show its projections on the time-like direction N and on the
hypersurface basis N i.

We now introduce a vector connecting points of identical coordinates xi (dictated
by the basis (1.39)) on two infinitesimally close hypersurfaces Σx0 and Σx0+dx0 , see
Fig. 1.2, labeled as deformation vector N. We remind that the two hypersurfaces
are both intrinsically and extrinsically curved (since they are embedded in M4),
therefore N has non-vanishing projections both on n and on the vectors (1.39):

Nµ = ẏµ = Nnµ +N ibµi . (1.40)

where ẏ represent the time derivative (time is identified by the coordinate x0 dictated
by the time-like vector n). The component N expresses displacements along the
x0 direction, while N i measures displacement along the tangent vectors within the
hypersurface; they are called lapse function and shift vector respectively. Given
the basis (1.39), it possible to compute the three-dimensional metric hij induced
on the hypersurfaces Σx0 linked to the coordinates xi; this tensor shall be used for
lowering or raising indices of 3d objects on Σx0 . However, we remind that we started
from M4 with a given four-dimensional metric tensor gµν , from which it is easier to
compute hij : indeed one can write the spacetime interval as

ds2 = (−N2 +NmNnhmn)dx0dx0 + 2Nkhkidx
0dxi + hijdx

idxj . (1.41)

Here we are using N , N i and hij as set of variables, called ADM variables. Their
relation with gµν is easily found:

N = 1√
−g00 , N i = − g

0i

g00 , hij = gij . (1.42)

We note that the change of variables (1.42) is invertible only for g00 < 0. The
determinant of the metric tensor is given by

√
−g = N

√
h.

A 3d covariant derivative on the hypersurfaces Σx0 can be defined by inspecting
the partial derivative of a vector A = Akbk ∈ Σx0 :

∂iA = (∂iAk + Γ̄kilAl)bk + Πiln . (1.43)
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Here the extrinsic curvature causes a contribution on the time-like direction. The
3d Christoffel symbols Γ̄kil, analogously defined from hij as

Γ̄kil = 1
2h

kl(∂ihjl + ∂jhli − ∂lhij) (1.44)

allow to construct the 3d covariant derivative Di as the projection of (1.43) on the
hypersurface Σx0 :

DiA
k = ∂iA

k + Γ̄kilAl , (1.45)
DiAk = ∂iAk − Γ̄likAl . (1.46)

The 3d Riemann tensor R̃σρµν follows from the commutator of covariant derivatives:

[Dµ, Dν ]Aρ = −R̃σρµνAσ , (1.47)

however the relation between the scalar curvature R (1.32) and its 3d counterpart
R̃ is not trivial. In this passage, the extrinsic curvature plays a significant role: it is
defined as the symmetric tensor

Kµν = biµb
ρ
i b

i
σb
ν
i ∇ρnσ = Kνµ , (1.48)

with a 3d counterpart

Kij = bi · ∂jn = 1
2N (∂0hij −DiNj −DjNi) . (1.49)

It is possible to write R in terms of the 3d scalar curvature R̃ and (1.48), (1.49)
with the so-called Gauss-Codazzi equation (we refer for example to [9]):

R = R̃− ϵ(KµνK
µν −K2) + 2ϵ∇µ(nν∇νnµ − nµK) (1.50)

where K = Ki
i and ϵ = nµnµ = −1. Since bµi bjµ = δij by definition, KµνK

µν = KijK
ij

and the expression for (1.36) further simplifies:
√
−g R = N

√
h(R̃+KijK

ij −K2) + 2N
√
h∇µ(nν∇νnµ − nµK) . (1.51)

Here we are suppressing the cosmological constant contribution Λ in (1.36) in order
to properly show the relation between the 4d and 3d metric functions; the same would
apply in the presence of Λ, see for example Chap. 5. We observe that the second
parenthesis in (1.51) is a boundary term, which can be discarded with appropriate
boundary conditions [9]; in this case, using the induced metric to rewrite the first
parenthesis, we have a well-posed variation principle for the action functional

SADM [hij , N,N i] = c3

16πG

∫
M
d4x LADM

≡ c3

16πG

∫
dx0d3xN

√
h
(
R̃+ (hirhjs − hijhrs)KijKrs

)
.

(1.52)

It is now straightforward to perform the Legendre transform and achieve the
Hamiltonian formulation of GR. Here the constrained nature of gravity emerges:
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since Ṅ and Ṅ i are cyclical, we immediately find from (1.52) the following first
integrals

Π = ∂LADM
∂Ṅ

= 0 , Πk = ∂LADM
∂Ṅk

= 0 (1.53)

which are the primary constraints of GR and are by definition the momenta conjugate
to N , N i. Together with the momentum conjugate to the three-dimensional metric
hij

Πij = ∂LADM
∂∂0hij

= c3

16πG
√
h(hrihsj − hijhrs)Krs , (1.54)

we now have all the elements to compute HADM . First we shall invert the velocities
of the ADM variables as functions of the momenta Π,Πk,Πij . By combining (1.49)
and (1.54) and inverting the 3d tensor hrihsj − hijhrs with

Gijrs = Grsij = 1√
h

(
hirhjs −

1
2hijhrs

)
, (1.55)

whose properties will be specified later, one finds Krs = 16πG
c3 GijrsΠij and the metric

velocity
ḣrs = ∂0hrs = 16πG

c3 2NGijrsΠij +DrNs +DsNr . (1.56)

Now expressing the Lagrangian density (1.52) with the conjugate momenta

LADM = c3

16πGN
√
hR̃+ 16πG

c3 NGijrsΠijΠrs (1.57)

one can finalize the Legendre transform:

HADM = Πij ∂0hij + λ Π + λi Πi − LADM (Π,Πk,Πij)
= λ Π + λi Πi +NkHk +NH + 2Di(ΠijN

khkj) .
(1.58)

Here, the coefficients λ and λi stemming from the terms Π ∂0N , Πi ∂0N
i act as

Lagrange multipliers enforcing the primary constraints (1.53), thus they are arbitrary;
in other words, Π and Πi are not dynamical variables (this will be more clear when
applying the canonical quantization procedure in the next Chapter). Suitable
boundary conditions can be chosen such that the last term in (1.58) vanishes, so
we will discard it in the following. The objects H and Hi are introduced as the
super-Hamiltonian function and super-momentum vector respectively:

H = 16πG
c3 GijrsΠijΠrs − c3

16πG
√
hR̃ , (1.59)

Hk = −2hkjDiΠij . (1.60)

Let us now briefly discuss the object Gijrs. Since it is contracted with symmetric
tensors in (1.59), it is useful to switch to its symmetric restriction

G(sym)
ijrs = 1

2
√
h

(hirhjs + hishjr − hijhrs) (1.61)
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that is the supermetric tensor, and we relabel G(sym)
ijrs → Gijrs for simplicity. Being a

symmetric 6x6 matrix at each space point, it can be diagonalized, finding a signature
(−,+,+,+,+,+). Due to the presence of a negative eigenvalue, the kinetic term of
the gravitational field is said to be indefinite [16] and the Hamiltonian constraint
turns out to be a hyperbolic partial differential equation, see Sec. 2.1.

Following the discussion of Sec. 1.3, Eqs. (1.53) provide secondary constraints
through the equations of motion:

{Π,HADM} = −H = 0 , (1.62)
{Πk,HADM} = −Hk = 0 . (1.63)

Eqs. (1.62) and (1.63) are the super-Hamiltonian (or scalar) and super-momentum
(or vector) constraints of gravity, and they are related to Einstein’s equations in
vacuum G0µ = 0 via

Gµνn
µnν = − H

2
√
h
, (1.64)

Gµνb
µ
i b
ν
i = Hi

2
√
h
. (1.65)

To understand this, we remark that the physical relevance of the Einstein’s equations
(1.1) is not to simply solve the spacetime geometry based on the distribution of
mass-energy, but it takes into account the initial data, as in classical Field Theory.
A full solution can be found only for the associated Cauchy problem, i.e. we have to
provide initial values for the variables and their “velocities” both for the metric field
and mass-energy contribution. In absence of matter, gravity requires four degrees of
freedom for the initial data, so that only six of the starting 10 equations (1.1) are
dynamical and G0µ = 0 acts as a requirement on initial values.

Let us remark a fundamental property of such formulation. The action (1.52)
can be rewritten in terms of the superHamiltonian and supermomentum functions as

SADM [hij , N,N i] = c3

16πG

∫
M
dx0d3x

(
Πij∂0hij −NH −N iHi

)
. (1.66)

We first observe that the supermomentum constraint generates coordinate trans-
formations on Σx0 , i.e. diffeomorphisms of M that preserve Σx0 . To show this, let
us consider an infinitesimal spatial diffeomorphism xi = xi + ξi; at first order, the
supermetric and wave functional transform as [16]

δξhij = h′
ij(x)− hij(x) ≃ −2D(iξj) , (1.67)

δξΨ = −2
∫
d3x

δΨ
δhij(x)Diξ

j (1.68)

and we recall that Di is the covariant derivative on Σx0 . Performing a partial
integration and assuming that ξj vanishes at infinity, since ξj is arbitrary it must
hold that

Di
δΨ

δhij(x) = 0 . (1.69)
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As a consequence Ψ depends only on the 3-geometry, irrespective of the coordinate
choice on Σx0 . This corresponds to the quantum version of the supermomentum
constraint (1.63), as will be elucidated in the next Chapter.

On the other hand, it can be shown that the superHamiltonian H generates
infinitesimal diffeomorphisms of M parallel to the time-like vector n i.e. orthogonal
to Σx0 (we refer for the calculation to [17]). It follows that the ADM formulation
based on the superHamiltonian and supermomentum identification is covariant with
respect to arbitrary coordinate transformations, which was the main motivation
behind its introduction. Clearly, the cost of this symmetry is the emergence of the
secondary constraints.

The theory here presented, providing a dynamical Hamiltonian description of
GR, is usually referred to as (classical) geometrodynamics; its quantization will be
dealt with in the next chapter. It is important to stress that the constraints (1.53)
and (1.62)-(1.63) represent a closed set, i.e. they are preserved by the evolution,
so no tertiary constraints emerge (see discussion in Sec. 1.3); clearly, they also
greatly reduce the space of admissible initial conditions and the phase-space spanned
through the evolution. These constraints will bring fundamental repercussions when
the canonical quantization is applied, see Chapter 2. This is expected, since as we
mentioned before GR is a heavily constrained theory: of the ten degrees of freedom
of gµν , only two are truly independent (commonly associated to the polarization of
gravitational waves propagating in spacetime); the others are gauge variables and
just express the principle of General Covariance.

1.6 Minisuperspace models

Before proceeding with the quantized Hamiltonian formulation presented in the
next Chapter, an important remark is needed. The configuration space of the theory,
i.e. the superspace, includes both geometric and matter variables when we consider
a gravitational system with matter content. Focusing on the gravitational sector,
for each spacetime point there is a finite number of degrees of freedom. However,
considering all possible points, the result is an infinite-dimensional theory. Then
some renormalization procedure is needed to obtain finite predictions from the
functional (since the variables are are fields defined over a curved spacetime) theory.

Highly symmetric spacetimes are relevant cases of study: the symmetries reduce
the number of degrees of freedom (the others are essentially “frozen out”), yielding a
finite-dimensional scheme, called minisuperspace. This is the case in Quantum Cos-
mology, where spatially homogeneous (or also isotropic) space-times are considered,
as we will discuss in Chapter 5.

Let us consider a diffeomorphism-invariant system of gravity and one scalar field:
this symmetry greatly reduces the number of degrees of freedom and gives a more
manageable framework. Indeed, we can write the gravitational superHamiltonian
(1.62) in terms of some minisuperspace variables ha and the supermomentum (1.63)
can be discarded, since it enforces the diffeomorphism-invariance of the theory thus
it is automatically satisfied, as we will show in Sec. 2.1. The corresponding metric,
which we leave unspecified, is therefore homogeneous; examples are provided by
the Bianchi models in Sec. 1.6.1 and the special case of the Friedmann-Lemaitre-
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Robertson-Walker metric, implemented in Chapter 5.
The minisuperspace is thus {ha, ϕ}. The superHamiltonian explicitly reads

H(tot) = HMSS(ha) + 1
2
√
h
p2
ϕ +
√
hU(ha, ϕ) , (1.70)

where HMSS(ha) is the minisuperspace reduction of (1.62) and the following terms
come from the introduction of matter: pϕ is conjugate to ϕ and U(ϕ) is the self-
interaction scalar potential. Let us stress that, by varying the action (1.52) with
respect to N , one still finds the vanishing of (1.70) and this fact reflects the time
diffeomorphism invariance of the theory. The wave function Ψ(ha, ϕ) is intrinsically
taken over 3-geometries, reflecting the symmetry of the system: indeed, it is not a
function on Riem(Σx0) but on the minisuperspace.

The specific form of HMSS(ha) depends on the “degree of symmetry” of the
system. We recall that a homogeneous system exhibits the same properties at
every point, while isotropy refers to the same behaviour in different directions. For
homogeneous anisotropic spacetimes, all possible cases can be divided into categories
by the so-called Bianchi classification, which is briefly illustrated in the next Section.

1.6.1 The Bianchi classification of homogenenous spacetimes

The classification developed by Bianchi consists of nine different classes of space-
times numbered I, II, III, ..., IX, each representing a distinct type of spatial symmetry.
Indeed, it is based on the Lie algebra structure associated with the isometry group
of each spacetime, which encodes information about the local symmetries.

To describe such classification, we first note that the line element for a homoge-
neous (anisotropic) Universe admits the general form

ds2 = −N(t)2dt2 + ηab(t)ℓai(xk)ℓbj(xk)dxidxj , (1.71)

where the matrix ηab contains dynamical degrees of freedom and ℓai are spatial
vectors (a = 1, 2, 3) determining the specific shape of the 3-geometry. In the vacuum
case one can always diagonalize the matrix ηab = diag{a2, b2, c2}, such that the
3-metric becomes

hij(t, xk) = a2ℓ1iℓ
1
j + b2ℓ2iℓ

2
j + c2ℓ3i ℓ

3
j . (1.72)

Clearly, the vectors ℓa define three different (linearly independent) space directions
which scale in time according to the corresponding scale factors a, b, c, sourcing
the anisotropy. These vectors must satisfy suitable conditions for homogeneity: a
group of symmetry must exist which maps a given space point xi into another Gi(xi)
such that hij is preserved, i.e. ℓai′(Gl

′)dGi′ = ℓai (xl)dxl must hold. This condition,
together with Schwarz theorem for the commutativity of ordinary partial derivatives,
leads to the following Lie algebra for partial derivatives

[∂a , ∂b] = Ccab∂c , (1.73)

where the quantities Ccab are the structure constants identifying the specific groups
of symmetry and therefore the different Bianchi models. Indeed, one can write them
as two-indices tensors as Cab ≡ εabdCdc and then diagonalize them. The most trivial
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case with all eigenvalues equal to zero is the Bianchi I type, which corresponds to
a spatial geometry equal to a vacuum 3d Euclidean space. The other types are
increasingly more sophisticated, up to the Bianchi type IX which is the most general
and admits spacetimes with a positive cosmological constant.

The matrix in the line element (1.71) can be recast in a simpler form using the
so-called Misner variables α, β+, β−:

ds2 = −N2dt2 + e2α(e2β)ab σai σbjdxidxj . (1.74)

In cosmological settings, α can be interpreted as the logarithmic volume of the
universe (i.e. α = ln(v)/3), while the two degrees of freedom β± encoded in the matrix
βab = diag(β+ +

√
3β−, β+ −

√
3β−,−2β−) represent the anisotropies (we reserve a

better cosmological description for Chapter 5). Here N , α and β± are all functions
of time only due to homogeneity.

The Hamiltonian formulation of Bianchi types is expressed by

SB =
∫
dt
(
Pαα̇+ P+β̇+ + P−β̇− −NHB

)
(1.75)

where the supermomentum term is identically vanishing due to the homogeneity
symmetry, and the superHamiltonian is (up to a fiducial volume set to one)

HB = e−3α

3(8π)2

(
−P 2

α + P 2
+ + P 2

− + e4αUB(β±)
)
. (1.76)

Here the potential UB depends on the spatial curvature of the specific model. The
Bianchi I case has UB = 0 and it is the simplest and most symmetric model to
account for inhomogeneities, which could play a relevant role in the early evolution
of our Universe. The implementation of such models will be discussed in depth in
Chapter 5, dedicated to Quantum Cosmology.

1.6.2 FLRW spacetime with a homogeneous field

When the anisotropy effects are switched off (i.e. β± are set to vanish) one
recovers from the Bianchi line element (1.74) a homogeneous isotropic spacetime,
that is the (spatially flat) Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = −N2(t) dt2 + a2(t)
(
dx2 + dy2 + dz2

)
(1.77)

with only one scale factor a(t) associated to the three space directions. This metric
leads to a non-vanishing Einstein tensor, and therefore describes the solution for
a Universe filled with a matter source. A possibility is to consider a scalar matter
field source ϕ, characterized by

Lm = −1
2
√
−g(gµν∂µϕ∂νϕ−m2ϕ2) , (1.78)

Tµν = ∂µϕ∂νϕ−
1
2gµν(g

αβ∂αϕ∂βϕ−m2ϕ2) ; (1.79)

we remark that actually both expressions are simplified by the requirement that
ϕ = ϕ(t), in accordance with the homogeneity of the model.
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Let us briefly recall the classical properties of the FLRW model filled a massless
scalar source m = 0; this case is of cosmological interest, as will be discussed in
Chapter 5. Although the degrees of freedom are N(t), a(t) and ϕ(t), N is related
to the choice of the time parameter and in this sense it is not dynamical (i.e. it
behaves as a Lagrangian multiplier). Here we select the so-called synchronous gauge
N = 1, i.e. we use the label time. Then, one finds the coupled evolution of a(t) and
ϕ(t) governed by the non-zero components of the Einstein equations:(

ȧ

a

)2
= 8πG

6 ϕ̇2 , (1.80)

ä

a
= −8πG

3 ϕ̇2 , (1.81)

and the scalar field’s equation of motion

ϕ̈+ 3 ȧ
a
ϕ̇ = 0 . (1.82)

We note that Eq. (1.80),that is the 00 component of the Einstein field equations,
connects the geometry of the Universe to the matter content filling the space: this is
the Friedmann equation. Its general form for a FLRW model with spatial curvature
k and matter source with energy density ρ is (in c = 1)(

ȧ

a

)2
= 8πGρ

3 − k

a2 . (1.83)

For example, when one considers as the only content a cosmological constant term,
coming from an approximately constant potential V (ϕ) of a scalar field, it is easy to
recover that the classical behaviour of a(t) is an exponentially growing solution; this
toy model suitably describes the slow-rolling phase of inflation, see Chapter 5.

Let us go back to Eqs. (1.80)-(1.82), that describe a free field (in a spatially flat
metric). The associated solutions are easily found:

a(t) = a0 t
1/3 , (1.84)

ϕ(t) = ϕ0 + δ0 log(t) . (1.85)

The parameter t can be eliminated from these equations to give the relation

a(ϕ) = a0 e
c0
3 (ϕ−ϕ0) (1.86)

where the sign of the constant c0 identifies the expansion or contraction phases [18].
Therefore, one can describe the intrinsic dynamics of the system via the correlation
between these two quantities, independently from the chosen time; this is a simple
example of the relational time program that we will discuss in Sec. 2.2.

Finally, we note that in the limit t→ 0 the scale factor a also goes to 0, causing
the FLRW metric to be degenerate and the quantity ȧ/a to diverge. It can be
shown from the divergence of the energy density of the scalar field (which in this
case is simply ρ = ϕ̇2/2) and the behavior of the curvature invariants that a = 0
corresponds to a physical divergence, i.e. a singularity of the model [4]. This is a
characteristic property of the Big Bang formulation of the history of the Universe
[19], that we will overview in Chapter 5.
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Chapter 2

Time in the Wheeler-deWitt
picture

The quantization of a gravitational field is a necessary step towards the unification
of all types of interactions, and it is expected that in the cosmological case the
quantization approach will remove the initial singularity of our Universe, replacing
it with a regular regime [20]. However, a complete theory of QG is still object of
investigation at the present day.

In this chapter we explore quantum geometrodynamics in the canonical picture,
i.e. the theory of Canonical Quantum Gravity (CQG), and discuss the emerging
problems which must be faced in this framework, most notably the frozen formalism.
We then review the approaches based on the WKB expansion of a system of gravity
and matter, focusing on their different time implementations and the next-order
effects, where the quantum nature of gravity is expected to modify the matter
dynamics.

2.1 Quantum geometrodynamics and standing problems
in CQG

For now we consider the superspace treatment and quantize the gravitational
sector alone; the minisuperspace reduction in presence of matter will be discussed in
the following sections.

We start by identifying the space of the states with functionals of the ADM
variables, which are required to be differentiable. A generic wave function of the
gravitational system will be:

Ψ = Ψ[N,N i, hij ] (2.1)

We now implement the canonical quantization à la Dirac [10]. The ADM configura-
tion variables and conjugate momenta are promoted to operators:

hij(x)→ ĥij(x) , Πij(x)→ Π̂ij(x) ,
N(x)→ N̂(x) , Π(x)→ Π̂(x) ,
N i(x)→ N̂ i(x) , Πi(x)→ Π̂i(x) ,

(2.2)
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which are required satisfy the canonical commutation relations

[ĥij(x), Π̂kl(y)] = iℏδ(k
i δ

l)
j δ

(3)(x− y) , (2.3)

[N̂(x), Π̂(y)] = iℏ δ(3)(x− y) , (2.4)
[N̂ i(x), Π̂j(y)] = iℏδij δ(3)(x− y) . (2.5)

This is possible by introducing a representation of such algebra, in which the variable
and momenta act on the wave functional Ψ as multiplicative or derivative operators
respectively. This corresponds to an infinite-dimensional functional Schrödinger
picture, as a generalization of the QFT case. We recall that in QFT the Schrödinger
representation for finite-dimensional systems (e.g. the harmonic oscillator) describes
quantum states as wave functions ψ(qi), as an alternative to the Fock representation
identifying states via the basis of eigenkets of the Hamiltonian [21]. Let us remark
that, at this level, the representation space on which the operators (2.2) act is only
auxiliary and (2.1) is not yet a Hilbert space1. We will discuss the latter point in a
dedicated paragraph below.

From the primary constraints (1.53) we have the vanishing of Π and Πi, so their
quantum version corresponds to

−iℏ δ

δN
Ψ[N,N i, hij ] = 0 (2.6)

−iℏ δ

δN i
Ψ[N,N i, hij ] = 0 (2.7)

This means that the wave function (2.1) is actually independent of the variables N ,
N i that constitute the deformation vector; the physical meaning of such condition
will be cleared in the following.

Now we focus on the secondary constraints. It is useful to start from the
supermomentum one (1.63), that gives

ĤiΨ ≡ Dj

[ δΨ
δhij(x)

]
= 0 (2.8)

where the operator ordering is chosen such that the momenta are positioned on
the right of the covariant derivative (other choices are possible, as elucidated in
the super-Hamiltonian discussion). This condition expresses the invariance under
3d-diffeomorphisms: Ψ can depend only on the different 3-geometries {hij} and not
on the specific representations (i.e. the choice of hypersurface 3d-coordinates). In
other words, the configuration space of the theory corresponds to the quotient space
in which all metrics corresponding to the same 3-geometry are identified:

{hij} = Riem(Σx0)
Diff(Σx0) , (2.9)

1In quantum mechanics the Hilbert space is a complex vector space, on which states of a physical
system live as vectors, equipped with an inner product such that the product of a vector with itself
is positive-definite. While the term was originally intended for infinite-dimensional spaces satisfying
the completeness or closedness property, it is now widely used for finite-dimensional spaces too,
which are automatically complete.
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being Riem(Σx0) the set of all 3-metrics on Σx0 , and Diff(Σx0) identifies the group
of diffeomorphisms of Σx0 .

It follows from (2.6)-(2.8) that physical states are independent of the particular
choice of variables for the ADM splitting, and take into account only the (induced)
3-geometry. This is a direct consequence of the principle of General Covariance.

The most meaningful constraint for the system’s dynamics is the superHamilto-
nian (1.62) constraint, also called the Wheeler-DeWitt (WDW) equation:

16πG
c3 ĤΨ = −(16πℓ2Pl)2 “Gijkl(x)[hmn] δ2Ψ

δhij(x)δhkl(x)”−
√
hR̃(x)Ψ = 0 (2.10)

where the supermetric Gijkl has been defined in (1.61) and we have introduced a
fundamental scale

ℓPl =

√
Gℏ
c3 ≃ 1, 616 · 10−35 m (2.11)

that is the Planck length, signaling the start of the QG regime. Also in (2.10), the
choice of operator ordering is ambiguous in the sense that it is not prescribed a
priori by the theory. For this reason we use symbols “(...)” to denote some choice
of factor ordering, for example requiring that the commutation relations (2.3)-(2.5)
are preserved (for further details we refer to [9, 16]).

We remark that, in general, a quantum theory of GR is known to be perturba-
tively non-renormalisable, and in this sense the Wheeler-deWitt description might
not be the most suitable one, suggesting to switch to different more fundamen-
tal quantum theories that include GR (such as String Theory or Loop Quantum
Gravity). However, the discussion involving the Wheeler-DeWitt equation is here
considered as a meaningful physical study, which could be relevant in low-energy
and minisuperspace settings [22].

The problem of time Eq. (2.10) is a functional differential equation of the
hyperbolic type, due to the signature of its Hessian matrix (it has non-zero eigenvalues
with different signs, recalling the properties of (1.61)). A direct comparison with
the evolutionary Schrödinger equation in QFT

iℏ
∂

∂t
ψ = Ĥψ , (2.12)

which is parabolic, lads to the immediate observation that the WDW equation is
timeless, i.e. there is no time evolution operator applied on Ψ in (2.10). Indeed
the Hamiltonian operator Ĥ, linear combination of the superHamiltonian and
supermomentum functions (see Eq. (1.58)), annihilates the wave function. In the
Schrödinger formulation of QFT, this would be analogous to an energy spectrum
composed of a single possible state, that the wave function is in at all times. This is
the essence of the so-called problem of time: the gravitational system alone appears
to be frozen. We remark that this property is a direct and necessary consequence of
the symmetries of GR, since is stems from the quantized constraints. Indeed in GR
we cannot distinguish a specific time coordinate, since it has to take the same role as
the other variables. However, in QM, one indeed expects that the identification of an
“external” time parameter measured by an external observer is possible, according
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to the Copenhagen interpretation [23]. This contradiction is a core difficulty in the
reconciliation of GR and QM.

It is possible to cast a dynamical description from (2.10), i.e. in a Schrödinger-like
form, by defining some sort of time parameter, as we will describe in the next section.

The Hilbert space The time absence in (2.10) is not the only point of concern
in the canonical quantization of gravity. In the general prescription of QM, the
set of eigenstates of a system should span and live in a Hilbert space. For gravity,
constructing such a Hilbert space is challenging due to the algebra of the constraints
(2.8), (2.10) [16]: the identification of a basis is troublesome, and the same applies
for defining a scalar product on such space.

To better understand this point, we observe that (2.10) is equivalent to a Klein-
Gordon equation with variable mass. In analogy with the Klein-Gordon case (see
for example [24]), one might propose a superspace current as [25, 26]

J12ij(x)[Ψ1,Ψ2] = 1
2Gijkl(x)Ψ1

←→
δ

δhkl(x)Ψ2 (2.13)

between any two states, where the double arrow means that the derivative acts first
on the left and then on the right:

Ψ1

←→
δ

δhkl(x)Ψ2 = Ψ1
δΨ2
δhkl

− δΨ1
δhkl

Ψ2 (2.14)

Indeed, it can be shown from (2.10) that such current is conserved: δJ12ij/δhij = 0.
Then, one can try to implement the associated inner product

Ω[Ψ1,Ψ2] =
∏
x

∫
dΣij(x) J12ij(x)[Ψ1,Ψ2] (2.15)

where the integration is over a surface in Riem(Σx0), in order to remove the de-
pendence on the hypersurface choice, and dΣij denotes the corresponding surface
element. However the scalar product (2.15) is not positive-definite. For the standard
Klein–Gordon equation of QFT (i.e. in Minkowski space), one can separate between
“positive” and “negative” frequencies, corresponding to particles and anti-particles
respectively; within the one-particle picture, it is consistent to restrict to the positive-
frequency sector and then (2.15) is positive, therefore the probabilistic interpretation
is recovered [27]. Here however, one cannot even proceed to the frequency separation,
since the superspace itself is singular in n = 0 (being n the time-like vector of
the ADM foliation), let alone restrict to positive ones [28]. This feature can be
avoided in some cases with ad-hoc conditions [29], but it remains standing in general;
therefore (2.15) cannot be implemented as an inner product. In QFT, when the
single-particle description is not possible, one implements the second quantization
approach. Here however, we already have a field-theoretic description achieved by
the Wheeler-deWitt equation (2.10)2. Therefore the problem of defining the proper

2We mention that one could instead proceed with a third quantization procedure, see Sec. 3.5,
which we will not adopt in the present thesis.
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Hilbert space stands and it influences the probabilistic interpretation of the wave
functional itself.

We also stress that (2.10) should also be regularized for the product of operators
on the same point: indeed, to construct a Hilbert space of the quantum states one
should identify a complete set of observables that are commuting at a fixed time. In
other words, the concept of events happening at the same time is needed. We also
recall the microcausality requirement in relativistic QFT[

ϕ̂(x), ϕ̂(x′)
]

= 0 for |x− x′| spacelike , (2.16)

which essentially states that only the events A being inside the light-cone of B can
be causally related to B. However, it is not clear how to translate these concepts
within a quantum theory of gravity. In this regard, we mention the discrete approach
of Regge calculus [30] and the theory of Causal Dynamical Triangulations [31], which
address the causal structure of the theory.

While the question of the Hilbert space can also be addressed within the illustrated
schemes, in the present thesis we will focus our attention on the frozen formalism to
recover an evolution in time.

2.2 Paths for recovering time

The previously discussed points can be overcome by recasting the equations
for the quantized system in a different way with appropriate assumptions. More
specifically, the procedures by which a time parameter can be extracted from (2.10)
can be divided into three main categories, following Kuchař and Isham’s classification
[22, 28].

Time before quantization In these schemes, an internal time is defined as
a function of the canonical variables, and the canonical constraints are resolved
before quantization. The quantization is then carried out for the reduced system,
reconstructing a typical Schrödinger equation with this chosen time parameter. It can
be considered the most conservative approach among the three, since it presupposes
a concept of time very similar to the classical, external one of standard QM.

Between the many examples, we mention matter clocks (identifying a matter
field with time) [32], volume variables [33], and the Unimodular gravity proposal [34].
In the latter, GR is modified by considering Λ as a dynamical variable and using its
conjugate as a time parameter [35, 36]; this scheme presents some similarities with
the reparametrized procedure described in Sec. 2.5, which will be then applied in
Chapter 4.

Time after quantization One could instead follow the inverse of the process
described earlier, i.e. the constraints are imposed at the quantum level as limitations
on possible state vectors and time is identified only afterwards. Therefore, the
starting point is the quantized version of the Wheeler-DeWitt equation (2.10) and
states are functionals Ψ[h] of the three-geometry {hij}(x). The concept of time
is somehow derived from the solutions to (2.10), after which one can recover the
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probabilistic interpretation. This poses a challenge if one wants to identify the
Hilbert space structure of the original quantum theory a priori. Relevant discussions
of this approach can be found in [37, 29, 38, 39, 40], while the implementations [41,
42, 43, 44] will be reviewed in more detail in the following Sections.

This path is the one that will be implemented in this thesis, more specifi-
cally we will make use of the WKB approximation to recover the time parameter.
Through such expansion, the constraint (2.10) is found to approximate a conventional
Schrödinger equation, deriving a time variable from the state Ψ[hij ]. This interpre-
tation suggests that the (recovered) time holds significance within a semi-classical
limit of QG, as opposed to the full quantum picture.

Timeless approaches In this third class one includes various methods that
aspire to maintain the timeless nature of GR by avoiding to specify the concept of
time in the quantum theory. They all aim to construct a technically coherent and
conceptually complete quantum theory (including the probabilistic interpretation)
without direct references to a clock. Here, differently from other approaches, time
takes a purely phenomenological status. We mention here Rovelli’s proposal [45, 46]
and the conditional probabilities research line, see for example [47].

2.3 WKB expansion for quantum subsystems
In this section we follow the path proposed by Vilenkin [41], i.e. we partition the

system into two sets: one identifying a “small” but fully quantum subsystem, and the
other corresponding to the “large” semiclassical environment system. Starting from
the formalism developed in Sec. 2.1, we now take into account the presence of matter
in the system. Therefore, the constraints (1.62)-(1.63) and their quantized versions
(2.10), (2.8) are modified by additional contributions. A meaningful example is the
presence of a self-interacting scalar field ϕ, which can be interpreted as the inflaton
field driving the inflationary phase of the Universe (as will be clarified in Chap. 5).

Following the original proposal, we here consider the minisuperspace reduction
of such a system with gravity and matter (see Sec. 1.6). Implementing the Dirac
quantization prescription (2.2), the superHamiltonian constraint is expressed by the
following WDW equation[

−ℏ2Gab(ha)
∂2

∂ha∂hb
− ℏ2

2
√
h

∂2

∂ϕ2 + V (ha) +
√
hU(ha, ϕ)

]
Ψ = 0 , (2.17)

where we have labeled the variables ha as minisuperspace ones. We have also redefined
the minisupermetric by a factor

√
h for convenience and used a natural operator

ordering, with the minisupermetric on the left of derivatives operators. Since the
ordering choice must ensure general covariance in the minisuperspace for a consistent
formulation (see discussion in Sec. 1.5), the second-order derivative operator will
be be understood as the Laplace-Beltrami one in the following applications. The
analogous “metric tensor” for the matter component is assumed to be the trivial
one δab (the generalization immediately follow by reinstating such tensor in front
of ∂ϕ terms). Here we have no functional derivatives in the strict sense due to the
minisuperspace symmetry reduction.
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We remark that here no specific value for the lapse function is set, in order to
obtain a covariantly-performed quantization. It is then clear that the frozen formalism
arises again, since the total wavefunction is annihilated by the Hamiltonian, and
one needs a procedure to extract a time parameter in (2.17) after the quantization.

In the spirit of [41], one identifies a “small” subsystem behaving in a fully
quantum way, as opposite to the remaining “environment” system which behaves
semiclassically. We remark that this separation does not clearly distinguish the
gravitational and matter contributions, but in principle a mixing is possible. In
order to characterize the two components, we label

s = sa : semiclassical variables (a = 1, 2, . . . ns) , (2.18)
q = qm : quantum variables (b = 1, 2, . . . nq) , (2.19)

where ns and nq are the number of degrees of freedom necessary to completely describe
the two sectors, finite thanks to the minisuperspace reduction. Subsequently, (2.17)
can be expressed in a compact way as

ĤΨ =
(
−ℏ2Gab(sa)∂a∂b + Us(sa) + Ĥq(sa, qm)

)
Ψ(sa, qm) = 0, (2.20)

where Hs(sa) ≡ −ℏ2Gab∂a∂b + Us is the superHamiltonian obtained neglecting all
quantum variables, and we have introduced the compact notation ∂a = ∂/∂sa.
The quantum superHamiltonian Hq instead depends on both the semiclassical and
quantum degrees of freedom (this is evident by noting the presence of the metric in
the scalar field contributions of (2.17)).

WKB approximation The Wentzel-Kramers-Brillouin (WKB) approach aims to
establish a framework for defining a time label when certain variables are treated
classically or semiclassically. These variables establish, in some limit, a classical
fixed background, crucial for ensuring the positive semidefiniteness of the Klein-
Gordon-like scalar product induced by the WDW equation. The motivation is
conceptually grounded in the role of classical devices in the interpretation of quantum
measurements.

The core idea of the WKB approach involves solving Eq. (2.20) perturbatively in
some quantum parameter. The expansion is carried out by considering the following
ansatz:

ψ(sa, qm) = e
i
ℏS = e

i
ℏ
∑

n
κnSn (2.21)

where κ is the expansion parameter and S is a complex function (yielding both
amplitude and phase contributions) expanded into the nth-order functions Sn. We
stress here that S is not the (classical) action of the theory, which instead is
recovered from the above expansion only in the limit in κ corresponding to the
classical dynamics (i.e. for κ ≡ ℏ it will be κ→ 0).

Once the form (2.21) is plugged into (2.20), one obtains order-by-order differential
equations in κ which can be explicitly solved, finding approximate solution for the
total wave function Ψ and so solving the dynamics with a certain accuracy. When one
considers the Planck constant κ ≡ ℏ the WKB approach is also called semiclassical
expansion [21]. Here we will use this choice and also a modified form of (2.21) with
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real functions, following Vilenkin’s work3; a different choice will be discussed in the
next section.

In order to properly decompose the dynamics (2.20), [41] presented the following
assumptions:

1. The typical (average) values of the quantum Hamiltonian are considered small
compared to the semiclassical one:

⟨Ĥq⟩
⟨Ĥs⟩

= O (ℏ) . (2.22)

Such hypothesis is driven by the observation that (2.20) is perfect symmetric
between geometric and matter terms concerning ℏ.

2. The classical and quantum subspaces are assumed to be orthogonal at the
lowest order, such that terms Gam = O (ℏ) are moved to the next one; also
the semiclassical minisupermetric is considered independent of the quantum
variables at the lowest order Gab = Gab(sa) +O (ℏ).

3. Following from point 1, the semiclassical system is supposed to satisfy its
own constraint, i.e. it is possible to write in some way HsΨ(sa) = 0. This
means that no backreaction is present due to the “smallness” condition of the
quantum subsystem.

Following these hypotheses, the wave function can be separated in

Ψ(sa, qm) = ψ(sa)χ(qm, sa) = A(sa)e
i
ℏS(sa) e

i
ℏℏQ(sa,qm) . (2.23)

We recognize that ψ is considered of the WKB form (2.21), but rewritten with a
real phase S(sa), while the imaginary part is reabsorbed into the amplitude A(sa),
describing the non-classical behaviour [21]. Both A and S are considered to be of
order ℏ0, while χ starts at the next order following the assumption 1 and we will
use for convenience χ directly instead of its exponential form. The separation of a
purely semiclassical sector and the quantum one shares many similarities with the
Born-Oppenheimer one, see Chapters 3 and 4, and in this sense Vilenkin’s proposal
can be considered a special implementation of it.

