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For the wanderers in joyful pursuit,
treading through the night and sorrow,

there’s a warmth along the route
holding off them looking backward.

A colourful quilt and patchy,
made of voices and cherished eyes,

To release the heart from aching
and to comfort ’til sunrise.

Without mine, where would be I?
Without mine, would any of this

make sense? Would it exist?
Mere reflection of their light.
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Foreword

I loafe and invite my soul,
I lean and loafe at my ease observing a spear of summer grass.
..
Creeds and schools in abeyance,
Retiring back a while sufficed at what they are, but never
forgotten,
I harbor for good or bad, I permit to speak at every hazard,
Nature without check with original energy.

Leaves of Grass, Walt Whitman

In the last thirty years, after their first definition and rigorous formulation, Quantum Walks
have been adopted as a general model for coherent propagation phenomena, featuring a plethora of
fruitful applications. This very simple and general theoretical platform has been found suitable for
many tasks, such as the simulation of quantum and coherent systems, even biological ones, or the
development of quantum algorithms; moreover, they are generally useful for quantum information
protocols. The great success of the Quantum Walk model as a tool for the analysis of physical
systems or for the design of efficient protocols resides in the general underlying idea that a dynamical
study of a system can deliver more information about it than a static measurement of its features,
an idea that has been spreading through all fields of research, inside and outside of physics.
The present thesis revolves around this main idea: we can use dynamical methods both to study
and control quantum systems, and some instances of this framework are exhibited, with a particular
focus on optical experimental implementations. In Fig. 1, an outlook of the topics discussed in this
manuscript is reported.

In Chapter 1, I provide a general introduction to the concepts and frameworks that are ad-
dressed throughout the rest of the thesis. In particular, I review some of the fundamental ideas
underlying quantum information and some selected topics in quantum optics, in order to provide a
clear context for the following theoretical and experimental discussion. In addition to that, I also
illustrate the problem of Quantum State Discrimination in a general fashion, concluding with a thor-
ough overview of studies regarding ordered and disordered Quantum Walks. The latter represent
the core of Chapter 2: I present the p-diluted model, a very general disorder model for Quantum
Walks, and an experimental platform capable of reproducing such inhomogeneous evolution. I re-
port on two works I participated in with theoretical contributions, that fully display the ductility
of Quantum Walk model: in the first one, a disordered Quantum Walk is employed as a simulator
for subdiffusive propagation regimes and experimentally realized in an optical framework. In the
second, we show that disordered Quantum Walks are a useful model to describe how collection of
information regarding the parameters of a network is influenced by the presence of fluctuations.
A natural evolution of this approach is an investigation on how genuine quantum traits, such as
quantum correlations, behave when they evolve in a disordered medium. In Chapter 3, this problem
is addressed, reporting on an experiment dealing with the behavior of indistinguishable photons sub-
ject to an inhomogeneous Quantum Walk evolution. This experiment was realized by means of the
platform discussed in Chapter 2 and it revealed that there exist some inhomogeneity patterns that
enhance, on a local and global scale, quantum correlations emerging at the output of the evolution.

vii
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Figure 1: Outlook of the thesis.The Quantum Walk model has directly represented a pivotal concept for
almost half of my PhD course. Indeed, the general idea of coherent propagation permeates the entirety of the
three years work we report in this manuscript, as a practical approach to quantum information tasks as well
as a conceptual framework.

These works dealt with the simulation and analysis of dynamical phenomena through disordered
Quantum Walks. However, as mentioned above, there are also contexts in which Quantum Walks,
or rather dynamical approaches, are useful for the implementation of quantum information tasks.
Indeed, I show how the employment of a coherent dynamic can be useful for Quantum State Dis-
crimination in Chapter 4: specifically, a protocol is discussed that exploits a network-like quantum
receiver to process a quantum system and discriminate among its possible states, by mapping
them into the amount of time the system travels back and forth through the network before being
detected. This approach is very general, so that, after being experimentally implemented for a
two-dimensional system (photonic polarization), it is extended to a four dimensional quantum sys-
tem, represented by polarization and energy of single photons. In continuity with earlier attempts,
that employed coherent states in order to apply dynamical Quantum State Discrimination methods
relying on sequential measurements and machine learning, we demonstrate that harnessing dynam-
ical processing of information allows to achieve optimal performances while crucially simplifying
practical implementation. The last chapter of this thesis, Chapter 5, is devolved to the description
of an attempt to apply a dynamical approach to the problem of Entanglement Distribution: the
design of efficient and noise-robust ways to distribute entanglement among remote nodes is one of
the most important issues towards the practical employment of quantum technologies. I report on
the generalization of a protocol I devised for Entanglement Distribution via Separable Systems that
relies on the interaction of the nodes of a network with an always separable carrier system. This
carrier consists of a walker travelling from place to place, interacting and tying quantum correlations
among the remote nodes, weaving over the network the entanglement pattern we require. And, at
the end of the process, we can always measure out this "quantum spool", and eventually obtain an
entangled network, similarly to the way you are left with information after measuring out a walker,
as in the previous Chapters.
In conclusion, this thesis deals with a multiplicity of diverse topics, spanning from quantum sim-
ulation to quantum entanglement distribution, from the study of the behavior of stirred quantum



systems to the attempt to drive and control them.
In order to help recognizing my own contribution to the projects reported in this manuscript, a
brief "personal acknowledgements" paragraph concludes the discussion of each different one.
This is necessary because many of the different works that are reported here were the result of a
synergy with different scientific groups, each of them with its own approaches and its own ansatz
regarding the issues we faced. Indeed, quantum mechanics can feature a variety of interpretations
even when dealing with applications. I try to pull a thread out of this apparently inhomogeneous
bundle, recognizing the presence of a common denominator, being the ubiquitous quest for dynam-
ical theoretical and experimental approaches, and showcasing the capabilities of optics as a flexible
and powerful experimental framework for fundamental investigation as well as for technological
applications.





Chapter 1

Introduction

In order to allow clear access to the contents of this thesis, we can not avoid providing a general
introduction to the concepts and tools at the foundation of the findings we deliver in the following.
This Chapter is devolved to a general review of selected topics in quantum mechanics, quantum
information and quantum optics, as well as an introduction to the problem of Quantum State
Discrimination and the Quantum Walk model.

1.1 Quantum Mechanics for Quantum Information

Quantum Information theory and applications intrinsically rely on the basic features of quantum
description of reality. Indeed, genuine quantum features, that distinguish systems that need a
quantum mechanical description from classical ones, represent the reason behind the enormous
amount of effort and resources that have been funneled in Quantum Technologies as of recent years.
Exotic quantum phenomena, such as quantum superposition, quantum entanglement and general
quantum correlation, have been found amenable for technological exploitation, way before they were
fully understood. In this section, we succinctly review some of these concepts, in order to establish
the preliminary ideas that yield the following theoretical and experimental results we report.