Due to point 3, ψ must satisfy(
−ℏ2Gab∂a∂b + Us

)
ψ = 0 , (2.24)

while the total wave function ψ χ follows the total constraint (2.20), which gives the
following equation for χ (using the gravitational constraint and dividing by ψ):

−ℏ2Gab∂a∂bχ− 2ℏ2A−1Gab∂aA∂bχ− 2iℏ ∂aS ∂bχ+ Ĥqχ = 0 . (2.25)

We are now ready to expand (2.24) and (2.25) in powers of ℏ using (2.23).
3Actually, Vilenkin implemented a parameter κ proportional to ℏ and (2.23) was written absorbing

ℏ is S; here we use directly ℏ for convenience and collect it in front to better show the expansion
orders.
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At O
(
ℏ0), only (2.24) gives contribution:

(∂aS)2 + Us = 0 , (2.26)

where the square implies the use of the minisupermetric Gab to contract indices.
This is the Hamilton-Jacobi (HJ) equation for the function S, ensuring the classical
limit of the model. The next order O (ℏ) gives from (2.24) and (2.20) respectively:

2Gab∂aA ∂bS +AGab∂a∂bS = 0 , (2.27)
Ĥqχ = 2iℏGab∂aS ∂bχ , (2.28)

since all terms except the last two in (2.25) are of higher order in the expansion
parameter (Hq = O (ℏ) due to assumption 1).

We first comment on the probabilistic interpretation following from the ψ sec-
tor. Eq. (2.27) is equivalent to the covariant conservation (with respect to the
minisupermetric) of the current

jas = |A|2 Gab∂bS , (2.29)

associated to a semiclassical probability distribution ρs. Indeed, the real function S
defines a congruence of classical trajectories, see (2.26), and each point in a classically
allowed region of minisuperspace belongs to a trajectory with momentum pb = ∂bS
and velocity

ṡa = 2N ∂aS (2.30)

that depends on the choice of N(t) from the foliation. This presupposes a time
derivative of the form

∂

∂τ
= 2NGab∂aS ∂b , (2.31)

which is indeed compatible with (2.30) since ∂bsa = δab. We note that (2.31) is
close to the notion of a composite derivative ∂τsa ∂a: indeed ∂aS ≡ pa provides
the classical momentum (we recall from (2.26) that S corresponds to the classical
action), hence it is enough to write down the first Hamilton equation (varying with
respect to pa) to recover the desired definition. By other words, this time definition
expresses the evolution in terms of the dependence that the semiclassical variables
sa acquire, at the leading order, on the label time of the space-time slicing. Clearly,
as a simple example we could choose one of the ha themselves as time coordinate,
by suitably choosing the lapse function N(t).

By requiring that each hypersurface in the classically allowed region of minisu-
perspace is crossed only once by the congruence of trajectories

ṡa dΩa > 0 , (2.32)

where dΩa is the hypersurface element, then the probability density dP = jas dΩa is
positive semi-definite, thus the Universe wave function can be properly normalized.
The same can be implemented for a superposition of wave functions

∑
k ψk of the

form (2.23), requiring the condition (2.32) for each component, such that the total
probability is conserved.
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Now we can focus on the quantum subsystem. It is possible to use the notion of
time (2.31) derived from the classical trajectory also for the wave function χ: indeed,
multiplying (2.28) by N(t) one finds

iℏ
∂

∂τ
χ = NĤ(q)χ , (2.33)

namely a functional Schrödinger equation for the subsystem wave function. In
this sense, the dynamical interpretation is recovered for the quantum subsystem
defining a time parameter analogous to a composite derivative with respect to the
semiclassical variables. A clearer discussion of the consequences of such choice is
provided in Sec. 3.3.

The analysis [41] actually started from the observation that, for the general
quantum system, the probabilistic interpretation is lost since one should integrate
|Ψ(ha)|2 over all the minisuperspace variables ha (both semiclassical and quantum
ones, including the label time), which would be divergent. Therefore it is interesting
to discuss how such analysis was able to recover a probabilistic interpretation
for the quantum subsystem too. Considering a Klein-Gordon-like current (2.13),
its leading-order expansion would give for the semiclassical and quantum sectors
respectively

ja = |χ|2|A|2Gab∂bS ≡ jas ρχ , (2.34)

jm = − i2 |A|
2
(
χ∗∂mχ− χ∂mχ∗

)
= 1

2 |A|
2jmχ . (2.35)

In (2.34), jas is the same as (2.29) and ρχ = |χ|2 is the probability distribution of the
quantum variables computed on the semiclassical trajectories, while in (2.35) jνχ is a
Klein–Gordon-like current for χ only (∂m ≡ ∂/∂qm). From the conservation of both
the total current jν given by the full WDW constraint (2.25) and the semiclassical
one from assumption (2.24), it can be shown that at leading order

∂ρχ
∂τ

+N∂mj
m
χ = 0 , (2.36)

which is a continuity equation for the probability current associated quantum
variables. Moreover, both ρc and ρχ can be normalized on their respective subspaces,
so that the standard probabilistic interpretation is recovered for Ψ.

However, there is still one case to discuss, that is when in such a framework
one (or more) quantum variables become semiclassical at later time. This means
that the two subsets (2.18)-(2.19) change: we now have s′

a and q′
m with n′

s = ns + 1,
n′
q = nq − 1 respectively. For a initial wave function of the form (2.23) we now

have ψχ→ ψ′χ′ =
∑
l ψ(s′)χl(s′, q′), where the sum is explained by the transition

during which each semiclassical trajectory branches into many paths, each one for a
different initial condition of the “new semiclassical” variable. For this reason, one
has to impose a unitarity (normalization) condition on the semiclassical current∫

dΩaj
a
s =

∑
l

∫
dΩal (js)al , (2.37)

that is satisfied only at an approximate level, i.e., when cross terms between the new
and old sets can be neglected. Since the division itself between the two subspaces is
arbitrary in a certain sense, this concept of unitarity is approximate.



2.4 WKB expansion for gravity and matter 39

Finally we mention the related point concerning how to impose boundary condi-
tions on the wave function (2.23). Vilenkin’s proposal was to construct the wave
function describing an ensemble of Universes that tunnel from “nothing” to a de
Sitter space (by choosing the purely expanding solution), i.e. the so-called tunneling
proposal [48]. Such conjecture can also be reformulated in a path integral approach
[49] to quantum gravity, more specifically with the Lorentzian path integral [50]. A
different implementation is the no-boundary proposal by Hartle–Hawking [51], where
the wave function for a closed Universe is constructed within the Euclidean path
integral with different hypotheses.

Here we presented Vilenkin’s proposal discussing also the probabilistic interpre-
tation, up to the order where a Schödinger-like dynamic emerges, in this sense the
analysis up to the order ℏ was enough. Such result can be considered as the recovery
of the QFT limit (see also Chapter 6) from a quantized system of gravity and matter.
Since the focus of the present thesis is the emerging dynamics when one applies a
Born-Oppenheimer-like separation to the gravity and matter sectors, rather than
between semiclassical and quantum degrees of freedom, we wish to investigate the
next orders of expansion. It is then useful to discuss Kiefer and Singh’s proposal
[42] where the next order is discussed, as we will see in the next section.

2.4 WKB expansion for gravity and matter
Kiefer and Singh’s work [42], which we here review, was the first to consider a

WKB regime in which the “classical limit” is the absence of matter, i.e., vacuum
solutions. This is possible by choosing the expansion parameter to be of Planckian
size:

M ≡ c2

32πG = cm2
P

4ℏ , (2.38)

being mP =
√
ℏc/8πG the reduced Planck mass. Such a choice implies that the

WKB expansion will hold for particles with small mass over Compton length ratio, or
equivalently with mass m≪ mP . It is clear from the definition that M identifies the
Planckian scale, and so the reference values of the gravitational interaction. Indeed,
differently from Vilenkin’s approach, the parameter (2.38) here always separates the
system into a gravitational and a matter sector, both of them properly quantized.
As we will see, this property will have key consequences in the following derivation.
We identify the two sets by

ha = gravitational semiclassical variables , (2.39)
ϕ = quantum matter variable . (2.40)

Here again, the use of a single scalar matter component is more convenient for the cos-
mological picture, but a generalization to more scalar components is straightforward.
We start by rewriting the WDW equation (2.17) as(

− ℏ2

2M

(
Gab

δ2

δhaδhb
+ fa

δ

δha

)
+MV (ha)−

ℏ2

2
√
h

∂2

∂ϕ2

+
√
hU(ha, ϕ)

)
Ψ(ha, ϕ) = 0 ,

(2.41)
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where the term f ·δha is inserted to overcome issues stemming from a specific operator
ordering choice (a suitable fa will allow to recover other possible orderings). We stress
here the use of functional derivatives, since no minisuperspace reduction is considered.
Actually, a general formulation would require to consider the supermomentum
constraint (1.63) too; we will consider this contribution in the next chapter.

In the ansatz (2.21) S is expanded in powers of M , at the same time separating
each order as Sn(ha) +Qn(ha, ϕ)4. This is because, instead of the small quantum
subsystem of the previous section, here a purely gravitational component is isolated
via the choice (2.38). The aim is to obtain not only a dynamics for the matter sector
(which will emerge at O

(
M0)) but also the next-order modifications induced by the

quantum nature of gravity (O
(
M−1)); therefore the following expansion

Ψ(ha, ϕ) = ψ(ha)χ(ha, ϕ) = e
i
ℏ (MS0+S1+M−1S2)e

i
ℏ (Q1+M−1Q2) (2.42)

will prove to be sufficient for the task. An immediate comparison with (2.23)
emphasizes that here the highest-order function (i.e. the one at O (M)) S0 depends
on gravitational variables only; this is a necessary condition for the consistency
of the approach since at the Planck scale only gravity survives. One could also
consider S0(ha, ϕ), in that case the independence from the matter variables would
naturally emerge from the perturbative expansion. The matter enters only at the
next order, such that the gravitational background is naturally recovered without
further assumptions. This feature represents a striking difference from Vilenkin’s
proposal, where the gravitational constraint was taken as an additional hypothesis
(point 3 of Sec. 2.3). Indeed here a classical matter contribution can only emerge
with some suitable rescaling of the matter fields themselves (see [52]).

Substituting (2.42) into (2.41), at O (M) one immediately finds

1
2Gab

δS0
δha

δS0
δhb

+ V (ha) = 0, (2.43)

that is the HJ equation for gravity; this equation corresponds to the classical limit,
namely Einstein’s equations in vacuum. The only difference with (2.26) is a coefficient
1/2, which appears in the starting WDW Equation (2.41) due to the definition (2.38)
and it is not related to any physical properties. We remark that it is precisely the
choice (2.38) for expansion parameter that separates the gravitational and matter
subsets in the limit M →∞ (or G→ 0).

The next order M0 brings

Gab
δS0
δha

δS1
δhb

+ Gab
δS0
δha

δQ1
δhb
− iℏ

2

(
Gab

δ2S0
δhaδhb

+ fa
δS0
δha

)

+ 1
2
√
h

(
δQ1
δϕ

)2
− iℏ

2
√
h

δ2Q1
δϕ2 + U(ha, ϕ) = 0 .

(2.44)

Here, the following condition for S1(ha) is required, being S0 known from the previous
order:

Gab
δS0
δha

δS1
δhb
− iℏ

2

(
Gab

δ2S0
δhaδhb

+ fa
δS0
δha

)
= 0 . (2.45)

4In the original work [42], each WKB order of the wave function was separated in these two
components; here we perform the two actions immediately for the sake of clarity
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This can be considered a continuity equation for S1, although differently from
(2.36) no probability current has been defined; it represents in this sense a gauge
choice for the gravitational component. Indeed, while in Vilenkin’s case an additional
constraint was hypothesized from the beginning, here the condition (2.45) is obtained
from the perturbative procedure (see also the unified reformulation in Sec. 3.1 and
the proposal of Chapter 6). This passage is crucial to recover the functional QFT
dynamics for the matter sector: (2.44) now turns into an equation for the matter
function χ0 = e

i
ℏQ1

iℏ
δ

δτ
χ0 ≡ iℏN Gab

δS0
δha

δ

δhb
χ0 = NĤm χ0 . (2.46)

We recognize that (2.46) is a (functional) Schrödinger dynamics for the matter
component, with a time parameter defined analogously to Vilenkin’s case (2.31) i.e.
via the dependence from the other sector’s variables (here the gravitational ones).
To maintain the parallelism with (2.31), we have reinserted the lapse function that
was removed in the original work via a temporal gauge choice.

The most innovative result in [42] comes from developing the analysis to the
next order M−1, where one finds

Gab
δS0
δha

δS2
δhb

+ Gab
δS0
δha

δQ2
δhb

+ 1
2

(
Gab

δS1
δha

δS1
δhb

+ Gab
δQ1
δha

δQ1
δhb

)
+ Gab

δS1
δha

δQ1
δhb
− iℏ

2

(
Gab

δ2S1
δhaδhb

+ Gab
δ2Q1
δhaδhb

+ fa
δS1
δha

+ fa
δQ1
δha

)

+ 1√
h

δQ1
δϕ

δQ2
δϕ
− iℏ

2
√
h

δ2Q2
δϕ2 = 0 ,

(2.47)

Again this equation can be cast in a clearer form once a continuity condition is
required on S2

Gab
δS0
δha

δS2
δhb

+ 1
2Gab

δS1
δha

δS1
δhb
− iℏ

2

(
Gab

δ2S1
δhaδhb

+ fa
δS1
δha

)
= 0 , (2.48)

thus leaving only

Gab
δS0
δha

δQ2
δhb

+ 1
2Gab

δQ1
δha

δQ1
δhb

+ Gab
δS1
δha

δQ1
δhb
− iℏ

2

(
Gab

δ2Q1
δhaδhb

+ fa
δQ1
δha

)

+ 1√
h

δQ1
δϕ

δQ2
δϕ
− iℏ

2
√
h

δ2Q2
δϕ2 = 0 .

(2.49)

We can now decompose the derivatives δha in tangent and normal components to
the hypersurfaces S0 = const and neglect the former by assuming an adiabatic (i.e.
small) dependence of Hm on the induced metric. Summing (2.49) with the previous
order and choosing now N = 1 (for correspondence with the original work), the
resulting equation for χ = e

i
ℏ(Q1+ 1

M
Q2) is

iℏ
δ

δτ
χ = Ĥmχ+ 1

8M
√
hR̄

[
Ĥ2
m + iℏ

(
δ

δτ
Ĥm −

1√
hR̄

δ(
√
hR̄)
δτ

Ĥm

)]
χ . (2.50)
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Here the terms after Ĥm modify the standard quantum matter dynamics and thus
can be interpreted as quantum gravity corrections, since the gravitational sector is
inherently quasi-classical. An inspection of these terms (one quadratic in Hm and
the other imaginary) reveals that they violate unitarity in the evolution, although
it was stated that they can be neglected in most cases [42]. We will discuss this
feature more specifically in Sec. 3.3, and we will also present within Chapter 3 an
original formulation of the problem able to overcome non-unitary corrections.

2.4.1 The Born–Oppenheimer-like averaged approach

We here describe a further implementation of the WKB approach for gravity and
matter presented in [43], later applied in the context of quantum cosmology in [53,
54, 55]. There, in analogy with the Born-Oppenheimer approximation for molecules,
the matter sector (which is characterized by a lower mass scale with respect to the
Planckian one) is regarded as the “fast” component, while gravity is the “slow” one
in (2.42). The fast wave function χ is taken to be properly normalized over the
gravitational space

⟨χ|χ⟩ =
∫
χ∗(ha, ϕ)χ(ha, ϕ) dha = 1 (2.51)

from the beginning. The analysis, which is set in the minisuperspace by considering
only one gravitational variable a and a single scalar matter field ϕ, examines two
equations for the total system, although they are obtain in a novel way. Differently
from Sec. 2.3 and 2.4, the second constraint does not come from an additional
hypothesis or gauge choice; instead, the average of the WDW equation over χ(a, ϕ)
is subtracted from the initial equation, obtaining an equation for the gravitational
background ψ and another one for the matter sector χ, namely[

− ℏ2

2M
(
D2 + ⟨D̄2⟩

)
+MV + ⟨Ĥq⟩

]
ψ = 0 , (2.52)[

− ℏ2

2M
(
D2 − ⟨D̄2⟩+ 2D lnψD̄

)
+ Ĥq − ⟨Ĥq⟩

]
χ = 0 , (2.53)

where ⟨f⟩ = ⟨χ|f |χ⟩ and D = ∂a + i(−iℏ⟨∂a⟩), D̄ = ∂a − i(−iℏ⟨∂a⟩) are “covariant”
derivatives constructed with the connection −iℏ⟨∂a⟩ (being ∂a = ∂/∂a). Clearly
Eq. (2.52) does not represent the quantized gravitational constraint, since a quantum
matter backreaction is emerging from the average procedure.

A core feature of this implementation is the rescaling of both ψ and χ through a
phase depending on the gravitational variables only:

ψ = e− i
ℏ

∫
−iℏ⟨∂a⟩ da ψ̃, χ = e

i
ℏ

∫
−iℏ⟨∂a⟩ da χ̃ , (2.54)

where −iℏ⟨∂a⟩ takes the role of an adiabatic phase. This transformation makes use
of the gauge invariance of the system related to the separation Ψ = ψχ. Then,
scaling again χ via the average value ⟨Ĥm⟩ and applying the WKB expansion for
ψ, it was shown that the HJ equation is modified by the presence of the matter
backreaction:

1
2(∂aS0)2 + V + ⟨Ĥm⟩ = 0 . (2.55)
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Implementing the time definition as in (2.46), the matter dynamics is given by(
Ĥm − iℏ

∂

∂τ

)
e− i

ℏ

∫
⟨Hq⟩ dτ− i

ℏ

∫
−iℏ⟨∂a⟩ da χ

= ℏ2

2M e− i
ℏ

∫
⟨Hm⟩ dτ− i

ℏ

∫
−iℏ⟨∂a⟩ da

[
D̄2 − ⟨D̄2⟩+ 2

(
D ln |ψ|−1

)
D̄
]
χ .

(2.56)

Again in the semiclassical limit M → ∞ the second line vanishes and Eq. (2.56)
describes a Schrödinger-like dynamics. Furthermore, labeling in (2.56)

χs ≡ e− i
ℏ

∫
⟨Hq⟩ dτ− i

ℏ

∫
−iℏ⟨∂a⟩ da χ (2.57)

the authors suggest that the obtaining dynamics is unitary due to the vanishing of

iℏ
∂

∂τ
⟨χs|χs⟩ = 0 . (2.58)

However, this approach does not completely solve the non-unitarity problem. Indeed,
while the norm of a quantum matter state satisfies (2.58), that same condition might
be violated when considering different matter states: iℏ∂τ ⟨χr|χs⟩ ≠ 0 for r ̸= s. The
construction of the Hilbert space associated to the matter sector is thus troublesome.
It has been shown that the decomposition of the total Hilbert space can be addressed
by imposing further specific conditions in order to recover the QFT limit, see [56].

We will provide an extensive discussion of both the matter backreaction presence
(2.55) and the unitarity condition (2.58) in the reformulation of Chapter 3.

2.5 Reparametrization and reference fluids
Another way to develop a quantum formulation of geometrodynamics from the

WDW constraint is the one discussed in [57]. The core idea of the proposal is the
notion of a reference fluid: a fluid “emerging” as a matter source in the system as a
consequence of fixing a certain reference frame, in order to identify the dynamically
relevant components of the metric describing the evolution. This passage is nontrivial
and demands careful consideration: indeed, if the coordinate choice is imposed before
the quantized constraints, the resulting theory will be valid only in that specific frame.
By construction the reference fluid would break the diffeomorphism invariance of
the theory. To avoid so, a reparametrization procedure is implemented to formalize
the reference fluid in a covariant and consistent way.

In the original paper [57], the reference frame chosen is the Gaussian one. One
could, in general, try to construct an analogous procedure for a different system of
coordinates, which turns out to be quite a troublesome task (see [58]). Choosing the
Gaussian coordinates Xµ = (T,Xi), the corresponding metric γαβ must satisfy

γ00 = −1, γ0i = 0 . (2.59)

Since we are imposing such conditions before the variation of the action, the metric
now assumes an ambiguous role as it can no longer be freely varied. To solve this,
one can either express the metric in terms of new freely variable quantities so that
the (2.59) are identically satisfied, or adjoin the conditions (2.59) to the action by
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Lagrange multipliers and vary these as well as the metric freely. Following the second
path, the conditions (2.59) can be ensured by inserting Lagrangian multipliers F ,Fi
into the total action of the system. For the gravity case, Stot = Sg + Sf with Sg is
the usual Einstein-Hilbert action and Sf is the novel contribution

Sf =
∫
d4x

[
−
√
−γ
2 F

(
γ00 + 1

)
+
√
−γ Fi γ0i

]
(2.60)

containing the Gaussian conditions. As we will see, these additional terms emerge
in the Einstein’s equations as a source for gravity, thus breaking the diffeomorphism
invariance.

A reparametrization of the action is then needed in order to work in new arbitrary
coordinates, other than the starting ones; this is clearly linked to the first proposed
path. This procedure reflects the fact that the Gaussian fluid is here the “privileged”
system of coordinates, but one could, in principle, choose another arbitrary set. For
this reason, new freely varying coordinates xα are introduced, with associated metric
gαβ, so that one can rewrite the Gaussian coordinates in terms of those:

Sfpar =
∫
d4x

[
−
√
−g
2 F

(
gαβ∂αT (x) ∂βT (x) + 1

)
+
√
−gFi

(
gαβ∂αT (x) ∂βXi(x)

)]
.

(2.61)

The variation of this action will give equations of motion invariant under coordinate
transformations of the xα: in other words, the reparametrization procedure has
restores covariance of the theory, although in the new set of coordinates. To be
compatible with the Gaussian choice, one must require that (2.61) coincides with
(2.60) when the arbitrary coordinates are chosen as the Gaussian ones: xα ≡ δαµXµ.
For compactness of notation, we avoid writing the dependence on the xα, which will
be implicitly understood.

The name of the reference fluid comes from the study of the Einstein’s equations
associated to the action (2.61). Due to these novel terms, the Hamiltonian content of
the theory and so the Hamilton-Jacobi equation (from which the Einstein’s equations
are recovered) are modified with respect to the pure gravity (i.e. vacuum) case.
Defining

Uα = gαβ∂βT , (2.62)
Fα = Fi∂αXi , (2.63)

it can be shown that the following source term appears in the corresponding Einstein’s
equations (1.1):

Tαβ = FUαUβ + 1
2
(
FαUβ + FβUα

)
. (2.64)

Thus a source emerges purely from the addition of (2.61), which takes the form of
a fluid with four-velocity Uα, mass density F , and heat flow Fα. Actually, since
the above tensor has no stress term, it corresponds to a heat-conducting dust.
This case presents analogies with the anisotropic hydrodynamics theory, in which
one studies sources that are far from isotropic thermal equilibrium (for example



2.5 Reparametrization and reference fluids 45

quark-gluon plasmas), see [59]. Here we will refer to (2.64) as a fluid to avoid
ambiguity with the reduced formalism of the Brown-Kuchař proposal [32], where
a homogeneous dust is added and its proper time assumed as a clock before the
quantization procedure; being the superHamiltonian constraint solved with respect
to the momentum conjugate to the dust time, that work represents a reduced phase-
space quantization of the system, which is intrinsically different from the approach
followed in this thesis.

It is also possible to implement only the Gaussian time condition in (2.59), but
not the spatial one by adjoining the corresponding constraints to the action: in
that case the fluid reduces to an incoherent dust, with only the quadratic term in
Uα appearing in (2.64), since the heat transport (containing the Gaussian spatial
coordinates) is switched off.

The Hamiltonian description of the fluid is then computed starting from (2.61),
implementing the ADM foliation, finding the following superHamiltonian and super-
momentum contributions:

Hf = W−1P +WW kPk , (2.65)

Hf
i = P ∂iT + Pk ∂iX

k , (2.66)

where P , Pk are the momenta canonically conjugate to T , Xk and the coefficients

W ≡ (1− hjl∂jT ∂lT )−1/2 , (2.67)
W k ≡ hjl∂jT ∂lXk (2.68)

correspond to three-dimensional sector of the Gaussian restrictions in (2.61). The
system of gravity and reference fluid is then subjected to the new constraints:

Hg +Hf = 0 , (2.69)

Hg
i +Hf

i = 0 . (2.70)

A core feature of the fluid superHamiltonian (2.65) (and supermomentum (2.66)) is
its linearity in P , P k, which after canonical quantization correspond to the operators
δ/δT (x) and δ/δXk(x) respectively. Since the fluid momenta emerge linearly in
the constraints, clearly separated from the other variables (from which they are
independent), they can play the role of a clock after the quantization procedure.
Indeed, the quantum version of (2.69) and (2.70) can be recast as a Schrödinger
equation of the form

iℏ ∂tΨ ≡ iℏ
∫

Σ
d3x

δΨ
(
T (x), Xk(x), hjl(x)

)
δT (x)

∣∣∣∣∣∣
T=t

Ψ = ĤΨ =
∫

Σ
d3xHgΨ (2.71)

when the Gaussian time condition t = T is implemented in the ADM formalism.
We remark that in (2.71) the wave function Ψ is still a functional of Xk(x), hjl(x),
but it is now an ordinary function of the Gaussian time. In other words, the time
for the ADM splitting is precisely identified with the time-like direction of the
fluid worldlines. At this level, the Gaussian time choice has provided a meaningful
clock for the system evolution, whose state is now a functional of the remaining
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variables. One could also choose to implement the spatial Gaussian condition only, or
both (2.59) together; these possibilities still give a functional Schrödinger evolution,
although with different time definitions [57].

Eq. (2.71) is equipped with the standard positive-definite conserved norm

⟨ψ|ϕ⟩ =
∫
Dhij ψ

∗(T,Xk, hij) ϕ(T,Xk, hij) , (2.72)

with the functional integral taken over the three-geometries hij , so one would be
tempted to construct the Hilbert space of states with it. However, such construction
is physically sensible only if the fluid itself is physical, since the integrand of such
norm (i.e. the probability density) contains the fluid variables. In other words,
the reference fluid as a time and the construction (2.72) can be used only if the
fluid satisfies its own energy conditions, ensuring that its energy density and energy
current measured by an arbitrarily moving local observer have reasonable physical
properties. To investigate this, one checks if the associated stress-energy tensor
satisfies the weak, dominant and strong energy conditions: calling vα the four-velocity
of the observer (vαvα = −1), they translate to the requirements that the energy
density shall not be negative Tαβvαvβ ≥ 0, that the energy flow cannot be spacelike
(−Tαβvβ)(−Tαγvγ) ≤ 0 and that Tαβvαvβ ≥ −T ββ /2 (a discussion on the general
form of these conditions can be found in [60]).

The incoherent dust case (with only F in (2.61), Fi=0) is the most straightfor-
ward, since they all result in the same condition

F ≥ 0 . (2.73)

Actually, (2.73) is preserved by the evolution due to the algebra of the constraints
with the multiplier F itself: this means that, if one defines the fluid such that (2.73)
is satisfied at the beginning, the fluid will remain “physical” at all times.

However, a different situation arises in the general case. Indeed, for the heat-
conducting fluid, the energy conditions require the following inequality

F ≥ 2
√
γαβFαFβ . (2.74)

to be satisfied. Since (2.74) involves the multipliers F ,Fi, which are in principle all
independent i.e. they can take arbitrary values, and we have no proper equation of
state for the Gaussian fluid, the the energy conditions are not satisfied and moreover
they can be violated during the dynamical evolution.

Another way to understand this point is to look at the Hamiltonian formalism
directly. The energy conditions require Hf ≥ 0, which using the constraint (2.69)
becomes Hg ≤ 0. This condition can be written as an equality using the Heaviside
function Θ, as discussed in [57]; thus, it can be considered an additional constraint
for the system. However, the authors show that its Poisson brackets with the
super-Hamiltonian constraints do not always vanish, so they are not first class for
the general heat-conducting Gaussian fluid. This property reflects the fact that(2.74)
are not preserved in the evolution. Thus, the system must be now closed with
additional constraints Pk = 0, which turn off the heat conduction (i.e. Fk = 0). It
follows that, in this implementation, the quantum version of the energy conditions
can be imposed in a consistent way only for the incoherent dust.
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These aspects prevent a full implementation of the Gaussian fluid as a quantum
clock. A different approach making use of the Gaussian reference fluid, able to
provide a clock and thus a Schrödinger equation for the Universe wave function
overcoming the previous points, will be proposed in Chapter 4.
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Chapter 3

Time via kinematical action

Having reviewed the state of the art regarding the frozen formalism in quantum
geometrodynamics and the WKB picture, we now turn to the original content of
this thesis. The main content of this Chapter is based on [61] and it is divided in
two parts. In the first one, we expand on the previous WKB approaches, whose
clock is based on the dependence of the quantum subsystem on the gravitational
(semiclassical) variables; in particular, we show the equivalence of the expansions in
ℏ and M up to the first order of QG corrections and how both result in non-unitary
effects. The second part is devoted to the original proposal of defining a clock through
the kinematical action, so obtaining a unitary dynamics with QG corrections at the
first leading order i.e. 1/M .

3.1 Equivalence of the WKB expansions in ℏ and M

Let us recall the main features of the two WKB approaches review in Sec. 2.3
and 2.4. In both cases, the wave function of the system is decomposed into a
semiclassical (i.e. gravitational) component representing the background and another
one characterizing the quantum subsystem, in an adiabatic approximation akin
to a Born-Oppenheimer (B-O) separation, though realized differently from the
mathematical point of view. Despite some structural differences, both proposals
portray a functional description of the system and recover a Schrödinger dynamics
via the analogous time definitions (2.31) and (2.46), describing the evolution of the
subsystem via the dependence on the background degrees of freedom. They also
do not consider the backreaction of the quantum subsystem on the background, a
factor that could play a role in incorporating quantum effects on the semiclassical
sector. The second approach [42] however investigated the next order of expansion,
to examine the first-order corrections imputed to quantum gravity effects.

A critical difference between the two approaches stands in the corresponding
assumptions. The ℏ expansion actually considered a separate constraint to hold for
the semiclassical component of the total wave functional (2.24), based on the idea
that in such regime any effects coming from the quantum subset would be negligible
(3). The M expansion did not implement such an a priori constraint, working with
a gauge choice procedure for the semiclassical part of Ψ at each order of expansion.
This significant divergence actually has a very simple origin: Eq. (2.20) has a perfect



50 3. Time via kinematical action

symmetry between geometric and matter terms with respect to the parameter ℏ,
while in powers of M there is a one-order gap between them. In other words, the
ℏ expansion allows for backgrounds generated by both matter and gravitational
sources, since it identifies a quantum subsystem of whichever nature; the gap in
(2.20) is precisely recovered with the additional hypothesis of smallness (1).

It is then interesting to ask whether the formalism of [41] can be expanded up to
arbitrary orders, and if the non-unitarity of [42] emerges also in that case, hinting at
a criticality in the time definitions (2.31), (2.46). Actually, we here derive such result
with a more general statement, showing that the two approaches are equivalent up to
the order of quantum gravity corrections and can be reunited n a single formulation.

We first note that the ansatz (2.21) corresponds to the ℏ expansion via κn = ℏn
and the M one with κn = M1−n. Both (2.23) and (2.42) are factorized wave
functions of the B-O-like form Ψ(sa, qm) = ψ(sa)χ(sa, qm), where we are using the
same labels as (2.18)-(2.19) for convenience (although the sa represent in the M
expansion the gravitational variables, and qm the matter ones). More specifically, the
respective WKB ansatzs are given separating each Sn as Sn = σn(sa)+ηn(sa, qm) for
n ≥ 1, with the exception of the zero-th order where one has a function pertaining
to the semiclassical sector only S0(sa). This gives

Ψ = ψ(sa)χ(sa, qm) = e
i
ℏ (κ0S0+P+Q) , (3.1)

where

P (sa) =
∞∑
n=1

κnσn , (3.2)

Q(sa, qm) =
∞∑
n=1

κnηn (3.3)

In other words, the lowest order is represented by S0 alone in the ℏ expansion,
while in the M one it takes the form MS0. Following Vilenkin’s formulation, the
background component ψ is assumed to satisfy its corresponding constraint

(−ℏ2Gab∂a∂b + Us)ψ(sa) = 0 . (3.4)

In the prospect of uniting the two formulations, the above constraint is imposed also
in the M expansion: that means that(

− ℏ2

2M G
ab∂a∂b +MVs

)
ψ(sa) = 0 , (3.5)

i.e. the gravitational part only of of Eq. (2.41), must also hold. As we will see, such
additional equations will replace the gauge conditions imposed in [42] at each order,
allowing to write that proposal in the same way as [41].

The “semiclassical” constraint (3.4) or (3.5) yields, by substitution of ψ with
(3.1) and expansion order by order, the Hamilton-Jacobi equation for the classical
action S0 (which must be a real function in order to give the correct classical limit,
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as discussed in [42]) and then the equations for each σn. For the ℏ expansion, up to
O (ℏ)2 we get

(∂aS0)2 + Us = 0 , (3.6a)
2Gab∂aS0 ∂bσ1 − iGab∂a∂bS0 = 0 , (3.6b)

2Gab∂aS0 ∂bσ2 + (∂aσ1)2 − iGab∂a∂bσ1 = 0 . (3.6c)

Here the first two equations (which emerge at O
(
ℏ0) and O (ℏ), having dropped the

factors ℏn in front) coincide with (2.26) and (2.27) respectively; the minisupermetric
Gab is implied in the squared terms. On the other hand, Eq. (3.6c)is a novel
contribution with respect to [41], coming from the extension of such formulation up
to the order ℏ2. Analogously, the expansion of (3.5) in M gives at O (M), O

(
M0)

and O
(
M−1) respectively (again dropping the factors Mn in front)

1
2(∂aS0)2 + Vs = 0 , (3.7a)

Gab∂aS0 ∂bσ1 −
iℏ
2 G

ab∂a∂bS0 = 0 , (3.7b)

Gab∂aS0 ∂bσ2 + 1
2(∂aσ1)2 − iℏ

2 G
ab∂a∂bσ1 = 0 . (3.7c)

As evident from the comparison of (3.4) and (3.5), the two expansions give the same
applied operators on the gravitational component ψ2 = e

i
ℏ (κ0S0+κσ1+κ2σ2), apart

from numerical factors attributed to the form of the semiclassical constraint and the
choice of expansion parameter.

Turning our attention to the quantum subsystem’s description, we plug the B-
O-like ansatz (3.1) into the total WDW constraint (2.25) or (2.41), labeling Hq the
subsystem’s superHamiltonian and focusing on the first three orders and use the sets
of Eqs. (3.6a)-(3.6c) or (3.7a)-(3.7c) to remove the semiclassical dynamics. Terms
acting on the semiclassical functions only disappear, leaving just mixed derivative
terms of the form ∂aS0∂bχ or ∂aσn∂bχ. Dividing by ψ2, we obtain for both cases

2ℏ2c1 Gab∂a(lnψ) ∂bχ = Hqχ− ℏ2c1 Gab∂a∂bχ (3.8)

where we are able to write a single equation by introducing the parameter

c1 =
{

1 for the ℏ expansion ,
1

2M for the M expansion ,
(3.9)

which is imputable to the 1/2M factor in (3.5) with respect to (3.4), and not to any
physical reason. Now we implement the time definition

∂

∂τ
≡ 2c2 Gab∂aS0 ∂b , (3.10)

c2 =
{

1 for the ℏ expansion ,
1
2 for the M expansion .

(3.11)

as done in (2.31), (2.46), having chosen N = 1 for convenience as in Sec. 2.41; we
remark that the absence of M in c2 is due to the lowest order of ψ, which is MS0 in

1The result we will obtain is valid also for generic N , as can be seen by defining (3.10) with N
inside and multiplying each order equation by N .
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the M expansion and S0 only in the ℏ one by hypothesis. Eq. (3.8) then yields the
corrected Schrödinger equation

iℏ
∂χ

∂τ
= Hqχ− ℏ2c1Gab∂a∂bχ− 2iℏc1Gab∂aP ∂bχ. (3.12)

The semiclassical function S0 is absent since it exhausted its role in the time definition
(3.10), so that only the P (sa) part (3.2) remains.

It is important to notice that at orders O (ℏ) and O
(
M0), Eq. (3.12) reduces to

the exact Schrödinger equation for the quantum wave functional χ1 = e
i
ℏQ1 :

iℏ
∂χ1
∂τ

= Hqχ1. (3.13)

Then at the next ordersO
(
ℏ2) andO (1/M) the corrections to the standard dynamics

emerge for χ2: it is immediate to reconstruct with the previous order the following
equation

iℏ
∂χ2
∂τ

= Hqχ2 −
(
2iℏc1Gab∂aσ1 ∂b + ℏ2c1Gab∂a∂b

)
χ2 . (3.14)

Since the corrective terms here have the same form as (2.50), they are not unitary
for the same reason. This result shows that, if we restrict the semiclassical subspace
to the geometrical variables only in Vilenkin’s formulation [41], the ℏ expansion
yields precisely the same results of the M expansion, also at the quantum gravity
order.

It is possible to rewrite Eq. (3.12) in a nicer form with the procedure described
in [44]. We assume the existence of a total “Hamiltonian” operator H̃ (choosing
N = 1 as in Sec. 2.4), in general not Hermitian, such that

iℏ
∂χ

∂τ
= H̄χ, (3.15)

and we also assume that
∂aχ = α(sa)∂aS0, (3.16)

which is some sort of adiabatic approximation. The HJ equations (3.6a) and (3.7a)
give

α = − 1
2c1Us

∂χ

∂τ
= i

2ℏc1Us
H̄χ, (3.17)

where in the M expansion Us = MVs such that 2c1Us = Vs. Using eqs. (3.6b)
and (3.7b), the corrected Schrödinger equation (3.12) becomes

iℏ
∂χ

∂τ
≡ H̄χ = Hqχ−

1
4k1Us

(
H̄2 + iℏ

∂H̄

∂τ
− iℏKH̄

)
χ , (3.18a)

K = 1
Us

∂Us
∂τ
− ik2

ℏ

∞∑
n=2

kn3
∂σn
∂τ

, (3.18b)

where in the ℏ expansion k1 = k2 = 1 and k3 = ℏ, while in the M expansion k1 = 2,
k2 = 2M and k3 = 1/M . We remark that H̄ is an abstract Hamiltonian operator
containing Hq and all the corrections at every order. This procedure is just the
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generalization of that used in [42] to decompose the contributions tangential and
orthogonal to the hypersurfaces S0 = const. The use of eqs. (3.6b) and (3.7b) causes
the sum in the expression of K here to begin from n = 2. At the quantum gravity
order O

(
ℏ2) and O (1/M), Eq. (3.18a) reconstructs exactly (2.50) that was derived

in Sec. 2.4. However at higher orders, quantum gravity corrections arise not only
from the Gab∂a∂b operator in Eq. (3.12), but also from the one containing ∂aP .
As noted in [44], this result can equivalently be obtained if one considers σn, the
potential Us and χas functions of τ only from the beginning and leaves only the Gττ
term of the (mini)supermetric, dropping all the other geometric components.

Let us now summarize the situation. Both the ℏ and the M expansions recover
GR through a HJ equation, that fixes a background, and a Schrödinger equation in
curved space-time for QM (actually the ℏ expansion is more general, since it admits
backgrounds generated by matter sources and quantum geometry). The backreaction
of the quantum subsystem on the background is not present in both approaches;
including such a nonadiabatic effect would allow for quantum gravitational effects
on the semiclassical sector itself, thus modifying the HJ equation as in Sec. 2.4.1.
At the next order, both expansions yield non-Hermitian corrections due to quantum
gravity effects that break the unitarity of the theory.