1.1.1 State of a quantum system

Pure states

The first postulate of Quantum Mechanics states that any isolated physical system is represented
and completely described by a unitary vector living in a Hilbert space [1]. In general, any physical
object can be treated as a quantum system, even if there are systems that can not be effectively
described in a classical way, because that would not frame all of their features. In an optical
framework, single photons represent such type of object, in contrast with coherent states of light,
that we will describe in the next section. The standard approach to quantum mechanics describes a
quantum system in a pure state by a wave function, that can be addressed as a complex unit vector
|ψ⟩, in the Dirac’s bra-ket notation, living in a Hilbert space H of some dimension. If we consider
the system to be closed, its state in time |ψ(t)⟩ evolves according to Schrödinger’s equation:

iℏ
d |ψ(t)⟩
dt

= H |ψ(t)⟩ (1.1)

1



1.1. Quantum Mechanics for Quantum Information

where ℏ is the reduced Planck’s constant and H is an Hermitian operator that acts as the generator
of time evolution, i.e. the Hamiltonian of the system. If we consider the initial state of the system
at t0 to be |ψ(t0)⟩, we can solve the equation above and write down the evolution of |ψ(t)⟩ as:

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ (1.2)

where, considering a time independent H, U(t, t0) = e−
i
ℏH(t−t0).

The second postulate of quantum theory states that any physical observable can be described in
terms of a self-adjoint operator O of rank D acting on the Hilbert space HD of the same dimension.
According to the third postulate, a measurement of this observable will yield one of the eigenvalues
of the associated operator as an outcome. We have {|k⟩}D−1

k=0 the set of eigenstates of O, and {ok}
the corresponding eigenvalues, so that O |k⟩ = ok |k⟩. We can expand any state vector in HD over
such basis: |ψ(t)⟩ =∑k ck(t) |k⟩ with

∑
k |ck(t)|2 = 1, since the state must be correctly normalized

at any evolution time t. The probability of obtaining ok as outcome of a measurement of the
observable O at time t, is given by the Born rule:

pk(t) = | ⟨k|ψ(t)⟩ |2 = |ck(t)|2 (1.3)

with normalization condition
∑

k pk(t) = 1. This last equation exemplifies the probabilistic nature
of quantum theory.

Mixed states

In the previous section, we have described systems in a pure state, namely systems for which
complete knowledge on the state is available and is encoded in the corresponding wave function
vector. Nonetheless, in all practical situations and experiments, information about the system under
observation is not complete and the state is not perfectly determined. In general, our knowledge of
the state of the system is limited to a set of possible states, taken from a statistical ensemble :

{|ψ1⟩ , |ψ2⟩ , ..., |ψN ⟩} ∈ H with {p1, p2, ..., pN} (1.4)

where
∑

k pk = 1 and {|ψ⟩k} are pure states. This ensemble describes uncertainties in the prepara-
tion process of the state, which is always not under perfect control. In this case, the probabilities
pk associated to each of the states of the statistical ensemble represent the classical "epistemic"
ignorance and lack of information about the state of the system, rather than the intrinsic proba-
bilistic nature of quantum theory. A state featured by such uncertainty is called a mixed state. The
most suitable way to describe such state of a system is employing the density operator (matrix)
formalism. The wavefunction description is generalized to account for classical ignorance by means
of the density operator:

ρ =

N∑
i=1

pi |ψi⟩ ⟨ψi| (1.5)

that for a pure state |ψ⟩ reduces to ρ = |ψ⟩ ⟨ψ|, which is the projector on the |ψ⟩ vector, ρ2 = ρ.
The density operator ρ, or density matrix, features the following properties:

• ρ is Hermitian ρ = ρ+

2 Alessandro Laneve



1.1. Quantum Mechanics for Quantum Information

• ρ has unit trace Tr(ρ) = 1

• ρ is a positive operator ⟨ψ| ρ |ψ⟩ ≥ 0, ∀ |ψ⟩ ∈ H

It is possible to determine if a state is pure by computing its purity Tr(ρ2): if Tr(ρ2) = 1 the state
is pure, while if Tr(ρ2) < 1 the state is mixed. The diagonal elements of the density matrix, with
respect to a given basis {|k⟩}, ρkk = ⟨k| ρ |k⟩, are called populations of the basis states, while the
off-diagonals terms ρkl = ⟨k| ρ |l⟩ represent the interference terms between the states |k⟩ and |l⟩,
and we will refer to them as coherences. We can now define the dynamics of a quantum system in
terms of the density matrix. The Schrödinger equation reads:

iℏ
dρ(t)

dt
= [H, ρ(t)] (1.6)

and the solution, given ρ(t0), is:

ρ(t) = U(t, t0)ρ(t0)U(t, t0)
+. (1.7)

After this general definition of the state of a system, we can proceed with a generalized definition
of the measurement process for quantum systems.

1.1.2 General measurement theory

In case we are performing the act of measuring a property represented by an observable O, the
probability of having the outcome ok, where ok is an eigenvalue of O, is given by:

p(ok) = Tr(Pkρ) (1.8)

where Pk = |k⟩⟨k| is the projection operator on the subspace spanned by the eigenvector |k⟩ with
eigenvalue ok. After we perform such a measurement, the state of the system has changed:

ρ′ =
PkρPk
Tr(Pkρ)

. (1.9)

Using again the spectral decomposition of A:

O =
∑
k

okPk. (1.10)

we can write the average value (the expectation value) of the measurement of O in terms of the
density matrix:

⟨O⟩ = Tr(Oρ) (1.11)

The system experiences a completely different dynamic if it is measured, featuring an irreversible
jump towards the state ρ′, in contrast to the unitary and reversible evolution driven by U . Such
class of measurements is known as a Von Neumann measurement or projective measurement. In
general, a measurement is described by a set of N operators {Mk}Nk=1 acting on the state ρ with some
outcomes mk

N
k=1 ∈ R and corresponding probabilities pk = Tr(ρMkM

+
k ). These operators must

obey completeness relation
∑

kMkM
+
k = 1 and produce a state after measurement ρ′ = MkρM

+
k

Tr(ρMkM
+
K)

Alessandro Laneve 3



1.1. Quantum Mechanics for Quantum Information

We can also devise more general measurement schemes, called Positive Operator-Valued Measures
(POVMs), which are often used to describe situations where we are not interested in the state of
the system after the measurement. A POVM measurement is described by a set of positive definite
operators Ei, i = 1, . . . , n such that

n∑
i

Ei = 1 (1.12)

featuring corresponding outcomes ei, i = 1, . . . , n. The probability of having a given ej as the result
of the test is

pj = Tr(Ejρ) (1.13)

It can be shown that a POVM can be reproduced by a unitary transformation (possibly in an
extended Hilbert space) followed by a projective measurement [1].

1.1.3 Two level system: the quantum bit

The simplest quantum system we can think of is one that can be represented by a two-dimensional
state space H. This kind of system represents the most basic unit in quantum information, the
fundamental building block for more complex systems, and it is called quantum bit or qubit, in
analogy with the computational unit in classical information theory, namely the bit. We choose
a basis {|0⟩ , |1⟩} in the Hilbert space H, known as the computational basis, in analogy with the
two possibile values 0 and 1 of a classical bit. On the other hand, in contrast with the classical
bit, a qubit can occupy a much wider variety of states. The general pure state of a qubit can be
represented by the vector

|ψ⟩ = α |0⟩+ β |1⟩ where |α|2 + |β|2 = 1. (1.14)

Observables measured on this kind of systems can be expressed using the Pauli matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
(1.15)

which together with the two dimensional identity matrix I form a complete basis of Hermitian
operators over H. The orthonormal states of the computational basis {|0⟩ , |1⟩} are chosen as the
eigenvectors of the σz matrix, |0⟩ = (1, 0) and |1⟩ = (0, 1), while a specific notation is used for the
eigenstates of the other Pauli matrices:

• The diagonal basis, eigenvectors of σx: |+⟩ = |0⟩+|1⟩√
2

and |−⟩ = |0⟩−|1⟩√
2

,

• The circular basis (right and left states), eigenvectors of σy: |R⟩ = |0⟩−i|1⟩√
2

and |L⟩ = |0⟩+i|1⟩√
2

.

These three bases together form what is called mutually unbiased bases (MUB), from the fact that
if the state of the qubit corresponds to one of the vectors belonging to one of these bases, then we
have no knowledge about the outcome of a measurement performed considering one of the other two
bases. Since I, σx, σy, σz can be regarded as a basis for the qubit operators, we can also represent
any qubit density matrix as

ρ =
1

2
(I+ r⃗ · σ⃗) = I

2
+ rxσx + ryσy + rzσz (1.16)

4 Alessandro Laneve



1.1. Quantum Mechanics for Quantum Information

with |r⃗| ≤ 1 and where σ⃗ = (σx, σy, σz) is the vector with components given by the Pauli matrices.
These states can be identified, using the vector r⃗, by points inside the Bloch sphere, depicted in
Fig. 1.1. In this way the distance from the surface indicates the degree of purity of the state, the
center of the sphere being the completely mixed state.

|𝜓⟩

|0⟩

|1⟩
|+⟩

|−⟩

|𝑅⟩|𝐿⟩
𝜃

𝜙

𝑥

𝑦

𝑧

Figure 1.1: Bloch sphere representation of a qubit state. The MUB define the three axes of a sphere
with radius R = 1, corresponding to the purity of the basis states. The general state |ψ⟩ of a qubit can be
described as a point on the surface of the sphere, if it is a pure state, or in its inside, if it is a mixed state ρ.
The corresponding r⃗ can be identified in terms of the two angles {θ, ϕ}: r⃗ = {r cosϕ cos θ, r sinϕ cos θ, r sin θ}.

1.1.4 Entanglement

If we leave single qubits in favour of composite systems, some of the most striking quantum features
arise, such as quantum entanglement. Introduced by Einstein, Podolsky and Rosen in the EPR
paper [2], nonlocal entanglement is now regarded as a fundamental concept of quantum theory and
a fundamental resource for quantum protocols: from dense coding [3], to quantum cryptography [4]
and quantum teleportation [5]. In the following, we present a brief description of entanglement and
its properties.

Separable and entangled systems

The state of a system composed of N subsystems can be described as a vector in a total Hilbert
space H defined as the tensor product of the Hilbert spaces H1, . . . ,HN corresponding to each
subsystem, H = ⊗N

i=1Hi. We consider a composite system of N qubits, thus each Hi has dimension
2 and features an orthogonal basis {|e⟩i}1e=0. We can define an orthogonal basis for the total
H so that we can express any vector in H using the tensor product basis given by the vectors
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1.1. Quantum Mechanics for Quantum Information

|i1, j2, . . . , kN ⟩ = |i⟩1 ⊗ |j⟩2 ⊗ · · · ⊗ |k⟩n:

|ψ⟩ =
∑
i,j,...,k

αi,j,...,k |i1, i2, . . . , in⟩ where
∑
i,j,...,k

|αi,j,...,k|2 = 1. (1.17)

where all the indices can have values in {0, 1}. We can also express any density operator ρ using
the same basis.

The definition of entanglement can be given by defining which states are not entangled, the
so-called separable states. We call a state ρ ∈ H1 ⊗ . . . ⊗HN separable if it can be expressed as a
convex combination of tensor product states, i.e.

ρ =
∑
i

piρ
i
1 ⊗ ρi2 ⊗ . . .⊗ ρiN (1.18)

for a set of states {ρi1, . . . , ρiN}i and corresponding probabilities {pi}, satisfying
∑

i pi = 1. Every
state which is not separable is entangled.

Partial trace

It is possible to get a description of the individual subsystems of a multipartite system by performing
an operation called partial trace, which is defined on the density operator representing the state of
the whole system. If we consider a composite system described by the state ρ, the partial trace on
the i-th subsystem is defined as:

ρ′ = Tri(ρ) =
∑
k

⟨k|i ρ |k⟩i (1.19)

In this way, we are discarding information regarding the i-th subsystem, and we get the reduced
state ρ′ that describes the physical properties of the remaining ones, as an observer who has no
knowledge about the state of subsystem i would see it.

This destructive operation generally maps pure quantum states into mixed ones, unless the
original state was separable. The operation of partial tracing is particularly disruptive for entangled
states: for some states the resulting reduced density matrix is the completely mixed one. These
states are called maximally entangled, and play a fundamental role in quantum information and
communication.

Bell states

In the simple case of a bipartite system, we can describe its state in terms of a vector in H1 ⊗H2,
where subspaces are two dimensional. Any pure state of the system can be written as: |ψ⟩ =∑1

i,j=0 αi,j |ij⟩ with
∑

i,j

∣∣∣α1
i,j=0

∣∣∣2 = 1.

Maximally entangled bipartite states, are called Bell or EPR states, and are defined as

∣∣ϕ±〉 = 1√
2
(|00⟩ ± |11⟩)∣∣ψ±〉 = 1√

2
(|01⟩ ± |10⟩).

(1.20)
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These states are an orthonormal basis for the global space H1 ⊗H2.

Entanglement characterization

We give some preliminary definitions that are required for a consistent description of entanglement
characterization. In the case of a multipartite system shared by multiple parties, a quantum in-
formation protocol based on local operations of remote parties, the outcome of which can be only
transmitted between the parties through a classical channel is said to rely on Local Operations
and Classical Communication (LOCC). We refer to Ref. [6] for a detailed definition of LOCC.
Given a multipartite system described by the density matrix ρ, we define the partial transpose
with respect to a given bipartition of the system as:

ρTP1|P2 := (IP1 ⊗ TP2)ρ =
∑
i,j,k,l

pk,li,j |i⟩P1
⟨j| ⊗ (|k⟩P2

⟨l|)T =
∑
i,j,k,l

pk,li,j |i⟩P1
⟨j| ⊗ |l⟩P2

⟨k| . (1.21)

The detection and quantification of entanglement in a multipartite system is in general a difficult
task. Several different entanglement characterization methods exist [7, 8] in order to witness and
quantify entanglement. In general, entanglement measures rely on a function E(ρ) called entan-
glement monotone [9]. We define an entanglement monotone as a quantity E(ρ) computed on the
state ρ that satisfies the following properties:

• Convexity, i.e. E(
∑

i piρi) ≤
∑

i piE(ρi).

• E(ρ) = 0 when ρ is a separable state.

• E(ρ) is invariant under local unitaries.

• E(ρ) is non-increasing under LOCC.

Among the various entanglement monotones we consider the negativity of entanglement N , as
defined in [10], that we will extensively use in Chapter 5. This quantity is based on the trace
norm of the partial transpose ρTA|B of a mixed state, with respect to a bipartition A-B of the
system, whose evaluation is completely straightforward using standard linear algebra. Negativity
essentially measures the degree to which ρTA|B fails to be positive, and therefore it can be regarded
as a quantitative version of Peres’ criterion for separability [11]. Given the trace norm of ρTA :
||ρTA|B || = Tr(ρTA|B ), we define the negativity with respect to a bipartition A|B as:

NA|B(ρ) =
||ρTA|B || − 1

2
(1.22)

which corresponds to the absolute value of the sum of negative eigenvalues of ρTA|B . In [10], it
is demonstrated that negativity is an entanglement monotone, hence it is suitable for quantifying
entanglement.