We now turn to a more in-depth discussion of such result, taking into account
also the formulations [43, 44].

3.2 Phase rescaling and quantum backreaction

In the context of WKB formulations of quantum gravity and matter systems,
exploring the concept of a quantum backreaction onto the semiclassical sector proves
to be intriguing. Considering Vilenkin’s work, this contribution is absent from
the HJ due to the background assumption (2.24), while in [42] it is forbidden by
the choice of expansion parameter, as mentioned above. In quantum cosmology,
when perturbations are present, such backreaction would describe how small scale
inhomogeneities influence the large-scale structure of the universe. We mention
here the review [62] and the Space-Adiabatic Perturbation Theory (SAPT) proposal
[63], a generalization of the Born–Oppenheimer procedure to study the adiabatic
evolution of quantum states with spatially varying Hamiltonians.

We recall that the proposal [43] of Sec. 2.4.1 actually dealt with the backreaction
effects, applying a rescaling to the two components of the wave function in a
Born-Oppenheimer-like way. We remind that there the wavefunction is Ψ(ha, ϕ) =
ψ(ha)χ(ha, ϕ) taken with χ satisfying (2.51); so, if one considers a normalized total
wave function Ψ, such condition will follow also for the background component ψ.
The only freedom in such decomposition stands in the choice of the phase factor
(2.54), which leaves Eqs. (2.52)-(2.53) invariant due to presence of the covariant
derivatives D, D̄.

Actually, since the matter component χ was rescaled using the average value of
Hm (see (2.57)), the background wave functional should also be transformed as

ψ̃ = e− i
ℏ

∫
⟨Hq⟩dτψs , (3.19)
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in order to preserve the total wave function Ψ = ψχ = ψ̃χ̃ = ψsχs. AS we will
show, this transformation leads to drastic consequences which were not accounted
in the original proposal. We here use again the WKB expansion in M for a clearer
comparison with [42, 44] and decompose the quantity P in the ansatz (3.1) into its
real and imaginary parts

ψs = e
i
ℏ (MS0+P ) = e

Mρ
ℏ e

i
ℏM(S0+ζ), (3.20)

having labeled

Re(P ) ≡ ζ = 1
M
ζ1 + 1

M2 ζ2 + . . . , (3.21a)

−Re(P ) ≡ ρ = 1
M
ρ1 + 1

M2 ρ2 + . . . . (3.21b)

The procedure of defining the WKB time as (3.10) still yields at order O
(
M0)

the Schrödinger equation (3.13). In contrast with [43], the rescaling (3.20) now
corresponds to a different classical limit: at O (M) the usual HJ equation (3.7a)
emerges, and at the next order one has

− iℏ2 G
ab∂a∂bS0 + Gab∂aS0 ∂bζ1 − iGab∂aS0 ∂bρ1

− Gab∂aS0 ∂b

∫
⟨Hq⟩dτ + ⟨Hq⟩ = 0 .

(3.22)

Thus, the backreaction has shifted from the HJ equation to the continuity equation;
also, since the last two terms of (3.22) cancel because of (3.10), the rescaling (3.20)
actually made the backreaction disappear. The same result would stand in the ℏ
expansion, because of the hypothesis of smallness of the quantum subsystem.

We note that the real and imaginary parts of (3.22) are

Gab∂a∂bS0 + Gab∂aS0 ∂bρ1 = 0 , (3.23)
Gab∂aS0 ∂bζ1 = 0. (3.24)

The first corresponds to Eq. (3.7b), while the second points out that ζ1 has no
dynamical relevance: through (3.10), Eq. (3.24) reads

∂τζ1 = 0. (3.25)

Until now, we recovered precisely the results of [42] (and equivalently [41]), but with
the adoption of the more advanced formalism of [43]. To investigate the quantum
gravity corrections in such formulation, we again consider a simple cosmological
model with the single gravitational degree of freedom a. This will keep us from
dealing with the separation of the derivatives ∂a, ∂b into normal and tangential
components (with respect to the S0 = const hypersurfaces) as in Sec. 2.4. We
highlight that the present procedure is valid only if R̄ ̸= 0, otherwise ∂τS0 ∝ V
would vanish, giving trouble in the next steps (being V the geometric superpotential).
The corrected Schrödinger equation up to O

(
M−1) is

iℏ∂τχs =Ĥmχs −
1

4MV

[(
H2
m − ⟨H2

m⟩
)

+ iℏ(Ḣm − ⟨Ḣm⟩)

−iℏ V̇
V

(Hm − ⟨Hm⟩)
]
χs

(3.26)
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equivalent to Eq. (3.18a) of the approach [42]. An analogous equation for the
background component ψ can be obtained, giving

−ℏ2

2 Gaa
∂2
aψ̃

ψ̃
=ℏ2∂τζ2 − iℏ2∂τρ2 −

1
4V ⟨Hq⟩2 + iℏV̇

4V 2 ⟨Hq⟩ −
iℏ
4V ⟨Ḣq⟩

− ℏ2

4V (∂τρ1)2 − ℏ2V̇

4V 2 ∂τρ1 + ℏ2

4V ∂
2
τρ1 ,

(3.27)

which can be further separated into real and imaginary parts, givings equations in
which the backreaction is now present (we refer for the detailed calculation to the
Appendix B of [61]). We note that, in (3.26), the non-Hermiticity of the quantum
gravity Hamiltonian is still a problem, unless one takes the norm of a state, in which
case Eq. (2.58) holds and all quantum gravity corrections vanish, presenting a stark
difference from [42].

The concept of phase rescaling for the quantum subsystem was implemented also
in [44], although in a different way. In that case, the procedure aimed to remove the
non-unitary contribution and make the quantum gravity Hamiltonian a Hermitian
operator. We here discuss such proposal within a toy model consisting of only one
geometric variable, that we identify with the time τ from the beginning. With the
ansatz (3.1), the dynamics of the quantum component (3.8) reads

ℏ2

M
Gττ∂τ lnψ ∂τχ = Hmχ−

ℏ2

2M Gττ∂
2
τχ+ ρψχ, (3.28)

where the background term

ρψ = 1
ψ

[
− ℏ2

2M Gττ∂
2
τ +MVs

]
ψ (3.29)

corresponds to the quantity set to zero in Eq. (3.5). Let us assume, differently from
the previous proposal [42], that the background term ρψ0 (where ψ0 = exp (iMS0/ℏ))
is of order O

(
M0): this means that the HJ equation

1
2Gττ (∂τS0)2 + V = 0 (3.30)

has to be itself of O (M), while in [42] it was the HJ equation (3.7a) multiplied by
M that emerged at that order. Hence

ρψ0 = −iℏ∂τVs2Vs
(3.31)

and assuming the existence of an abstract Hamiltonian operator H̄ as the one defined
in (3.18a), we find

iℏ∂τχ0 ≡ H̄χ0 = Ĥmχ0 −
iℏ
2
∂τV

V
χ0 −

1
4MV

[
H̄2 + iℏ∂τ H̄

]
χ0, (3.32)

being χ0 is the quantum wave function in Ψ = ψ0χ0. Since this equation still exhibits
non-Hermitian corrections, the authors then assume that two eigenvalue functions
exist, E(τ) (complex) and ϵ(τ) (real) such that

H̄χ0 = E(τ)χ0 , Ĥmχ0 = ϵ(τ)χ0, (3.33)
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which are then expanded in powers of 1/M . Focusing on the eigenvalue E(τ) of the
abstract Hamiltonian operator H̄, Eq. (3.32) yields at orders M0 and M−1

E(0) = ϵ(0) − iℏ
2
∂τV

V
, (3.34)

E(1) = ϵ(1) − 1
4V

[(
ϵ(0)
)2

+ ℏ2∂
2
τV

2V −
3ℏ2

4

(
∂τV

V

)2]
− iℏ

4 ∂τ

(
ϵ(0)

V

)
. (3.35)

If one rescales the quantum wavefunction by

χ1 = e− 1
ℏ

∫
Im(E(0)) dτχ0 = e

∫
∂τ V
2V χ0, (3.36)

then Eq. (3.32) takes the simple form

iℏ∂τχ1 = Ĥmχ1 , (3.37)

i.e. the time derivative of the rescaled quantum state exactly compensates the
non-Hermitian corrections on the right-hand side of Eq. (3.32) thanks to (3.31),
leaving only the standard Schrödinger evolution. The background component ψ1
must also be rescaled in such a way that Ψ = ψ1χ1, i.e.

ψ1 = e−
∫

∂τ V
2V ψ0 = e

i
ℏMS0− 1

2 lnV . (3.38)

We remark that, due to the rescalings (3.36),(3.38) of ψ and χ, their respective
equations of motion are modified, while the total wave function Ψ remains invariant.
By doing so, we find that ρψ1 vanishes at order O

(
M0), yielding the continuity

equation
∂2
τS0 −

1
2∂τS0∂τ (lnV ) = 0 (3.39)

which naturally vanishes from (3.30). As a consequence ρψ1 is of order M−1 and
corresponds to

ρψ1 = ℏ2

4MV

[
3
4

(
∂τV

V

)2
− ∂2

τV

2V

]
. (3.40)

The same steps can be followed at order O
(
M−1), including Eq. (3.40) into (3.32)

and redefining the quantum state as

χ2 = e− 1
Mℏ

∫
Im(E(1)) dτχ1 , (3.41)

so that the corrected Schrödinger equation for χ2 will have only the Hermitian part
of the Hamiltonian operator H̄, therefore a unitary evolution. Actually at this order
the background term calculated for ψ2 such that Ψ = ψ2χ2 will not vanish naturally,
as an effect of the backreaction of the quantum subsystem.

This approach is founded on the concept that the non-Hermitian component of
H̄ can be eliminated from the dynamics governing the quantum subsystem by an
appropriately redefinition of the composite wave functions within Ψ = ψχ. However,
it is essential to acknowledge that the operator H̄ is generally unknown and can only
be systematically constructed in a perturbative manner. Additionally, to perform
the rescaling of ψ and χ through phase factors, one must rely on the eigenvalues of
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H̄. The expressions (3.33) are based on the assumption that Hm and H̄ commute at
every order, allowing for simultaneous diagonalization; here a significant challenge
arises, since such property is not valid in the general case. Indeed, as evident from
(3.35), E(1) contains ϵ(0) and its time derivative ∂τ ϵ(0), therefore at O

(
M−1) H̄

contains both Hm and its time derivative, coherently with Eq. (3.18a). But Hm

and Ḣm do not commute unless some specific conditions are met: this follows from
observing that Ḣm will contain coordinate and conjugate momenta operators not
commuting with Hm itself.

A simple example is a Friedmann-Lemaitre-Robertson-Walker (FLRW) model
with cosmological constant and a free massless scalar field as matter component,
with super-Hamiltonian and potential respectively

HFRW = − G

32c3πa
p2
a + c

4π2a3 p
2
ϕ − V , (3.42)

V (a; Λ) = 3πc3

4G

(
a− Λ

3 a
3
)
. (3.43)

Clearly, the momentum conjugate the scale factor a is proportional to the time
derivative of a:

pa ∼
a

N

da

dt
= a∂τa. (3.44)

The matter Hamiltonian in this simple model is just

Hm = c

4π2a
−3p2

ϕ , (3.45)

and its time derivative

∂τHm = − 3c
4π2a

−4∂τap
2
ϕ ∼ a−5papϕ , (3.46)

contains the scale factor a, whose presence clearly leads to [Hm, ∂τHm] ≠ 0. Therefore
the proposal of [44] can be applied only in specific (cosmological) settings in which
the matter Hamiltonian does not possess this property.

3.3 Discussion and origin of non-unitarity
In the literature, there has been extensive discussion regarding the issues of non-

unitarity [64, 65, 44, 61, 40] and the establishment of a Hilbert space, e.g. [66, 67],
within these types of approaches. A cosmological investigation of the proposal [42]
with time definition (3.10) was outlined in [68, 52], despite the non-unitary features,
to compute quantum-gravitational corrections to the power spectra of gauge-invariant
scalar and tensor perturbations during the inflationary phase of the Universe (see
discussion in Chapter 5). One could also request additional conditions such that the
resulting dynamics is unitary: this is the case of [40], where implementing a scalar
field clock the request of unitarity leads to a quantum recollapse of the model. In [69],
a different inner product is discussed in relation to a Faddeev–Popov gauge-fixing
procedure, which can reabsorb some troubling non-unitary terms.

It is important to stress that the non-unitarity here discussed is not an exclusive
of the WKB approach to canonical quantum gravity. Indeed, it can also emerge in the
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context of modified theories of gravity when one adds renormalizability requirements
to the corresponding quantum theory, see one of the earliest discussions in [70]. We
mention the case of massive gravity, a theory in which the graviton particle acquires
a non-zero mass, first introduced by Pauli and Fierz [71] and later reformulated via
higher-derivative curvature terms or with the “gravitational Higgs mechanism” [72]
i.e. via a spontaneously broken symmetry associated to coordinate reparametrization
invariance. Massive gravity is in general plagued by the emergence of ghost fields,
which are unphysical states associated to non-dynamical variables; their presence
induces negative probabilities in the theory and so a violation of unitarity [73, 74].
A proposed solution to this issue is the so-called dRGT model [75], with predicted
deviations from GR discussed in [76].

Resuming the discussion on the WKB approaches [41, 42, 43], one now faces
the question if the non-unitary corrections here discussed are due to some common
feature. A main point is that, in all of them, the clock for quantum matter (3.10) is
constructed with the use of the semiclassical variables, i.e. using the dependence of
the matter wave function χ from those. As it appears from the previous analyses,
the most relevant term in the dynamics of χ which brings non-unitary effects is the
semiclassical Laplacian Gab∂a∂b. Be it through some adiabatic assumption on χ,
some projection parallel and orthogonal to the hypersurfaces S0 = const, or simply
by having time as the classical variable from the beginning, at some point that
Laplacian generates terms of the form ∂2

τχ. We argue that this is the crucial point
generating non-unitarity, since

−ℏ2∂2
τχ = iℏ∂τ (Hmχ) = iℏḢmχ+H2

mχ . (3.47)

This observation hints that, until time is defined through such Laplacian, the model
is probably doomed to find non-Hermitian corrections at the quantum gravity level.

3.4 Unitarity via the kinematical action and Born-
Oppenheimer separation

Here we present the proposal of [61] to solve the non-unitarity features previously
found. This construction is based on a WKB expansion in the M parameter as in [42]
but using different assumptions and, most importantly, a different construction of
time: the physical clock for the gravity-matter system will not be given via the
dependence of the subsystem on the semiclassical variables (3.10), but introducing a
kinematical sector linked to the reference frame itself.

The kinematical action The introduction of the so-called kinematical action was
first discussed in [77] as a tool to maintain the constraint equations of a quantum
system by adding variables in the Lagrangian (and Hamiltonian) formalisms. Let us
consider the case of scalar fields in a curved background. The kinematical action in
the ADM representation reads:

Skin =
∫
d4x(pµ∂tyµ −Nµpµ), (3.48)
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where the coordinates yµ are those defining the parametric equations of the hyper-
surfaces in the ADM splitting, as in yµ = yµ(xi;x0), see Sec. 1.5, and pµ are the
associated momenta. The additional equations of motion, obtained by variations
of yµ, pµ and Nµ, show that the momenta pµ are trivial (equal to 0) and recover
the definition of the deformation vector (1.40). Additional contributions to the total
super-Hamiltonian and supermomentum constraints clearly arise:

Hkin = nµpµ , (3.49)
Hkin
i = bµi pµ . (3.50)

The form of the above expressions is the key to define a meaningful time variable for
the matter field dynamics, in a different way than the works analyzed above. Indeed,
let us consider a massive scalar field immersed in a given gravitational background
(i.e. an assigned metric tensor). In the ADM variables, the corresponding action
reads:

Sϕ =
∫
dx0d3x

(
πϕ̇−NHϕ −N iHϕ

i

)
, (3.51)

π =
(
− 1
N2 ϕ̇+ 2N

i

N2∂iϕ

)
N
√
h , (3.52)

with corresponding super-Hamiltonian and supermomentum

Hϕ = 1
2
√
h
π2 + 1

2
√
hhij∂iϕ∂jϕ+ 1

2
√
hm2ϕ2 , (3.53)

Hϕ
i = (∂iϕ)π. (3.54)

At this level, the lapse function and shift vector N and N i are assigned functions
up to a restriction given by the initial Cauchy problem. This means that N and
N i are not to be varied; thus, the physical definition of the ADM foliation on the
background is lost.

However, one can add the term (3.48) which is independent from the metric and
matter field variables. Then the total action reads

Stot =
∫
dx0d3x

[
pµẏ

µ + πϕ̇−N
(
Hϕ +Hkin

)
−N i

(
Hϕ
i +Hkin

i

)]
, (3.55)

which leaves unchanged the dynamics of the scalar field but also reintegrates the
definition (1.40) and so the structure of the space-time foliation, which would
otherwise be lost. As a matter of fact, Skin now allows to perform δS with respect
to th kinematical action variables and restores the geometrical meaning of N , N i.
The super-Hamiltonian and supermomentum constraints

Hϕ = −Hkin = −pµnµ , (3.56)

Hϕ
i = −Hkin

i = −pµbµi (3.57)

are now nontrivial: the dynamics of the quantum field ϕ is characterized by parabolic
constraints, linear in the momenta pµ canonically conjugate to the four-dimensional
variables yµ, thought as fields depending on the slicing space-time variables. In the
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canonical quantization procedure, pµ take the role of derivative operators, and so
they can be crucial in the construction of the time derivative.

We now depart from the early analysis [77] and show how the kinematical action
can be implemented in a Born-Oppenheimer-like approach as a clock for the matter
dynamics, describing a unitary matter dynamics with quantum gravity corrections.

We closely follow the content of [61], considering a single scalar matter field ϕ
with potential Um, immersed in a given background; the generalization to the case
of n matter fields is straightforward by replacing ϕ with

∑
a ϕa and inserting the

cross-interaction terms into Um. We also consider for the sake of generality the total
superspace, without assuming specific symmetries of the problem, differently from
Sec. 2.3 and 2.4. For this reason we implement the supermomentum constraints
(which would be automatically satisfied in the homogeneous minisuperspace). Since
we will implement the WKB expansion in a Planckian parameter as in Sec. 2.4, the
notation here is analogous to (2.39)-(2.40) for a clearer comparison; we however do
not change the variables hij representing the 3d metric with the labels ha (which are
essentially minisuperspace variables in Sec. 2.4 where no supermomentum constraint
is implemented), but we leave the couples of spatial indices as in the ADM formulation
(Sec. 1.5). We start from

Stot = Sg + Sm + Skin

=
∫
dx0d3x

[
Πaḣ

a + pµẏ
µ + πϕ̇−N

(
Hg +Hm +Hkin

)
−N i

(
Hg
i +Hm

i +Hkin
i

) ]
,

(3.58)

where

Hg
i = −2hijDkΠkj , (3.59)
Hm
i = (∂iϕ)π , (3.60)

Dk is the (3-dimensional) induced covariant derivative associated to hij (see (1.60)),
and the contributions of the kinematical action are (3.49)-(3.50). We now apply
the canonical quantization to the whole system of gravity, matter and kinematical
variables. Since the momenta pµ in (3.56) act as functional derivative operators,
now the total super-Hamiltonian and supermomentum constraints become:

(Ĥg + Ĥm)Ψ = −ĤkΨ → iℏnµ
δ

δyµ
Ψ, (3.61)

(Ĥg
i + Ĥm

i )Ψ = −Ĥk
i Ψ → iℏbµi

δ

δyµ
Ψ , (3.62)

clearly showing the advantage of such choice. It is now necessary to investigate
if the added degrees of freedom of Skin modify the classical content of the theory.
Indeed, the kinematical action would emerge in the classical limit as a physical
fluid [78], representing in a sense the “materialization” of the reference frame. This is
analogous to the reference frame fixing procedure [57] of Sec. 2.5, where a Gaussian
fluid emerges (although with some unphysical properties). We reserve a deeper
discussion on this emergence of the reference frame for Chapter 4.
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We here highlight a core aspect of this proposal: while we add the kinematical
action to the full quantum system of gravity and matter, we regard it as a fast
quantum component on the same footing of the quantum matter field ϕ. This means
that the fluid associated to Skin does not appear at the classical level in the HJ
equation thanks to the WKB expansion, as we will see below.

We consider the following B-O-like separation

Ψ(hij , ϕ, yµ) = ψ(hij)χ(ϕ, yµ;hij) (3.63)

which closely resembles the exact factorization program of molecular physics [79,
80]. Here, in analogy with (3.1) the slow-varying semiclassical part depends only on
the induced 3d metric, while the “fast” quantum part depends on the matter and
kinematical variables and parametrically (i.e. slowly) on the others. This separation
is justified by considering the different energy scales of the two components, in a
case where the scalar fields act as test fields giving negligible contribution to the
background; then, their fast dynamics can be computed at nearly (but not truly) fixed
values of the semiclassical variables. This observation is analogous to the original
Born-Oppenheimer formulation in molecules, where the electrons play the part of the
fast quantum component interacting with the slow atoms. The main difference here
is that the slow sector, i.e. gravity, can be regarded as an environment interaction for
the subsystem (in the sense that it influences the subsystem without being modified
by it in the limit of negligible backreaction, see the following assumptions).

We now perform the WKB expansion of the system with respect to the parameter
M (2.38) linked to the Planck mass, as in Sec. 2.4, although with some different
assumptions. We recall that the choice of such expansion parameter allows to
consistently separate the gravitational and matter sectors, which is the relevant
case here. Our ansatz is constructed up to O (1/M), which is the one sufficient to
investigate the corrections arising from the quantum-gravitational background (as
in Sec. 2.4):

Ψ(hij , ϕ, yµ) = e
i
ℏ(MS0+P1+ 1

M
P2) · e

i
ℏ(Q1+ 1

M
Q2). (3.64)

Due to the separation (3.63), S0 and Pn are functions of hij only, while the functions
Qn representing the fast component depend also on the matter and kinematical
variables.

In order to follow more closely the original reasonings of the B-O molecular
approximation, we assume the following:

I) Since typical matter scales are of the order ≃ 100 GeV (for example, the most
massive elementary particle in the Standard Model has mt ≃ 173 GeV/c2) thus
very far from the Planckian one mPl ≃ 1019 GeV/c2, it is reasonable to assume
that

⟨Ĥmχ⟩
⟨ĤgΨ⟩

= O
( 1
M

)
(3.65)

i.e. that the average values of the matter sectors are always one order smaller
with respect to the gravitational (semiclassical) ones. This is analogous to
Vilenkin’s first hypothesis 1.
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II) Reflecting Vilenkin’s third one 3, we consider that a separate WDW constraint
holds (actually two, one super-Hamiltonian and one super-momentum) for the
background wave function ψ, as in (3.4):

Ĥgψ(hij) = 0 , Ĥg
i ψ(hij) = 0 . (3.66)

This fact is linked to our first hypothesis 3.65, since we are considering the
backreaction of the quantum component to be not only small, but also negligible
for the gravitational dynamics.

III) We also consider that the fast χ component has a small variation with respect
to the slow variables, i.e.

δ

δhij
Qn(ϕ, yµ;hij) = O

( 1
M

)
. (3.67)

The equations to solve are the constraints of the total system and the constraints
satisfied by the background wave function ψ(hij), which can be written in the form:[

− ℏ2

2M

(
Gijkl

δ

δhij

δ

δhkl
+ fij

δ

δhij

)
+MVg

]
ψ = 0 , (3.68)

2iℏhijDk
δ

δhkj
ψ = 0 , (3.69)[

− ℏ2

2M

(
Gijkl

δ

δhij

δ

δhkl
+ fij

δ

δhij

)
+MVg −

ℏ2

2
√
h

δ2

δϕ2 + Um

−iℏnµ δ

δyµ

]
Ψ = 0 ,

(3.70)

(
2iℏhijDk

δ

δhkj
+ iℏ(∂iϕ) δ

δϕ
− iℏ bµi

δ

δyµ

)
Ψ = 0 , (3.71)

where Vg = V (hij) and the matter potential Um has been redefined incorporating the
factor

√
h present in (2.20). The present formulation, developed with a single matter

field for which Hm = −ℏ2/2
√
h δ2

ϕ + Um, can be easily generalized for more scalar
fields ϕn by considering an appropriate sum over all constituents in (3.70)-(3.71)
and replacing the single potential Um with the the total matter interaction potential.
The additional term fijδhij

takes care of generic factor orderings for the derivative
operators, as in Sec. 2.4. All derivative operators are to be considered as functional
ones for the general case.

Plugging (3.63) into the above constraints, the first order of expansion is clearly
the order M , giving:

1
2Gijkl

δS0
δhij

δS0
δhkl

+ Vg = 0 , (3.72)

−2hijDk
δS0
δhkj

= 0 . (3.73)

Here the first equation recovers the HJ for the purely gravitational part of the wave
function; hence, the classical limit of gravity is ensured. Indeed, the (real) classical
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action S0 can be computed from (3.72). Eq. (3.73) instead expresses its invariance
under 3d diffeomorphisms, due to the hypothesis which holds even though we are
working in the general superspace due to the hypothesis 3.66.

We now move to the next order O
(
M0):

− iℏ2 Gijkl
δ2S0
δhijδkl

+ Gijkl
δS0
δhij

δP1
δhkl

− iℏ
2 fij

δS0
δhij

= 0 , (3.74)

−2hijDk
δP1
δhkj

= 0 , (3.75)

− iℏ
2 Gijkl

δ2S0
δhijδkl

+ Gijkl
δS0
δhij

δP1
δhkl

− iℏ
2 fij

δS0
δhij

+ Um −
iℏ

2
√
h

δ2Q1
δϕ2

+ 1
2
√
h

(
δQ1
δϕ

)2
+ nµ

δQ1
δyµ

= 0 ,
(3.76)

−2hijDk
δP1
δhkj

− (∂iϕ)δQ1
δϕ

+ bµi
δQ1
δyµ

= 0 . (3.77)

We remark that all terms of the form δQ1/δhij are inherently of order M−1 due to
the adiabatic assumption (4.12), therefore they do not appear at this level2. The
Eq. (3.74) allows to compute the gravitational function P1, which is also invariant
under 3d diffeomorphisms due to (3.75).

The wave function at this order can be rewritten as:

Ψ0 = e
i
ℏ (MS0+P1+Q1) = e

i
ℏMS0ψ1χ1 (3.78)

By plugging (3.74) into (3.76), and using Eq. (3.78), it is possible to rewrite the
total super-Hamiltonian constraint in an interesting form:(

− ℏ2

2
√
h

δ2

δϕ2 + Um

)
χ1 = Ĥmχ1 = iℏnµ

δ

δyµ
χ1 (3.79)

where Hm is the matter super-Hamiltonian. This equation can be combined with
the analogous one obtained by plugging (3.75) into (3.77), that gives:

iℏ(∂iϕ) δ
δϕ
χ1 = Ĥm

i χ1 = iℏ bµi
δ

δyµ
χ1 . (3.80)

It is now possible to assemble (3.79) and (3.80) with the coefficients N and N i,
in order to obtain the definition of the deformation vector (1.40) and the matter
Hamiltonian density. Then, by integrating over the ADM hypersurfaces, those
derivative operators become independent from the spatial coordinates and one can
define:

iℏ
δ

δτ
χ1 ≡ iℏ

∫
Σ
d3x

(
Nnµ +N ibµi

) δ

δyµ
χ1 = iℏ

∫
Σ
d3xNµ δ

δyµ
χ1

= Ĥmχ1 =
∫

Σ
d3x

(
NĤm +N iĤm

i

)
χ1

(3.81)

2Even the combination M δS0
δhij

δQ1
δhij

scales to the next order due to the factor 1/M which is in
front of the whole gravitational superHamiltonian.
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In other words, through the Dirac implementation and using the definition of the
deformation vector, we have recast the total WDW constraint at this order as a
functional Schrödinger equation for χ, overlapping with standard quantum field
theory. We have not set specific choice of the lapse function N and shift vector N i, n
order for the result to be valid for a generic foliation i.e. not restricted to any gauge.
This equation expresses the quantum dynamics of the matter field immersed in the
(given) gravitational background, with a time parameter τ that clearly describes a
nontrivial evolution.

We stress here the difference in the choice of the time coordinate from the
proposals [41] and [42], since the time is not recovered from the dependence from the
“slow” variables, shown to be source of concerns in Sec.3.3, but from the kinematical
action variables yµ. These variables are present in the definition of the deformation
vector, that here has a geometrical connotation, since its values correspond to choices
of ADM foliation on the background. The use of its definition (1.40) allows to combine
and rewrite the momenta pµ as a single derivative operator, thus constructing the time
parameter for the matter subsystem from the kinematical action itself. Nonetheless,
the results are formally the same as in [41] and [42], since the Schrödinger equation
is recovered in all cases. The main difference and consequences of this approach is
visible in the next order of expansion.

Let us write the corresponding equations of the WKB expansion at the order
M−1:

− iℏ2 Gijkl
δ2P1

δhijδhkl
+ 1

2Gijkl
δP1
δhij

δP1
δhkl

+ Gijkl
δS0
δhij

δP2
δhkl

− iℏ
2 fij

δP1
δhij

= 0 , (3.82)

−2hijDk
δP2
δhkj

= 0 (3.83)

− iℏ
2 Gijkl

δ2P1
δhijδhkl

+ 1
2Gijkl

δP1
δhij

δP1
δhkl

+ Gijkl
δS0
δhij

δP2
δhkl

+MGijkl
δS0
δhij

δQ1
δhkl

− iℏ
2 fij

δP1
δhij

− iℏ
2
√
h

δ2Q2
δϕ2 + 1√

h

δQ1
δϕ

δQ2
δϕ

= −nµ δQ2
δyµ

(3.84)

−2hijDk
δP2
δhkj

− 2hijDk
δQ1
δhkj

− (∂iϕ)δQ2
δϕ

= −bµi
δQ2
δyµ

(3.85)

Here the contribution δQ1/δhij appears together with δS0/δhij for the assumption
(4.12), since this term is of zeroth order in M and there is a factor 1/M in front.
Eq. (3.82) allows to compute the function P2, which is invariant under 3d diffeomor-
phisms by Eq. (3.83). We remark that all the gravitational functions of the ansatz
(3.64) can thus be identified, thanks to the hypothesis (3.66). Now in the total wave
function (3.64) we label

Ψ = e
i
ℏMS0ψ1 χ1 ψ2 χ2 , (3.86)

ψ2 = e
i
ℏ

1
M
P2 , χ2 = e

i
ℏ

1
M
Q2 , (3.87)

where χ1 satisfies the Schrödinger equation (3.81). Now using Eq. (3.82) together
with the results at the previous orders, after some manipulation Eq. (3.84) becomes:

iℏnµ
δ

δyµ
Ψ = ĤmΨ +

(
Gijkl

δS0
δhij

δQ1
δhkl

)
Ψ (3.88)



3.4 Unitarity via the kinematical action and Born-Oppenheimer separation 65

where we have omitted the term:

ℏ2
( 1

Ψ
δ

δϕ
Ψ− 1

ψ1

δ

δϕ
ψ1

)2
Ψ = − 1

M2

(
δQ1
δϕ

)2
Ψ (3.89)

since it is naturally of order 1/M2.
It is now evident that the corrections to the Schrödinger equation are emerging

at this order, as in Sec. 3.1. To recover the total matter Hamiltonian and investigate
the evolution, the supermomentum constraint must be used; plugging (3.83) into
(3.85) gives:

iℏbµi
δΨ
δyµ

= Ĥm
i Ψ− 2hijDk

δQ1
δhkj

Ψ (3.90)

and with the linear combination and integration over the hypersurfaces, that recon-
struct the total Hamiltonian of the matter field Hm, we obtain:

iℏ
δ

δτ
Ψ = ĤmΨ +

∫
Σ
d3x

(
NGijkl

δS0
δhij

δQ1
δhkl

− 2NkhijDk
δQ1
δhkj

)
Ψ (3.91)

where we remark that Ψ is the total wave function of the system up to order 1/M ,
as defined in (3.87).

We can now further modify this expression to describe the matter field dynamics
only. In fact, even though the WKB approach allows to solve the equations of the
constraints order by order, and so the functions S0 and Q1 present here are already
defined by the constraints at the previous orders, it is useful to rewrite the equation
(3.91) such that only the wave function relative to the matter field χ(ϕ, yµ;hij) and
the purely geometrical functions S0, Pn appear. This because the explicit forms of
S0, P1 and P2 are defined by the purely gravitational constraints which can be solved
separately, obtaining the expressions to substitute in the equation.

However, some attention is required to replace the total wave function Ψ with
the matter wave function χ. Since by assumption the functions S0, Pn do not depend
on the variables yµ nor ϕ, they can pass through the derivative operators δ/δϕ and
δ/δyµ without changing the result. They can also be taken outside the integral∫

Σ d
3x, present in the definition of H and of the time derivative: indeed, the whole

ψ is a functional of the geometries hij ( and not all the induced metrics, since the
supermomentum constraint for the gravitational part at each order assures that
these functions are invariant under 3d diffeomorphisms).

To rewrite the corrections in the desired form, we can make use of assumption
(3.67). Then, summing the orders M0 and M−1, the dynamics of the matter field
including quantum gravity corrections becomes:

iℏ
δ

δτ
χ = Ĥmχ+

∫
Σ
d3x

[
NGijkl

δS0
δhij

(
−iℏ δ

δhkl
χ

)

−2NkhijDk

(
−iℏ δ

δhkj
χ

)] (3.92)

Thus, at order 1/M , we have arrived to write down a functional Schrödinger equation
containing corrections from the quantum nature of the gravitational field.
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We stress that the corrections here computed are of order 1/M , where M is the
appointed parameter of expansion, thanks to the adiabatic assumption (3.67) so
they are of low magnitude and become relevant near the Planckian scale. Further
discussion on this result is reserved for the following section.

3.5 On the kinematical action as a time
At this level, we present some remarks on the implementation [61], which hopefully

help clarify some assumptions and put the analysis into a broader perspective:

• The decomposition into slow quantum system and fast quantum component
is not carried out at the fundamental level of the Hilbert space. That is
instead the case of the Page-Wootters mechanism, where the Hilbert space
takes the form of a tensor product between a clock subsystem and the rest,
the two components being non-interacting but entangled [81]. Here instead
we are identifying different behaviors of the two parts, but allowing for an
interaction between them; it is precisely this interaction (more specifically,
the gravitational momenta acting on the fast wave function) that describes
quantum-gravity-induced effects.

• One could construct a time starting from the observation that (2.17) has
a Klein–Gordon-like structure[25, 26, 82] due to the pseudo-Riemmannian
nature of Gab. By rescaling the minisupermetric by a factor

√
h and taking

h1/4 as a generalized coordinate (with h ̸= 0), which clearly has a different
signature with respect to the remaining ones, one could use it as internal time.
The system will then resemble the quantum description a relativistic particle.
However the construction of the Hilbert space is still problematic, see next
point.

• It is also possible to use the scalar field itself as a clock, even though it has
the same signature of the “space-like” variables in Gab. Also here, one obtains
a quantum dynamics analogous to that of a relativistic particle. However
the system is affected by a subtle question concerning the construction of
a Hilbert space [27]: the frequency separation is generally prevented by the
presence of the two potential terms, one of matter and one gravitational, as in
Eq. (1.62). Only under specific assumptions or in suitable asymptotic limits
such separation can be achieved.

• Actually, the choices of h1/4 or of ϕ as internal time coordinates could also
be performed before the quantization procedure. Indeed, one could choose a
classical time parameter by fixing the temporal gauge first, and then quantizing
the system: this naturally leads to a reduction of the classical variational
principle [3] and the quantum dynamics takes a Schrödinger-like form. However
this approach has some ambiguities concerning the background independence
of the theory, due to the gauge fixing. We refer the reader to the review [83]
and meaningful cosmological examples in [84, 85].

• Lastly, we stress that the WDW equation is here considered in analogy to a
single particle dynamics (see also [29]), without applying the so-called “third
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quantization approach” [86, 87]. Such formulation was originally introduced
as a possible solution to the cosmological constant problem and postulated
the production of “baby Universes”, by considering an operator which could
destroy or create universe wave functionals, in the same way one has operators
of creation and destruction of particles in QFT [88, 89, 90].

In view of these considerations, the use of the kinematical action as a quantum
clock for matter takes a new role: it is not an external field that defines time, since
we have seen that its degrees of freedom are exactly the variables yµ linked to the
ADM foliation (1.5). Actually, it is the set of momenta conjugate to those variables
that help us define the time evolution. Therefore, while this proposal does not
constitute a relational approach in the strict sense, it shares the view of describing
the evolution of the system as seen from such “fluid”. We briefly mentioned that
at the classical level the kinematical action would emerge as a fluid, in analogy
with Kuchař and Torre’s Gaussian fluid of Sec. 2.5, if one considered it as a “slow”
gravitational component instead of a purely quantum nature. This aspect, which
has not been further investigated here due to the assumption of the kinematical
variables to belong to the “fast” sector, will be cleared in the next Chapter where
we will implement the Kuchař-Torre fluid time in a B-O-like fashion.

The additional terms of (3.92), which now have a clear dependence on the
gravitational sector (as opposed to (2.49)), are attributed to quantum gravity
corrections. More specifically, they account for the fact that the “slow” sector is not
completely classical, i.e. not completely fixed in the B-O analogy.

As a final remark, we motivate why the modified dynamics expressed by Eq. (3.92)
is unitary, in contrast with those in Sec. 3.1, 3.3. To motivate this point, we first
observe that these contributions are linear in the canonical gravitational momenta,
acting as derivative operators in the Dirac quantization; by construction, these
cannot lead to non-Hermitian terms. The factors N , N i, Gijkl, hij , Dk, namely
the ADM variables and superspace functions, also provide Hermitian contributions.
Then only term left to investigate is δhij

S0, being S0 the lowest order function of
the WKB expression (3.64). We have proved that S0 belongs to the gravitational
sector only, since it emerges at the O (M) as the function satisfying the HJ equation
(3.72) corresponding to the classical vacuum limit (in the M expansion, matter does
not enter this limit). One could argue that a matter contribution might emerge
at the HJ level, so that the general expression of S0 would not coincide with the
one here chosen (or equivalently to the one in Sec. 2.4). However, by considering a
more general S0(hij , ϕ) in (3.64), one would find an additional order in the WKB
expansion i.e. O

(
M2) giving (

δS0
δϕ

)2
= 0 . (3.93)

This term would emerge from the action of Ĥm on Ψ in the total constraint, forcing
S0 to be independent of the matter field(s). Also, an S0(hij , ϕ) belonging to the
fast sector would bring an inconsistency with the HJ equation (3.72), in which only
the classical limit appears. In short, the choice of a gravitational-only function
S0(hij) in (3.64) is the only one coherent with the present B-O implementation. We
recall that, in Sec. 3.2, we illustrated how the inclusion of classical matter sources
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in [43, 44] (by considering the average contribution ⟨Hq⟩ or setting (3.72) to not
vanish, respectively) can lead to some inconsistencies; further considerations on the
backreaction problem will be reserved for Sec. 5.3.1 and 6.2.