1.2 Quantum Optics

In this section, we review some of the main concepts in quantum optics that are useful for access to
the content of this thesis. We provide a special focus on the quantum description of optical elements
and different sources of quantum light, such as non-linear crystals and Quantum Dots.
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1.2.1 Photonic states

It is worth reporting the description of quantum states of photons, since we are often going to need
a particle description of light in the following, as opposed to coherent states, which also have a wide
applicability in quantum information.

Second quantization formalism A suitable formalism for the description of quantum photonic
states is the second quantization, that we briefly review here. The second quantization formalism is
based on the Heisenberg picture of the dynamics, hence we describe the system evolution in terms
of operators rather than states. We define annihilation and creation operators, indicated by a

k⃗

and a†
k⃗
, respectively, in order to describe the dynamics of a photon state corresponding to a light

oscillation in the mode k⃗, that represents all the photonic degrees of freedom [12]. These operators
correspond to photons featuring energy ω

k⃗
and follow the commutation rules:

[a
k⃗i
, a
k⃗j
] = [a†

k⃗i
, a†
k⃗j
] = 0 [a

k⃗i
, a†
k⃗j
] = δij (1.23)

where k⃗i and k⃗j are two modes of the field, that are deemed as independent for i ̸= j. The
Hamiltonian of a free electromagnetic field has the form of a quantum harmonic oscillator:

H =
∑
k⃗

ω
k⃗
(a†
k⃗
a
k⃗
+

1

2
). (1.24)

and can be written as: H =
∑

k⃗
ω
k⃗
(n
k⃗
+ 1

2), where the number operator n
k⃗

along the mode k⃗ is
defined by:

n
k⃗
= a†

k⃗
a
k⃗

(1.25)

and represents the observable measuring the number of photons occupying the mode it refers to.
The eigenstates of this operator, i.e. the discrete states with fixed number of photons are called the
Fock states.

Annihilation and creation operators act on Fock states by respectively destroying and creating
a photon along a given mode k⃗, according to the relations:

a
k⃗

∣∣N
k⃗

〉
=
√
N
k⃗

∣∣N
k⃗
− 1
〉

a†
k⃗

∣∣N
k⃗

〉
=
√
N
k⃗
+ 1

∣∣N
k⃗
+ 1
〉

(1.26)

These equalities describe the entire Fock space that can be built from the vacuum state |0⟩ through
the iterative application of the creation operators. Operators corresponding to different modes
commute, so that the general Fock state featuring Nki photons along modes k1, . . . , kd can be
written as ∣∣∣Nk⃗1

, . . . , N
k⃗d

〉
=

d∏
i=1

a
k⃗i
|0⟩ . (1.27)

This formalism frames collective photon states, highlighting the fundamental indistinguishability of
photons occupying the same mode k⃗i.
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Coherent states

In real-world scenarios, it is very hard to produce light states with a fixed number of photons.
In general, we globally have a superposition of states featuring different photon numbers. A very
important class of this kind of states is coherent states: for instance, laser light can be generally
described to be in a coherent state. These states are the eigenstates of the annihilation operator a
in a given mode, and they can be written as:

|α⟩ = e−
|α|2
2

∞∑
N=0

αN√
N !

|N⟩ , (1.28)

where |α| ∈ R is called displacement, and is tightly related to the expectation value of the photon
number of the system:

⟨n⟩ = ⟨α|a†a|α⟩ = |α|2 (1.29)

The variance ∆n2 of this expected value is again |α|2; indeed, the underlying photon distribution
is a Poissonian one, which represents a distinctive trait of a system in a coherent state. It can be
explicitly shown that the probability of having a given photon number n is

P (n) = |⟨n|α⟩|2 = e−⟨n⟩ ⟨n⟩n
n!

(1.30)

As we will systematically discuss in Subsec. 1.2.4, photon number statistics yield information re-
garding the nature of light under analysis. Genuine quantum light, lacking any classical description,
features sub-Poissonian behavior of the photon number distribution. Indeed, for many quantum
information tasks, such as secure Quantum Key Distribution, entangled quantum states are often
required, featuring a fixed number of photons [4, 13, 14]. However, coherent states can be employed
instead of actual single photons in protocols that do not necessarily require more than one particle
(such as "prepare and measure" QKD schemes [15, 16]).

1.2.2 Quantum description of a Beam-Splitter

A Beam Splitter (BS) is an optical element that separates an incoming electromagnetic field into
two output beams, by transmitting and reflecting two portions of the original light. In case quantum
states of light are involved, such as for a single photon, a BS has the capability to convert the input
state into a linear superposition of the output states. A BS generally features two input and two
output ports. For a quantum treatment, we use the second quantization description. The reflection
and transmission coefficients R, T ∈ C satisfy the classical relations:

|R|2 + |T |2 = 1, RT ∗ + TR∗ = 0. (1.31)

The operator corresponding to the action of a BS is given by (we consider the transmittance as the
off-diagonal term):

B̂S =

[
R T

T R

]
. (1.32)
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Figure 1.2: Representation of a lossless Beam Splitter. The quantum scheme of a Beam Splitter,
with destruction operators associated with input and output fields.

The relations between the input and output destruction operators for a BS are:

â3 = Râ1 + T â2, (1.33)

â4 = T â1 +Râ2. (1.34)

On the other hand, the inverse relations stand:

â1 = R∗â3 + T ∗â4, (1.35)

â2 = T ∗â3 +R∗â4. (1.36)

Indeed, it can be readily verified that B̂S
−1

=

[
R∗ T ∗

T ∗ R∗

]
. Equations for the adjoint operators

follow straightforwardly. We assume that the input fields are independent, so that the creation and
annihilation operators satisfy the bosonic commutation relations:

[â1, â
†
1] = [â2, â

†
2] = 1 (1.37)
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[â1, â
†
2] = [â2, â

†
1] = 0 (1.38)

For the output fields we have the following commutation relations:

[â3, â
†
3] = [â4, â

†
4] = |R|2 + |T |2 = 1 (1.39)

[â3, â
†
4] = [â4, â

†
3] = RT ∗ + TR∗ = 0 (1.40)

Applying to Eq. (1.33) the adjoint operator â†3 and doing the same for Eq. (1.34) we get:

â†3â3 = (R∗â†1 + T ∗â†2)Râ1 + (R∗â†1 + T ∗â†2)T â2 (1.41)

â†4â4 = (T ∗â†1 +R∗â†2)T â1 + (T ∗â†1 +R∗â†2)Râ2 (1.42)

Summing these two relations and using the commutation relations we get:

n̂3 + n̂4 = n̂1 + n̂2 (1.43)

where the definition of number operator n̂ = â†â has been used. This relation represents the
conservation of the number of particles. We can also compute the photon number variances for the
two output modes when one input only is illuminated, which is common in experimental situations.
The output variances are:

(∆n3)
2 = |R|4(∆n1)2 + |R|2|T |2⟨n̂1⟩ (1.44)

(∆n4)
2 = |T |4(∆n1)2 + |T |2|R|2⟨n̂1⟩. (1.45)