Having cleared the nature of S0, it is now straightforward to demonstrate that
(3.92) describes a unitary evolution at the O (1/M) level. Since S0 is precisely the
HJ function in the classical limit, it must be a real function and more precisely its
derivative must coincide with the classical momentum, as reasoned in Vilenkin’s
original proposal itself (see the expression (2.28) in Sec. 2.3). Therefore δhij

S0 is an
Hermitian factor, which together with the canonical momenta acting on χ result in
a unitary evolution with first-order quantum gravitational effects.

We stress the striking difference with the resulting dynamics of the approaches of
Sec. 2.3-2.4 and 3.2: there, the terms δhij

S0δhkl
were used for the clock construction,

leading to violations of unitarity ad the next order; here instead, with the motivated
adiabatic hypothesis (4.12), they actually represent corrections emerging from the
quantum gravitational character, while the kinematical action has taken the role of
time.
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Chapter 4

Time via the Gaussian reference
fluid

The present Chapter is devoted to a formulation of the B-O model with WKB
expansion in which the time parameter is derived in a different way. We start here
from Kuchař and Torre’s original proposal of fixing the Gaussian reference frame in
a reparametrized way, but we implement the corresponding “reference fluid” in the
gravity-matter system as a fast component. In analogy with the kinematical action,
we show that the momenta associated to the fluid variables provide a physical time
such that next-order dynamics of the matter component (i.e. with QG-induced
corrections) is still unitary. We show that the two time constructions are completely
equivalent in the homogeneous minisuperspace setting. Finally, we examine the
effects of this modified dynamics in a FLRW toy model.

The content of this Chapter is based on Refs. [91, 92].

4.1 Motivation for a quantum-level fluid

In the previous Chapter we presented a dynamical description of the quantum
gravity-matter system implementing the kinematical action as a fast sector to
construct the time parameter. While by construction Skin allowed to reinstate the
geometric meaning (1.40) of the deformation vector for the ADM foliation, there
is no manifest link between the variables yµ, pµ of Skin and the reference system.
In this sense, the original Kuchar and Torre’s proposal (see Sec. 2.5) implemented
the reference system in a clearer way, manifested as a fluid component through the
action Sfpar.

Thus, we aim to reformulate the Kuchar-Torre fluid in light of a Born-Oppenheimer
separation, as in Sec. 3.4, between gravity and matter. The system is again WKB
expanded, taking into account also the supermomentum contributions. We work
under the assumption that the slow-varying gravitational component obeys sepa-
rately a corresponding (vacuum) Wheeler-DeWitt equation, as in [41] and in analogy
with the previous Chapter. This is conceptually more coherent with a standard
Born-Oppenheimer decomposition of the dynamics, at the same time it allows a
result similar to [42] which instead uses gauge conditions order by order.

The use of the reference fluid is intrinsically very different from the proposals
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in [41, 42, 44] in the way a time coordinate emerges for the functional Schrödinger
equation describing the quantum matter evolution. As stressed in Sec. 3.1, in those
proposals the time is constructed via the dependence of the matter wave functional on
the gravitational degrees of freedom, which at O (M) are purely classical functions of
the label time. In other words, the time derivative of the functional χ is constructed
by the sum:

∂th ·
δχ

δh
; (4.1)

the morphology of such time coordinate is at the ground of nonunitary effects
emerging at O

(
M−1), as discussed in Sec. 3.3.

Through the reparametrized reference frame fixing, however, the time variable
is provided by the reference fluid, emerging when the procedure of [57] is imple-
mented via the WKB algorithm. We stress an important difference with respect
to Kuchar and Torre’s original proposal: we here formalize (as in Chapter 3) a
Born-Oppenheimer separation of the system, in which the reference fluid is treated as
fast matter-like component. The reason under this assumption is that the reference
fluid variables (as the kinematical action ones) do not carry an intrinsic dynamics and
only serve us to reinstate a notion of the starting geometry; therefore, the classical
evolution of the gravitational sector in vacuum is self-contained in its respective
equations, without adding Sfpar (or Skin), as discussed in Sec. 3.4 and Sec. 2.5,so
the most natural choice for the slow semiclassical sector is to contain only the
gravitational degrees of freedom. This treatment permits us to reduce the presence
of the fluid to an additional contribution for the quantum matter dynamics only,
and no additional terms affect the gravitational HJ equation in this approximation
scheme. More specifically, we aim to describe the time derivative as in [57], but with
the absence of a reference fluid contribution in the classical limit.

We remark that in the proposed picture the reference fluid plays a role very
similar to the kinematical action of Sec. 3.4 and actually, the results presented in
this Chapter here overlap those of Chapter (3).

This very different methodology in constructing a clock for the quantum dynamics
of matter has two advantages: (i) it allows us to avoid the dilemma of nonunitarity
of the theory discussed in [42, 44], and (ii) we can clarify how some difficulties
of the original analysis in [57] are overcome when the B-O separation takes place.
Clearly, when considering the full quantum gravity problem as in [57] i.e. with
gravity, matter, and the reference fluid are all on the same footing, the presence of
a physical reference system (see also [45]) becomes nontrivial. We stress that the
presence formulation relies on the B-O separation and on the WKB expansion in the
Planckian parameter for the full dynamics, as in the previous Chapter; therefore,
investigating the classical contribution of the reference fluid has a limited sense
and is actually in contrast with such view. The reason is straightforward: with
respect to the expansion in M , the gravitational degrees of freedom approach the
quasi-classical limit at the highest order of expansion, while the matter and the
reference fluid remain still in a quantum picture, i.e., the concept of classical matter
must be limited as applied only to macroscopic phenomenological sources.
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4.2 B-O model of gravity, matter, and the fluid

Let us consider the gravitational field together with the reference fluid and a self-
interacting scalar field ϕ with potential Um(ϕ). This field schematically represents
the matter sector, which can be generalized for more scalar fields, and it assumes a
key role in cosmological applications (see Chapter 5). The action of such a model
corresponds to

S =
∫
dt

∫
Σ
d3x

(
Πij ḣij + pϕϕ̇−N(Hg +Hm)−N i(Hg

i +Hm
i )
)

+ Sfpar, (4.2)

where we have performed the ADM foliation, and the added term Sfpar represents the
parametrized fluid of Kuchar and Torre’s formulation of Sec. 2.5. This term can be
written explicitly in ADM coordinates by observing that the Gaussian reference frame
conditions give the following requirements on the components of the deformation
vector N:

N = ±1, N i = 0 (4.3)

corresponding to the fluid action

Sf =
∫
dt

∫
Σ
d3x
√
h

[
−F2

(
N − 1

N

)
+ FiNN i

]
. (4.4)

As done in Sec. 2.5, the fluid terms can be rewritten by using the momenta associated
with the Gaussian coordinates and introducing the coefficients (2.67) and (2.68), so
that the fluid super-Hamiltonian and supermomentum are (2.65) and (2.66).

The Hamiltonian content of the theory is straightforward from Eq. (4.2). Wit the
presence of the additional fields, the total super-Hamiltonian and supermomentum
must still vanish:

H = Hf +Hg +Hm = 0 , (4.5)

Hi = Hf
i +Hg

i +Hm
i = 0 , (4.6)

being Hf and Hf
i those specified in (2.65) and (2.66). We use for the matter and

gravitational superspace functions the same notation of the previous Chapter, i.e.
the expressions (3.68)-(3.71) apart from the kinematical action contribution which
is now absent.

Following from the previous Chapter (see Sec. 3.4), we implement a B-O-like
separation in analogy with the the molecular problem [93]. The main idea is to
postulate that the system can be separated into a slow quantum gravitational sector
and a fast quantum component, now including both the reference fluid and the
matter field. The corresponding energy scales are clearly separated by the Planckian
parameter M , thus allowing a clearer treatment of the two sectors order by order.
The inclusion of the Gaussian reference fluid in the fast sector draws is analogous
to the kinematical action, whose role was to construct the time parameter in the
WDW constraint. A graphical representation of this scheme is provided in Fig. 4.1.

Our ansatz is
Ψ (hij , ϕ,Xµ) = ψ (hij)χ (ϕ,Xµ;hij) , (4.7)
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Fast matter
sector
O
(
M0)

Born-Oppenheimer quantum picture

slow (semi-classical)
gravitational
background
O (M)

QG-corrections

Figure 4.1. Schematic representation of the Born-Oppenheimer picture distinguishing
the different scales of the gravitational and matter sectors. The gravitational one is of
Planckian order, while the “fast” matter component living on such “slow” background
starts at the next order in the expansion parameter. The quantum nature of the
gravitational sector will cause a modification to the standard Schrödinger dynamics of
the “fast” matter, i.e. it will induce QG effects at the next order.

where Xµ are the Gaussian coordinates, ψ is the function associated with the slow
gravitational background, and χ is the function for the fast matter sector (depending
parametrically i.e. on the background metric). Following the WKB method, we
rewrite (4.7) expanding both ψ and χ in the Planckian parameter M (2.38):

Ψ (hij , ϕ,Xµ) = e
i
ℏ(MS0+P1+ 1

M
P2)e

i
ℏ(Q1+ 1

M
Q2) , (4.8)

where again the expansion is performed up to order 1/M , sufficient for the investiga-
tion of quantum gravitational effects. In this notation, the functions Qn(ϕ,Xµ;hij)
are associated with the fast matter sector, and similarly Sn(hij) are the slow back-
ground functions.

Following the B-O approach of Sec. 3.4, we make the three following assumptions:

I) We require that
⟨Ĥm⟩χ
⟨Ĥg⟩ψ

= O
( 1
M

)
, (4.9)

where ⟨·⟩ denotes the average value over the relevant wave function. In other
words, we are assuming that the fast matter sector lives at a smaller energy scale
with respect to gravity i.e. it is of smaller order in the expansion parameter.

II) We again consider any matter effects to be negligible at the Planck scale, so
that the gravitational wave function satisfies the following constraints

Ĥg ψ(hij) = 0 , (4.10)
Ĥg
i ψ(hij) = 0 . (4.11)



4.2 B-O model of gravity, matter, and the fluid 73

III) The adiabatic condition
δQn
δhij

= O
( 1
M

)
, (4.12)

must also be implemented, order by order, stating that the functional gradients
of the fast χ with respect to the slow coordinates are small; this is in analogy
to the B-O approximation in molecular dynamics.

These equations are to be adjoined to the total constraints of the system deriving
from (4.5) and (4.6); namely, the system of equations to be expanded order by order
reads explicitly: [

− ℏ2

2M

(
Gijkl

δ

δhij

δ

δhkl
+ fij

δ

δhij

)
+MVg

]
ψ = 0 , (4.13)

2iℏhijDk
δ

δhkj
ψ = 0 , (4.14)[

− ℏ2

2M

(
Gijkl

δ

δhij

δ

δhkl
+ fij

δ

δhij

)
+MVg −

ℏ2

2
√
h

δ2

δϕ2 + Um

+iℏW−1 δ

δT
+ iℏWW k δ

δXk

]
Ψ = 0 ,

(4.15)

(
2iℏhijDk

δ

δhkj
+ iℏ(∂iϕ) δ

δϕ
+ iℏ(∂iT ) δ

δT
+ iℏ(∂iXk) δ

δXk

)
Ψ = 0 , (4.16)

4.2.1 The classical limit

The zeroth order is O (M), where one obtains (omitting the M factor in front):

1
2Gijkl

δS0
δhij

δS0
δhkl

+ Vg = 0 , (4.17)

−2hijDk
δS0
δhkj

= 0 . (4.18)

corresponding to the HJ equation for gravity in vacuum, and to the diffeomorphism
invariance for S0. Here the function S0 is real, as discussed in Sec. 3.5, since it
corresponds to the classical HJ solution.

We stress that Eq. 4.17 does not include matter contributions since we have
considered negligible backreaction and imposed independently the gravitational
constraint. These two properties will be crucial in the following cosmological
applications of Sec. 4.3 and Sec. 5.3; we will further discuss the role of backreaction
at the HJ level in Sec. 5.3.1.

4.2.2 The QFT limit

At the order O
(
M0), the equations give

− iℏ2 Gijkl
δ2S0
δhijδkl

+ Gijkl
δS0
δhij

δP1
δhkl

− iℏ
2 fij

δS0
δhij

= 0 , (4.19)
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−2hijDk
δP1
δhkj

= 0 , (4.20)

− iℏ
2 Gijkl

δ2S0
δhijδkl

+ Gijkl
δS0
δhij

δP1
δhkl

− iℏ
2 fij

δS0
δhij

+ Um −
iℏ

2
√
h

δ2Q1
δϕ2

+ 1
2
√
h

(
δQ1
δϕ

)2
−W−1 δQ1

δT
−WW k δQ1

δXk
= 0 ,

(4.21)

−2hijDk
δP1
δhkj

− (∂iϕ)δQ1
δϕ
− (∂iT )δQ1

δT
− (∂iXk) δQ1

δXk
= 0 . (4.22)

Here, the gravitational constraints simplify Eqs. (4.21) and (4.22). We remember
that the quantum matter wave function is at this order

χ0 = e
i
ℏQ1 , (4.23)

so we can combine Eqs. (4.21) and (4.22) in order to reconstruct the total matter
Hamiltonian for χ0, in analogy with Sec. 3.4, resulting in the following:

Ĥmχ0 =
∫
d3x(NHm +N iHm

i ) = iℏ
δ

δτ
χ0

≡
∫
d3x

[(
NW−1 +N i(∂iT )

) δ

δT
+
(
NWW k +N i(∂iXk)

) δ

δXk

]
χ0 ,

(4.24)

which describes a functional Schrödinger evolution, when one defines the quantum
clock of the theory via the fluid momenta operators. In this sense we have recovered
the standard QFT evolution on the assigned background. We remark that definition
(4.24) is a generalization of the time derivative implemented in the Kuchař-Torre
model when choosing the time parameter as exactly the Gaussian time (2.71), as
well as choosing xi ≡ Xi or both conditions at the same time. Indeed, we here
maintain the Gaussian coordinates as functions of the generalized parameters, not
implementing a specific coordinate choice with this definition.

4.2.3 The quantum-gravity corrections

Going up to the next order O
(
M−1) one finds (omitting the factor 1/M in front

of every equation):

− iℏ2 Gijkl
δ2P1

δhijδhkl
+ 1

2Gijkl
δP1
δhij

δP1
δhkl

+ Gijkl
δS0
δhij

δP2
δhkl

+− iℏ2 fij
δP1
δhij

= 0 , (4.25)

−2hijDk
δP2
δhkj

= 0 , (4.26)

− iℏ
2 Gijkl

δ2P1
δhijδhkl

+ 1
2Gijkl

δP1
δhij

δP1
δhkl

+ Gijkl
δS0
δhij

δP2
δhkl

+MGijkl
δS0
δhij

δQ1
δhkl

− iℏ
2 fij

δP1
δhij

− iℏ
2
√
h

δ2Q2
δϕ2 + 1√

h

δQ1
δϕ

δQ2
δϕ
−W−1 δQ2

δT

−WW k δQ2
δXk

= 0 ,

(4.27)
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−2hijDk
δP2
δhkj

− 2MhijDk
δQ1
δhkj

− (∂iϕ)δQ2
δϕ
− (∂iT )δQ2

δT
− (∂iXk) δQ2

δXk
= 0 . (4.28)

Here again, the first terms in (4.27) and (4.28) disappear due to the gravitational
constraints, leaving terms that contain the functions Q2 and Q1. However, noting
that the quantum matter wave function at O

(
M−1) is

χ1 = e
i
ℏ(Q1+ 1

M
Q2), (4.29)

and making use of the adiabatic condition (4.12), we can sum Eqs. (4.27)-(4.28) with
the Eqs. (4.21)-(4.22) found at the previous order (i.e. O

(
M0)) for Q1. Therefore

we find for the super-Hamiltonian (scalar) equation

Gijkl
δS0
δhij

δQ1
δhkl

− iℏ
2
√
h

(
δ2Q1
δϕ2 + 1

M

δ2Q2
δϕ2

)
+ 1

2
√
h

(
δQ1
δϕ

)2
+ Um

+ 1
M
√
h

δQ1
δϕ

δQ2
δϕ
−
(
W−1 δ

δT
+WW k δ

δXk

)(
Q1 + 1

M
Q2

)
= 0 ,

(4.30)

where the matter super-Hamiltonian Hm is applied to χ1 and we have some extra
terms, some with the functional derivatives with respect to the Gaussian coordinates.
From the supermomentum constraint, with the same procedure, one finds

−2hijDk
δQ1
δhkj

− (∂iϕ)
(
δQ1
δϕ

+ 1
M

δQ2
δϕ

)
− (∂iT )

(
δQ1
δT

+ 1
M

δQ2
δT

)
− (∂iXk)

(
δQ1
δXk

+ 1
M

δQ2
δXk

)
= 0 ,

(4.31)

i.e. the action of the matter supermomentum Ĥm
i on χ1 plus extra terms.

Now the time definition (4.24) can clearly be reconstructed: we first multiply
(4.30) by N and (4.31) by N i and sum them, the we integrate over the spatial
hypersurfaces Σ obtaining∫

d3x

[
N

(
W−1 δ

δT
+WW k δ

δXk

)
+N i

(
(∂iT ) δ

δT
+ (∂iXk) δ

δXk

)]
χ1

≡ iℏ δ
δτ
χ1 = Ĥmχ1 +

∫
d3x

[
NGijkl

δS0
δhij

(
−iℏ δ

δhkl

)

−2NkhijDk

(
−iℏ δ

δhkj

)]
χ1 .

(4.32)

It is evident that the quantum matter dynamics at O
(
M−1) is modified by the

terms in (4.32) due to the slow quantum gravitational background, therefore they
are quantum gravity contributions. The modified dynamics has the same functional
form as the one obtained in (3.92) via the kinematical action implementation. Since
we already motivated that those correspond to a unitary dynamics (see Sec. 3.5), the
same reason stands in this case and thus the nonunitarity problem is overcome with
this approach. We can then think of the kinematical action as a reference frame,
which (once fixed) emerges in the formalism as a fluid with the properties discussed
above.
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Analogy with the kinematical action We here highlight another important
observation. As we have seen, the remaining corrective terms in (4.32) exactly
mimic the ones of (3.92). Actually, the time definitions (3.81) and (4.24) can
be related. Let us take the Gaussian reference fluid contribution with only the
time condition F ̸= 0,Fi = 0 that is the incoherent dust (i.e. a fluid with null
heat conductivity, which greatly simplifies the equations for this approach); this
is compatible with selecting a homogeneous setting in which the supermomentum
constraints are identically satisfied. If we also restrict the kinematical action to the
form ∂ty

µ → Ṫ by selecting the homogeneous setting with N i = 0 and time-like
direction nµ = (1, 0⃗), then the two time definitions exactly coincide; moreover, the
modified dynamics is the same both at O

(
M0) and O

(
M−1).

This property signals that the kinematical action is playing the role of the
reference frame, acting as a fast quantum matter component and giving a preferred
set of variables suitable for the construction of the time parameter. However,
the parallelism is not present in a generic non-homogeneous model with arbitrary
foliation, since the two implementations (3.81) and (4.24) would differ. Therefore,
we have a correlation between the two approaches, since the kinematical action was
added exactly to play the role of a reference system in the previous work.

4.3 A simple example: the FLRW model
In this section, we show a simple cosmological application of the procedure

previously analyzed, choosing a model for the universe with suitable characteristics
in order to mimic a slow-roll inflation period (see discussion of Chapter 5). We
select an isotropic Universe, with a free inflaton field and a cosmological constant
that accounts for the almost constant inflaton potential. Evidently, due to the
requirement of an isotropic model, the spatial term of the Gaussian coordinates
vanishes identically and the reference time coincides with Gaussian time.

In order to deal with a gravity-matter Lagrangian as restricted to a reference
frame having g00 = −1, we must suitably add a corresponding constraint to the
total action. If we denote by T the time variable associated with the fixed reference
system (i.e., the Gaussian fluid), the constraint to be imposed covariantly reads

gµν∂µT∂νT + 1 = 0 , (4.33)

such that the total action reads

S =
∫
d4x
√
−g c4

16πG (R− 2Λ) + 1
2g

µν∂µϕ∂νϕ−
F
2 (gµν∂µT ∂νT + 1) . (4.34)

We consider the spatially-flat homogeneous and isotropic Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe, see Sec. 1.6.1, i.e. we deal with the ADM line
element (in c = 1)

ds2 = −N(t)2dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (4.35)

with associated Ricci scalar curvature

R = 6
(
ä

a
+ ȧ2

a2

)
. (4.36)
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Taking equal to unity the fiducial volume over which the spatial integration is
performed, and observing that the homogeneity of the model implies ϕ = ϕ(t),
T = T (t), and F = F(t) , the action (4.34) reads as

S =
∫
dt

{
− 3

8πG

(
a ȧ2

2N + NΛa3

3

)
+ a3ϕ̇2

2N − Fa
3

2

(
Ṫ 2

N
−N

)}
, (4.37)

where the dot denotes differentiation with respect to the time variable t. The spatial
component N i, and so the supermomentum functions Hi, are not present since the
supermomentum constraint is automatically satisfied due to symmetry of the model.

Since the Lagrangian term corresponding to the reference frame fixing vanishes
identically, its Hamiltonian contribution is only pT Ṫ , where pT is the conjugate
momentum to the variable T (coinciding with the synchronous time variable). The
relation between pT and the Lagrange multiplier can be found from

pT = Fa3 Ṫ

N
, (4.38)

where to ensure Ṫ = N , we have to require pT = Fa3. In the Hamiltonian formulation
(4.37) rewrites as

S =
∫
dt
{
paȧ+ pϕϕ̇+ pT Ṫ −NH

}
(4.39)

with

H ≡ − κ

12
p2
a

a
+ Λ
κ
a3 +

p2
ϕ

2a3 + pT , (4.40)

pa and pϕ denoting the conjugate momenta to a and ϕ respectively. Since we
are interested in the WKB expansion in the Planckian parameter M , we use the
definition (2.38) to write the Wheeler-DeWitt constraint for this model (up to the
fiducial volume set to unit) as(

ℏ2

48Ma
∂2
a + 4MΛa3 − ℏ2

2a3∂
2
ϕ − iℏ ∂T

)
Ψ = 0 . (4.41)

Here we have chosen the natural operator ordering by setting fijδ/δhij = 0 in
(4.5), as the final result will be unaffected; we have also replaced the functional
dependence and derivatives with simple functions and partial derivatives only due
to the minisuperspace setting.

Following the steps of the previous section, we separate and expand the total
wave function of the isotropic universe as (4.8), identifying the functions Qn(T, ϕ; a)
for the matter components (scalar field and Gaussian fluid time), while S0(a) and
Pn(a) are for the isotropic background. We implement the same assumptions, so
the conditions (4.9) and (4.12) together with the Wheeler-DeWitt constraint for the
gravitational sector (the supermomentum one is already satisfied) which reads

Hg ψ(a) =
(

ℏ2

48aM ∂2
a + 4MΛa3

)
e

i
ℏ(MS0+S1+ 1

M
S2) = 0 . (4.42)
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The total super-Hamiltonian constraint, taking contributions from the matter com-
ponents, is explicitly

(Ĥg + Ĥf + Ĥϕ) Ψ(ϕ, T ; a)

=
(

ℏ2

48aM ∂2
a + 4MΛa3 − ℏ2

2a3∂
2
ϕ − iℏ ∂T

)
e

i
ℏ(MS0+S1+Q1+ 1

M
(S2+Q2)) = 0 .

(4.43)

Proceeding order by order, we first obtain the HJ equation for the gravitational
background at O

(
M1):

− (∂aS0)2 + 192Λa4 = 0 , (4.44)

which gives the solution for the classical action S0.
At O

(
M0), we obtain

iℏ∂2
aS0 − 2∂aS0∂aS1 = 0 , (4.45)

iℏ
48a∂

2
aS0 −

1
24a∂aS0∂aS1 −

iℏ
2a3∂

2
ϕQ1 + 1

2a3 (∂ϕQ1)2 = −∂TQ1 , (4.46)

which can be rewritten by inserting the first equation into the second one and
labeling as χ0 = e

i
ℏQ1 the matter wave function at this order, as the following:

− ℏ2

2a3∂
2
ϕχ0 = Ĥmχ0 = iℏ ∂Tχ0 . (4.47)

At O
(
M−1) we have

iℏ∂2
aS1 − (∂aS1)2 − 2∂aS0∂aS2 = 0 , (4.48)

iℏ
48a∂

2
aS1 −

1
48a

(
(∂aS1)2 + 2∂aS0∂aS2 + 2M∂aS0∂aQ1

)
− iℏ

2a3∂
2
ϕQ2

+ 1
a3∂ϕQ1∂ϕQ2 = −∂TQ2 .

(4.49)

Here again, the solution S2 from the first equation simplifies the form of the second
one, leaving

− M

24a∂aS0∂aQ1 −
iℏ

2a3∂
2
ϕQ2 + 1

a3∂ϕQ1∂ϕQ2 = −∂TQ2 . (4.50)

Remembering that the matter wave function at this order isχ1 = e
i
ℏ(Q1+ 1

M
Q2) and

that by hypothesis (4.12) the term ∂aQ2 is of higher order in the expansion, we can
write summing (4.50) with (4.47):

iℏ ∂Tχ1 = Ĥmχ1 + iℏ
1

24a(∂aS0)∂aχ1 . (4.51)

The first term on the right-hand side is just the quantum matter Hamiltonian
operator −ℏ2∂2

ϕ/2a3 of this toy model, while the second one is the quantum-gravity
corrective term which is small (O

(
M−1)) due to hypothesis (4.12). This modified

dynamics would have been the same if we had used the kinematical action time
as defined in (3.81). Since we interpret this contribution as a “fast variable” in
the sense of a Born-Oppenheimer approximation, the nonphysical character of the
emerging synchronous fluid (Sec. 4.1) is overcome.
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4.3.1 Solution of the perturbative scheme

We now compute an explicit solution of this minisuperspace application. Starting
from the gravitational solutions, at O

(
M1) Eq. (4.44) gives

S0(a) = −8
√

3
3
√

Λ
(
a3 − a3

0

)
, (4.52)

where a0 is the value of the cosmic scale factor at a reference time (e.g., the start
of the slow-roll phase); the negative solution has been selected to correspond to an
expanding universe. At O

(
M0), we obtain from (4.45),

S1(a) = iℏ log
(
a

a0

)
. (4.53)

Finally, at O
(
M−1) we get from (4.48)

S2(a) = − ℏ2

24
√

3
√

Λ

(
a−3 − a−3

0

)
. (4.54)

We now focus on the fast matter sector. For the computation of these functions,
it is useful to work in Fourier space, using the previous notation for the conjugated
momenta pϕ and pa, so that the general solution takes the form

χ1(a, ϕ, T ) =
∫
dpϕ

∫
dpa χ̃(pϕ, pa, T )f(pϕ, pa) , (4.55)

where f is a generic weight function. At O
(
M0), the dynamics is described by (4.47),

so that the solution corresponds to the natural plane wave for quantum matter on a
(classical) curved background:

χ̃0 = e−iℏ
p2

ϕ

2a3 T . (4.56)

The quantum gravity effects emerge at the next order, where the matter dynamics
is described by Eq. (4.51). To solve it, it is convenient to use a rescaled time
parameter

dτ = dT

a3 . (4.57)

In this way, the dynamics for the fast matter function χ1 is

iℏ ∂τ χ̃1 =
ℏ2p2

ϕ

2 χ̃1 + ℏ pa (−τ)4/3

3(3Λ)1/6 χ̃1 , (4.58)

where τ is negative-defined. The wave function evolving via this modified dynamics
is the following:

χ̃1 = exp
(
−iℏ

p2
ϕ

2 τ + ipa (−τ)7/3

7(3Λ)1/6

)
. (4.59)

One can immediately show from (4.58) that a deformation of the energy spectrum
takes place, as described by

E = E0 + ℏpa(−τ)7/3

3(3Λ)1/6 , (4.60)
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Figure 4.2. Plot of the modified energy spectrum (4.60) with respect to the baseline E0.
Here the QG-induced correction is greatly enhanced for clarity.

i.e. a decreasing function in time, which is plotted in Fig. 4.2. Clearly, this corrective
term lives at order O

(
M−1) with respect to the standard QFT spectrum since we

are assuming the condition (4.12).
To understand the effects of the quantum gravity corrections, let us investigate

the evolving probability density associated to the modified wave function (4.59) for
the isotropic universe. As initial condition, we consider for χ a Gaussian wave packet
in both degrees of freedom:

f(pa, pϕ) = 1√
(2π)σaσϕ

exp
(
−(pa − p0,a)2

4σ2
a

)
exp

(
−(pϕ − p0,ϕ)2

4σ2
ϕ

)
, (4.61)

where the free parameters p0,a and p0,ϕ are the mean values of the Gaussian distribu-
tion and σa, σϕ are their standard deviations. The expression (4.61) will correspond
in principle to a localized probability density; this straightforward choice is contex-
tualized in Chapter 5. To satisfy the adiabatic condition (4.12), we shall consider
the regime in which

− 1
M

< pa <
1
M

, (4.62)

so we integrate and normalize the wave packet only in this interval.
Implementing the dynamics (4.58) for (4.61) in Fourier space, we find that the

probability density for the fast quantum matter is modified as shown in Fig. 4.3.
We stress that the obtained behavior has a very weak dependence (i.e. almost flat)
in the scale factor a, since the hypothesis (4.12) requires (4.62). It follows that the
quantum gravity effects on the system are of very small intensity, as predicted by
the perturbative approach.

Figure 4.4 shows the comparison between such modified evolution and the
standard spreading of the Gaussian wave packet that would take place without the
QG-induced corrections of Eq. (4.58) for the reference value τ = −20. We observe
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from this figure that the principal modification to the evolved probability density
takes place as ln(a) approaches zero, i.e. towards the reference value ã = 1.

Figure 4.3. Evolution of the normalized probability density associated to the wave packet
(4.61) for different values of the rescaled time τ . Reference values in Planck units:
M = 100, Λ = 10−2, ln(a0) = 10, p̄ϕ = 0, σϕ = 3, p̄a = 0, σa = 2 ·10−2. Here M is set to
a larger value with respect to the one in such units, in order to enhance the perturbative
treatment in 1/M . We observe the spreading of the wave packet in time and that the
QG-induced corrections cause a deformation along the a axis when a approaches a
reference value. The wavefunction has been normalized over a suitable interval of ln (a).
Figures re-elaborated from [91].

To summarize, the QG-corrections in this toy model correspond to a phase shift
in energy and modify the evolution of the wave function. The initially localized wave
packet undergoes the expected spreading, with a previously unaccounted behaviour
along the α direction, more specifically when approaching a reference value a0 of the
scale factor. The predictions of such modified evolution in the cosmological setting
are analyzed in the next Chapter.
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Figure 4.4. Comparison between the two probability densities |χ(τ = −20)|2 with and
without QG-induced effects. The top figure is obtained evolving the wave packet via the
modified evolution (4.58) which contains the QG corrections. The bottom plot refers to
the evolution without such effects, i.e. the same of the previous order (the second term
on the right-hand side of (4.58) is absent). Reference values in Planck units: M = 100,
Λ = 10−2, ln(a0) = 10, p̄ϕ = 0, σϕ = 3, p̄a = 0, σa = 2 · 10−2. Figures re-elaborated
from [91].
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Chapter 5

Predictions in Quantum
Cosmology

The previous chapters have dealt with the investigation of quantum-gravity-
induced effects on QFT, however such predictions must be confronted with our
physical experience. In this respect, Quantum Cosmology aims to study the origin,
evolution, and structure of the universe as a whole, focusing on the scale in which the
classical description of gravity and spacetime may break down, such as the earliest
moments of the Big Bang.

In the present Chapter we focus on the so-called inflationary spectrum, i.e. the
power spectrum associated to small quantum fluctuations which after the inflationary
expansion formed the large scale structures of our universe, whose remnants can be
observed through the CMB. For this purpose we address quantum perturbations of
the scalar field only; such case is equivalent to the study of a free massless scalar
field fluctuating on a de Sitter background. The classical energy contribution of the
scalar field will be identified with a positive cosmological constant Λ term, i.e. the
gap between the false and true vacuum energy density. The effects of the quantum-
gravity corrections computed in Chapters 3-4 on such spectrum are analyzed in
Sec. 5.3,illustrating the results of Ref. [94].

5.1 The early evolution of the Universe and CMB
Cosmological models implement a minisuperspace reduction (see Sec. 1.6) in

order to portray a more faithful description of our current universe: according to
the Cosmological Principle, the universe appears homogeneous and isotropic at large
scales. However, it is also interesting to reduce the model’s degrees of freedom while
keeping anisotropic features, since they are helpful to describe specific cases such as
the Mixmaster universe or the Belinski–Khalatnikov–Lifshitz (BKL) solution [95].

In cosmological settings, one considers a non-stationary metric tensor with non-
zero curvature everywhere; matter contributions if present also give a non-vanishing
energy-momentum tensor in each space point and at any time instant in the Einsteins’
equations1, see Sec. 1.6.2.

1This configuration in general does not admit an asymptotically flat spacetime at spatial infinite,
but vanishing behaviors of the curvature can emerge in time.
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The early evolution of our Universe is currently described by the Big Bang theory,
in which an extremely hot and dense state (i.e. the initial singularity) expanded and
cooled down, with the temperature dropping to a point where protons and neutrons
could combine to form light atomic nuclei (nucleosynthesis). At the moment of
the so-called recombination, when electrons combined with protons to form neutral
hydrogen atoms, photons were released creating the so-called cosmic microwave
background radiation (CMB). In its original formulation the Big Bang model did
not explain a number of observed cosmological facts: the matter over antimatter
predominance, the origin of the seed inhomogeneities required to start structure
formation, the nature of dark matter, the smallness of any cosmological term, and
the large-scale isotropy, homogeneity, and flatness of the Universe [20].

Quantum Cosmology (QC) and the theory of inflation aim to describe such
evolution surpassing the classical treatment and to address the above points. The
question of the initial singularity is also investigated in QC: some models indeed
predict not a universe emerging from a single point, but a Bounce i.e. a universe
whose size systematically contracts and then expands [96, 97]. In this view, the entire
universe is described by a wave function, which encodes the probabilities of different
configurations of the universe. Clearly its evolution in time is described by the
Wheeler-DeWitt equation (2.10), while there is an ongoing discussion regarding the
appropriate initial conditions for such wave function. In the inflationary paradigm,
the initial state underwent a rapid (exponential) expansion known as cosmic inflation;
the fluctuations necessary to initiate the formation of large scale structure are nothing
else than the small quantum fluctuations of a primordial scalar field (the inflaton
field), then scaled to relevant sizes due to the expansion. This is the prevailing
theory to explain the origin and development of the cosmos and its predictions have
been tested against observational data finding crucial evidence supporting it [19].

The CMB, originally understood in the 1940s and first measured (accidentally)
in 1964 [98], represents the remnant of the light that suddenly stopped being
scattered by charged particles (due to recombination, after the expansion) and
started propagating freely. This event happened everywhere at the same cosmic
time, following the cosmological principle that the universe is homogeneous and
isotropic on large scales; such photons emitted some 13.8 billion years ago arrive
to us from every direction. Since such radiation contains relevant data on the the
inflationary era, many Earth-based and space experiments focus in the measurement
and analysis of such radiation: the COsmic Background Explorer (COBE) [99], the
Wilkinson Microwave Anisotropy Probe (WMAP) [100], the PLANCK satellite [101].

To better understand the magnitude of such observations, we recall that the
CMB appears today as an almost perfect black body, in the sense that it is very
well-described by a Planck spectrum of temperature TCMB = 2.72548± 0.00057 K;
its peak wavelength is of the order of mm (that is a microwave/radio signal). This
corresponds to an emitted spectrum of temperature kBT ∗ ≃ 0.3 eV (λ∗ ≃ µm) which
has been redshifted to cosmic expansion via the redshift parameter

z∗ = λ∗
obs

λ∗
obs − λ∗

em

= 1089.90± 0.23 . (5.1)

However, the CMB is not perfectly isotropic, as described by fluctuations in the
observed temperature of the order δT ≃ 500µK. It is precisely this fluctuating be-
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haviour that contains the relevant information about the universe, since anisotropies
can be generated before recombination (primary anisotropies, related to the physics
of inflation and of the primordial plasma) or from effects occurring during the
photons’ travel such as gravitational lensing (secondary anisotropies). The evolution
of such small fluctuations, imputed to the small quantum fluctuations of a scalar
(inflaton) field, is analyzed by the theory of cosmological perturbations, which will be
described in more detail in Sec. 5.2. We will then show how the modified dynamics
inferred in Chapter 3-4 can influence such evolution, presenting a concrete example
in Sec. 5.3.

5.2 Theory of cosmological perturbations

The theory of inflation motivates the primordial inhomogeneities of the universe
as emerging from the vacuum fluctuations of a scalar field, the so-called inflaton field.
One of the most remarkable results of such mechanism is the ability to solve two
concerning points of our observations: the horizon problem (causally disconnected
regions of the universe presenting similar properties at large scales) and the flatness
problem (the spatial curvature parameter of the universe appears to be very close to
zero) [1, 95, 102, 103]. This framework can be outlined by considering a spatially
flat universe for the background, since any curvature is damped by the exponential
expansion, and adding a scalar field living on top. More specifically, one should
consider the homogeneous and isotropic FLRW spacetime (see Sec. 1.6.2), i.e. with
line element:

ds2 = −N2(t) dt2 + a2(t)
(
dx2 + dy2 + dz2

)
(5.2)

being a the cosmic scale factor, and insert the inflaton contribution as a minimally
coupled inhomogeneous scalar field ϕ slowly rolling down its potential U(ϕ).

In the theory of cosmological perturbations, one introduces small linear pertur-
bations for both the metric and for the inflaton, and then decomposes the resulting
fluctuations into scalar, vector and tensor sectors and analyzes their Hamiltonian for-
mulation, see for example [102, 17]. Differently from the QFT case, the introduction
of such matter fluctuations is highly non-trivial: the perturbed and unperturbed
quantities of a given field live in different space-times, since the metric also is
fluctuating. Therefore, one has to analyze how such perturbations behave under
coordinate transformations and the resulting changes can also be decomposed along
the scalar, vector and tensor sectors. In other words, non-physical perturbations
could arise as “artifacts” in the model simply due to coordinate changes.

Two different strategies are available to tackle this problem. The first is to select
a specific gauge, usually the longitudinal (or conformal Newton) one, which has the
following line element

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2ψ)γijdxidxj

]
(5.3)

where Φ and ψ are metric perturbation variables. In the second strategy, one does
not fix the gauge but works with a basis of gauge-invariant variables. Actually, it is
possible to define gauge-invariant variables that coincide with the diagonal metric
perturbations Φ and ψ in longitudinal gauge [104, 105].
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In the following, we will use the second strategy and focus on perturbations
of the scalar inflaton field, which are those relevant for the CMB and structure
formation. Given the perturbations δϕ of such field, their gauge-invariant treatment
is obtained by defining

v := aφ = a δϕ , (5.4)

that is a specific case of the Mukhanov–Sasaki (M-S) variable v describing the
scalar sector of perturbations [106, 107, 108] (see also the discussion in [109]), when
the metric fluctuations are switched off; for a more general treatment we refer to
Chapter 6. The variable (5.4) corresponds to the (rescaled) scalar field perturbations
computed in the spatially flat gauge (that eliminates spatial metric perturbations).
On a de Sitter spacetime, i.e. expanding as a(η) = −1/(Hη), the evolution of this
variable will take the form of a time-dependent harmonic oscillator since it will have
a time-dependent effective mass [68], see the application of Sec. 5.3.