Each of the two outputs features one contribution from the input variance and another one, propor-
tional to the mean photon number; the latter is generally regarded as due to a beating occurring
between input field in input 1 and the vacuum state of input 2, or as a partition noise, produced by
the random splitting of the photon stream. When a single photon impinges in input 1, while input
2 is in a vacuum state, the input state is denoted as:

|1⟩1 |0⟩2 = â†1 |0⟩ (1.46)

where |0⟩ = |0⟩1 |0⟩2 is the joint vacuum state of the two input arms. The corresponding output
state can be derived by the adjoint of relation (1.35):

â†1 |0⟩ = (Râ†3 + T â†4) |0⟩ = R |1⟩3 |0⟩4 + T |0⟩3 |1⟩4 (1.47)

which is a superposition state of the two output modes. This superposition is the standard effect
of a Beam Splitter in the quantum case. It is useful to write down the expression of the average
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number of photons expected for the two output arms, given the input state of Eq. (1.46):

⟨n̂3⟩ = ⟨0|2 ⟨1|1 n̂3 |1⟩1 |0⟩2 = ⟨0|2 ⟨1|1 (R∗â†1 + T ∗â†2)(Râ1 + T â2)3 |1⟩1 |0⟩2 = |R|2 (1.48)

and similarly:
⟨n̂4⟩ = |T |2. (1.49)

This result recovers the classical case, because the number of photons is well known to be propor-
tional to the beam intensity, so that the beam intensity (and then number of photons) is split in
the two outputs according to transmissivity and reflectivity. Indeed, the particle nature of single-
photons arises when evaluating the correlation between the two output modes:

⟨n3n4⟩ = ⟨0|2 ⟨1|1 n̂3n̂4 |1⟩1 |0⟩2 =
= ⟨0|2 ⟨1|1 (R∗â†1 + T ∗â†2)(Râ1 + T â2)(R

∗â†2 + T ∗â†1)(Râ2 + T â1) |1⟩1 |0⟩2 =
= R∗RT ∗T ⟨1|1 â

†
1â1â

†
1â1 |1⟩1 +R∗TR∗T ⟨0|2 (â

†
2â2 |0⟩2 ⟨1|1 â

†
1â1) |1⟩1 =

= R∗(RT ∗ + T ∗R)T = 0

(1.50)

The zero average is a direct consequence of the particle nature of the single photon: it is not possible
to find it in both output modes. This effect can not be obtained by any classical input field.

Polarization of light

Polarization is the degree of freedom of light associated with the spin component of the angular
momentum carried by the electromagnetic field [17]. From a classical point of view, polarization
corresponds to the direction of oscillations of the electromagnetic wave. Thus, in free space, polar-
ization can be represented as a vector lying in the transversal plane with respect to the propagation
direction of light. Since this is clearly a two-dimensional space, the Hilbert space representing po-
larization can be deemed as a perfect candidate for the encoding of a qubit. We can identify the
two vectors of the computational basis with the horizontal |H⟩ and vertical |V ⟩ components of the
polarization (identified with respect to a given reference frame), then the two other bases {|+⟩ , |−⟩}
and {|R⟩ , |L⟩} will correspond to the diagonal and circular polarization respectively, that can be
represented as vectors on the Bloch sphere, that in this case we can address as the Poincaré sphere
(Fig. 1.3).

The most commonly employed optical devices for polarization manipulation are based on the
properties of birifringent materials.

Waveplates The most common way of manipulating photon polarization is by means of thin slabs
of birifringet material, called retarders or waveplates. These devices are cut so to have their optical
axis parallel to the surface. In this way, it is possible to insert an arbitrary optical retardation
between the two polarization states corresponding to the the extraordinary and ordinary axes of
the material, without changing the propagation mode of the photon. The difference in the refraction
indices ne and no of the two axes generates a polarization-dependent phase shift ϕ that depends on
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|−⟩

|𝑅⟩|𝐿⟩

𝑥

𝑦

𝑧

|1⟩

|0⟩

|−⟩

|+⟩

−45°

45°

Figure 1.3: Bloch sphere for polarization qubit. Standard identification of the polarization states
in the Bloch sphere. The z axis corresponds to linearly polarized states with the horizontal and vertical
polarizations while the x and y axes correspond to diagonal and circular polarizations respectively. When
used for polarization states the polar representation of qubit states is also called a "Poincaré sphere".

ne, no and the thickness h of the material:

ϕ =
2πh(ne − no)

λ
(1.51)

where λ is the wavelength of the incoming light. In the basis corresponding to the directions of the
optical axes of the material, the transformation can be written as a matrix

UWP(ϕ) =

(
1 0

0 eiϕ

)
(1.52)

but, in general, if the optical axis is rotated by an angle θ with respect to the horizontal polarization
state, we can write the action of a waveplate as a general unitary transformation in terms of the
Pauli matrices:

UWP(ϕ, θ) = cos
ϕ

2
− σzi sin

ϕ

2
cos 2θ − σxi sin

ϕ

2
sin 2θ. (1.53)

Typically, two kind of waveplate retarders are employed, featuring respectively a fixed retardation
ϕ = π and ϕ = π/2; they are known as half waveplates (HWP) and quarter waveplates. Their
action, when they are rotated by an angle θ with respect to the horizontal polarization, can be
written as the operators:

UHWP(θ) = σz cos 2θ + σx sin 2θ (1.54)

UQWP(θ) =
I√
2
− i√

2
(σz cos 2θ + σx sin 2θ) (1.55)
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The operators defined by (1.53), (1.54) and (1.55) are also called Jones matrices. The great useful-
ness of these devices resides in the fact that a sequence of a QWP, a HWP and another QWP, is
capable of implementing any unitary transformation on the polarization space, by setting the right
combination of the three rotation angles [18].

1.2.3 Interferometers

We also need to introduce some more complex optical elements, that we employ extensively in the
next Chapters, namely the so-called interferometers.

Mach-Zehnder Interferometer

𝑧1 𝑧2

ො𝑎1

ො𝑎2

ො𝑎3

ො𝑎4

1 1

0 2

Figure 1.4: Representation of a Mach Zehnder interferometer. Scheme of a Mach Zender Inter-
ferometer, according to the notation used by [12] for destruction operators associated with input and output
fields; z1,2 indicate the lengths of the different paths travelled by the interfering beams. The difference between
them determines the interference outcome.

A Mach-Zehnder inteferometer (MZI) consists of two BSs in sequence; the outputs of the first BS are
sent to the inputs of the second one. We regard the two Beam Splitters as identical and symmetrical
(R = T = 1√

2
); the full interferometer can be described as a composite total BS, where the output

operators can be written as:
â3 = RMZ â1 + TMZ â2 (1.56)

â4 = TMZ â1 +R′
MZ â2 (1.57)

14 Alessandro Laneve



1.2. Quantum Optics

and the composite coefficients satisfy the relations:
RMZ = R2 exp{ikz1}+ T 2 exp{ikz2}
R′
MZ = T 2 exp{ikz1}+R2 exp{ikz2}

TMZ = RT (exp{ikz1}+ exp{ikz2})
(1.58)

where k = ω
c , with ω the frequency of the travelling light and c the speed of light, while z1, z2

represent the different lengths of the two possible internal paths of the MZ. It is straightforward to
show that these coefficients satisfy the relations:

|RMZ |2 + |TMZ |2 = |TMZ |2 +
∣∣R′

MZ

∣∣2 = 1, R′
MZT

∗
MZ + TMZR

∗
MZ = 0. (1.59)

We consider again the case of illuminating one input only, as for the BS, so that the input state is
|1⟩1 |0⟩1, as depicted in Fig. 1.4. We can write the expected value of the output number of photons
for the MZI using the composite coefficients. As a result of the computation, we obtain:

⟨n̂3⟩ = |RMZ |2 = 4|T |2|R|2 sin2[k
2
(z1 − z2)], (1.60)

⟨n̂4⟩ = |TMZ |2 = 4|T |2|R|2 cos2[k
2
(z1 − z2)]. (1.61)

Thus, according to the path difference which affects the beams, light (i.e. the photons) travelling
through the interferometer is subject to constructive or destructive interference (or produces fringes).
It is possible to tune this path difference, which consists of a phase shifting, by inserting suitable
optical components along one of the paths. For instance, if we place a glass plate in one of the two
MZI arms, the corresponding path becomes longer to the propagating light, because of the higher
refractive index of glass with respect to free space (air).
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Sagnac Interferometer

Figure 1.5: Representation of a Sagnac interferometer.We depict the case of light entering from one
input only of the Beam Splitter, the different colours indicate the two possible paths the light can travel, which
are identical by construction.