We here stress that addressing the BO separation discussed above does not
alter the gauge invariance of the perturbation theory: in the limit in which the
backreaction on the metric scalar perturbation is neglected, the M-S variable is
simply (5.4) and its gauge invariance is immediately recovered.

Since the evolution of the inflaton fluctuations is responsible for the formation
of primordial structures in the Universe, one must focus on their dynamics. To
understand their behavior, let us consider modes with physical wavelength λphys ≡
a(t)λ0, λ0 being the comoving wavelength. It is useful to compare this quantity
with the so-called Hubble radius (or micro-physics horizon) H −1 = a/ȧ, that for
any given time is the inverse of the Hubble parameter (using c = 1). This horizon
represents the scale separating the gravity-dominated regime from the quantum one:
the first happens for modes with physical wavelength such that λphys ≫H −1, and
the second is the case for λphys ≪H −1. It can be shown that during the period of
accelerated expansion predicted by the theory the Hubble radius is constant in the
physical coordinates, while λphys exponentially increases [95, 103]. This means that
the quantum fluctuations emerge at early times within the micro-physical scales (i.e.,
for λphys ≪H −1), rapidly expand going outside the horizon, and propagate until
they re-enter the Hubble radius at later times; when inflation is over, the behavior
is opposite, since H −1 grows faster than the λphys [1, 102].

Using the gauge-invariant formalism via the variable (5.4), it is possible to com-
pute the power spectrum relative to the distribution of these primordial fluctuations.
N particular one can compute the spectrum Pv(k), where k specifies the wave number
of each Fourier mode associated with the inflaton perturbations. For the evolution of
the primordial Universe, it is more convenient to work with the spectrum associated
with the comoving curvature perturbation ζ (which is the one leaving its fingerprint
on the cosmic microwave background radiation) [110]: indeed, ζ is constant (i.e., it
freezes) for all the time in which the perturbations are outside the horizon; therefore,
one only needs to compute its spectrum at the end of inflation [95, 103]. In the
primordial era of our interest, the two quantities ζ and v are directly related by

ζ =

√
4πG
ϵ

v

a
, (5.5)

with ϵ = − ˙H /H 2 being the first slow-roll parameter. In the following, we will focus
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on the dynamics of the M-S variable v and only at the end use (5.5) to compute the
invariant power spectrum.

Upon decomposition in Fourier modes vk, if the quantum amplitudes associated
with each vk are Gaussian distributions, then all the relevant properties of the
inflationary perturbations are contained in the two-point correlation function [110]:

Ξ(r) := ⟨0|v̂(η,x)v̂(η,x + r)|0⟩ , (5.6)

where |0⟩ is the vacuum state of the inflaton field, defined via the so called Bunch–
Davies condition.

The Bunch-Davies vacuum When dealing with QFT on curved spacetime,
the notion of absence of particles is lost due to effects associated to the spacetime
curvature, such as the Unruh effect: an accelerated observer provided with a detector
would detect particles even in a state which seen as empty in the rest frame [111]. It
is then unclear how one should impose suitable conditions for the wave function of
the universe to correspond to an initially “empty” state.

The Bunch–Davies vacuum state requirement [1, 110], actually first derived in
[112], provides a clear and unambiguous criterion to solve this dilemma. It states
that, in the limit kη → −∞ i.e. when the inflaton wavelength is small compared to
the curvature of the universe, one must select the state corresponding to the lowest
energy state of the harmonic oscillator in Minkowskian vacuum: in other words, a
vacuum state that is devoid of particles in the distant past, where the metric appears
as Minkowskian at the inflaton scale. The limit is dictated by the observation that,
at the beginning of inflation, all the modes of astrophysical interest today have a
physical wavelength smaller than the Hubble radius.

We stress that such requirement is not strictly necessary for the computation of
the primordial power spectrum, which will instead be computed in the super-Hubble
limit kη → 0−. It is however imposed in cosmology to provide initial conditions that
are in accord with a field theory description on curved spacetime.

Let us summarize how from the correlation function (5.6) one can proceed to
compute the associated power spectrum of primordial perturbations. The expectation
value implies integration over k-modes, which can be carried out given the expression
(see for example [110])

Ξ(r) = 1
(2π)3

∫
dp e−ip·r|fp|2 = 1

2π2

∫ +∞

0

dp

p

sin(pr)
pr

p3|fp|2 . (5.7)

Here, fp is the mode function associated with the scalar perturbations, and from
(5.7), the power spectrum is defined as

Pv(k) = k3

2π2 |fk|
2 , (5.8)

i.e., the Fourier amplitude of Ξ(0) per unit logarithmic interval. As mentioned above,
this quantity is then evaluated in the super-Hubble limit k/(aH )≪ 1, when the
perturbations essentially freeze. We stress that the vacuum state in (5.6) must be
selected as the one corresponding to the ground level of the scalar field Hamiltonian
in the limit k/(aH ) → ∞ (or equivalently λphys ≪ H −1), also known as the
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Bunch–Davies vacuum, see Section 5.3. From (5.8), the spectrum Pζ(k) related to
the curvature perturbations ζ can be obtained using (5.5).

In inflationary cosmology, such spectrum provides the initial conditions for the
formation of large scale structures. Its parameters can be constrained by observing
the properties of the CMB radiation and the large scale structure of our universe.
Recent satellite missions, such as WMAP [100] and PLANCK [113, 114], provided
an accurate detection of the fluctuation spectrum in the CMB temperature. These
observations, and in particular, the Gaussian profile distribution of the fluctuations,
properly fulfill the prediction of the inflation paradigm; in this respect, a significant
constraint for the spectral index ns

ns − 1 := d lnPζ
d ln k (5.9)

is now available [113]. For completeness, we mention that some recent data analyses
suggest the possibility of anomalies in the Gaussianity of the fluctuations [115] and
called attention to the possibility to be interpreted via a multi-field inflationary
scenario [116, 117], which will not be investigated in this thesis.

5.3 Modified power spectrum of primordial perturba-
tions

Before facing the analysis of inflationary perturbations and how the quantum
gravity corrections can affect the associated power spectrum, it is worth stressing
some key differences between the present analysis and other similar approaches, as
in [109, 52].

In our formulation, apart from the WKB expansion in the Planckian parameter
M , we are addressing a BO separation between the "slow" gravitational component
and the "fast" matter contribution, with the latter including also the fluid’s presence.
This separation is justified by virtue of a corresponding scale separation between the
energy of the quantum matter dynamics, say in the order of the matter Hamiltonian
spectrum, and that one of the Planck order, at which the gravity quantization
is expected to manifest itself. In view of this adopted B-O approximation, the
backreaction of the quantum matter on the gravitational background is implicitly
negligible. In other words, quantum corrections of the gravitational dynamics are
clearly present (as implied by the function P1 in (4.7), associated with a quantum
amplitude for the background metric), but they exist independently of the matter’s
dynamics.

We here consider the slow-rolling phase of inflation, that is when the inflaton
can be approximately described as a free massless scalar field (the almost constant
potential acts as a cosmological term) [95]. More specifically, we will employ an
exact de Sitter phase, thus neglecting the slow-rolling parameter ϵ. This simplified
approximated scheme can be useful to obtain insights on the inflaton evolution, such
as [68]. The analysis of quantum gravity’s effects on the inflationary spectrum is
achieved by considering the fluctuations of the scalar field over a quasi-classical
background, expressed by the FLRW metric in (5.2).
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Due to the homogeneous minisuperspace reduction of the background model,
we neglect the supermomentum contributions and start with the superHamiltonian
constraint (WDW)

ĤtotΨ(a, T, vk) = 0 , (5.10)

Ĥtot = ℏ2

48Ma2∂a (a∂a) + 4MΛa3 − iℏ∂T + 1
2a
∑

k

(
−ℏ2∂2

vk
+ ω2

kv
2
k

)
. (5.11)

Here we have implemented a specific factor ordering, i.e. the Laplace–Beltrami one,
which ensures a gauge-invariant treatment. The positive cosmological constant Λ
plays the role of the matter potential Um in (4.15). The momentum −iℏ∂T associated
with the Gaussian time T is the only relevant contribution of the reference fluid of
Chapter 4 due to the homogeneity requirement. Clearly, the last two terms in (5.11)
correspond to the inflaton field fluctuations in the gauge-invariant formalism, being
vk the Fourier modes of the M-S variable (5.4). When such perturbations live over
a FLRW background, they behave as time-dependent harmonic oscillators [118, 68,
119] with a frequency depending on the wavenumber modulus only:

ω2
k = k2 − a2

N2

(
˙H −H

Ṅ

N
+ 2H 2

)
. (5.12)

The WDW constraint corresponds to the vanishing of the operator (5.11) applied
to the total system wave function Ψ(a, T, vk). We implement for convenience the
logarithmic scale factor,

α := ln
(
a

a0

)
, (5.13)

with a0 being the reference value at the stat of the de Sitter phase, such that the
global WDW equation reads

1
a0eα

(
ℏ2

48M
1

a2
0e

2α∂
2
α + 4a4

0e
4αΛM

)
Ψ− iℏ∂TΨ

+ 1
2a0eα

∑
k

(
−ℏ2∂2

vk
+ ω2

kv
2
k

)
Ψ = 0 .

(5.14)

Let us now consider a single Fourier mode identified by a wave number k.
Following the scheme discussed above, for each independent mode, the ansatz is
taken as

Ψk(α, T, vk) = ψk(α) χk(α, T, vk) , (5.15)

and then WKB expanded as in (4.7):

ψk(α) = e
i
ℏ [MS0(α)+P1(α)+M−1P2(α)] , (5.16)

χk(α, T, vk) = e
i
ℏ [Q1(α,T,vk)+M−1Q2(α,T,vk))] . (5.17)

Upon substitution into (5.14), one obtains the dynamics dictated by the WDW
constraint at each order. We first discuss the solutions pertaining to the gravitational
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sector, which are readily obtained at the three orders:

S0(α) = −8

√
Λ
3 a

3
0

(
e3α − e3α0

)
, (5.18)

P1(α) = 3
2 iℏ(α− α0) , (5.19)

P2(α) = ℏ2

64

√
3
Λa

−3
0

(
e−3α − e−3α0

)
. (5.20)

Here, S0 solves the HJ equation and so corresponds to the classical limit of the
gravitational component, while the next order functions P1 and P2 account for
quantum gravity effects; α0 is just the starting value 0 written in the logarithmic
coordinate.

Turning to the quantum matter sector, we employ the time definition (4.24) to
rewrite the first order (i.e. O

(
M0)) as a Schrödinger-like evolution. In agreement

with gauge-invariant treatments to the primordial spectrum in literature, we imple-
ment the conformal time gauge2 via N = a0 e

α so that T ′(η) = a0 exp (α(η)); this is
allowed by the fact that the Gaussian time T (t) of Sec. 4.2 is in principle a generic
function of time and we can suitably choose the time parameter of the reference
fluid. Thus the matter dynamics at O

(
M0) is described by

iℏ∂ηχ
(0)
k =

(
−ℏ2

2 ∂
2
vk

+ 1
2ω

2
k(η)v2

k

)
χ

(0)
k , (5.21)

which is clearly a time-dependent harmonic oscillator in conformal time.
The time-dependent harmonic oscillator system can be exactly solved by imple-

menting the so-called Lewis–Riesenfeld method of invariants [120, 121, 122, 123].
The method, which is described in detail in Appendix A, allows to construct a wave
function of the general form (see Eq. (A.9))

χ
(0)
k (η, vk) =

∑
n

cn,k e
iδn,k(η) ϕn,k(η, vk) , (5.22)

where ϕn,k are appropriately rescaled standard oscillator solutions and δn,k and ρk
are functions defined in (A.10). Clearly, the arbitrary coefficients in those expressions
must be set through suitable initial conditions; we fix them via the Bunch-Davies
vacuum requirement (see Sec. 5.2), in order to provide a meaningful field description
for the inflaton sector on the curved spacetime. Looking at the general form (5.22)
in the relevant limit, the coefficients cn,k and the function ρ must satisfy

ρk(η) −−−−→
η→−∞

k−1/2 , (5.23)

cn,k = δ0,k . (5.24)

The second condition (5.24) is easily understood observing that the n = 0 eigenvalue
of the invariant constructed via the Lewis method (see (A.1)) corresponds, for a fixed
time, to the lowest-energy state of the oscillator. The first condition, when applied to

2This choice allows to write the oscillator’s frequency as a direct function of the gauge-invariant
variables, eliminating the dependence on the lapse function and Hubble parameter in (5.12).
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the specific ρk (A.3) of the time-dependent oscillator solution, gives A = B = γ1 = 1
so that

ρk(η) =
√

1
k

+ 1
η2k3 (5.25)

satisfies the required limit.
Substitution into (A.10) gives the δn,k functions as

δn,k = −
(
n+ 1

2

)∫
dη

1
ρ2
k(η)

= −
(
n+ 1

2

)
(ηk − arctan(ηk) + c) . (5.26)

Finally, the solution to Equation (5.21) satisfying the Bunch–Davies condition is:

BDχ
(0)
k (η, vk) =e− i

2 (ηk−arctan(ηk))

 k3

πℏ
(

1
η2 + k2

)
 1

4

× exp

 i

2ℏ

− 1
η3
(

1
η2 + k2

) + i
k3

1
η2 + k2

 v2
k

 .
(5.27)

At this level, we have only computed the solution for the QFT limit, which would
correspond to the standard scale-invariant power spectrum of the de Sitter phase (as
we will compute below). We can now focus on the next order M−1: here, due to the
quantum gravity corrections, the dynamics is no longer that of a time-dependent
oscillator but it becomes

iℏ∂ηχ
(1)
k =

[
iℏ
24

1
a2

0e
2α (∂αS0)∂α −

ℏ2

2 ∂
2
vk

+ 1
2ω

2
kv

2
k

]
χ

(1)
k . (5.28)

We can here use (5.18) and the classical scale factor solution for the de Sitter phase
a0e

α(η) = −
√

3
Λ

1
η

3, so that Eq. (5.28) becomes

iℏ∂ηχ
(1)
k (α, η, vk) =

[
iℏ
η
∂α −

ℏ2

2 ∂
2
vk

+ 1
2ω

2
k(η)v2

k

]
χ

(1)
k (α, η, vk) . (5.29)

Clearly, a general solution to (5.29) is difficult to calculate. However, similarly
to previous investigations e.g. [68], we can implement the method of separation of
variables and focus on the following class of separable solutions

χ
(1)
k (α, η, vk) = θ(α) Γk(η, vk) , (5.30)

where we remark that the (quantum) degree of freedom α is in principle independent
from the chosen conformal time η, and the classical relation only stands in the
appropriate low-energy limit. Such choice is backed by the assumption of negligible
backreaction and it will limit the validity of the following results to these specific
settings, see the discussion in Sec. 5.3.1.

3This expression is easily found from the Friedmann equation (1.83) for zero spatial curvature
(k = 0) and when only a cosmological constant contribution is dominant in ρ.
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Taking into account the form (5.30), Eq. (5.29) is solved for

−iℏ∂αθ(α) = λ θ(α) , (5.31)

iℏ∂ηΓk(η, vk) =
(
−ℏ2

2 ∂
2
vk

+ 1
2ω

2
k(η)v2

k −
λ

η

)
Γk(η, vk) , (5.32)

where the constant λ identifies the family of solutions in (5.31), giving the eigenvalues
of the momentum associated with the (logarithmic) scale factor. Now we are left with
solving Eq. (5.32), which is a time-dependent harmonic oscillator with an additional
time-dependent “potential”. Actually, we can implement a suitable rescaling

Γk(η, vk) = exp
[
i

ℏ
λ log(−η)

]
Γ̃k(η, vk) (5.33)

in order to reconnect to the usual time-dependent harmonic oscillator. Therefore, Γ̃k
coincides with the solution χ(0)

k of the previous order and the Γk is readily obtained.
Now using the solutions of (5.31) and (5.32), we can write the complete matter wave
function (5.30) as

χ
(1)
k (α, η, vk) = θpα(α) e

i
ℏpα log(−η) χ

(0)
k (η, vk) , (5.34)

which can then be implemented to analyze the quantum-gravity corrected power spec-
trum.

Before proceeding we stress two important points of this application.
On one hand, we stress that the QG corrections of the present model are

extremely small with respect to the accuracy of current fluctuation measurements,
since they can be estimated via the square ratio of the inflationary energy scale
to the corresponding Planckian one, namely about 10−8. Despite the possibility
of detecting such quantum gravity modifications of the spectrum in current or
near-future experiments appearing unlikely, their prediction stands as a fundamental
conceptual challenge.

On the other hand, the requirement (4.12) imposed in Sec. 4.2 due to the BO
approximation scheme translates to |pα| < 1/M in this specific minisuperspace
setting, as we have seen in Sec. 4.3. Therefore, in (5.34) we construct a convolution
over all the admissible values of the momentum pα

χ
(1)
k (α, η, vk) = χ

(0)
k (η, vk)

∫
dpαg(pα)θpα(α)e

i
ℏ log(−η)pα , (5.35)

where g(pα) is a generic distribution. We here choose a Gaussian weight distribution
with deviation σ and zero mean value, i.e.

g(pα) = 1
(
√

2πσ)1/2 e
− p2

α
4σ2 ; (5.36)

this choice is reasonable since, as discussed in Sec. 5.2, for the Gaussian case the two-
point correlation function (5.6) would be sufficient to describe the whole spectrum.
It is also significant if one considered χ emerging from a large number of independent
and identically distributed random variables; in this case, the distribution would
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indeed tend towards the Gaussian one (regardless of the individual distributions)
thanks to the central limit theorem.

The matter wave function modified by quantum gravity corrections ends up as

χ
(1)
k,Gauss(α, η, vk) = χ

(0)
k (η, vk)

{
(8πσ2)1/4 exp

[
−σ

2

ℏ2 (α+ log(−η))2
]}

. (5.37)

Here, the effect of quantum gravity corrections has clearly factorized, an aspect which
will deeply impact the result of the power spectrum analysis and will be discussed
in Sec. 5.3.1 in relation to the separable ansatz (5.30). Indeed, the obtained wave
function shall be considered as the "new" vacuum state in order to derive the
primordial power spectrum for the order M−1 of the prescribed theory, i.e., modified
by quantum gravity effects. However, as the modification impacting the wave
function (5.37) manifests solely as a time factor, its resultant contribution simplifies
the spectrum computation, aligning with the previous order’s result. Essentially, the
power spectrum associated to (5.37) will be equivalent to the one computed with
(5.27) in the absence of quantum gravitational corrections.

To present this result, we have to carefully address the dependence of χ(1) on the
quantum variable α in the proposed paradigm, in light of studying phenomenological
implications. Anticipating the content of the next Chapter, we can consider an
"averaged" wave function in the form of

χ̄(η, vk) =
∫
dα|A|2(α)χ(α, η, vk) (5.38)

where A = eiP1/ℏ is the (quantum) amplitude coming from the lowest-order quantum
gravitational component. This choice corresponds to averaging on the quasi-classical
gravitational probability density, which in the selected minisuperspace is associated
with the logarithmic scale factor α only. It is worth stressing that weighting the
matter wave function on the WKB amplitude of the gravitational field is, on the
present level, a purely phenomenological procedure. In fact, it is clear that such
a wave function can in principle no longer satisfy Eq. (5.28). Nonetheless, we will
show in the next Chapter that such a calibrated wave function is actually a solution
of the Schrödinger equation when suitable gauge invariance of the BO procedure is
taken into account, reserving the details for Sec. 6.2.

Upon substitution of (5.37) and (5.19) into Eq. (5.38), the averaged wave function
for each mode becomes

χ̄
(1)
k,Gauss(η, vk) = χ

(0)
k (η, vk)

ℏ(8π3

σ2

) 1
4

(−η)3 exp
(

9ℏ2

4σ2

) . (5.39)

Requiring normalization over the possible vk values, i.e. dividing by the wave
function integrated on such variables, the term in squared brackets clearly factors
out of the integration (we stress that it depends only on time and on the specific
form of the weight (5.36)). Therefore, we have for the averaged and normalized wave
function

χ̄
(1)
k,Gauss

integration over α−−−−−−−−−−−→ χ
(0)
k (η, vk), (5.40)

namely, we recover the previous order state.
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We now proceed to the computation of the inflationary power spectrum in
the described setting, by computing the two-point correlation function of the M-S
variable on the the Bunch–Davies state (5.27). For convenience, we rewrite BDχ

(0)
k

in the following way:
BDχ

(0)
k (η, vk) = Nk(η) exp

(
iδ0,k(η)− Ωk(η)v2

k

)
, (5.41)

where

Ωk(η) := 1
2ℏ

 i

η3
(

1
η2 + k2

) + k3

1
η2 + k2

 , (5.42)

Nk(η) :=
( 2
π
ℜ(Ωk)

)1/4
=

 k3

πℏ
(

1
η2 + k2

)
 1

4

, (5.43)

and ℜ(·) isolates the real part. In the following, we also isolate the real and imaginary
parts of the (complex) variable vk as

vk = 1√
2

(vRk + ivIk) . (5.44)

Then, the two-point correlation function of the complex M-S variable computed
on the Bunch–Davies vacuum state (for which we drop the prefix in BDχ

(0)
k for

readability) corresponds to [110]

Ξ(r) = ⟨0|v(η,x)v(η,x + r)|0⟩

=
∫ ∏

k
dvRk dv

I
k

(∏
k′

χ
(0)∗
k′ (η, vk′)

)
v(η,x)v(η,x + r)

(∏
k′′

χ
(0)
k′′ (η, vk′′)

)

=
∏

l
|Nl(η)|4

∫ ∏
k
dvRk dv

I
k

(∏
k′

e−2ℜ(Ωk′ )
[
(vR

k′ )
2+(vI

k′ )
2])

v(η,x)v(η,x + r)

=
(∏

l

2ℜ(Ωl)
π

)∫
dp

(2π)3/2

∫
dq

(2π)3/2 e
ip·xeiq·(x+r)

×
∫ ∏

k
dvRk dv

I
k

[
vpvqe

−2
∑

k′ ℜ(Ωk′ )((vR
k′ )2+(vI

k′ )2)] .

(5.45)

More specifically, we are considering each Fourier mode of the vacuum state, substi-
tuting the expression (5.41) in the second equality, and expanding both variables in
Fourier modes in the third. The last integral vanishes for p ̸= ±q, and the same
happens for p = q, since we obtain exponents of the form

[
(vRp )2 − (vIp)2], and the

real and imaginary parts contribute the same amounts. Therefore, the surviving
contribution is in the case p = −q:

Ξ(r) =
(∏

l

2ℜ(Ωl)
π

)∫
dp

(2π)3 e
−ip·r 2

∫ ∏
k
dvRk dv

I
k

[
(vRp )2

×e−2
∑

k′ ℜ(Ωk′ )
(

(vR
k′ )

2+(vI
k′ )

2)]
=
∫

dp
(2π)3 e

−ip·r 1
2ℜ(Ωp)

,

(5.46)
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where we remind that Ωp = Ωp(η) as from the definition (5.42). Using (5.7) and the
definition (5.8), we obtain a power spectrum of the form

Pv(k) = k3

4π2
1

ℜ(Ωk)
, (5.47)

and the invariant one associated with the curvature perturbation ζ (5.5)

Pζ(k) = 4πG
ϵ a2

0 e
2αPv(k) = G

πϵ

k3

a2
0 e

2α
1

ℜ(Ωk)
. (5.48)

Since as discussed in Sec. 5.1 the perturbations freezed out when crossing the
horizon, we now evaluate this quantity in the super-Hubble limit, which in conformal
time corresponds to modes for which kη → 0−. In this case, we note from the
definition (5.42) that the function ℜ(Ωk) becomes

ℜ(Ωk(η)) ≈ k3η2 (5.49)

where we considered ℏ = 1 for easier comparison with the literature. When im-
plementing this limit and substituting the classical solution α(η), we arrive at the
following result for the primordial power spectrum in the de Sitter phase:

Pζ(k) = GH 2
Λ

πϵ

∣∣∣∣∣
k=aHΛ

, (5.50)

where HΛ =
√

8πGΛ/3 and the slow-roll parameter ϵ is evaluated at the horizon
crossing. Clearly, the corresponding spectral index (5.9) results to be null.

At this order, we have recovered the standard QFT spectrum for the primordial
fluctuations implementing the Gaussian fluid as a time parameter (4.24). It is
evident that the quantum gravity corrections in (5.29) do not modify, but preserve
the inflationary power spectrum up to this expansion order. Such result stems
from the modified Schrödinger equation (5.28), which presents no coupling between
the quantum gravitational degree of freedom α and the perturbation variables vk.
Therefore here the correction to the “fast” wave function χ (5.35) factorizes, and due
its time-dependent form, does not influence the evolution of the perturbation modes.
Actually, we show that the present result stands in any minisuperspace setting with
negligible backreaction in the next Subsection.

5.3.1 A general minisuperspace treatment: the role of backreaction

The result presented in the previous section suggests that the quantum gravity-
induced corrections on the matter evolution, obtained in the WKB expansion and
via the time parameter introduced in (4.24), give as a net effect a time-dependent
factor. Such term could be considered a posteriori a phase rescaling acting on the
matter wave function, as we show here in the general case.

Let us start from the modified dynamics (4.32) analyzed for a generic minisuper-
space model in which the supermomentum is identically vanishing. We adopt for
convenience the synchronous time N = 1 such that the definition (4.24) coincides
with the derivative with respect to T , up to a fiducial volume set to unit, but the
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result here discussed stands for a generic lapse function N . Explicitly, we recall
the dynamics up to the order M−1

iℏ
∂χ

∂T
= Ĥmχ− iℏGab

∂S0
∂ha

∂

∂hb
χ , (5.51)

being Gab the minisupermetric. We now write the matter wave functional in the
form

χ(ha, T, ϕ) = ξg(ha) Θm(T, ϕ) , (5.52)

analogous to the ansatz (5.30). Clearly this is a stronger requirement and is inherently
different from the Born–Oppenheimer separation (4.7), since Θm is now assumed to
be independent of the generalized minisuperspace coordinate ha. Such separation
is backed by the observation that, in the absence of quantum matter backreaction,
we can consider the two sets of degrees of freedom as independent. By substituting
(5.52) into (5.51), and dividing by the non-trivial functional ξg, we obtain

iℏ
∂Θm

∂T
= ĤmΘm −

iℏ
ξg
Gab

∂S0
∂ha

∂ξg
∂hb

Θm . (5.53)

Here, S0 belongs to the classical solution (see (4.17)), thus the corresponding factor
is a function of time only: ∂haS0 = f(T ), where the form of f depends on the specific
cosmological model. Additionally, the modified dynamics cannot induce dependence
of Θ on the ha, since that would be inconsistent with the initial separation (5.52).
Then, we can express the factor containing ξg as a constant, whose value can depend
on the quantum number associated with ha; i.e., its value is fixed during the dynamics
once a specific foliation is selected:

1
ξg

∂ξg
∂ha

= ik(ha) (5.54)

where for convenience, we have inverted the couple of indices a and b in (5.51),
making use of the symmetry of the minisupermetric Gab. The writing k(ha) is to be
understood as a function of the gravitational variable ha. The solution to (5.54) has
a plane wave structure

ξg(ha) = eik(ha) ha . (5.55)

The functions (5.55) constitute a complete basis that can be adopted to construct
wave packets, which will describe the quantum gravitational contribution to χ.

In what follows, we limit our attention to the plane wave (5.55) associated with
a specific value k(ha); in this case, the modified dynamics take the form

iℏ
∂Θm

∂T
= ĤmΘm + ℏf(T ) k(ha)Θm (5.56)

We now rewrite the function Θm, which is useful for the computation of the corrective
effects, as:

Θm(T, ϕ) = eiΥ(T )ϱ(T, ϕ) , (5.57)

where ϱ has the same degrees of freedom with respect to Θm, and a (complex)
time-dependent phase Υ has been separated. In the general case, such a phase can
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acquire different forms depending on the wave number k(ha) present in (5.54) and
(5.55) (or, as we will discuss later, depending on the considered wave packet). It is
exactly the phase factor Υ(T ) that will account for the quantum gravity corrections,
since we will see that ϱ exactly solves the unperturbed matter dynamics at such
order. Indeed, by substituting (5.57) into (5.56) and requiring that

∂Υ(T )
∂T

= f(T ) k(ha) (5.58)

the additional contribution on the right-hand side of (5.56) cancels out via the phase
rescaling, and the function ϱ satisfies the unperturbed Schrödinger evolution:

iℏ
∂ϱ(T, ϕ)
∂T

= Ĥm ϱ(T, ϕ) . (5.59)

Here, the matter Hamiltonian Hm is left as a generic expression; for the purpose
of the cosmological implementation above, it took the form of a time-dependent
harmonic oscillator.

It is then possible to discuss any effects of such quantum gravity contributions
to the scalar field’s power spectrum. As previously stated, the net effect is encased
in the time-dependent phase Υ(T ) solution of (5.58), which is actually real-valued,
since f(T ) follows from the classical solution S0. The complete matter wave function
at O

(
M−1) thus reads

χ(ha, T, ϕ) = eik(ha) ha eik(ha)
∫
dT ′f(T ′) ϱ(T, ϕ) (5.60)

where the integral in the second term
∫
dT ′f(T ′) is intended to be between values T0

and T , for which the WKB approximation holds. We observe that the solution (5.60)
has the same shape of the result obtained above. Due to the peculiar morphology of
the quantum gravity factors arising from (5.54) and (5.58) (which originally stem
from the requirement (5.57)), the effect on the matter spectrum is canceled once the
matter wave function is properly normalized. This is the reason for which at this
level the quantum gravity corrections preserve the primordial inflationary spectrum.

While at O
(
M−1) no corrections emerge for the inflationary spectrum, this

clearly does not mean that a deformation of the scale invariance property cannot
come out at the next orders of approximation. However, we here focus attention
on a specific point: the absence of a spectral modification is a consequence of the
phase form that the quantum gravity corrections take in the matter wave function,
and in turn, this feature is induced by the possibility of factorizing such a wave
function into a gravitational and a matter component. The physical meaning of
this assumption must be searched, in this specific formulation, in the absence of a
quantum matter backreaction on the classical gravitational background.

Let us go back to the modified Schrödinger equation (4.32) computed with
the Gaussian fluid time in Sec. 4.2. It should be noted that the lowest-order
solution S0 for the gravitational field and in particular the classical momentum terms
appearing in the quantum gravity corrections do not depend, by the considered
WKB perturbation scheme, on the quantum matter degrees of freedom. It is exactly
this point which enters the possibility of factorizing the matter wave function into
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two independent components (5.52). On the contrary, if the HJ equation (4.17)
contained the expectation value of the matter Hamiltonian, then also the classical
momentum would be affected on average by the quantum degrees of freedom. Then,
the choice of a factorized form for the matter wave function would no longer appear
as a natural solution to the perturbed dynamics.

The role played by the matter backreaction (see also the review [62]) can be
elucidated in view of Sec. 3.2. When implementing a standard B-O scheme in the
WKB approximation order by order in 1/M [43],we have seen that the quantum
matter expectation value enters both the right-hand side of the HJ equation (4.17)
and the Schrödinger equation (4.24). Actually, the phase rescaling of χ needed
to remove such contribution from the Schrödinger dynamics induces an opposite
change of phase to the gravitational one, with the net effect that the backreaction
term is also removed from the HJ equation (Sec. 3.2). This suggests that such a
contribution could be neglected in view of the gauge invariance analyzed above. We
stress that actually in the B-O procedure the gauge invariance is used to eliminate the
“geometric” phase [124] but not to cancel the (fast) electronic eigenvalue contribution
in the slow nuclear dynamics [125]. From this point of view, it is more natural to
maintain the expectation value contribution both in the HJ equation and in the
Schrödinger one. This would lead to a non-trivial coupled integro-partial differential
system which could be treated with a self-consistent method.

We here referred to orders M1 and M0 of the WKB approximation, but this
discussion naturally extends to O

(
M−1). Thus, the inclusion of the matter Hamil-

tonian term in (4.32) would give a coupled system, that only at the lowest order
of approximation in a Hartree self-consistent approach can be reduced to the form
discussed in Sec. 4.2. The complete problem naturally introduces dependence of
the HJ function S0 on the matter one (via an integral of the matter’s degrees of
freedom); this point clarifies the technical content of the discussion above on the
role of the matter backreaction in the separability of Eq. (4.32) to some order of
approximation. Therefore, we are led to conclude that the proposed WKB expansion
in the quantity 1/M would result in a modified inflationary spectrum only if one
carefully takes into account the matter (average) backreaction on the gravitational
quasi-classical background.

One could also discuss the possible presence of macroscopic matter contributions
at th HJ level. In the present model, based on a WKB expansion in M (Sec. 2.4), the
macroscopic matter (apart from the cosmological constant contribution) is absent.
Such sources could only emerge via an ad-hoc rescaling of the matter field via
the Planckian parameter, resulting in an auxiliary potential V (ϕ) inside the HJ
Eq. (4.17), as implemented in [52].

To conclude, the present theory always contains the class of separable solutions
(5.30) for which the QG corrections reduce to a simple phase contribution, depending
on the gravitational HJ equation (4.17). In order to overcome such restriction, will
reformulate the scheme in Chapter 6 by allowing for independent variables describing
the “slow” quantum gravitational sector (i.e. graviton contributions); there, the
modified dynamics with QG corrections will take a form different from (5.51) such
that the QG-induced corrections will exclude the class of separable solutions (5.52).
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Chapter 6

Beyond WKB: averaging over
gravitational fluctuations

In this chapter we explore the possibility of accounting for small graviton fluctu-
ations in the WKB picture, performing a B-O separation inside the gravitational
sector as well to characterize a fully classical background from its small quantum
fluctuations. The latter are described through independent degrees of freedom and,
since we consider tensor perturbations only, correspond to graviton particles. We
first reformulate Vilenkin’s original WKB proposal in this extended B-O view in
Sec. 6.2, showing that one can actually relax the initial hypothesis of the gravitational
constraint and make use of the B-O gauge symmetry to recover the QFT limit after
an average over the gravitons variables. In this way, the selected gauge condition
exactly corresponds to Vilenkin’s gravitational equation expanded at the desired
WKB order, thus providing an a posteriori motivation for such hypothesis.

We then reformulate in Sec. 6.3 the complete gravity-matter system with the
Gassian fluid clock in such extended B-O view, in order to compute the QG-
induced corrections after such gravitational separation is carried on. The result here
presented exactly matches the modified dynamics of Chapter 4 (and so Chapter 3)
after the average procedure and selecting a different gauge condition, which does not
correspond to the gravitational WDW constraint. We further discuss the meaning
of such choice and also show how an effective QFT can be cast also at this order.

This Chapter illustrates the results of the investigations in Refs. [126, 127].

6.1 Motivations for a separation of the quantum gravi-
tational sector

A B-O-like separation of the semiclassical and quantum wave functionals was
implemented in [41], see Sec. 2.3, based on the scale separation 1. In such view,
the semiclassical component has a “slow” character, and the quantum one is the
“fast” component of the coupled system, similarly to the discussions in Sec. 2.4 and
Chapters 3-4.

Let us discuss more the implications of such separation. In Vilenkin’s pro-
posal, the total wave functional of the gravity and matter system is decomposed as
Ψ(sa, qm) = ψ(sa)χ(sa, qm) = A(sa) eiS(sa)/ℏ χ(sa, qm) (see (2.23)), with A and S
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real functions and χ is associated to the quantum subsystem. Implementing both
the total WDW constraint (2.25) and the gravitational one (2.24) independently
actually breaks a symmetry related to the above separation of Ψ in a B-O-like
fashion. Indeed, Ψ = ψ(sa)χ(sa, qm) is invariant under the following rescaling of
both components via a “semiclassical” phase θ(sa)

ψ(sa)→ ψ(sa)e− i
ℏ θ(sa) , (6.1a)

χ(sa, qm)→ e
i
ℏ θ(sa)χ(sa, qm) . (6.1b)

The total WDW constraint (2.25) is invariant under such transformation, since
the rescalings of both components exactly compensate; however, the gravitational
constraint clearly is not. In other words, requiring both constraints to hold at the
same time is inconsistent with a true B-O-like formulation of the system. Indeed,
in the proposals discussed in Sec. 3.2, the use of a similar rescaling (see (2.54) and
(3.36)) is allowed by the fact that the gravitational constraint is not imposed a
priori; in those cases, different implementations allow to obtain a second equation
referring to the semiclassical component ψ only, although with the caveats discussed
in Sec. 3.2. This observation represents the starting point if one wants to incorporate
the original Vilenkin’s proposal with a proper B-O treatment, considering that the
semiclassical sector is not truly classical but has an inherent quantum (although
“slow”) nature. However, there are other limitations of [41] stemming from the WKB
expansion in the B-O-like picture.

We first observe that in Ref. [41] the separation between a quasiclassical back-
ground system and a “small” quantum one was pursued without taking into account
the physical nature of the variables. Let us consider, both for the present discussion
and the following application, a minisuperspace model with semiclassical variables ha
and a matter sector described by variables qm, for a clearer analogy with Sec. 3.1. The
WKB expansion in ℏ of the gravitational constraint and the total one in Vilenkin’s
formulation result in the Eqs. presented in Sec. 2.3, which we here rewrite for clarity

Gab ∂S
∂ha

∂S

∂hb
+ V (ha) = 0 , (6.2)

Gab ∂
∂ha

(
A2 ∂S

∂hb

)
= 0 , (6.3)

iℏ∂τχ = NĤQχ , (6.4)

being N is the lapse function. We recall that the time derivative in Eq. (6.4) is
defined as

∂τχ ≡ 2NGab ∂S
∂ha

∂χ

∂hb
= ḣa

∂

∂ha
χ , (6.5)

using the classical Hamilton’s equation associated to variation of pA (here a dot
denotes differentiation with respect to label time). Equation (6.2) is of order ℏ0 and
corresponds to the Hamilton-Jacobi equation for the classical limit of gravity. Both
Eqs. (6.3) and (6.4) are obtained1 at order ℏ; the former arises from the gravitational

1Here we have adopted again the “natural” operator ordering; this choice has no deep physical
implications for the conceptual paradigm here.
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WDW equation, while the latter yields the desired QFT dynamics for quantum
matter, recovered by simply combining an expansion in ℏ with the B-O separation.