A Sagnac interferometer (SI) is an interferometric setup in which the two possible paths travelled
by light are implemented by the same optical loop. This scheme, that is sketched in Fig. 1.5,
corresponds to a "folded" MZI and features identical arms by construction, so that the output
interference is in principle maximized. Since the two paths are practically the same, travelled in
opposite directions, both paths have necessarily the same length. A crucial property deriving from
this design consists of the fact that any accidental phase shift experienced by light travelling in one
direction of the optical loop will be also experienced by light propagating in the opposite direction.
Thus, this scheme provides an a priori phase stability, without any necessity to engineer the platform
in order to achieve it. This feature is very convenient as we wish to investigate interferometric effects
of specific phase shifts between different trajectories. Indeed, as we will show in the next Chapter,
by means of some slight modifications to the scheme, it is possible to impose different phase shifts
on the clockwise and the counterclockwise paths, while maintaining stability for accidental phases.

1.2.4 Photon statistics and light classification

We briefly report here on the classification of light by using statistics and intensity correlation
measurements in order to contextualize our following references to quantum or classical states of
light. For further details, we suggest suitable textbooks [12, 19]. Light can be categorized according
to its photon number statistics [19]:
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• super-Poissonian: ∆n >
√
⟨n⟩, typical of incoherent or partially coherent light,

• Poissonian: ∆n =
√
⟨n⟩, that is typical of coherent light,

• sub-Poissonian: ∆n <
√

⟨n⟩, that can not be achieved by any kind of classically described
light.

It is worth noting that in an experimental framework, light statistics interplay with photodetection
statistics, because the photodetector quantum efficiency η is lower than 1. We do not discuss this
topic here, for a matter of conciseness, thus, from this point we suppose to work in the ideal case
of photodetectors with quantum effciency η = 1. A very useful tool allowing classification of light
is the second order correlation g(2)(τ):

g(2)(τ) =
⟨I(t)I(t+ τ)⟩
⟨I(t)⟩ ⟨I(t+ τ)⟩ (1.62)

where I(t) is the intensity of the light field we are analyzing and τ is a given time delay. This
definition of g(2)(τ) quantifies the coherence of light in time, hence its autocorrelation, as the result
of a Hanbury Brown and Twiss (HBT)-like experiment [20].

𝐷1

𝐷2

𝐵𝑆 (50: 50)

𝑇𝑖𝑚𝑒 𝑇𝑎𝑔𝑔𝑒𝑟

𝑃ℎ𝑜𝑡𝑜𝑛
𝑠𝑡𝑟𝑒𝑎𝑚

Figure 1.6: Scheme of a Hanbury Brown and Twiss experiment with photons: A stream of
photons impinge on a BS, and the coincidences between detectors D1 and D2 are computed by a time tagger,
that can digitally apply a desired delay τ . Actual single photon sources will produce no coincidences between
the two outputs for τ = 0.

The quantum formulation of the second order correlation, involving photons rather than elec-
tromagnetic waves, considers the case of light entering a BS and emerging from the two outputs:

g(2)(τ) =
⟨n1(t)n2(t+ τ)⟩
⟨n1(t)⟩ ⟨n2(t+ τ)⟩ (1.63)
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where ni(t) is the number of photons counted at the BS output port i at time t (see Fig. 1.6). This
definition leads to a second approach for light classification, depending on the value g(2)(0):

• bunched light: g(2)(0) ≥ 1, typical of incoherent or partially coherent light,

• coherent light: g(2)(0) = 1,

• antibunched light: g(2)(0) ≤ 1.

Without lingering on details, antibunched light can be produced by single photon sources, namely
sources emitting one photon as a consequence of a stimulation. In the present thesis, we deal with
two different types of sources, that we describe in the following sections. The first one, based on the
non-linear process of Spontaneous Parametric Down Conversion, represents the most widely spread
source of single photons, yet the inherent probabilistic nature of its photon generation process
imposes a post-selection procedure in order to retrieve photon antibunching. On the other hand,
Quantum Dots represent a reliable source of fixed number photon states, as it can be understood
by the example of experimental g(2)(τ) shown in Fig. 1.7.

−100000 −75000 −50000 −25000 0 25000 50000 75000 100000

τ (ps)

0.0

0.2

0.4

0.6

0.8

1.0

g
(2
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Figure 1.7: Normalized g(2)(τ) of the biexciton photon stream of a Quantum Dot. A Quantum
Dot driven to Two Photon Excitation (see Subsec. 1.2.7) emits photon pairs that can be spatially separated
according to their energy. The two paths, travelled by the so-called exciton and biexciton, represent very pure
single photon streams, as it is highlighted by their extremely low value of g(2)(0). The delay τ is digitally
tuned by a time tagger while the time separation among two different emissions ∼ 12.5ns is imposed by the
repetition rate of the pumping laser. The correlation decreases for longer delays as an effect of emission
efficiency drops of the quantum dot.
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1.2. Quantum Optics

1.2.5 Single Photons Source by Spontaneous parametric Down Conversion

The importance of employing actual quantum states in quantum information and communication
protocols has required the technological development of reliable and bright sources of such genuine
quantum states. In the specific field of photonics, the most successful platforms to generate single
photons or photon pairs have been based on non-linear optical effects. In the following we will briefly
review the working principles of a Spontaneous Parametric Down Conversion (SPDC) source, with a
specific focus on Periodically Poled Potassium Tytanil Phosphate (PPKTP) as a non-linear medium.

Non-linear Optics

Nonlinear optics describe phenomena occurring when the optical properties of a material system
are modified by the presence of light. Typically, only laser light is sufficiently intense to modify the
optical properties of a material system [21]. We are interested in three-wave mixing, i.e. phenomena
involving three radiation fields, considering both inputs and outputs. We have a general formulation
for the polarization of a material travelled by an electric field:

P (t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ... (1.64)

where χ(i) is the electrical susceptivity of order i and E(t) is the field in the material. For example,
for an input field:

E(t) = E1e
−iω1t + E2e

−iω2t + c.c (1.65)

the second order of polarization is the sum of multiple terms:

P (2)(t) = χ(2)E2(t) = χ(2)(E2
1e

−i2ω1t + E2
2e

−i2ω21t+

+2E1E2e
−i(ω1+ω2)t + 2E1E

∗
2e

−i(ω1−ω2) + c.c) + 2χ(2)(E1E
∗
1 + E2E

∗
2)

(1.66)

where each term represents a different non linear effect:

P (2)(2ω1,2) = χ(2)E2
1,2 Second Harmonic Generation (SHG)

P (2)(ω1 + ω2) = χ(2)E1E2 Sum Frequency Generation (SFG)

P (2)(ω1 − ω2) = χ(2)E1E
∗
2 Difference Frequency Generation (DFG)

P (2)(0) = χ(2)E1,2E
∗
1,2 Optical Rectification (OR)

(1.67)

Thus, it is possible to generate an output field featuring any of these frequencies, through the
interaction with a non-linear medium, namely a medium with particularly high susceptivity.