Now we are ready to outline four points of the approach [41] which raise some
ambiguity in a B-O-like picture and are the main motivations for the present study.

i) The variables ha do not represent a set of classical gravitational degrees of free-
dom, because a quantum amplitude A(ha) is retained at order ℏ. Qualitatively,
we could write

ha = h0
a(t) + δha , (6.6)

where h0
a(t) account for the classical gravitational degrees of freedom (with the

dependence on the label time t determined by the Hamilton’s equations), while
δha represent quantum corrections of order ℏ to some suitable power. In this
chapter’s notation, the symbol δ does not indicate functional derivatives but
only a (small) quantum fluctuation. Thus, the time differentiation (6.5) should
be defined by employing derivatives with respect to h0

a only, rather than the
full quantum variable ha.

ii) This also implies that δha are independent degrees of freedom with respect to
h0
a(t). Therefore, a description of their dynamics is necessary. This is readily

understood if we remember that the small metric perturbations of an isotropic
universe (whose only degree of freedom is given by the cosmic scale factor a)
have two scalar, two vector, and two tensor components, at both a classical
and a quantum level. These degrees of freedom are independent from a and are
different in number and morphology from the small quantum fluctuations δa.

iii) Equations (6.3) and (6.4) both live at the same order in ℏ and their separation
relies on the assumption that it is a priori possible to impose the gravitational
WDW constraint independently. However, this assumption does not have a
physical motivation in the analysis of Ref. [41], and is inconsistent with a pure
B-O approximation, because it violates its typical gauge invariance. In fact, the
B-O method separates the whole system into a slow and a fast component. Thus,
if we multiply the quantum matter wave functional χ by a phase depending on
ha, the state is invariant provided that we multiply the gravitational component
by an inverse phase. This gauge symmetry is broken if we separately impose the
gravitational constraint, so that such a procedure appears rather ambiguous.

iv) The functional Schrödinger equation (6.4) is not the right one for quantum
matter on a classical curved spacetime, since the matter wave functional χ
depends on the quantum fluctuations of the background δha. This dependence,
which was implicitly neglected in Ref. [41], is problematic for the purpose of
recovering QFT on curved spacetime.

We would like to remark that the difficulties i), ii) and iv) were also present also
in Ref. [42], while iii) was not, because the equation for the quantum-gravitational
amplitude A(ha) was obtained via a gauge condition (see Ref. [61] for a comparison
of the two approaches in Refs. [41] and [42]).

We now move on to address these motivations and reformulate the problem
in order to recover the QFT on curved spacetime limit without imposing the
gravitational constraint and after averaging over quantum-gravitational effects [126].
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6.2 Graviton fluctuations in Bianchi I spacetime
Starting from point (i)) of the previous section, we take the classical cosmological

background to be a vacuum diagonal Bianchi I model, which is the simplest case of
the Bianchi classification (Sec. 1.6.1). The advantage of this choice over a FLRW
model (used for example in Refs. [118, 68, 52, 119, 55]) is that, being a vacuum
geometry, no scalar or vector perturbations are present [15, 1] and we are effectively
able to separate the tensor gravitational fluctuations from the matter sector.

In the variables α, β+ and β− introduced in Sec. 1.6.1, the line element reads

ds2 = −N2(t)dt2 + eα(eβ)ijdxidxj , (6.7)

with βij being the a diagonal traceless matrix. The super-Hamiltonian (1.76) for
the Bianchi I case has vanishing potential UB and it reads

HI(α(t), β±(t)) = 4
3M e− 3

2α
(
−p2

α + p2
+ + p2

−

)
, (6.8)

where M was defined in (2.38).
According to point ii), we describe the gravitational fluctuations via tensor

perturbations only, as guaranteed by the choice of the vacuum Bianchi I model.
Thus the “slow” quantum degrees of freedom δhA correspond to gravitons and are
independent from the classical background. In the original analysis of Ref. [41], the
existence of these variables was implicitly assumed, as is clear from the presence of a
quantum amplitude A(ha) computed at first order in ℏ; a similar feature was found
in the analysis of Ref. [42]. The core difference with the formulation of Chapters
3 and 4 is that we here “extend” the B-O picture by further characterizing the
gravitational sector into a classical and a “slow” quantum component; in other words,
we modify the scheme of Fig. 4.1 by replacing it with Fig. 6.1.

A gauge-invariant formulation can be portrayed also for tensor fluctuations, as
done in Sec. 5.3 for scalar ones, via the same Mukhanov-Sasaki formalism. In this
case, one introduces the gauge-invariant variables vλk corresponding to the tensor
perturbations in Fourier space, where λ identifies the two polarization states. For
the Bianchi I case, the corresponding Hamiltonian (where N = eα in the conformal
time η gauge) is [128]

NH(vλ) =
∑
k,λ

1
2
[
−∂2

vλ
k

+ ω2
k(η)(vλk)2 + Vλ,λ̄

]
. (6.9)

Clearly, each mode k, λ behaves as a time-dependent harmonic oscillator with

ω2
k(η) = k2 − z′′

λ/zλ (6.10)

being zλ(η, ki) a function of the background metric and ′ ≡ ∂η. The presence of
an interaction potential Vλ,λ̄ should be highlighted: this term is a function of the
so-called shear tensor σij = 1

2(eβ)′
ij of the background metric [128] and it expresses

the mixing of the two polarization modes (λ, λ̄). We stress that such tensor mixing
takes place due to the anisotropic nature of spacetime even at the classical level
[129] if one considered classical tensor object; this is a stark difference from isotropic
models where it does not emerge classically.
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Fast matter
sector O

(
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Extended Born-Oppenheimer quantum picture

Classical gravitational
background O (M)

QG-corrections

Slow gravity
fluctuations
O
(
M0)

Figure 6.1. Schematic representation of the extended Born-Oppenheimer picture, distin-
guishing the different scales also within the gravitational component. Here the degrees of
freedom for the gravity background are separated into classical ones, and small quantum
fluctuations on top. These perturbations start at the next order and are considered
“slow” in the B-O picture. Matter retains the same role of a fast quantum component.

Also, since we here neglect the matter backreaction contributions in the B-O
approximation, no mixing between scalar and tensor perturbations arises; a treatment
of perturbations in a Bianchi I universe coupled to matter, which goes outside the
aim of this Chapter, can be found in Refs. [130, 131, 132, 133].

We consider a free test scalar field as the “fast” quantum matter sector (e.g. the
inflaton field), whose Hamiltonian in the MS formalism takes the form

NH(ϕ) =
∑

k

1
2
[
−∂2

ϕk
+ ν2

k(η) (ϕk)2
]
. (6.11)

Th pulsation of the time-dependent harmonic oscillator describing each Fourier mode
is

ν2
k(η) = k2 − (eα)′′/eα (6.12)

.
The WDW equation for the full model is

ĤΨ =
(
ĤI + Ĥ(vλ) + Ĥ(ϕ)

)
Ψ = 0 , (6.13)

and the wave functional Ψ is again assumed to be separable in the B-O scheme as

Ψ = ψg(α, β±, v
λ
k)χm(ϕk;α, β±, v

λ
k) (6.14)

and ψg is independent of the matter variables ϕk assuming a negligible backre-
action, following the previous Chapters. Given the separation (6.14), the WDW
equation (6.13) is clearly invariant under the transformation:

ψg → ψge
− i

ℏ θ , χm → e
i
ℏ θχm , (6.15)
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where the phase θ = θ(α, β±, v
λ
k) depends on the gravitational variables only.

As in point iii), we do not require the gravitational sector to satisfy the grav-
itational constraint a priori. The gravitons’ evolution will instead be derived on
physical grounds by requiring the correct QFT dynamics to arise in the appropriate
limit and exploiting the gauge invariance (6.1).

For this purpose we now apply the WKB perturbative scheme in 1/M to our
model, which allows us to consistently separate the gravity and matter sectors. We
emphasize this is equivalent to the (semiclassical) WKB expansion in the Planck
constant ℏ used in Ref. [41] up to the order of quantum-gravitational corrections, as
discussed in Sec. 3.1.

We first focus on the recovery of the QFT formulation for the matter sector in
such picture. Therefore we expand up to order M0 only

Ψ = e
i
ℏMS0 e

i
ℏ (P1+O(M−1)) e

i
ℏ (Q1+O(M−1)) , (6.16)

being S0 = S0(α, β±) and the complex functions Pn = Pn(vλk;α, β±) and Qn =
Qn(ϕk;α, β±, v

λ
k) are associated to the tensor and scalar quantum components of

the system, respectively. Let us now examine the WDW equation (6.13) applied to
Eq. (6.16) perturbatively examined at each order in 1/M : at O (M) we obtain

4
3e

− 3
2α
(
− (∂αS0)2 + (∂+S0)2 + (∂−S0)2

)
= 0, (6.17)

which is consistent with the classical Bianchi I solution

S0(α, β±) = kαα+ k+β+ + k−β− (6.18)

with kα < 0 such that k2
α = k2

+ + k2
− corresponding to an expanding universe.

For the O
(
M0) things are not so trivial. Indeed, we should introduce the time

differentiation operator as in Eq. (6.5) to recast Vilenkin’s original formulation in
this effective B-O scheme. Let us choose N = eα; we can construct such operator
using only derivatives with respect to the classical variables α, β±, such that the
issue i of Sec. 6.1 does not arise. We have

−iℏ∂τ = 8
3e

− 1
2α (∂αS0 ∂α + ∂+S0 ∂+ + ∂−S0 ∂−) . (6.19)

Now using Eqs. (6.19) and (6.18), at O
(
M0) we find

−iℏ(∂τe
i
ℏP1)e

i
ℏQ1 − iℏ(∂τe

i
ℏQ1)e

i
ℏP1

+ 1
2
∑
k,λ

[
ω2
k(vλk)2 + Vλ,λ̄ − ∂

2
vλ

k

]
e

i
ℏ (P1+Q1)

+ 1
2
∑

k

[
ν2
k(ϕk)2 − ∂2

ϕk

]
e

i
ℏ (P1+Q1) = 0.

(6.20)

Clearly the quantum matter wave function still depends on the graviton variables
(see point iv). In the spirit of effective field theory, we average over quantum-
gravitational effects with the aim to recover a functional Schrödinger equation in
accordance with the interpretation of Sec. 2.3. To this end, we label Γg = exp(iP1/ℏ)
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(which is ψg at order M0 only) and multiply Eq. (6.20) by the conjugate Γ∗
g =

exp(−iP ∗
1 /ℏ), obtaining

−iℏ∂τ
(
Γ∗
gΓgχ1

)
+ iℏ(∂τΓ∗

g) Γgχ1

+ 1
2
∑
k,λ

[(
ω2
k (vλk)2Γ∗

g + Vλ,λ̄Γ∗
g − ∂2

vλ
k
Γ∗
g

)
Γgχ1

+∂vλ
k

(
2(∂vλ

k
Γ∗
g)Γgχ1 − ∂vλ

k

(
Γ∗
gΓgχ1

))]
+ 1

2
∑

k

[
ν2
k (ϕk)2 − ∂2

ϕk

]
Γ∗
gΓgχ1 = 0 ,

(6.21)

where χ1 = exp(iQ1/ℏ) also depends on the vλk. The effective scheme that we wish to
obtain now has a clearer interpretation: integration over the vλk modes corresponds
to considering an “average effect” of the gravitons. In doing so, we assume that the
wave functionals satisfy appropriate boundary conditions such that∫ ∏

k,λ
dvλk

∑
k,λ

∂vλ
k

(
2(∂vλ

k
Γ∗
g)Γgχ1 − ∂vλ

k

(
Γ∗
gΓgχ1

))
= 0 . (6.22)

Here, we are summing over all contributions to the “border term” corresponding
to the different vλk modes and then integrate over all of them, such that the final
boundary condition does not depend on the graviton variables.

We recall that we still have not made use of the gauge freedom (6.1). We take
advantage of this symmetry by imposing the following condition on Γg

Γg

iℏ∂τΓ∗
g + 1

2
∑
k,λ

(
ω2
k(vλk)2 + Vλ,λ̄ − ∂

2
vλ

k

)
Γ∗
g

 = 0 , (6.23)

in the spirit of (6.1) representing a gauge freedom, that can be fixed (for example,
an analogy is the Lorentz gauge chosen in the electromagnetic interaction). This
condition is possible provided that the equation

1
2ℏ
∑
k,λ

[
−i∂2

vλ
k
θ + ℏ−1(∂vλ

k
θ)2 − i(∂vλ

k
θ)∂vλ

k
(ln Γ∗

g)
]
− ∂τθ

= 1
2
∑
k,λ

[
ω2
k(vλk)2 + Vλ,λ̄ − ∂

2
vλ

k

]
Γ∗
g − iℏ∂τ (ln Γ∗

g)
(6.24)

has a solution. It is understood that the boundary condition (6.22) is imposed in
the specific gauge set by Eq. (6.23).

Equations (6.21) and (6.23) then guarantee that the “averaged” quantum matter
wave functional

Θ̃(ϕk;α, β+, β−) =
∫ ∏

k,λ
dvλk Γ∗

g Γg e
i
ℏQ1 (6.25)

satisfies the functional Schrödinger equation

iℏ ∂τ Θ̃ = 1
2
∑

k

[
ν2
k(ϕk)2 − ∂2

ϕk

]
Θ̃ = NĤ(ϕ)Θ̃ , (6.26)
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therefore recovering QFT on curved spacetime on average. We remark that (6.23)
fixes the independent dynamics of gravitons, so the issue ii) is also resolved.

At this point, it is worth briefly discussing the relationship between our analysis
and standard QFT on curved spacetime [111, 134]. In that approach, at the one-
loop order of approximation, the semiclassical background metric is sourced by the
expectation values associated with the quantum components:

Gµν = 8πG
c4

(
⟨T (m)
µν ⟩+ ⟨t(g)

µν ⟩
)
, (6.27)

where Gµν is the Einstein tensor of (1.1), while T (m)
µν and t

(g)
µν denote the energy-

momentum tensors of the (renormalized) quantum matter and graviton contributions
respectively. The last two are in principle of the same order, although the graviton
term is often neglected in QFT applications [111].

In our WKB approach, both backreaction terms are 1/M suppressed at leading
order [16] and the background is therefore a purely classical vacuum solution described
by Eq. (6.17), i.e., the Bianchi I spacetime. The quantum backreaction of the fast
(matter) component on the slow one does arise at the next order in the general
B-O scheme, in the form of an expectation value of the matter Hamiltonian (under
the assumption of gravitons being a “slow” component, there is no contribution of
graviton themselves to the average over the fast sector). This backreaction can be
removed from the equation governing the matter dynamics and included instead in
the gauge condition (6.23) specifying the gravitons’ dynamics by a phase rescaling
of both the matter and gravitational wave functions, as elucidated in Sec. 3.2.

In conclusion, we remark that the inclusion of a matter expectation value, which
has been here we neglected based on the assumed B-O separation of energy scales,
would not alter the final result i.e. the recovery of QFT in the appropriate low-energy
limit.

6.2.1 Comparison with gravitational WDW equation

Let us now analyze the WKB dynamics arising when separately imposing the
gravitational WDW constraint (as in Ref. [41]). In the conformal time gauge, this
equation reads (

ĤI + Ĥ(vλ)
)†
ψ∗
g =

[ 4
3M e− 3

2α
(
−p2

α + p2
+ + p2

−

)†

+1
2e

−α∑
k,λ

(
−∂2

vλ
k

+ ω2
k(vλk)2 + Vλ,λ̄

)†
ψ∗

g = 0
(6.28)

where ψ∗
g = exp (−i(MS∗

0 + P ∗
1 )/ℏ). At O

(
M0) and using the Hamilton-Jacobi

solution (6.18) for S0, which is real-valued (so S∗
0 ≡ S0), we obtain

−8
3e

− 3
2α (∂αS0∂α + ∂+S0∂+ + ∂−S0∂−)P ∗

1 e
− i

ℏP
∗
1

+ 1
2e

−α∑
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[
−iℏ−1 ∂2

vλ
k
P ∗

1 + ℏ−2
(
−∂vλ

k
P ∗

1

)2

+
(
ω2
k (vλk)2

)†
+ V†

λ,λ̄

]
e− i

ℏP
∗
1 = 0.

(6.29)
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From Eq. (6.19), this reduces to

−iℏ∂τΓ∗
g = 1

2
∑
k,λ

(
−∂2

vλ
k

+ ω2
k(vλk)2 + Vλ,λ̄

)†
Γ∗
g . (6.30)

The terms on the right-hand side are Hermitian for each mode k, λ separately, so
Eq. (6.30) multiplied by Γg coincides with the condition (6.23). Thus, the gravitons’
dynamics imposed by selecting the gauge (6.23) is equivalent to the one following
from the gravitational constraint. In other words, requiring on phenomenological
grounds that the quantum matter sector follows the Schrödinger dynamics implies
that the gravitons’ wave functional must satisfy Eq. (6.30).

Let us briefly recap the results of this Chapter until now. In order to address
the observations and consequential difficulties listed in points (i)–(iv) of Sec. 6.1, we
separated ab initio the Bianchi I classical background from its first-order quantum
perturbations (the vacuum geometry allowed us to restrict to tensorial perturbations).
In this respect, it is worthwhile to clarify that the tensor fluctuations in Refs. [52,
68, 69] were treated on the same level as the matter degrees of freedom (i.e., as a
fast contribution in the B-O scheme), whereas in our approach the gravitons are
separated in energy scale from matter (i.e., they belong to the slow component).
We demonstrated that the functional Schrödinger equation for the matter sector is
correctly recovered after averaging over quantum-gravitational effects, fixing a gauge
from Eq. (6.1) on the gravitons’ sector, whose dynamics corresponds to the one
dictated by the gravitational WDW equation only. The possibility to independently
impose such constraint was one of the starting assumptions in Ref. [41], although
not sufficiently motivated. Since the graviton dynamics cannot be regarded as a
gauge-dependent feature, the present study justifies a posteriori and on physical
grounds the assumption that the gravitational constraint simultaneously holds. In
Ref. [41], however, such condition would no longer correspond to a gauge choice,
simply because the gauge symmetry was broken from the very beginning.

We have thus far limited our attention to the first two expansion orders, where
the nonunitarity issue does not arise. It is meaningful to ask whether such effective
picture can be brought to the next order with the reference fluid time of Chapter 4:
this is the object of the next section.

6.3 Unifying the Gaussian fluid time approach with
averaged graviton fluctuations

The procedure exposed in the previous section allows to take into account small
graviton fluctuations in the WKB picture, thus representing an intermediate step
towards a more refined treatment of QG. It is interesting to investigate cosmolog-
ical implications of this treatment, most importantly how the power spectrum of
primordial perturbations (Sec. 5.2) is affected. The main goal of this Section is to
unify the treatment of Chapter 4 with the model of Sec. 6.2, obtaining a theory in
which the reference fluid approach is applied to a gravitational background with
“slow” gravitational perturbations (expressed via tensor degrees of freedom) in the
B-O picture [127]. We therefore deal with a Bianchi I minisuperspace on which we
set gravitons’ degrees of freedom, a test scalar matter field and the reference fluid.
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As previously discussed, since the Bianchi I model is diagonal in the variables
(α, β±) we can choose the ADM splitting in such a way that N i = 0. Doing so
ensures a symmetry of the foliation such that the supermomentum constraint is
identically satisfied and it is absent from the gravitational action (1.52). Moreover,
due to spatial diffeomorphisms invariance, this allows us to impose the Gaussian
time condition γ00 = −1 alone in the reference fluid sector (see discussions in Sec. 4.3
and 5.3), thus we have the fluid variable T (x) only.

In analogy with Sec. 5.3, we model the slow-roll inflation period through a scalar
field, moving in a region of almost constant potential, thus behaving similarly to a
cosmological constant contribution. We thus move away from the minisuperspace
Bianchi I background (which, as a vacuum geometry, does not account for energy
sources such as Λ) and consider the commonly used FLRW geometry. More specifi-
cally, we again describe a pure de Sitter phase by neglecting the slow-roll parameter
ϵ, so that the inflaton contribution will correspond to a free massless scalar field
on a metric with cosmological constant. In such background, the independence
of the scalar and tensorial perturbations allows us to restrict to the tensor sector
only, framing the matter contents as test fields not affecting the background. This
treatment is inherently different from the one in Sec. 4.3, where the WKB expansion
with the Kuchar-Torre fluid clock did not take into account the graviton fluctuations.

Thus, the total Wheeler-DeWitt superHamiltonian of the system is given by:

Ĥtot = 4
3M e

3
2α
[
∂2
α − ∂2

+ − ∂2
−

]
+ e−α

2
∑
k,λ

[
−ℏ2∂2

vλ
k

+ ω2
k(η)(vλk)2 + Vλ,λ̄

]
+ e−α

2
∑

k

[
−ℏ2∂2

ϕk
+ ν2

k(η)(ϕk)2
]
− iℏW−1 ∂

∂T (x)

(6.31)

where both the graviton fluctuations and the scalar matter component are expressed
as time-dependent harmonic oscillators, see Sec. 6.2 and Sec. 5.3 respectively.

Following the same ideas of Sec. 4.2, we consider the ansatz (4.8) where now

S0 = S0(α, β±, v
λ
k) , (6.32a)

Pn = Pn(α, β±, v
λ
k) , (6.32b)

Qn = Qn(ϕk, T ;α, β±, v
λ
k) (6.32c)

are complex functions; we neglect terms of order 1/M2 or higher for the purpose of
investigating the first-order quantum gravitational effects. This separation is once
again justified by the assumption that matter and gravity live at different energy
scales. This is also the reason why the expansion of χ lacks a term of O(M): in
fact, the leading order in this model represents again the pure gravity limit, which
coincides with the high-energy one.

We stress that here we do not implement the full set of assumptions I)-III) of
Sec. 4.2. More specifically, we consider the following:

• we preserve in full form only the hypothesis I), namely the condition (4.9)
where now Hm = Hϕ + Hf and Hg = HI + Hvλ , in accordance with the
general B-O view.
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• The hypothesis (4.10) is not considered here since the validity a priori of that
equation would clearly break the gauge invariance discussed in Sec. 6.1. As in
the previous section, the gravitational dynamics will be recovered through the
gauge choice in the WKB formulation at each order.

• The adiabatic condition (4.12) expressing the weak dependence of the matter
functions on the gravitational degrees of freedom must now take into account
the fact that we have both classical and semi-classical (in the sense of being
“slowly” quantized) variables for gravity. In order to reflect this difference and
highlight the quantum nature of gravitons, we modify the condition such that:

∂Qn
∂ha

= O
( 1
M2

)
, (6.33)

∂Qn

∂vλk
= O

( 1
M

)
(6.34)

so that all gravitational variables are slow, but the dependence of the Qn on
the classical ones is even weaker than the dependence on the quantum degrees
of freedom.

The content of such model is described by the WKB expansion in M of the total
constraint ĤtotΨ using (6.31) and the ansatz (4.7).

It is remarkable that in such formulation one has, in principle, a non-trivial
contribution at O

(
M2) coming from the application of Ĥvλ :

∑
k,λ

(∂vλ
k
S0)2 = 0. (6.35)

Since all vλk are independent degrees of freedom, this equation reduces to the
requirement ∂vλ

k
S0 = 0. Thus, the O (M) contribution to the wave functional (4.7)

must be independent of tensor perturbations and function of the classical background
only

S0 = S0(α, β±) , (6.36)

as assumed in (6.16). This feature reinforces the idea that, while gravitons are indeed
slow variables, they still present an inherently quantum nature that differentiates
them from the classical background.

At O (M) the Wheeler-DeWitt equation corresponds to the HJ equation (6.17)
of the gravitational background, which admits the solution (6.18) of the Bianchi I
minisuperspace geometry. It is then clear that at the leading order the gravitational
wavefunctional ψ represents the cosmological background. Since the quantum matter
sector χ has no term of O (M), here the leading order of Ψ coincides with the pure
gravity limit, as in Chapters 3-4 and Sec. 6.2.

At the next order, all sectors contribute to the Wheeler-DeWitt equation. By
multiplying both sides by N = eα, we can write the superHamiltonian constraint in
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the conformal gauge as:

− 8
3e

− α
2 [∂αS0∂αP1 − ∂+S0∂+P1 − ∂−S0∂−P1]

+ 1
2
∑
k,λ

[
ω2
k(η)(vλk)2 + Vλ,λ̄ − iℏ∂

2
vλ

k
P1 + (∂vλ

k
P1)2

]
+ 1

2
∑

k

[
ν2
k(η)(ϕk)2 − iℏ∂2

ϕk
Q1 + (∂ϕkQ1)2

]
+ eαW−1∂TQ1 = 0.

(6.37)

Now labeling the O(M0) contributions as

ψ1 = e
i
ℏP1 , χ1 = e

i
ℏQ1 , (6.38)

then Eq. (6.37) can be recast in the form:(8
3 iℏe

− α
2 [∂αS0∂α − ∂+S0∂+ − ∂−S0∂−]ψ1

)
χ1

+

1
2
∑
k,λ

[
ω2
k(η)(vλk)2 + Vλ,λ̄ − ℏ2∂2

vλ
k

]
ψ1

χ1

+ ψ1

(
1
2
∑

k

[
ν2
k(η)(ϕk)2 − ℏ2∂2

ϕk

]
χ1

)
+ ψ1

(
−iℏ eαW−1∂Tχ1

)
= 0.

(6.39)

The above equation does not contain any term coming from the action of Ĥg on χ1
due to the adiabatic conditions (6.33)-(6.34). In fact, all contributions of this kind
are made up of derivatives of Q1 with respect to the gravitational variables, namely
they are moved to the next order; this is even more evident for the next functions
Qn.

We recall that the Born-Oppenheimer separation (6.14) is invariant under local
phase shifts of the gravitational and quantum matter wave functionals, see (6.1)
where now θ = θ(α, β±, v

λ
k) is function also of the slow degrees of freedom vλk

(this is possible since the phase θ still commutes with the matter operators). This
characteristic gauge freedom can be exploited to impose an additional constraint to
our system in the form of a gauge-fixing condition. In particular, we choose to work
in the gauge for which the following equation holds:

8
3 iℏe

− α
2 [∂αS0∂α − ∂+S0∂+ − ∂−S0∂−]ψ1

+ 1
2
∑
k,λ

[
ω2
k(η)(vλk)2 + Vλ,λ̄ − ℏ2∂2

vλ
k

]
ψ1 = 0.

(6.40)

This requirement can be recast in the form of a differential equation for θ(α, β±, v
λ
k),

the solution of which identifies the transformation from an arbitrary gauge to the
one in which (6.40) holds.

By examining closely the gauge-fixing (6.40), one can see that it coincides with
the complex conjugate of (6.23) in which Vilenkin’s time construction has been used
(we recall that S0 is independent of the vλk). Therefore, the physical meaning of the
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fixed gauge is precisely the same at this order: we recover the gravitational Wheeler-
DeWitt equation Ĥgψ =

(
ĤI + Ĥ(vλ

k)
)
ψ = 0. As a consequence, in this model the

super-Hamiltonian constraint of the gravity sector can be seen as a gauge-fixing of
the Born-Oppenheimer separation as in Sec. 6.2, instead of an a priori imposition
that ends up breaking such symmetry.

Let us take a brief detour to discuss the dynamics of the gravitons sector described
by the gauge choice (6.40). Clearly, since we wish to implement the Gaussian fluid as
a time, such equation appears to be timeless (it does not contain the parameter T at
all). However, one can interpret (6.40) as a dynamical evolution using a background
(internal) time. The motivation is that, at the level of graviton fluctuations in the
WKB expansion, one cannot implement the clock derived from the fast component,
which is carried at the next order due to the B-O assumptions. Given the classical
background solutions α(η), β±(η) with η being the conformal time, one could
recast the contributions with such variables as derivatives with respect to η. More
specifically the classical relation

pα = −3
8Meα/2 α̇ = M∂αS0 (6.41)

and the chain rule
α̇
∂

∂α
= dα(η)

dη

∂

∂α
= ∂

∂η
(6.42)

allow, together with the analogous ones for β+, β−, to rewrite Eq. 6.40 in the form

iℏ∂ηψ1 = 1
2
∑
k,λ

[
ω2
k(η)(vλk)2 + Vλ,λ̄ − ℏ2∂2

vλ
k

]
ψ1 (6.43)

where we have absorbed a factor 3 in the time derivative.
From an interpretative standpoint, Vilenkin’s hypothesis of the gravitational

constraint is recovered through the B-O gauge symmetry, even though the graviton
sector here “evolves” via a different clock from the fast component (which will
have the reference fluid time). This ambiguity can be eliminated by performing a
coordinate transformation (allowed by the diffeomorphisms invariance) such that the
quantum field T (x) of the Gaussian fluid corresponds, at each spacetime point, to the
conformal time η, i.e. the gravitons and the matter field evolutions are parametrized
by the same parameter. The identification T (x) ≡ η shall be considered after the
gauge fixing, since T is a quantum variable. Even without such correspondence,
Eq. 6.40 dictates the behaviour of the graviton fluctuations which we recall have
been introduced as arbitrary degrees of freedom.

Once the gauge has been fixed, the O
(
M0) constraint equation reads:

1
2
∑

k

[
ν2
k(η)(ϕk)2 − ℏ2∂2

ϕk

]
χ1 = iℏ eαW−1∂Tχ1, (6.44)

where we have divided both sides by ψ1. Since the left-hand side corresponds to
NĤϕχ1 at this order, by integrating over the spatial hypersurface Σ we get the
corresponding Hamiltonian:

Ĥϕχ1 =
∫

Σ
d3x NĤϕχ1 = iℏ

∫
Σ
d3x eαW−1∂Tχ1. (6.45)
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In the spirit of Chapter 4, we now defining the time derivative in terms of the
reference fluid, using the same form of (4.24); we take we take N i = 0 and N = eα

for this minisuperspace setting, so that the only fluid variable left is the Gaussian
time T as in Sec. 4.3 and 5.3. This implementation is inherently different from the
one used in Sec. 6.2, where we only aimed to recast Vilenkin’s formulation [41] in
order to take into account the small graviton fluctuations. Thus using

δ

δτ
=
∫

Σ
d3x eαW−1 ∂

∂T (x) (6.46)

we recover the Schrödinger functional equation for χ1, i.e.

Ĥϕχ1 = iℏ
δ

δτ
χ1 . (6.47)

However, at this level we have not properly recovered the standard QFT description
since χ1 still depends on the cosmological perturbations vλk of the background.
Therefore, we shall implement in some way the averaging procedure of Sec. 6.2 to
recover the standard phenomenology as an effective theory.

This point is easily understood at O
(
M0) since all operators in Eq. (6.47) act on

the matter variables alone. Essentially, multiplying both sides by ψ∗
1ψ1 and bringing

this factor inside the operators that equation can be recast as

Ĥϕ (ψ∗
1ψ1χ1) = iℏ

δ

δτ
(ψ∗

1ψ1χ1) . (6.48)

With the same reasoning Ĥϕ and δ/δτ commute with the integral over the vλk.
Therefore we can define an averaged matter wave functional at this order, in clear
analogy to (6.25), where we now integrate over the graviton variables:

Θ̃1(ϕk, T ;α, β±) =
∫ ∏

k,λ
dvλk ψ∗

1ψ1χ1 . (6.49)

The resulting Θ̃1 is essentially averaged with the weight |ψ1|2, corresponding to the
first order of gravitons fluctuations. In this way, Θ̃1 retains a dependence on the
reference fluid degree of freedom and indeed satisfies

ĤϕΘ̃1 = iℏ
δ

δτ
Θ̃1 (6.50)

which now correctly reproduces the QFT phenomenology, having removed any trace
of the gravitons fluctuations.

We stress that, differently from Eq. 4.24, here the reference fluid clock is essentially
reduced to a incoherent dust (due to the absence of the Lagrange multiplier Fi in such
minisuperspace setting) and the supermomentum constraint does not appear as a
consequence of the ADM foliation with N i = 0. Apart from this technical differences,
the physical meaning of the two equations is the same: we have constructed a clock
for the fast matter subsystem through the reference fluid, obtaining a functional
Schrödinger evolution akin to QFT at this order.
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6.3.1 Gauge symmetry order by order

We now move to the order M−1, having
4
3e

− α
2
[
iℏ
(
∂2
α − ∂2

+ − ∂2
−

)
P1 − (∂αP1)2 + (∂+P1)2

− (∂−P1)2 − 2 (∂αS0∂α − ∂+S0∂+ − ∂−S0∂−)P2

]
+ 1

2
∑
k,λ

[
−iℏ∂2

vλ
k

+ 2∂vλ
k
P1∂vλ

k

]
(P2 +MQ1)

+ 1
2
∑

k

[
−iℏ∂2

ϕkQ2 + 2∂ϕkQ1∂ϕkQ2
]

+ eαW−1∂TQ2 = 0.

(6.51)

We stress that here we have terms ∂vλ
k
Q1 which were absent in the previous order

due to the assumption (6.34); since the function Q2 in the ansatz is associated to the
order 1/M , the terms ∂vλ

k
Q2 would be of O

(
M−2) and are thus neglected. The lack

of contributions of the form ∂αQ1 (or equivalently with β±) is instead a consequence
of (6.33): to distinguish the fast matter sector from the slow graviton one, we have
assumed that the derivative of Qn with respect to the classical variables is even
smaller in the expansion parameter.

As in the previous order, we label the O(1/M) wave functionals as

ψ2 = e
i
ℏ (P1+ 1

M
P2), χ2 = e

i
ℏ (Q1+ 1

M
Q2). (6.52)

Summing Eq. (6.51) with the corresponding O
(
M0) equation (6.37) we obtain:
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]
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(6.53)

We can see in the last line the presence of terms containing derivatives of the
matter functional with respect to the vλk. This kind of contribution which was
completely absent in the previous order due to the adiabatic conditions (6.33)-(6.34)
and here corresponds here to quantum gravitational corrections, attributed to the
slow quantum nature of the graviton fluctuations. We remark that the time definition
(6.46) has been obtained by imposing the gauge-fixing condition (6.40) through a
specific choice of the gauge function θ, which was the degree of freedom associated
to the symmetry (6.1). Thus, it would seem that there is no residual gauge freedom
for this model.

This is actually not the case since θ in (6.1) allows a “total” rescaling of both
wave functions ψ and χ before the WKB expansion. Since the two are then expanded
in 1/M , we can apply the same expansion to the phase itself:

θ(α, β±, v
λ
k) =

∞∑
n=1

( 1
M

)n−1
θn(α, β±, v

λ
k) , (6.54)
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where each θn is a single-order contribution. It should be noted that such expansion
of the phase does not include a contribution of O (M), i.e. it starts from n = 1.
The reason is immediately stated: such term is not allowed by the B-O symmetry
(6.1) itself, since χ inherently starts from the next order M0. In other words, a
contribution of order M would break the B-O separation; in a sense there is no
gauge invariance at the first Planckian order.

We can thus associate the gauge transformation with the following operator

T̂ (θ) = e
i
ℏ θ =

∞∏
n=1

exp

[
i

ℏ

( 1
M

)n−1
θn

]
(6.55)

acting as ψ → T̂ (θ)ψ and χ→ T̂ †(θ)χ respectively. Clearly, T̂ is a functional of θ
from which one can extract the corresponding single-order transformation

T̂n(θn) = exp

[
i

ℏ

( 1
M

)n−1
θn

]
(6.56)

acting at O
(
M1−n) only.

The total gauge transformation (6.55) can be understood as the simultaneous
action of all (6.56) on each corresponding wave functional, under which the B-O
separation (6.1) is invariant. In essence, each order of expansion in this scheme is
characterized by its own gauge freedom, parametrized by θn.

Since we are now considering the dynamics up to order M−1, we can express the
phase as

θ(α, β±, v
λ
k) = θ1(α, β±, v

λ
k) + 1

M
θ2(α, β±, v

λ
k) . (6.57)

Clearly this means that the ψ is transformed as

ψ → e
i
ℏ θψ = e

i
ℏ θ1e

i
ℏ

1
M
θ2ψ , (6.58)

where it is evident that the total gauge transformation can be seen as the composition
of two separate rescalings, one of O

(
M0) and one of O

(
M−1), as in (6.56).

Since we have fixed only the function θ1 through the condition (6.40), there is a
residual gauge freedom at O

(
M−1) associated to θ2. We consider the gauge fixing

which corresponds to the gravitational Wheeler-DeWitt constraint up to order 1/M ,
in analogy with Eq. 6.40 of the previous order:

4
3e

− α
2

[
2iℏ (∂αS0∂α − ∂+S0∂+ − ∂−S0∂−) + ℏ2

M

(
∂2
α − ∂2

+ − ∂2
−

)]
ψ2

+ 1
2
∑
k,λ

[
ω2
k(η)(vλk)2 + Vλ,λ̄ − ℏ2∂2

vλ
k

]
ψ2 = 0 .

(6.59)

This corresponds to a differential equation for θ2 once θ1 has been identified at the
O
(
M0).
Once the condition (6.59) has been imposed, the residual equation at order M−1

takes the form:
1
2
∑

k

[
ν2
k(η)ϕ2

k − ℏ2∂2
ϕk

]
χ2 − iℏ eαW−1∂Tχ2

+ 1
2
∑
k,λ

[
−ℏ2∂2

vλ
k
− 2iℏ∂vλ

k
P1∂vλ

k

]
χ2 = 0,

(6.60)
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where the gravitational wave functional ψ2, acting as purely multiplicative, has been
simplified. Recalling the starting superHamiltonian (6.31) and the time definition
(6.46), we can integrate this equation on the ADM spatial hypersurfaces Σ to
reconstruct the total Hamiltonian (in this minisuperspace reduction we could also
consider a fiducial volume), giving

iℏ
δ

δτ
χ2 = Ĥϕχ2 + Ĵ χ2, (6.61)

where we defined the operator:

Ĵ = 1
2

∫
Σ
d3x

∑
k,λ

[
−ℏ2∂2

vλ
k
− 2iℏ∂vλ

k
P1∂vλ

k

]
. (6.62)

The functional Schrödinger evolution (6.61) is now corrected by this operator,
produced by the dependence of χ2 from the vλk degrees of freedom. This effect is
also related to the form of the function P1, which is fixed by the O(M0) gauge-fixing
condition (6.40) that is the gravitational WDW equation. Thus, the quantum
gravitational corrections on χ2 depend also on the specific dynamics that gravitons
follow on the classical background. The main advantage of the gauge choice (6.59)
is to directly obtain a modified dynamics of the matter subsystem which takes into
account the whole gravitational sector.

Actually, we could reformulate the term corresponding to the QG-corrections as

Ĵ tot =
∫

Σ
d3x

[
− 2iℏ (∂αS0∂α − ∂+S0∂+ − ∂−S0∂−)

−1
2
∑
k,λ

(
−ℏ2∂2

vλ
k
− 2iℏ∂vλ

k
P1∂vλ

k

)
=
∫

Σ
d3x [−2iℏ (∂αS0∂α − ∂+S0∂+ − ∂−S0∂−)] + Ĵ .

(6.63)

This redefinition is backed by the observation that, in Eq. (6.51), we have omitted
the contributions ∂vλ

k
Q2 and ∂αQ1, ∂±Q1. However, if we consider the complete

action of the operator on χ2 and then select only the terms which survive up to
order M−1, we indeed obtain (6.62). Thus we can equivalently rewrite Eq. (6.61) as
the following

iℏ
δ

δτ
χ2 = Ĥϕχ2 + Ĵ totχ2 (6.64)

by keeping in mind that in this scheme we are addressing only the dynamics up to
O
(
M−1).
At this level, we still maintain a dependence on the gravitons degrees of freedom

inside the matter wave functional χ2 and clearly the QG-induced corrections have
taken a novel form with respect to (4.32), which did not include such vλk variables.
We now analyze how to implement the averaging procedure in this expanded scheme,
in order to recover the same form (6.25) of an averaged matter wave functional.



116 6. Beyond WKB: averaging over gravitational fluctuations

6.3.2 Averaging procedure at the next order

Performing an average over the graviton degrees of freedom at the next order
M−1 is not an immediate task as in Sec. 6.2. Our starting point is the averaged
wave functional

Θ̃2(ϕk, T ;α, β±) =
∫ ∏

k,λ
dvλk ψ∗

2ψ2χ2 . (6.65)

To recast (6.61) as an equation for Θ̃2, we multiply it by ψ∗
2ψ2 = |ψ2|2, being ψ2

defined in (6.52). However this factor cannot be brought inside Ĵ which contains
derivatives with respect to the vλk (we remind that the functions S0, Pn now contain
both the classical background variables and the gravitons fluctuations). Therefore,
one would argue this averaging procedure cannot be implemented in the gauge for
which Eq. (6.61) holds.

Let us show how this concern can be overcome. Eq. 6.61, obtained after imposing
the gauge condition (6.59), describes the following evolution at O

(
M−1):

iℏ
δ

δτ
Θ̃2 = 1

2
∑

k

[
ν2
k(η)ϕ2

k − ℏ2∂2
ϕk

]
Θ̃2 +

∫ ∏
k,λ

dvλk ψ∗
2ψ2Ĵ

totχ2 (6.66)

The last term clearly is not an operator acting on the whole Θ̃2. However, to make
it so we could relax the assumption (6.59) that the WDW gravitational constraint
holds. Since we still have the gauge freedom regarding θ2, we do not wish to drop the
associated gauge choice entirely, bust just to modify it. A cumbersome calculation
(here omitted for clarity) shows that the following different gauge choice

4
3e

− α
2 ψ∗

2

[
2iℏ (∂αS0∂α − ∂+S0∂+ − ∂−S0∂−) + ℏ2

M

(
∂2
α − ∂2

+ − ∂2
−

)]
ψ2

+ 1
2
∑
k,λ

ψ∗
2

[
ω2
k(η)(vλk)2 + Vλ,λ̄ − ℏ2∂2

vλ
k

]
ψ2 + i

ℏ
∑
k,λ

ψ∗
2

(
∂2
vλ

k
P1
)
ψ2

+ (Ĵ tot)† (ψ∗
2ψ2) = 0

(6.67)

and the boundary condition∫ ∏
k,λ

dvλk
∑
k,λ

ℏ2∂vλ
k

[
ψ∗

2ψ2 ∂vλ
k
χ2 − ∂vλ

k
(ψ∗

2ψ2χ2) + i

ℏ
(∂vλ

k
S1)ψ∗

2ψ2χ2

]
= 0 (6.68)

allow to rewrite the Eq. (6.66) as

iℏ
δ

δτ
Θ̃2 = ĤϕΘ̃2 +

∫
Σ
d3x [−2iℏ (∂αS0∂α − ∂+S0∂+ − ∂−S0∂−)] Θ̃2

= ĤϕΘ̃2 + ⟨Ĵ tot⟩Θ̃2 .

(6.69)

We stress that the relevance of this equation is that all all QG-induced corrections due
to the gravitons fluctuations have been eliminated through the gauge freedom (which
does not correspond to the gravitational WDW anymore) and some appropriate
boundary conditions. In other words, the modified dynamics of Θ̃2 perceives only
corrections due to the classical background via the term labeled ⟨ĤQG⟩. We observe



6.3 Unifying the Gaussian fluid and graviton fluctuations 117

that the resulting theory is exactly the same of Chapter 4, where the Gaussian
reference fluid takes the role of the physical clock but no graviton fluctuations are
characterized, in a diagonal Bianchi I minisuperspace model (i.e. N i = 0). Thus
we have derived a mathematically consistent model which takes into account both
proposals, and the limit of Chapter 4 is directly obtained via the gauge choice (6.67).

The difference between the two gauge choices stands in the “departure” from the
idea that the gravitational WDW constraint must at some point be recovered. Indeed,
if we only wished to extend the result of the previous order keeping such gravitational
constraint, we would end up with the gauge choice (6.59) and the modified dynamics
(6.64). In the case of (6.67) instead we are dropping the connection between the
B-O gauge freedom and such gravitational equation, leaving the evolution of the
gravitons degrees of freedom totally arbitrary.

6.3.3 Effective QFT at O (M−1)
Actually, it is also possible to recover QFT on average with a different gauge-fixing

condition. After some calculations, it is found that with the following equation

4
3e

− α
2 ψ∗

2

[
2iℏ (∂αS0∂α − ∂+S0∂+ − ∂−S0∂−) + ℏ2

M

(
∂2
α − ∂2

+ − ∂2
−

)]
ψ2

+ 1
2
∑
k,λ

(
ψ∗

2

[
ω2
k(η)(vλk)2 + Vλ,λ̄ − ℏ2∂2

vλ
k

]
ψ2 +

[
ℏ2∂2

vλ
k
− 2iℏ∂vλ

k
P1∂vλ

k

]
ψ∗

2ψ2
)

+ iℏ
∑
k,λ

ψ∗
2(∂2

vλ
k
P1)ψ2 = 0,

(6.70)

and integration over the vλk with boundary condition∫ ∏
k,λ

dvλk
∑
k,λ

ℏ2∂vλ
k

[
ψ∗

2ψ2 ∂vλ
k
χ2 − ∂vλ

k
(ψ∗

2ψ2χ2) + i

ℏ
(∂vλ

k
P1)ψ∗

2ψ2χ2

]
= 0, (6.71)

brings the constraint equation at O(1/M) to take the simple form

iℏ
δ

δτ
Θ̃2 = ĤϕΘ̃2 , (6.72)

i.e. the ordinary dynamics. With this choice all gravitational corrections are canceled
out, recovering QFT as an effective theory also at order 1/M .

Eq. (6.72) provides an effective description of matter in a quasi-classical back-
ground, aligned to the original Vilenkin’s proposal [41]. This result proves once
again that the extended B-O model recovers (through the gauge (6.70)) Vilenkin’s
interpretation of QFT on the gravitational background from the full gravity-matter
system.

In a sense, the formulation of this Chapter could be seen as a generalization of
[41] taking into account the quantum nature of gravity and with a Gaussian fluid
clock. However, this is only a limited outcome of our broader investigation: we have
developed a consistent theory in the extended B-O picture using a physical clock
(the Gaussian reference fluid), which allows to investigate the matter subsystem’s
modified dynamics with QG-corrections while preserving unitarity i.e. with a reliable
physical interpretation.
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6.4 Primordial spectrum in the extended B-O picture

Let us now investigate such modified dynamics for the inflaton field in the
slow-rolling phase and its associated spectrum. Essentially, we aim to replicate the
computation of Sec. 5.3 but in the extended formulation, taking into account the
graviton fluctuations in the metric sector.

As already elucidated, the slow-rolling phase is characterized by V (ϕ) ≃ const.
emerging as a cosmological constant contribution. Clearly, to take into account such
term we must change the minisuperspace geometry from the vacuum Bianchi I case
to the FLRW one, as in Sec. 5.3. In principle, such geometry allows for (independent)
scalar and tensor perturbations of the metric [95, 103]; we here consider the FLRW
background to be purely classical and the fluctuations to be of tensor nature, i.e.
graviton contributions, in accordance with the model developed in the previous
Section. Similarly, we neglect the backreaction of the inflaton scalar field on the
spacetime geometry and we mimic an exact de Sitter phase by considering ϵ = const.

Based on these considerations, we use the FLRW line element (5.2) and the
gauge-invariant formalism for both the graviton perturbations vλk and the inflaton
modes ϕk. The background setting is the same as in Sec. 5.3. Over the homogeneous
and isotropic background, it is well known that both types of perturbations emerge
as time-dependent harmonic oscillators (recalling (5.12), see for example [68]) so
that we have the following WDW equation ℏ2

48M e−3α∂2
α + 4MΛe3α + e−α

2
∑
k,λ

[
−ℏ2∂2

vλ
k

+ ν2
k(η)(vλk)2

]

+ e−α

2
∑

k

[
−ℏ2∂2

ϕk + ν2
k(η)(ϕk)2

]
− iℏW−1 δ

δT (x)

)
Ψ = 0

(6.73)

where

ω2
k(η) = k2 − (eα

√
ϵ)′′

eα
√
ϵ

, (6.74)

ν2
k(η) = k2 − (eα)′′

eα
, (6.75)

which clearly reduce to the same function in the de Sitter case ϵ = const :

ω2
k(η) = ν2

k(η) = k2 − 2
η2 (6.76)

that we label ν2
k from now on. We note that the graviton superHamiltonian lacks

the term Vλ,λ̄ of Sec. 6.2 and 6.3 since no mixing of the two polarization modes is
possible in this highly symmetric background. We also stress that the fluid sector
Ĥf contains a functional derivative since T (xµ) is a function of a generic coordinate
system due to the reparametrization procedure.

We consider again the WKB ansatz up to the first order of QG-corrections, i.e.

Ψ = e
i
ℏ (MS0+P1+ 1

M
P2)e

i
ℏ (Q1+ 1

M
Q2) (6.77)
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where the functions S0 and Pn describe the gravitational sector only, while Qn is
associated to the inflaton variables too, as in (6.32).

The procedure here follows Sec. 5.3, with the addition of the graviton sector.
From the expansion at order M , we have the same HJ equation

1
48e

−3α(∂αS0)2 − 4Λe3α = 0 , (6.78)

solved by

S0(α) = −8

√
Λ
3
(
e3α − e3α0

)
(6.79)

which coincides with (5.18).
At O

(
M0), we use the B-O symmetry to impose the gravitational constraint

analogous to (6.40) but over the FLRW background:

e−2α

24
(
iℏ∂2

αS0 − 2∂αS0∂αP1
)

+
∑
k,λ

[
−iℏ∂2

vλ
k
P1 + (∂vλ

k
P1)2 + ν2

k(vλk)2
]

= 0 , (6.80)

or analogously writing ψ1 = e
i
ℏP1 :

e−2α

24 ψ∗
1

(
iℏ∂2

αS0 + 2iℏ∂αS0∂α
)
ψ1 + ψ∗

1
∑
k,λ

[
−ℏ2∂2

vλ
k

+ ν2
k(vλk)2

]
ψ1 = 0 . (6.81)

We stress that, compared to Sec. 6.3, the background derivative terms take a different
form due to the lack of anisotropies and the non-linearity of the classical solution
S0 (6.79) (which was instead the case in (6.18)). As already motivated, this gauge
implies a functional Schrödinger dynamics for the averaged inflaton wave functional,
see (6.50):

iℏ eαW−1 δ

δT
Θ1 = iℏ

δ

δτ
Θ1 = ĤϕΘ1 = 1

2
∑

k

[
−ℏ2∂2

ϕk + ν2
kϕ

2
k

]
Θ1 (6.82)

where Θ1, defined as in (6.49), is the average of χ1 = e
i
ℏQ1 over the graviton modes.

The fiducial volume emerging from the spatial integration has been set to 1 for
simplicity.

At O
(
M−1) we find

e−3α

48
[
iℏ∂2

αP1 − (∂αP1)2 − 2∂αS0∂αP1
]

+ 1
2
∑
k,λ

[
−iℏ∂2

vλ
k
(P2 +MQ1)

+2∂vλ
k
P1∂vλ

k
(P2 +MQ1)

]
+ 1

2
∑

k

[
−iℏ∂2

ϕkQ2 + 2∂ϕkQ1∂ϕkQ2
]

+ eαW−1 δQ2
δT

= 0.

(6.83)

Eq. (6.83) can be summed up with (6.80) and integrated over the spatial hypersurfaces
to reconstruct the inflaton Hamiltonian acting on χ2 = e

i
ℏ (Q1+ 1

M
Q2). However, we
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recall that we still have the gauge freedom on the graviton sector at this order, so
we require for ψ2 = e

i
ℏ (P1+ 1

M
P2):

e−3α

24 ψ∗
2

[
iℏ∂αS0∂α + ℏ2

M
∂2
α

]
ψ2 + ψ∗

2
∑
k,λ

[
ν2
k(vλk)2 − ℏ2∂2

vλ
k

]
ψ2 = 0 (6.84)

analogously to the previous order. Then the modified dynamics for χ2 is

iℏ
δ

δτ
χ2 = Ĥϕχ2 + Ĵ χ2 , (6.85)

Ĵ = 1
2
∑
k,λ

[
−ℏ2∂2

vλ
k
− 2iℏ∂vλ

k
P1∂vλ

k

]
, (6.86)

i.e. equivalent to the expressions (6.61) and (6.62) up to the spatial integration. We
clarify that the extra terms present in the definition (6.63) are here absent thanks
to the isotropic FLRW setting.

Before proceeding to the power spectrum analysis, we need to compute the
function P1 that appears in (6.86), i.e. the exponent of the gravitational solution
ψ1 at order M0. Its evolution is dictated by (6.81), which as already noted in the
previous Section appears to be timeless. However, we can rewrite the terms in the
first parenthesis in a suitable way. Recalling the solution (6.79), ∂2

αS0 can be readily
obtained. For the second term, we use the Hamilton equation for the (classical)
variable α(η): α̇ = ∂pα(NH(α)) in the conformal case N = eα, being H(α) the FLRW
sector of superHamiltonian (6.73), giving

α̇ = − pα
24M e−2α . (6.87)

Since MS0 corresponds to the classical action (see the starting ansatz (6.77)), it
must also hold that pα = M∂αS0; comparing the two, we are able to rewrite the
desired term in the gauge condition as

∂αS0∂α = −24e2αα̇ ∂α = −24e2α∂η . (6.88)

We stress that here, although the graviton gauge sector is timeless, i.e. independent
of the Gaussian fluid time T , the classical solution for the background variable α
allows to write ∂α as derivatives with respect to the conformal time η, similarly to
Vilenkin’s approach (see discussion in Sec. 2.3). The interpretation is the following:
Eq. (6.88) can be reconciled with the Gaussian fluid time procedure by noting that,
thanks to the reparametrization, the fluid variable is actually T (xµ) so we can exploit
the diffeomorphism invariance to make T coincide with the synchronous time t and
then relate it to the conformal one η by using ∂t = e−α∂η (up to a fiducial volume).
In other words, we parametrize the wordlines of the fluid such that T is aligned with
the synchronous time of the minisuperspace classical background. As a consequence,
the evolution of the graviton fluctuations is parametrized by the same clock of the
quantum matter field when making use of (6.87). Clearly, such extra steps will
not be needed for the quantum inflaton sector, which is directly described by the
Gaussian fluid clock.
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Now the graviton gauge condition (6.81) takes the form

iℏ
(√

3Λeα + 2∂η
)
ψ1 =

∑
k,λ

[
−ℏ2∂2

vλ
k

+ ν2
kv

λ
k)2
]
ψ1 , (6.89)

which can be further simplified with the following transformation

ψ1 → ψ̄1 = ψ1 exp

(
−
√

3Λ
2

∫
dη eα(η)

)

= ψ1 exp

(√
3Λ

2H0
ln(−η)

)
= (−η)

√
3Λ

2H0 ψ1

(6.90)

so that we recover exactly the standard time-dependent harmonic oscillator:

iℏ∂ηψ̄1 =
∑
k,λ

[
−ℏ2∂2

vλ
k

+ ν2
k(vλk)2

]
ψ̄1 . (6.91)

We stress that the transformation from ψ1 to ψ̄1 is only used as a mathematical
tool to compute the solution and will be reverted afterwards; in this sense, it is not
implemented as a physical rescaling on the whole system. In analogy with Sec. 5.3,
we use the method of invariants ad the Bunch-Davies vacuum requirement to find:

ψ̄1(η, vλk) =
∏
k,λ

 k3

πℏ
(

1
η2 + k2

)
 1

4

exp
[
− i2 (ηk − arctan(ηk))

]

× exp

 i

2ℏ
ik3η3 − 1

η3
(

1
η2 + k2

)(vλk)2

 .
(6.92)

Then, it is easy to invert (6.90) to recover the solution for ψ1 = e
i
ℏP1 and obtain the

function P1:

P1(η, vλk) = −iℏ
∑
k,λ

1
4 ln

 k3

πℏ
(

1
η2 + k2

)
− √3Λ

2H0
ln(−η)

− i

2 (ηk − arctan(ηk)) + i

2ℏ
ik3η3 − 1

η3
(

1
η2 + k2

)(vλk)2
] (6.93)

We recall that Ĵ contains its derivative with respect to vλk, that is

∂vλ
k
P1 = i

ℏ
ik3η3 − 1

η3
(

1
η2 + k2

)vλk . (6.94)

6.4.1 Power spectrum result with a Gaussian ansatz

Let us now proceed to the computation of the inflaton solution. Identifying T
with the conformal time η, Eq. (6.85) provides the following dynamics with QG
corrections:

iℏ∂ηχ2 = 1
2
∑

k

[
−ℏ2∂2

ϕk + ν2
k(ϕk)2

]
χ2 −

1
2
∑
k,λ

[
ℏ2∂2

vλ
k

+ 2iℏ∂vλ
k
P1∂vλ

k

]
χ2 . (6.95)
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We first decompose χ2 in Fourier space, considering it as a product of independent
modes χk each one depending on ϕk and vλk; this turns (6.95) into a set of independent
equations, one for each k. In analogy with Chapter 5 and other implementations
such as [68, 52], we look for a Gaussian solution

χk = Ak(η, vλk) e− 1
2 Ωk(η)(ϕk)2 = Nk(η, vλk) eiφk(η,vλ

k)e− 1
2 Ωk(η)(ϕk)2 (6.96)

where the complex amplitude Ak has been rewritten by means of a (real) magnitude
Nk and a (real) phase φk, and the Gaussian width Ωk depends on η alone.

We can further WKB expand those functions by noting that the QG-corrections
related to the graviton fluctuations in (6.95) are inherently of order M−1, so it is
reasonable to require all the O(M0) functions to depend on η alone; moreover, we
postulate the Gaussian width to be independent of the vλk, as in [68, 52]

Nk(η, vλk) = Nk(η)
[
1 + H 2

0
M

Gk(η, vλk)
]
, (6.97)

φk(η, vλk) = φ
(0)
k (η) + H 2

0
M

φ
(1)
k (η, vλk), (6.98)

Ωk(η) = Ω(0)
k (η) + H 2

0
M

Ω(1)
k (η). (6.99)

Here the functions are expanded in the factor H 2
0 /M by comparison with the un-

modified standard power spectrum, assuring the correct dimensions for all quantities.
The compatibility of such assumptions will be shown in Appendix B. Clearly, the
Gaussian ansatz for each mode is then

χk = Nk

(
1 + H 2

0 Gk
M

)
exp

[
i

(
φ

(0)
k + H 2

0
M

φ
(1)
k

)
− 1

2

(
Ω(0)

k + H 2
0

M
Ω(1)

k

)
(ϕk)2

]
,

(6.100)
where we dropped all dependencies for readability. Inserting it into (6.95), we find
for both the Gaussian amplitude and width an equation at order M0 and one at
order M−1, ending up with the following four coupled equations:

i∂ηΩ(0)
k =

(
Ω(0)

k

)2
− ν2

k , (6.101)

i∂ηΩ(1)
k = 2Ω(0)

k Ω(1)
k , (6.102)

i∂ηNk −Nk∂ηφ
(0)
k = 1

2NkΩ(0)
k , (6.103)

iGk∂ηNk +Nk
[
i∂ηGk − ∂ηφ

(1)
k −Gk∂ηφ

(0)
k

]
= 1

2Nk
(
GkΩ(0)

k + Ω(1)
k

)
− 1

2Nk
∑
λ

(
∂2
vλ

k
Gk + i∂2

vλ
k
φ

(1)
k − 2ξk(η)

[
∂vλ

k
Gk + i∂vλ

k
φ

(1)
k

]
vλk

)]
.

(6.104)

Eq. (6.101) is identical to the one in [68] (although obtained via a different
implementation) and can be readily solved for the Gaussian width, compatible with
the Bunch-Davies vacuum condition:

Ω(0)
k (η) = k3η2

1 + k2η2 + i

η(1 + k2η2) . (6.105)
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In the super-Hubble limit kη → 0−, which is the relevant one for the computation of
the primordial spectrum, Ω(0)

k (η) ∼ k3η2 + i
η and therefore we can obtain a solution

of (6.102) in this limit:

Ω(1)
k (η) ∼ c1η

2
(

1− 2
3 ik

3η3
)
. (6.106)

where c1 is an integration constant.
The normalization of the Gaussian ansatz over both the graviton and inflaton

degrees of freedom
∫
dϕkdv

λ
k χ∗

kχk = 1 gives a further restriction for the remaining
functions:

|Nk|4
(

1 +
∫
dvλk

4H 2
0

M
Gk

)
=
ℜ(Ω(0)

k )
π

+ H 2
0

M

ℜ(Ω(1)
k )
π

. (6.107)

having neglected all terms of O(1/M) or higher. It is understood here that the
integration over the vλk is applied only to the functions of order M−1, since the order
M0 in (6.97)-(6.99) is independent of those variables. Here the fourth power is due
to the complex nature of the perturbation variables, which has required to treat
their real and imaginary parts separately, see [110, 68]. Therefore, the normalization
condition splits into

Nk(η) =
(
ℜ(Ω(0)

k )
π

) 1
4

, (6.108)

∫
dvλk Gk(η, vk) =

ℜ(Ω(1)
k )

4ℜ(Ω(0)
k )

. (6.109)

We now have all the necessary ingredients to compute the correlation function
associated to the inflaton wave function χ2 in the Gaussian form (6.96). The
calculation yields

Ξ(r) =
∏
k
|Nk|4

(
1 +

∫
dvλk

4H 2
0 Gk
M

)
·
∫ ∏

p
dϕp e

−
∑

k′

[
ℜ(Ω(0)

k′ )+
H 2

0
M

ℜ(Ω(1)
k′ )
]

(ϕk′ )2

× ϕ(η,x)ϕ(η,x + r)
(6.110)

Eq. (6.110) presents some novel contributions with respect to the analogous one
obtained in Sec. 5.3 in the non-extended B-O approach, i.e. without taking into
account the graviton fluctuations as separate degrees of freedom. Proceeding in the
same way for the integration over the real and imaginary parts of ϕp, we find

Ξ(r) =
∫

dp
(2π)3 e

−ip·r 1
2
[
ℜ(Ω(0)

p ) + H 2
0
M ℜ(Ω(1)

p )
] , (6.111)

therefore both Ω(0)
p and Ω(1)

p enter the power spectrum compared with (5.47). We
can now turn from the inflaton spectrum to the comoving curvature spectrum Pζ(k)
using the definition of the M-S variable, as in (5.48):

Pζ(k) = Gk3

πεa2
1

k3η2 + H 2
0
M c1η2

(6.112)
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where we have already applied the super-Hubble limit and we considered ℏ = 1 for
easier comparison with the literature.

This result can be formulated as a small correction with respect to the standard
power spectrum by a Taylor expansion for small H 2

0 /M ; finally, recalling the classical
solution a(η) = −1/(H0η), we obtain at the horizon crossing k = aH0:

Pζ(k) = GH 2
0

πε

[
1− c1

H 2
0

M

(
k0
k

)3]
, (6.113)

where we have made evident a reference wave number k0, coming from the discretized
treatment of the perturbations as time-dependent harmonic oscillators, which recovers
the correct dimensions, see [68]. A direct comparison with (5.50) shows that the
extended B-O approach has indeed refined the formulation, providing an inflationary
spectrum modified via a k-dependent factor: therefore the prediction of the theory
does not corresponds anymore to a scale-invariant result.

It is interesting to compare such result also with the modified spectrum derived in
[68], with the time parameter described in Sec. 2.4 and without taking into account
the graviton fluctuations as generating QG corrections (there instead the tensor
fluctuations were considered on the same level as the scalar ones): the result in that
formalism brings

Pζ(k) = P(0)
ζ (k)

[
1 + 0.988H 2

0
M

(
k0
k

)3]
. (6.114)

Confronting our result with (6.114), we see that through the Gaussian fluid
time and extended B-O formalism we have obtained a deviation from the standard
spectrum with the same scale dependence ∝ k−3; this is also in accordance with the
results of [135, 136] computed in the de Sitter phase, [137, 138, 52] in the slow-roll
approximation, and [139] for power-law inflation, all with a time implementation
analogous to 2.4 and without the gravitons treatment here presented.

However, let us note that in (6.113) the integration constant c1 cannot take
negative values due to the normalization condition (6.109). Therefore, the present
model predicts a reduction of power at large scales. This is a notable difference
from the power enhancement obtained in (6.114) and [136], while it agrees with
the results in [137] obtained via the procedure of Sec. 2.4.1. Actually, it has been
debated in [140] that the sign of the correction to the primordial spectrum depends
on the initial conditions implemented for Ω(1). In this sense, we stress that our
model dictates c1 > 0 by the requirement that both polarizations contribute with
the same weight in (6.109), therefore it represents a specific solution. Clearly, this
predicted modification is properly scaled to a quantum regime by the presence of
the WKB parameter 1/M .
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Chapter 7

Beyond canonical quantization:
the de Broglie-Bohm
interpretation

We here switch to the alternative description of QM provided by the de Broglie-
Bohm pilot-wave theory. Such theory is deterministic, in contrast with the standard
formulation, and non-local, being the evolution over time described by the so-called
guidance equation. After a brief introduction, we discuss its formulation in QC and
how it can lead to novel phenomenologies. More specifically, we illustrate in Sec. 7.3
how to conciliate such picture with a B-O separation of the gravity-matter system,
able to compute the effect of small quantum corrections of the gravitational sector
to the matter evolution. In Sec. 7.4, we specifically compute its predictions for the
inflationary spectrum in a pure de Sitter phase.

This Chapter contains the investigations of Refs. [141, 142].

7.1 Overview of the dBB approach

The de Broglie-Bohm approach (also referred to as pilot-wave theory) dates back
to the 1950s and is a deterministic theory, which gives an alternative interpretation
of what constitutes trajectories and probabilities in QM.

In this framework, the core elements of the quantum theory are postulated to
exist independently of observation or measurement. For the QG case, they are
the geometry of the 3d hypersurfaces and their canonical momenta, related to the
extrinsic curvature (Sec. 1.5). The quantum evolution of such elements diverges
from classical dynamics, since a quantum potential emerges, but it is inherently
a deterministic theory: the evolution of particles and their positions in space are
determined by the initial conditions and the guiding wave function.

To understand this, let us consider a single-particle non-relativistic quantum
dynamics, i.e. the following Schrödinger equation

iℏ∂tΨ(x, t) =
(
− ℏ2

2m∂2
x + V (x)

)
Ψ(x, t) . (7.1)
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Since the wave function is complex, one can rewrite it as

Ψ(x, t) = A(x, t) e
i
ℏS(x,t) (7.2)

being A and S both real. This is equivalent to the ansatz of Sec. 2.3 used to
discuss Vilenkin’s original proposal [41], but it now takes a different connotation
since we are already starting from a full Schrödinger dynamics (no time definition
is needed). Eq. (7.1) then automatically decomposes into two partial differential
equations stemming from its real and imaginary parts: we get respectively

∂S

∂t
+ (∂xS)2

2m + V − ℏ2

2m
∂2
xA

A
= 0 , (7.3)

∂tA
2 + 1

m
∂x
(
A2∂xS

)
= 0 . (7.4)

In the Copenhagen interpretation of QM, Eq. (7.4) represents the continuity equation
for the probability density A2 associated to finding the particle at a given position x
in time. In this sense, all physical content is given by this equation and the phase
(Eq. (7.3)) is irrelevant.

In the dBB interpretation one instead considers both equations. In particular,
Eq. (7.3) is essentially a HJ equation with an extra term, that is called quantum
potential:

Q(x, t) = − ℏ2

2m
∂2
xA

A
(x, t) . (7.5)

Here we observe that Q depends only on the form of Ψ; the main role of the amplitude
A is indeed to determine the quantum potential here, and secondly to define the
probability density. Since Q modifies the equation for S, it will also influence the
so-called guidance equation

p = mẋ = ∂xS(x, t) , (7.6)

whose solution describes the (determined) quantum trajectory of the particle in
the dBB interpretation. More generally, we can write the guidance equation for a
spinless particle as

∂tqi(t) = ℏ
m

Im
(
∂iΨ
Ψ

)
(qi, t) , (7.7)

where qi are configuration variables.
Clearly, the classical limit is recovered when the quantum potential is negligible:

in the regime Q→ 0, Eq. (7.3) becomes the standard HJ equation and the physical
predictions coincide with the classical behaviour. In this case the set (7.3)-(7.4) can
be interpreted as describing an ensemble of classical particles under the influence of
a classical potential V , with velocity field ∂xS/m.

The dBB interpretation allows for a simple explanation of the measurement
process: observational outcomes are determined by the interactions between the
guiding wave function and the measuring apparatus, preserving the unitary evolution
of the quantum state. This means that there is no collapse of the wave function.

To sum up, the dBB interpretation provides a fully deterministic view, contrary
to QM; however experimental verifications of its predictions can be challenging [143].
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7.2 The dBB cosmological picture

This conceptual framework has been applied in QG and QC to various (ho-
mogeneous) minisuperspace models, as for example Ref. [144]. Notably, it has
been shown that such cosmological models can avoid singularities through quantum
effects [145, 146, 147, 148]: indeed the quantum potential assumes significance near
the singularity, causing a repulsive force that counters gravitational collapse. The
classical limit of this framework is then typically achieved for large scale factors.

To elucidate this point, let us consider a homogeneous and isotropic universe
described by a single degree of freedom a(t) (i.e. the scale factor), such as the FLRW
model. Given an initial wave function Ψ0(a) and its evolution in time Ψ(a, η) (we
here refer to conformal time), we can use (7.2) to extract the phase S(a, η). Then,
the dBB trajectory is dictated by (see (7.6) and (7.2)):

∂S

∂a
≡ a′(η) = i

2|Ψ|2
(

Ψ∂Ψ∗

∂a
−Ψ∗∂Ψ

∂a

)
. (7.8)

The resulting trajectory might present interesting properties: not only a(η) might be
non-vanishing (therefore avoiding the singularity), it might be decreasing towards a
certain value and then expand again. The latter behaviour corresponds to a Bounce,
i.e. a Universe which contracts, reaches a certain minimum volume and then reverts
to an expansion. Clearly this would solve the problem of the initial singularity
predicted by GR at the Big Bang.

Within the dBB picture, one could also face the question of different clock imple-
mentations from the WDW equation. Indeed, different time constructions can lead
to varied singularity avoidance and bouncing cosmologies [148, 141]. It is interesting
to ask whether such evolutions carry different outcomes for the isotropization of the
universe, and how one could take into account cosmological perturbations within the
same framework. In this respect, a review of previous results can be found in [145].

Let us now contextualize the dBB interpretation within the early universe
evolution. As discussed in Chapter 5, the inflationary theory predicts an accelerated
expansion (ä > 0, ȧ > 0), addressing both the horizon and flatness problem. After
this phase, the universe undergoes another expanding phase (first dominated by
radiation, and then by pressureless matter) and cools down; however in this case GR
predicts the expansion to be decelerated (ä < 0). Since the growth rate slows down,
the Hubble radius grows faster than all physical distance scales in the universe:

dH

da
= 1− äa

ȧ3 > 1 , (7.9)

which is possible for ȧ > 0, ä < 0. We recall from Sec. 5.1 that H outlines which
regions were causal contact with each other. Therefore, this phase alone would not
explain the temperature isotropy of the CMB radiation, since it would cause many
scales to be outside the Hubble radius in the past and so causally disconnected. It
is through the inflationary theory that we recover accordance with the isotropic and
almost flat universe that we observe today.

Although the theory of inflation is widely recognized and accepted, we mention
here an alternative possibility for the phase preceding the radiation era. One could
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hypothesize that a contracting decelerating phase occurs, i.e. with ä < 0 and ȧ < 0 in
(7.9). This would imply a universe immensely large in the past and would overcome
the horizon and structure formation concerns [147]. Clearly, this early contraction
would need to reconnect with the expansion of today through a Bounce.

While bouncing cosmologies do not necessarily require an inflationary era, this
does not preclude compatibility with such mechanisms. In the following Section,
we apply the dBB interpretation to a simple cosmological model describing the de
Sitter phase of inflation, investigating the trajectories and modified power spectrum
of perturbations.

7.3 Born-Oppenheimer separation in the dBB picture
In this Section, we show that it is possible to merge the Born-Oppenheimer-like

separation of the gravity-matter system with the dBB picture. The final aim is
to analyze the first-order quantum corrections to the inflationary power spectrum
deriving from the quantum potential; essentially, we will analyze the cosmological
setting of Chapter 5 but through the lens of the dBB picture [142].

We consider the minisuperspace model describing the de Sitter phase, with a
WDW equation of the form (in natural units c = 1)

H = − 1
48M

p2
a

a
+ 4MΛa3 +Hϕ . (7.10)

Here, the scalar matter content represents the inflation field, whose small fluctuations
on the background form the power spectrum to be investigated. For convenience of
the analysis, we make a canonical transformation to use a square-root volume variable
v = a3/2 instead of the scale factor a, obtaining the following super-Hamiltonian for
the gravitational background:

H = − 3
64Mp2

v + 4MΛv2 +Hϕ . (7.11)

With the gauge-invariant formalism of Chapter 5, the inflaton sector takes the form:

Ĥϕ = 1
2v2/3

∑
k

(
−ℏ2∂2

ϕk
+ ω2

k(η)ϕ2
k

)
. (7.12)

We stress that the background will be intrinsically different from Chapter 5, since
the trajectories of the scale factor will be modified by the quantum potential.

Let us employ the Born-Oppenheimer separation between the gravitational and
matter components: Ψ(v, ϕ) = ψ(v)χ(ϕ, v). Here the inflaton field is understood as
a purely quantum component, while for the gravitational sector we wish to use the
dBB picture to compute the modified dynamics with small quantum corrections.
Therefore, keeping in mind the form (7.2), we start with the following ansatz:

Ψ(v, ϕ) = √ρ(v) e
i
ℏS(v) χ(ϕ, v) (7.13)

As previously noted, this ansatz is similar to Vilenkin’s one [41]. An important
deviation from the treatment of Chapters 3-4 is that here we do not implement a
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full WKB expansion of the wave function; indeed, the form (7.13) corresponds to a
WKB expanded gravitational sector, while we retain the matter component at the
purely quantum level.

In the spirit of the BO separation and motivated by the discussion in Sec. 4.2,
we implement the following assumptions:

• We consider the gravitational constraint to be satisfied a priori, similarly to
[41]. As illustrated in Chapter 6, this is equivalent in the canonical picture
to performing the extended BO approximation and averaging over the small
graviton fluctuations, since the associated gauge reconstructs the gravitational
WDW equation at first order.

• To characterize the regime in which the gravitational sector is close to the
classical behaviour, we consider it to have a large momentum [21]. This can
expressed through its phase by the condition:

∂vS ≫ 1 . (7.14)

This condition is usually referred to as the eikonal approximation [4], which is
a simpler case of the WKB one. In other words, by employing the hypothesis
(7.14) together with the form (7.13), we effectively use a gravitational WKB
scheme, and we will compute its small quantum deviations in the deterministic
dBB picture.

• The adiabatic approximation here must be implemented in a different form,
since we lack the expansion parameter and also the WKB functions Qn of the
matter sector (see Eq. 4.12). We then impose

∂2
vχ≪ (∂vψ)∂vχ . (7.15)

In other words, we still express a small dependence of the fast matter sector
on the “volume” variable, but the smallness is here expressed with respect to
the gravitational wave function itself. We cannot say that ∂vχ alone is small,
since we do not employ the WKB expansion of the full system; also such choice
would discard all the relevant effects that we wish to investigate.

We therefore work with the following system of quantized constraints:(
3ℏ2

64M∂2
v + 4MΛv2

)
√
ρ e

i
ℏS = 0 , (7.16)(

3ℏ2

64M∂2
v + 4MΛv2 + Ĥϕ

)
√
ρ e

i
ℏSχ = 0 . (7.17)

The explicit form of this system is:

3ℏ2

64M

[
∂2
v

√
ρ+ 2 i

ℏ
(∂v
√
ρ)∂vS + i

ℏ
√
ρ ∂2

vS −
√
ρ

ℏ2 (∂vS)2
]
e

i
ℏS

+ 4MΛv2√ρ e
i
ℏS = 0 ,

(7.18)
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3ℏ2

64M

[
∂2
v

√
ρ+ 2 i

ℏ
(∂v
√
ρ)∂vS + i

ℏ
√
ρ ∂2

vS −
√
ρ

ℏ2 (∂vS)2
]
e

i
ℏSχ

+ 3
32M

(
∂v
√
ρ e

i
ℏS + i

ℏ
√
ρ(∂vS)e

i
ℏS
)

(∂vχ) + 3
64M

√
ρ e

i
ℏS∂2

vχ

+ 4MΛv2√ρ e
i
ℏS χ+ 1

2v2/3
√
ρ e

i
ℏS
∑

k

(
−ℏ2∂2

ϕk
+ ω2

k(η)ϕ2
k

)
χ = 0 .

(7.19)

Eq. (7.18) can be used to simplify the total constraint; then, making use of the
assumptions (7.15)-(7.14), one finds

3
32M

(
i

ℏ
√
ρ(∂vS)∂vχ

)
e

i
ℏS

+ 1
2v2/3

√
ρ e

i
ℏS
∑

k

(
−ℏ2∂2

ϕk
+ ω2

k(η)ϕ2
k

)
χ = 0 .

(7.20)

Here, we stress that only the dominant contribution from the gravitational momentum
operator acting on Ψ has been taken into account. The other terms which were
present in the second line of Eq. (7.19) are negligible in the present B-O picture.
More specifically, we have omitted both ∂2

vχ due to the adiabatic condition (7.15)
with respect to (∂vS)∂vχ, and the term with ∂v

√
ρ. The motivation for the latter is

that the amplitude is determined by the dBB picture to be
√
ρ ∝ 1
|∂vS|1/2 (7.21)

and therefore subdominant (see (7.14)). The relationship (7.21) will be explicitly
demonstrated in the computation of the dBB trajectory in the next Section.

To recover a physical description of the inflaton evolution, we must still recover
a time parameter from the WDW equation. It is now straightforward to implement
the time definition analogous to Vilenkin, i.e. as a composite derivative with respect
to label time, up to the Planckian numerical factor (see discussion in Sec. 3.1). The
matter evolution is expressed by its dependence on S via

iℏ∂tχ ≡ −
3

32M
i

ℏ
(∂vS)∂vχ . (7.22)

Here a remark is necessary: while such time construction has been discussed to lead
to non-unitary effects in Sec. 3.1, we are here using the alternative dBB interpretation,
instead of the WKB expansion in the canonical picture. This means that we will find
a modified dynamics for the inflaton sector, but this behaviour will be induced by
the fact that the gravitational component experiences a non-classical evolution due
to the quantum potential, as will be clear in the computation of the dBB trajectories.
Therefore this approach is not in contrast with the findings of Chapter 3, but it gives
an alternative formulation to study small quantum corrections for the gravity-matter
system.