Non-linear wave equation We start by writing down the Maxwell equations in Gauss form:

∇⃗ · D⃗ = 4πρ

∇⃗ · B⃗ = 0

∇⃗ × E⃗ = −1
c
∂H⃗
∂t

∇⃗ × H⃗ = 1
c
∂D⃗
∂t + 4π

c J⃗

(1.68)
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with boundary conditions: 

ρ = 0

J⃗ = 0

B⃗ = H⃗ (µ = 1)

D⃗ = E⃗ + 4πP⃗ (ϵ = 1)

(1.69)

We can write down the wave equation:

∇⃗ × ∇⃗ × E⃗ +
1

c2
∂2D⃗

∂t2
= 0

→ ∇⃗× ∇⃗ × E⃗ +
1

c2
∂2E⃗

∂t2
= −4π

c2
∂2P⃗

∂t2

(1.70)

and decompose P⃗ in its linear and non-linear parts:

D⃗ = D⃗(1) + P⃗NL = ϵ(1)E⃗ + P⃗NL (1.71)

Thus, considering the differential relation ∇⃗× ∇⃗× E⃗ = ∇⃗(∇⃗E⃗)−∇2E⃗, we finally get the equation:

−∇2E⃗ +
ϵ(1)

c2
∂2E⃗

∂t2
= −4π

c2
∂2P⃗NL

∂t2
(1.72)

The wave equation stands for each spectral component, since the material reaction depends on
frequency:

−∇2E⃗n +
ϵ(1)(ωn)

c2
∂2E⃗n
∂t2

= −4π

c2
∂2P⃗NL

∂t2
(1.73)

We now apply this propagation equation to three-wave mixing phenomena. We consider prop-
agation along z axis; the "product" field intensity can be written as:

E3(z, t) = A3e
i(k3z−ω3t) + c.c. (1.74)

where: 
k3 = n3ω3

n3 =
√
ϵ(1)(ω3)

A3 constant for plane wave

(1.75)

The polarization features the same oscillation frequency:

P3(z, t) = P3e
−iω3t (1.76)

where P3 depends on the input fields of the mixing:

P3(z) = 4d(2)E1(z)E2(z) (1.77)
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and d(2) = 1
2χ

(2). The final wave equation for the three wave mixing can be written as:

− ∂2

∂z2
(A3e

i(k3z−ω3t)) +
ϵ(1)(ω3)

c2
∂2

∂t2
A3e

i(k3z−ω3t) =

= −4π

c2
∂2

∂t2
[4d(2)A1A2e

i(k1+k2)z−iω3t]

(1.78)

We calculate the derivatives and obtain:

[−∂
2A3

∂z2
− 2ik3

∂A3

∂z
+ k23A3 −

ϵ(1)(ω3)

c2
ω2
3A3]e

ik3z−iω3t = [
16π

c2
dω2

3A1A2]e
i(k1+k2)z−iω3t (1.79)

It is possible to elide the temporal dependence of the exponential and use the fact that k23 =

ϵ(1)(ω3)
ω2
3
c2

to get:

−d
2A3

dz2
− 2ik3

dA3

dz
=

16π

c2
dω2

3A1A2e
i(k1+k2−k3)z (1.80)

(without time dependence, the only parameter left is z, thus the derivative is a total derivative).
We now use the Slow Varying Envelope Approximation: we assume that the envelope of the wave
changes slowly with respect to the wave spatial period:∣∣∣∣d2A3

dz2

∣∣∣∣≪ ∣∣∣∣k3dA3

dz

∣∣∣∣ (1.81)

So we get an approximated wave equation:

dA3

dz
=

8πiω2
3

k3c2
dA1A2e

iz (1.82)

where ∆k = k1 + k2 − k3 is the momentum mismatch. This mismatch has to be 0 to get the
most efficient production of the requested effect, by a procedure named phase matching. The wave
equations for the other two fields are given by:

dA1,2

dz
=

8πiω2
1,2

k1,2c2
d(2)A3A

∗
1,2e

−iz (1.83)

We assumed the medium to be lossless and a complete permutation symmetry, taking d(2) equal
for each field. The solution found in this way features an almost constant amplitude of the input
fields; the event we are observing is rare, the non-linear effect not very efficient. Indeed, these kind
of processes are realizable only by means of laser light inputs, which provide a high number of
coherent input photons hence large input power. The process we actually need to describe is the
opposite of the typical one depicted before: a material stimulated by a radiation pump of frequency
ω3, relaxes by emitting two photons with frequency such that ω1+ω2 = ω3, for energy conservation;
this phenomenon is called spontaneous parametric down conversion (SPDC) and it needs a quantum
description to be properly explained.
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Quantum description In order to quantize the electric field theory in a non-linear medium, we
assume to have a finite volume V = L3, such that the possible modes of the systems are:

kx = 2πνx
L

ky =
2πνy
L

kz =
2πνz
L

(1.84)

The vector potential is, in general, defined as:

A⃗(r⃗, t) =
∑
k⃗

∑
l=1,2

ê
k⃗,l
A
k⃗,l
(r⃗, t) (1.85)

where l stands for the polarization (1,2 are the two orthogonal directions of polarization chosen as a
basis) and {ê

k⃗,l
} are the orthogonal polarization vectors, satisfying Coulomb gauge ê

k⃗,l
k⃗ = 0. The

vector potential component is complex A
k⃗,l
(r⃗, t) = A

k⃗,l
(t)eik⃗r⃗+A∗

k⃗,l
(t)e−ik⃗r⃗. We define the creation

and annihilation field operators, in analogy with the harmonic oscillator:

â
k⃗,l

∣∣∣nk⃗,l〉 =
√
n
k⃗,l

∣∣∣nk⃗,l − 1
〉

â+
k⃗,l

∣∣∣nk⃗,l〉 =
√
n
k⃗,l

+ 1
∣∣∣nk⃗,l + 1

〉 (1.86)

so that the energy contribution of each photon is ℏωk, since there is an oscillator for each mode
k = (k⃗, l). Following this analogy, the radiation Hamiltonian will have the form:

ĤR =
∑
k⃗,l

1

2
ℏωk(âk⃗,lâ

+

k⃗,l
+ â+

k⃗,l
â
k⃗,l
) (1.87)

and the vector potential operator, for each mode, will be:

Â
k⃗,l

=

√
ℏ

2ϵV ωk
[â
k⃗,l
e−iωkt+ik⃗r⃗ + â+

k⃗,l
e+iωkt−ik⃗r⃗] (1.88)

. We define the phase term χk = ωkt− k⃗r⃗ − π
2 and the transverse electric field operator ÊT (r⃗, t) =

Ê+
T (r⃗, t) + Ê−

T (r⃗, t). Since E⃗T = −∂tA⃗ we have:

Ê+
T (r⃗, t) =

∑
k⃗

∑
l

ê
k⃗,l

√
ℏ

2ϵV ωk
â
k⃗,l
e−iχk(r⃗,t)

Ê−
T (r⃗, t) =

∑
k⃗

∑
l

ê
k⃗,l

√
ℏ

2ϵV ωk
â+
k⃗,l
e+iχk(r⃗,t).