Having performed these steps, we recover a Schrödinger evolution for the inflation
field as a time-dependent harmonic-oscillator:

iℏ∂tχ = 1
2v2/3

∑
k

(
−ℏ2∂2

ϕk
+ ω2

k(η)ϕ2
k

)
χ . (7.23)
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This is the same formalism of (5.21), with frequency (5.12) in Fourier space i.e.

ω(η)2 = k2 − z′′

z
. (7.24)

To summarize, by considering a BO separation of the scalar inflaton field on top
of such (Bohmian) background with the clock (7.22), we have placed ourselves in
the same scenario as in Sec. 5.2.

In the next Section we explicitly compute the dBB trajectory for the universe
“volume” in this model, resulting in a modified frequency (7.24), and we will analyze
the corresponding primordial power spectrum.

7.4 dBB trajectory and power spectrum analysis
We first focus on the gravitational sector alone to derive the dBB trajectory

for the scale factor (actually for the variable v = a2/3) of the universe in the
minisuperspace model of Sec. 7.3.

As stated in Sec. 7.1, the trajectory can be inferred from the guidance equation
and it depends on the phase S of ψ(v) = √ρ(v)e

i
ℏS(v). However, the dynamics of √ρ

and S are inferred by the real and imaginary parts of the quantized gravitational
constraint (7.18) and are actually coupled. We label the two contributions with Cℜ
and Cℑ respectively, finding:

Cℜ := 3
64M ℏ2∂

2√ρ
∂v2 −

3
64M

√
ρ

(
∂S

∂v

)2
+ 4MΛv2√ρ = 0 , (7.25)

Cℑ := 3
64M iℏ

(
2
∂
√
ρ

∂v

∂S

∂v
+√ρ ∂

2S

∂v2

)
= 0 . (7.26)

We immediately observe that Cℜ (7.25) corresponds in the ℏ → 0 limit to the
standard HJ equation

√
ρ

[
− 3

64M

(
∂S

∂v

)2
+ 4MΛv2

]
= 0 . (7.27)

Indeed the first term of Eq. (7.25), which is of order ℏ2, is the quantum potential
giving the deviation from the purely classical solution.

Let us now focus on the imaginary part of the constraint. Recognizing that (7.26)
can be rewritten as ∂v

[
(√ρ)2∂vS

]
/
√
ρ, we can immediately solve the amplitude in

terms of the phase, i.e.
√
ρ = c

|∂vS|1/2 (7.28)

being c a numerical constant. This validates the relation (7.21) anticipated in the
previous Section. Substituting into (7.25) and dividing by √ρ, one is lead to the
following equation for S(v):

− 3
64M (∂vS)2 + 4MΛv2 = − 9ℏ2

256M
(∂2
vS)2

(∂vS)2 + 3ℏ2

128M
∂3
vS

∂vS
, (7.29)
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which is a third-order non-linear inhomogeneous differential equation, of which a
closed form is not found. Since we wish to consider the small deviations from the
classical behaviour, attributed to the quantum potential and responsible for the
right-hand side of (7.29), we look for an approximate solution to (7.29) at leading
order:

S(v) = S0(v) + ℏ2S1(v) . (7.30)

This expression can be interpreted as the WKB expansion of the gravitational phase
alone in (7.2). Clearly S0 must correspond to the (classical) Hamilton-Jacobi solution
of (7.27), i.e. for an expanding universe

S0(v) = − 8√
3
M
√

Λ v2 + const . (7.31)

Inserting (7.30) in (7.29), the leading contributions in ℏ2 to Cℜ result in

− 3
64M

(
(∂vS0)2 + 2ℏ2(∂vS0)∂vS1

)
+ 4MΛv2

= − 9ℏ2

256M
(∂2
vS0)2

(∂vS0)2 + 3ℏ2

128M
∂3
vS0
∂vS0

.
(7.32)

On the right-hand side, only the function S0 contributes due to the factor ℏ2 in front.
Making use of the solution (7.31), for which ∂3

vS0 = 0, we arrive at the following
expression for S1:

S1(v) = 1
256
√

3Λ
v−2 + const . (7.33)

Therefore the gravitational phase in (7.13) at leading order is:

S(v) = − 4√
3
M
√

Λ v2 + ℏ2

256
√

3Λ
v−2 + const . (7.34)

We remark that the presence of a non-zero cosmological constant Λ is compatible
with a de Sitter phase: indeed Λ = 0 would not correspond to a viable solution of
the Einstein’s equations. If one considered Eq. 7.11 with Λ = 0, the interpretation
would be non-trivial: this case would correspond to a vacuum universe having from
(7.27) S0 = 0 at the classical level (actually S0(v) = const, which can be put to
zero), but with total phase S(v) = ℏ2S1(v). Therefore the model would yield a
“purely quantum” trajectory without the classical background. For this reason, in
the following we always consider Λ > 0.

The Bohmian trajectory for v can now be inferred from the guidance equation

v̇ = dv

dt
= − 3

32M
∂S

∂v
. (7.35)

Using the solution (7.34) one obtains

v(t) =
√

2
(3Λ)1/8

(
e

√
3Λ(t−t0) −

√
3ℏ2

16 · 256M
√

Λ

)1/4

(7.36)
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which is valid in a limited range t0 < tmin < t < tmax inside the de Sitter phase
(being t0 the beginning of such phase). By definition of v, the classical regime would
correspond to

v0(t) = e
√

3Λ
4 (t−t0) = a0(t)

3
2 ≡

(
eH (t−t0)

)3/2
, (7.37)

being a0(t) the classical solution of the de Sitter phase (Sec. 5.3). For simplicity, we
have reabsorbed the numerical factor in front inside t0; we will also consider t0 = 0,
effectively putting the origin of coordinate time at the beginning of the de Sitter
phase, such that H =

√
3Λ/6.

For the study of the inflationary spectrum, as discussed in Chapter 5, it is
more convenient to work in the conformal time gauge N = a = v

2
3 , in which the

classical scale factor takes the form a(η) = −1/(H η). The dBB trajectory (7.36)
now becomes

v(η) =
( 2

3H

) 1
4
[(
− 1

H η

)6
− ℏ2

32 · 256 H

] 1
4

, (7.38)

where again the solution is valid inside an interval ηi < η < ηf , since in our analysis
the de Sitter model does not correspond to an eternal inflation scenario.

We observe that in both forms (7.36) and (7.38), the action of the quantum
potential results in a modified “volume” (actually its square root) which does not
vanish in the considered interval, due to the contribution of O

(
ℏ2), see Figure 7.1.

Indeed, Eq. (7.38) vanishes for η∗ = −4 6√2H M1/6/ℏ1/3, which falls outside our de
Sitter approximation. This result is inherently different from the classical solution,
although there is no Bounce.

Figure 7.1. Plot of the computed dBB trajectory (7.38) in conformal time. As an effect of
the quantum correction, the variable remains above the η axis and does not reach zero.
We have used as reference values H = 0.02, ℏ = 0.001, c = 1.

7.4.1 Inflaton power spectrum on the dBB background

We can now turn to the inflaton sector. The time-dependent harmonic oscillator
formalism is characterized by the frequency (7.24), where k = |k| identifies the mode
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and z = a
√
ϵ with ϵ = − ˙H /H 2 the first slow-roll parameter.

Clearly, the variable z is influenced by the dBB trajectory, both through v(η)
and through the parameter ϵ which itself depends on a(η) via the Hubble parameter.
In this pure de Sitter scheme, we implement a constant ϵ, so that from (7.38) one
finds at leading order in ℏ

ω(η)2 ≃ k2 − 2
η2 + µℏ2η4 , (7.39)

where µ = 7
32·256MH 5 is a numerical factor. Here again, in the limit ℏ→ 0 (7.39)

goes to the standard result of cosmological perturbation theory.

To infer the corresponding power spectrum, we recall that the correlation function
must be computed on the eigenstates of the oscillator properly satisfying the Bunch-
Davies condition (as elucidated in Sec. 5.2). Through the method of invariants
(Appendix A), this requires to find the solution to the Ermakov equation (A.2). In
this case however, our frequency has a contribution of order ℏ2. In an approximate
scheme, we write also the solution to (A.2) expanded in such way, so that

ω2(k, η) = ω2
0(k, η) + ℏ2ω2

1(k, η) ; (7.40)
ρ(k, η) = ρ0(k, η) + ℏ2ρ1(k, η) (7.41)

where we have dropped the subscript k for readability. From comparison with (7.39)
we have that

ω2
0(k, η) = k2 − 2

η2 , ω2
1(k, η) = µη4 . (7.42)

As a consequence, also the Ermakov equation splits into a contribution of order ℏ0

(ρ0)′′ + ω2
0 ρ0 = 1

(ρ0)3 , (7.43)

being ′ ≡ ∂η, and next-order contributions. For the latter, we truncate at the order
of first quantum corrections i.e. O

(
ℏ2); this is obtained by Taylor expanding the

term 1/ρ3 in ℏ, which results in:

(ρ1)′′ + ω2
0 ρ1 = −ω2

1 ρ0 + 3 ρ1
(ρ0)4 . (7.44)

Concerning Eq. (7.43), we immediately recognize that its solution is the same one
computed in Chapter 5, since the frequency ω0 (7.42) corresponds to the standard
QFT dynamics. So the function ρ0 is

ρ0 =
√

1
k3η2 + 1

k
, (7.45)

which satisfies the Bunch-Davies vacuum requirement, as discussed in Sec. 5.3.
For ρ1, we need to solve Eq. 7.44, which is second-order and inhomogeneous.

However, we can carry on a qualitative analysis in the limit of small η, in which we
aim to compute the spectrum (this regime assures that the inflationary perturbations
freeze out, see Sec. 5.2). The term ω0ρ1 with ω2

0 ∝ 1/η2 results to be dominant,
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while ω2
1ρ0 ∼ η3 and 1/(ρ0)4 ∼ η4. Therefore, by neglecting the last term, we deal

with the approximate form of Eq. 7.44 in the limit of small η:

(ρ1)′′ + ω2
0ρ1 = −ω2

1ρ0 . (7.46)

The general form of the solution to (7.46) is

ρ1(k, η) = c1√
k

(
sin(kη)
kη

− cos(kη)
)

+ c2√
k

(
cos(kη)
kη

+ sin(kη)
)

−
(
cos(kη)
k1/2 − sin(kη)

k3/2η

)
I1 −

(
cos(kη)
k3/2η

+ sin(kη)
k1/2

)
I2 ,

(7.47)

where c1, c2 are numerical constants and we have defined the following integrals

I1 =
∫ η

1
dy

[
−µ y

3

k1/2

( 1
k3y2 + 1

k

)1/2 (cos(k y)
k

+ y sin(k y)
)]

, (7.48)

I2 =
∫ η

1
dy

[
µ y3

k1/2

( 1
k3y2 + 1

k

)1/2 (
y cos(k y)− sin(k y)

k

)]
. (7.49)

Here we observe that the first line of (7.47) would reconstruct, after the appropriate
Bunch-Davies requirement, the same ρ0 of Chapter 5; therefore, we can consider
the two coefficients c1 and c2 to be equal to zero, such that ρ1 purely describes the
quantum correction to the previous order solution.

However, for the final state to describe the Bunch-Davies vacuum, the function
ρ1 must go to zero in the relevant limit. Indeed in the Bunch-Davies regime, one
considers the inflaton wavelength to be small with respect to curvature (sub-horizon),
so that kphys ≫ 1. In this way, the eigenstate should correspond to the (Minkowskian)
lowest energy state of the oscillator. For large values of k it can be shown that (7.47)
goes to zero, and we recall that ρ0 satisfies the requirement by construction; as a
consequence, the total function ρ = ρ0 + ℏ2ρ1 is compatible with the Bunch-Davies
condition.

We are now left with the task of computing the power spectrum from ρ given
by (7.45), (7.47). Following the reasoning of Sec. 5.2, we find that the correlation
function results in a contribution ρ2(k, η). Subsequently, the power spectrum of
curvature perturbations stemming from the inflaton field is

Pζ(k) = k3

4π2
ρ2(k, η)

2a2ϵ

∣∣∣∣∣
−kη≪1

(7.50)

computed in the super-Hubble limit, when perturbations are frozen outside the
horizon.

Considering the lowest-order contribution ρ0, we clearly recover the standard
scale-invariant result P(0)

ζ (k) described in Chapter 5, see (5.50). At leading order,
ρ1 gives a small deviation which can be evaluated by performing a series expansion
of the integrals in (7.48)-(7.49). Then, computing the expression in η = 2π/k̃ ≪ 1,
we find

P(1)
ζ (k) = µ̄ ℏ2

(
k

k̃

)−4 (H

H̃

)12
P(k, k̃) , (7.51)
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where µ̄ ∝ 1/M2 is a numerical coefficient, k̃ and H̃ are reference values for the mode
and Hubble parameter in the considered limit, and P is the following polynomial
function in k:

P(k, k̃) = k̃−8
[
20π6k6(90− 90k2 − 35k4 + 9k6) + 1152π5k̃ k4(5 + 3k2)

− 90π4k̃2 k4(90− 90k2 − 35k4 + 9k6)− 2880π3k̃3 k2(5 + 3k2)

+90π2k̃4 k2(90− 90k2 − 35k4 + 9k6) + 45k̃6(90− 90k2 − 35k4 + 9k6)
]2 (7.52)

For the CMB spectrum, a standard value for k̃ is the pivot scale k̃ ≃ 0.002 Mpc−1,
see for example [149]. A plot of the obtained power spectrum is provided in Figure
7.2.

Figure 7.2. Plot of the computed dBB power spectrum (7.51) with reference values H̃ = 2,
H = 0.02, k̃ = 0.027 in Planckian-like units ℏ = 0.001, M = 10, c = 1.

The obtained correction is clearly not scale-invariant; moreover, we observe the
presence of a minimum at a point much larger than the pivot scale k̃. The presence
of the numerical factors ℏ2 and 1/M2 in front assures that P(1)

ζ constitutes a small
deviation from the standard result.

In this context, further investigation could involve computing the dependence of
the slow-roll parameter ϵ on the modified evolution of v, here considered negligible
at a perturbative level. This approach however would extend beyond the scope of a
pure de Sitter phase (ϵ = const) which was also analyzed in Chapter 5, so preventing
a meaningful comparison between the two Born-Oppenheimer formulations. In the
analysis of Chapter 5, the quantum-gravity corrections resulted in a time-dependent
factor for the quantum state, which canceled out when computing the spectrum.
In contrast, the present dBB interpretation describes quantum corrections (which
primarily affect the gravitational sector and then the inflaton one) that alter the
entire spectrum in a non-factorizable manner. While these deviations diminish as k
decreases, they remain significant for large k.

The primordial spectrum can also be characterized by additional observables,
describing its scale dependence. The first quantity is the spectral index ns, defined
as

P(k) = Akns−1 , (7.53)
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which therefore can be obtained by

ns = 1 + d ln (P(k)/A)
d ln k . (7.54)

Likewise, one can define the so-called running αs

αs = dns
d ln k (7.55)

and the running of the running βs

βs = dαs
d ln k . (7.56)

It is understood that these quantities are evaluated at the horizon exit, i.e. at the
pivot scale k = k̃ implemented previously.

In the present analysis, the lowest-order spectrum P(0)
ζ reproduces the scale-

invariant result, having by definition (7.53) n(0)
s = 1 i.e. independent of the scale k,

and so the associated runnings would vanish.
The interesting case stems from the next-order result, where the dependence of

the power spectrum P(1)
ζ on the scale k is expressed by the polynomial in (7.52). Here,

we expect the spectral index to depart from unity; computing the corresponding
value from the total power spectrum, we now have a polynomial function of k, which
is plotted in Figure 7.3.

Figure 7.3. Plot of the spectral index ns corresponding to the power spectrum P(1)
ζ in

(7.51). Reference values H̃ = 2, H = 0.02, k̃ = 0.027 in Planckian-like units (ℏ = 0.001,
M = 10, c = 1).

As a consequence, we now have non-trivial runnings αs and βs, corresponding
again to polynomial functions in the wave number k. A comparison of the two
functions provided in Figure 7.4 shows that, while both parameters are compatible
with zero in the limit of small k, they actually invert their behavior around k∗ ≃ 0.13,
a value approximately five times larger than the pivot scale here considered.
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Figure 7.4. Behavior of the runnings αs an βs corresponding to the power spectrum
P(1)

ζ in (7.51). Reference values k̃ = 0.002, H̃ = 2, H = 0.02, ℏ = 0.001, M = 10 in
Planckian-like units (ℏ = 0.001, M = 10, c = 1).

Such behavior of the two runnings, also referred to as inversion of the hierarchy,
has been deduced by observations by the PLANCK collaboration, see [114]. We
stress that here, the deviation of the spectral index and the associated runnings are
consequence of the small dBB corrections alone, due to the simplifications of the
model here applied. In this sense, they could be overcome by greater-order effect,
for example by taking into account the more refined slow-roll approximation, or via
other models of inflation; nonetheless, this prediction of the present perturbative
model provides interesting insights. Consequently, our interpretation of a gravity-
matter B-O-separated picture within the dBB framework demonstrates that relevant
quantum effects can occur at the leading order for the power spectrum of primordial
perturbations. This framework offers an intriguing opportunity to compare the
canonical and dBB schemes within the confines of the B-O approximation’s validity.
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Conclusions and perspectives

The aim of this thesis was to better characterize the intermediate regime between
QG and QFT, in particular to examine the potential quantum gravity effects to
QFT on curved spacetime. Indeed, certain physical scenarios, including those within
early cosmology and gravitational collapse, present a background metric that cannot
be simply interpreted as classical. Rather, it is quasi-classical quantity influenced
by quantum fluctuations in the geometry. As we highlighted, this regime has been
the scope of a number of investigations [41, 42, 43, 52, 68, 53, 44, 54, 69, 55]
focusing on the challenging emergence of a temporal parameter for QFT from the
Wheeler-DeWitt equation (2.10).

Our analysis delved into the WKB approach for a “tempus ante quantum”
formulation, as elucidated in Sec. 2.2. A large part of our discussion stemmed from
the seminal works [41, 42] which explored the acquisition of a standard quantum
dynamics for a “small” subsystem within the whole WDW equation; in these studies
the matter degrees of freedom were addressed coupled to quasiclassical (gravitational)
ones as ℏ→ 0 (or 1/M → 0).

Actually, the time definitions there proposed lead to an emergent non-unitary
dynamics at the first order of quantum-gravitational corrections, i.e. O (ℏ) or
O
(
M−1) respectively. In the case of the Planckian expansion of Ref. [42], such

prediction was immediately noted, while the semiclassical expansion of Ref. [41]
did not directly provide such non-unitarity. However, we have showed in Sec. 3.1
that, by an appropriate recasting of the WKB ansatz used in [41] and retuning of
the two works’ hypotheses, the two models cast the same dynamics with quantum
gravitational corrections at first order. As a direct consequence, also Ref. [41] is
riddled with potentially non-Hermitian corrections. This outcome can directly be
related to the form of the constructed time parameter: the evolution was expressed
by the quantum subsystem’s dependence on the semiclassical background variables
(up to numerical factors). Those semiclassical degrees of freedom were actually
considered as classical when using their canonical momenta definition to define the
time derivative as a composite one, see Eq. (3.10). Actually, this definition makes
a second order derivative of the same form emerge at the next order, thus causing
non-unitarity, as motivated in Sec. 3.3.

We have here proposed two “fast” matter clocks incorporated in a B-O-like
treatment of the gravity-matter system and their predictions for the modified
dynamics in Chapters 3 and 4 respectively. The first formulation is based on
the kinematical action, with a more geometrical view but less immediate physical
interpretation; this procedure allowed to reinstate a time parameter, different from
the internal gravitational variables, and to overcome the non-unitarity concerns
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of previous treatments. The second formulation is a generalization of Kuchař and
Torre’s Gaussian reference fluid, which is clearer on a physical ground since it can
be formulated as the emergence of a reference system of an observer. In both
Chapters we have constructed a general paradigm to determine the quantum gravity
corrections to standard QFT treated in the functional representation, adopting these
time variables. The key point of the present formulation is in the Born-Oppenheimer
separation of the quantum dynamics: we identify a “slow component” with the
gravitational degrees of freedom, while the “fast” quantum subset consists of the
matter and the reference fluid (or kinematical action) variables. Since the quantum
dynamics is WKB expanded in the Planckian parameter M (2.38), the request
that the reference sector belongs to the fast component implies that its presence
in the Hamilton-Jacobi equation is removed. This way, the violation of the energy
conditions which was originally investigated in [57] no longer takes place, and so
one could implement the reference fluid as a viable clock. In our analysis, both the
kinematical action and the reference fluid describe the quantum matter dynamics,
being in this respect a physical time (3.81),(4.24). Their main prediction consists of
restoring the unitary character of such modified dynamics at the first order i.e. with
QG corrections, see Eqs. (3.92) and (4.32), differently from previous analyses.

However, we also highlighted an important phenomenological difference char-
acterizing the present proposals with respect to previous formulations of the same
problem. In fact, the identification of a time variable in [42, 41, 43, 52, 68, 44, 54,
55] is always related to the natural label time, via the (de facto) classical dependence
of the quantum matter wave functional on the classical gravitational variables. Thus,
apart from the nontrivial question of non-unitarity, these studies recovered QFT with
a label time dependence and a modified Hamiltonian operator. Our model is instead
intrinsically different: the time variable is identified among the fast coordinates,
and the matter wave functional is also depending on the gravitational degrees of
freedom, which are in principle quantum variables. In other words these variables
are never reduced, even in the WKB approximation, to purely classical functions of
the space-time slicing. This is coherent with the idea that the so-called “quantum
gravity corrections” can be phenomenologically translated only by the dependence
of quantum matter on an additional (weakly) quantum set of degrees of freedom.

One then faces the question of how to infer any phenomenology from such a
quantum gravity dependence of the QFT dynamics. The question is highly nontrivial
from a conceptual point of view, as it happens in almost any implementation of
Quantum Gravity and especially of Cosmology [95, 9, 28]. We based our model (see
Chapter 6) on the sensible idea that one should somehow average the quantum matter
wave functional on quantum gravitational variables. Motivated by the discrepancies
outlined in Sec. 6.1, we fundamentally distinguished the classical background degrees
of freedom h0

a(t) from its quantum perturbations δha formulated as tensor (graviton)
variables, particularly in the context of homogeneous diagonal Bianchi I and FLRW
cosmologies. Here we proposed a way to reconstruct a posteriori the standard QFT
evolution by averaging over the small gravitational fluctuations.

By this averaging procedure, we successfully recovered the functional Schrödinger
equation for the matter sector at first order in the WKB expansion, as anticipated
by low-energy phenomenology. This is possible by making use of the intrinsic
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BO symmetry (6.1) to impose a gauge on the gravitons’ sector; furthermore, such
equation aligns their dynamics with the gravitational WDW constraint (assumed
from the beginning in Ref. [41]). The proposed approach differs from previous
treatments [52, 68, 69] in the sense that gravitons are clearly separated in energy
scale from matter, due to the adiabatic assumptions.

We stress that the nonunitarity issues analyzed in Refs. [42, 44, 61] may persist
at O

(
M−1), contingent upon the choice of time coordinates. To address this point,

we actually presented a unified reformulation by considering the “slow” quantum
nature of the gravitational variables and at the same time introducing the Gaussian
reference fluid clock of Chapter 4. This allowed us to take into account both the
observations calling for a quantum treatment of the gravitational sector (Sec. 6.1)
and the requirement of unitarity at the next order. We showed in Sec. 6.3 how to
reconcile the averaging procedure with such BO formulation and time evolution, by
applying the WKB expansion to the geometric phase too. Essentially we motivated
that the gauge freedom is present at every order starting from O

(
M0) and thus

one can implement independent choices for each phase θn. Now the QG-induced
corrections clearly take a form depending on the whole gravitational sector, namely
both the classical background an the graviton variables. By relaxing the request that
the graviton’s dynamics is governed by the gravitational WDW equation, we showed
that the modified QFT dynamics is recovered at O

(
M−1): in this case the averaged

wave functional’s evolution presents corrections due to the classical background
only (6.69) and coincides with the form (4.32) of Chapters 3,4. Conversely, if one
chose the gravitational WDW constraint through the gauge choice (6.59), the matter
dynamics before the averaging procedure would be Eq. (6.64), i.e. modified by a
different operator with respect to Chapter 4. For the averaged wave functional at
O
(
M−1), one can either recover the QG-modified dynamics as in Eq. (4.32) or an

effective QFT, depending on the chosen boundary and gauge conditions. This result
agrees with the property that in Chapters 3-4 we did not describe the quantum
gravitational nature via separate degrees of freedom (we recall the real nature of S0
corresponding to the classical gravity limit).

Clearly such models must at some point reconnect with our current knowledge
and observations of the Universe. For both time proposals of Chapters 3 and 4 we
have investigated relevant cosmological settings, showing how the evolution of the
fast sector is modified in Sec. 4.2 ; this toy model actually described both proposals,
since we have implemented the homogeneous minisuperspace reduction in which the
two clocks are equivalent.

We then focused on the first-order QG-effects on the primordial power spectrum
of the inflaton field, ultimately responsible for the formation of large scale structures
in our universe’s history. Considering a pure de Sitter phase and a single scalar
inflaton field, we have analyzed the modified dynamics at O

(
M−1) described by the

Gaussian fluid clock (analogous to the kinematical action one in this case). Since the
net contribution is a time-dependent effect, following the procedure to compute the
two-point correlation function (from which the power spectrum is extracted) we find
that this term exactly factorizes. We thus recover the previous order result after a
normalization requirement is applied. Therefore the inflationary power spectrum is
preserved by QG-effects at this order.
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Then, we utilized the extended B-O formulation of Chapter 6 for the same
analysis, now implementing the Gaussian fluid time and taking into account the
quantum nature of the graviton fluctuations. This comprehensive approach leads to
QG-induced corrections that depend both on the classical and graviton variables.
Following the proposed averaging procedure, we derive a mode-dependent correc-
tion to the primordial power spectrum, whose conclusive expression is detailed in
Eq. (6.113). Notably, this modified form diverges from the scale-invariant outcome
of standard cosmology due to the presence of the factor ∝ k−3.

While the magnitude of this modification remains inherently small, corrobo-
rated by the presence of the perturbation parameter, it serves as a pivotal initial
step towards aligning our proposal with current observations, as presented by the
PLANCK collaboration [114]. Thus, this prediction stands as probably the major
phenomenological result of the present thesis: via the proposed B-O framework for
canonical quantum gravity and matter, we are able to derive subtle yet consequential
quantum-gravitational corrections to QFT within a low-energy perturbative regime.
Notably, these corrections predict non-trivial alterations at the cosmological level,
underscoring the significance of our findings.

In the Bohmian approach of Chapter 7 we have demonstrated, through a per-
turbative scheme in ℏ, how to account for modified trajectories of the scale factor
of the universe in a de Sitter phase. In this setting, the Gaussian fluid time con-
struction detailed in Chapter 4 has not been implemented, as the dBB approach
relies solely on the label time. The modification induced by the quantum potential
consequently alters the frequency associated with the time-dependent harmonic
oscillator formalism describing the inflaton perturbations. Regarding our attention
to the first correction of order ℏ2, we have observed that the associated power
spectrum loses its scale-invariance property: the standard result undergoes a small
correction, polynomial in the wave number k, due to the effects of the scale factor’s
modified trajectory.

The present results shed light on the analysis of the fast matter subsystem’s
evolution in the B-O scheme, considering also the QG-induced effects at the next
order. An interesting follow-up of the present investigation would be to include a
fast matter backreaction as a mean effect at the HJ level in this formulation, which
is intrinsically different from [43] both for the hypotheses implemented and time
definition. We remind that the presence of the matter backreaction in [43] is actually
removed when one properly rescales also the gravitational wave functional with the
geometric phase, as shown in Sec. 3.2.

Actually, we can sort the future perspectives of this thesis into three main lines:

• One could first aim to better characterize cosmological implications of the
developed model. More specifically, we could refine the computation for the
primordial spectrum of perturbations when implementing both the Gaussian
reference fluid clock and the B-O-extended treatment, as in Section 6.4, for
example in a slow-rolling approximation. This aspect could lead to non-
factorizable modifications to the inflaton evolution and so a modified power
spectrum, as in the pure de Sitter phase. A possible inclusion of the matter
backreaction at the HJ level, compatible with such scheme, is still up for
investigation. In the minisuperspace context, another interesting point of
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development concerns the physics of black holes: indeed the quantum grav-
itational corrections could play a relevant role in the so-called evaporation
of black holes, i.e. the Hawking radiation [88]. This idea requires to fully
understand a minisuperspace treatment of black holes systems in the WKB
picture; in this sense, one should develop a novel formalism in order to search
for the appropriate formulations of these settings.

• A relevant issue to investigate is the domain of convergence of the presented
WKB expansion when the B-O separation is taken into account. Indeed,
the first-order QG corrections to the matter dynamics here computed are
intrinsically small, in the sense that they are comparable with the small
chosen expansion parameter, see also the discussion in Sec. 5.3. However, it is
legitimate to ask ourselves what such model would predict at the next-to-next
order and so on, with an expansion of both the gravitational and matter
components. A more rigorous study of the domain of convergence of such
formalism is needed in order to answer this question.

• Finally, we stress that until now we have used a functional approach by con-
sidering the WDW equation, which corresponds to a field theoretic description
(see Sec. 2.1), within a first quantization formalism i.e. with a functional
Schrödinger representation (see also Sec. 3.5). In order to make this model
more clearly compatible with the full QFT treatment, one could switch to a
formalism more suitable for second quantization methods. A clear example
is the path integral approach: in this case, we should provide a direct corre-
spondence between the functional Schrödinger evolution here obtained and the
emerging second-quantized theory for gravity and matter, possibly through a
saddle-point approximation for the QG sector.

These outlooks are of relevance in the current landscape of QG and call for
further investigations. We believe that the present study marks a foundation for
future developments of the quantum gravity-matter problem and how a modified
dynamics emerges in Born-Oppenheimer-like treatments, particularly in extending
the WKB expansion to subsequent orders.
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Appendix A

The Lewis-Riesenfeld
Invariant Method

We here present a brief overview of the Lewis–Riesenfeld invariant method used
in Sec. 5.3 to compute an explicit solution in the cosmological setting of slow-roll
inflation. Such method provides an algorithm for computing solutions for a time-
dependent quantum system when a specific invariant can be identified, therefore it
can be used for the time-dependent harmonic oscillator in (5.21).

Generally speaking, given a system with a generic time-dependent Hamiltonian
H(t), the determination of a Hermitian invariant I (also called Lewis-Riesenfeld
invariant) associated with Ĥ(t) gives an eigenstate basis that can be used to obtain the
solution’s wave function. Here, we show the application of this method for the time-
dependent quantum harmonic oscillator, for which the method was first developed.

Starting from the time-dependent harmonic Hamiltonian (5.21), one can check
that the following is an invariant of evolution:

I = 1
2

[
v2

k
ρ2
k

+ (ρkπvk − ρ̇kvk)2
]

(A.1)

where ρk satisfies the so-called Ermakov equation

ρ̈k + ω2
kρk = 1

ρ3
k

(A.2)

and we recall that the time-dependence is inside ωk(η), as is the case in Sec. 5.3
from the definition (5.12). Explicitly, one can show that the Ermakov equation is
solved by the following function

ρk = γ1

[
A2 (ηk sin(ηk) + cos(ηk))2

η2k3 +B2 (ηk cos(ηk)− sin(ηk))2

η2k3

+γ2
√
A2B2 − 1 (ηk sin(ηk) + cos(ηk))(ηk cos(ηk)− sin(ηk))

η2k3

] 1
2

(A.3)

where A, B, and γ1 = γ2 = ±1 are constants to be appropriately chosen in the
cosmological scenario.
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We now turn to the computation of the time-dependent oscillator states. From
(A.3) one can find the eigenstates of (A.1), which are described for each mode by a
quantum index n:

Î ϕn,k(η, vk) = λn ϕn,k(η, vk) . (A.4)

The expression of such eigenstates can be determined by applying the following
unitary transformation:

exp
(
− i

2ℏ
ρ̇k
ρk
v2

k

)
ϕn,k = 1

ρ
1/2
k

ϕ̃n,k , (A.5)

that transforms the time-dependent harmonic oscillator problem (5.21) into(
−ℏ

2∂
2
vk

+ vk
2

)
ϕ̃n,k = λnϕ̃n,k (A.6)

being vk = vk/ρk. Now it is easy to solve this equation, that is a standard (time-
independent) quantum harmonic oscillator: the eigenvalues are

λn = ℏ
(
n+ 1

2

)
, (A.7)

coinciding with those of the invariant I (see (A.4)), with no explicit dependence on
the index mode k. The corresponding eigenstates ϕ̃n,k must be rescaled back from
(A.5) to give those of the invariant I in (A.4), giving

ϕn,k(η, vk) =
[ 1

(πℏ)1/22nn! ρk(η)

]1/2
exp

[
i

2ℏ

(
ρ̇k(η)
ρk(η) + i

ρ2
k(η)

)
v2

k

]

×Hermiten
( 1
ℏ1/2

vk
ρk(t)

)
.

(A.8)

where we have the Hermite polynomials. The state basis (A.8) allows one to write
the solution for the starting time-dependent harmonic oscillator of our cosmological
setting (5.21) as

χ
(0)
k (η, vk) =

∑
n

cn,ke
iδn,k(η)ϕn,k(η, vk), (A.9)

δn,k(η) = −
(
n+ 1

2

)∫
dη

1
ρ2
k(η)

, (A.10)

where cn,k are some suitable coefficients fixed by the system’s boundary conditions.
We thus obtain the wave function describing the evolution of the time-dependent
harmonic oscillator system from Eq. (A.9).
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Appendix B

Proof of the compatibility of the
Gaussian ansatz

Here we wish to prove that the Gaussian ansatz (6.100) and its associated
normalization conditions are compatible with the matter equation (6.95). Therefore,
we look for a solution of the remaining Eqs. (6.103) and (6.104) of Sec. 6.4.1.

We start with (6.103), which is readily solved by substituting (6.105) and (6.108):
it now reduces to an equation in φ

(0)
k whose solution reads

φ
(0)
k (η) = −1

6k
3η3. (B.1)

The solution for (6.104) is less immediate. We can rewrite it as a set of two
equations, one for each of the two polarization states, that we here label v+

k and v×
k ;

we recall the two polarizations are independent in the FLRW setting. Let us split
both Gk and φ

(1)
k as

Gk(η, vk) = Gk,+(η, v+
k ) +Gk,×(η, v×

k ), (B.2)

φ
(1)
k (η, vk) = φ

(1)
k,+(η, v+

k ) + φ
(1)
k,×(η, v×

k ). (B.3)

Clearly, this opens the question of how the graviton terms in (6.104) should be
distributed between the two. A reasonable choice is an even splitting so that both
polarization states act identically, i.e. they obey the same equation. We stress
that although Gk and φ

(1)
k are real, Eq. (6.104) is complex-valued and so are its

corresponding sectors for each polarization. Therefore, recalling the solutions for
Nk, Ω(0)

k and Ω(1)
k (see (6.108), (6.105) and (6.106)) in the super-Hubble limit, we

obtain from the real and imaginary parts of Eq. (6.104) the following:

∂ηGk,λ = −1
6k

3η5 − 1
2∂

2
vλ

k
φ

(1)
k,λ −

vλk
η
∂vλ

k
φ

(1)
k,λ, (B.4)

−∂ηφ(1)
k,λ = 1

4c1η
2 − 1

2∂
2
vλ

k
Gk,λ −

vλk
η
∂vλ

k
Gk,λ , (B.5)

which clearly describe both polarizations via the index λ. Here, the last terms have
been rewritten considering the super-Hubble limit of the expression in (6.94), namely

ik3η3 − 1
η3
(

1
η2 + k2

) → −1
η

(B.6)
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whose imaginary part is infinitesimal for η → 0−, so that the dominant contribution
comes from the (divergent) real part.

Let us look for solutions of (B.5) and (B.4) in the form

φ
(1)
k,λ(η, vλk) = φ̄

(1)
k,λ(η) exp

[
−1

2σφ(vλk)2
]
, (B.7)

Gk,λ(η, vλk) = Ḡk,λ(η) exp
[
−1

2σG(η)(vλk)2
]
. (B.8)

It is important to stress that σφ is a free parameter, while the Gaussian width σG is
function of the conformal time η. Recalling the separation (B.2), we note that up to
higher order terms

1 + H 2
0

M
Gk =

(
1 + H 2

0
M

Gk,+

)(
1 + H 2

0
M

Gk,×

)
(B.9)

and since both polarizations satisfy the same equations (B.4) and (B.5), then Gk,+
and Gk,× must have the same functional form.

Therefore, we can now impose the normalization condition (6.109) on Gk, recall-
ing (6.105) and (6.106): ∫

dvλk Gk,λ =
√

c1
4k3 . (B.10)

The factor Ḡ(η) is immediately determined as

Ḡ(η) =

√
c1 σG(η)

8πk3 . (B.11)

Now plugging (B.7)-(B.8) into (B.4)-(B.5) we obtain ordinary differential equations
which, neglecting all terms quadratic in the vλk, give:

d

dη

√
σG =

√
8πk3

(1
2σφφ̄−

√
c1
6 k3η5

)
, (B.12)

− d

dη
φ̄ =

√
c1 σ3

G

8πk3 + 1
4c1η

2. (B.13)

We can determine an explicit solution in our limit of interest η → 0− by performing
a series expansion in η:

σG(η) = A0 +A1η +O(η2), (B.14)
φ̄(η) = B0 +B1η +O(η2), (B.15)

with A0, A1, B0, B1 constants depending on the initial conditions. Substituting into
Eqs. (B.12) and (B.13) and neglecting all terms of O

(
η2) we find

A1 =

√
8πk3A0
c1

σφB0 , (B.16)

B1 = −
√
c1
8π

(
A0
k

)3/2
. (B.17)



149

The (approximate) functions are therefore

σG(η) = A0 +

√
8πk3A0
c1

σφB0 η , (B.18)

φ̄(η) = B0 −
√
c1
8π

(
A0
k3

)3/2
η , (B.19)

where A0, B0 and σφ must be positive to obtain well-defined solutions. It is clear
from (B.14), (B.15) that A0 = σG(0) and B0 = φ̄(0), i.e. they represent the initial
conditions of the system.

To conclude, we are now able to insert the solutions (B.18)-(B.19) and (B.11)
into the ansatzs (B.7) and (B.8) and compute all the terms relevant for the Gaussian
ansatz (6.100) in the super-Hubble limit. In other words, we have shown that a
solution of (6.95) exists in the form of a normalized Gaussian (6.100), as implemented
in Sec. 6.4.1 to explicitly compute the modified power spectrum.
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