(1.89)

Finally, the quantum expression for the electric field operator of a single mode is:

ÊT (χ) =

√
ℏ

2ϵV ω
(âe−iχ + â+e+iχ) (1.90)

, which is the expression we need to describe the SPDC process.
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Phase matching

The conservation of energy ω3 = ω1+ω2 is not sufficient to generate photon pairs, since momentum
conservation has to be satisfied by the wave vectors of the three waves, too:

k⃗3 = k⃗1 + k⃗2, (1.91)

where k = nω
c . If this condition is satisfied, a perfect phase matching condition is achieved. There-

fore, given ω3 = ω1 + ω2, the phase matching condition can be written as:

n1ω1 + n2ω2 = n3ω3

→ n3 − n1 = (n1 − n2)
ω1

ω3
.

(1.92)

In general, the two terms could present opposite signs; as a consequence, in order to satisfy the
phase matching condition, it is necessary to use birefringent materials, where the refraction index
is different depending on the polarization of radiation coming through; the two different indices,
acting on orthogonal polarization directions, are defined as ordinary index n0 and extraordinary
index ne. We discuss two types of phase matching, depending on the polarization state assumed by
the output photons with respect to the pump radiation.

Phase matching type I The polarization of the products is homogeneous and it is orthogo-
nal to the input radiation one. There are two cases, depending on the non-linear medium under
observation:

• Uniaxial positive crystal: two photons, in input or output, show the same polarization,
corresponding to the extraordinary index ne.no3ω3 = ne1ω1 + ne2ω2

ne1ω1 + ne2ω2 = no3ω3

. (1.93)

• Uniaxial negative crystal: two photons, in input or output, show the same polarization,
corresponding to the extraordinary index n0.ne3ω3 = no1ω1 + no2ω2

no1ω1 + no2ω2 = ne3ω3

. (1.94)

Phase matching type II The polarization of the two output or input photons is orthogonal.
There are two cases, depending on the non-linear medium under observation:

• Uniaxial positive crystal: no3ω3 = no1ω1 + ne2ω2

no1ω1 + ne2ω2 = no3ω3

. (1.95)
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• Uniaxial negative crystal: ne3ω3 = ne1ω1 + no2ω2

ne1ω1 + no2ω2 = ne3ω3

. (1.96)

The choice of the type of phase matching to harness depends on the crystal that is employed. In
order to understand how phase-matching condition is actually fulfilled, it is worth focusing on the
realization of the first type of phase-matching: we take into account a uniaxial negative crystal
(such that n0 > ne). The ordinary index does not depend on the crystal orientation, while the
extraordinary one changes with respect to the angle between the radiation propagation direction
and the optical axis (fig. 1.8. We consider the case of degenerate SPDC, which is characterized by
the phase matching condition ne(ω)ω = 2no(

ω
2 )

ω
2 . Thus, we need to fulfill the following equality

between the two indices:
ne(2ω) = no(ω). (1.97)

θ

𝑥

𝑦

𝑧, optical axis

Ԧ𝑆, Poynting vector

𝑛𝑒(𝜃)

𝑛𝑜(0)

Figure 1.8: The index ellipsoid for a uniaxial negative crystal.As the angle θ between the Poynting
vector and the optical axis of the crystal grows, ne(θ) grows as well. This effect corresponds to a translation
of the dispersion curve of ne(ω), in a homogeneous way with respect to frequency.

In order to do this, we use the relation [22]:

1

ne(θ)
=
cos2(θ)

n20
+
sin2(θ)

n̄e2
, (1.98)

where n̄e is the principal value of the extraordinary index, i.e. the value assumed by the index at
θ = π

2 . In conclusion, we impose the phase matching condition and find an equation depending on
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θ:

sin2(θ) =

1
n2
0(ω)

− 1
n2
o(2ω)

1
n̄e

2(2ω)
− 1

n2
0(2ω)

, (1.99)

which provides the angle of orientation needed to achieve the phase matching condition. The an-
gle tuning procedure has the consistent drawback of yielding nonparallel Poynting vector S⃗ and
propagation vector k⃗ for extraordinary rays. As a result, ordinary and extraordinary rays with
parallel propagation vectors quickly diverge one from another as they propagate through the crys-
tal. This effect limits the spatial overlap of the two waves and decreases the efficiency of any
nonlinear mixing process involving them. For some crystals, the amount of birefringence is strongly
temperature-dependent. As a result, it is possible to phase-match the mixing process by holding θ
fixed at 90◦ while tuning the temperature of the crystal [23]. The maximum intensity of output field
is achieved when Eq.(1.91) is satisfied; in that case the output wave has a constant phase relation
with the non-linear polarization stimulated by the input fields and the generation is more effective
[23].

Quasi-phase-matching There are cases in which phase-matching can not be practically fulfilled,
such as for materials that have a normal dispersion for the frequencies under study. For such
instances, there is a technique, known as quasi-phase-matching [24], which partially allows to achieve
the same effect by means of a clever arrangement of the active medium. This scheme is known as
periodical poling ; the structure of a periodically poled material has been manufactured in such a
way that the orientation of one of the two crystalline axes is periodically inverted as a function
of position. As a consequence, the medium features a sequence of domains characterized by a
nonlinear coupling coefficient d(2) with a sign that inverts each time the optical axis direction
is overturned. This periodic succession of opposite signs of d(2) can compensate for a nonzero
wavevector mismatch ∆K. This effect can be explained in terms of the interplay between the
wavevector mismatch oscillations and the periodically poled structure of the material: the nonzero
∆k produces periodical oscillations in the output wave amplitude, but the poled pattern of the
medium is engineered so as to reverse the d(2) in a way that hinders the decrease of the amplitude,
producing an overall monotonic growth of the output field as the distance travelled by the pump
into the crystal increases. In Fig. 1.9, we report a comparison of output field amplitudes in different
phase-matching situations.

PPKTP Crystal We consider a Periodically Poled crystal of Potassium Tytanil Phosphate (PP-
KTP) with a vertical ordinary polarization axis and horizontal extraordinary polarization axis as
our reference non-linear medium; KTP is a ferroelectric crystal featuring wide transparency, large
nonlinear coefficient, low refractive index change with temperature, large thermal phase-matching
bandwidth, and high chemical and mechanical stability. Nevertheless, the probably most important
property of KTP is its very low sensitivity (compared to other media) to photorefractive damage.
In order to provide KTP with a better efficiency in the realization of non-linear emission of photons,
we need to implement quasi-phase matching (QPM). Indeed, the most popular technique for gen-
erating quasi-phase-matched crystals is periodical poling of ferroelectric nonlinear crystal materials
by ferroelectric domain engineering. Here, a strong electric field is applied to the crystal for a given
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Figure 1.9: Field amplitude computed in function of the distance of interaction with the
material. Curve (a) shows that, in a perfectly phase matched interaction in an ordinary single-crystal
nonlinear optical material, the field strength of the generated wave grows linearly with propagation distance.
In the presence of a wavevector mismatch (curve c), the field amplitude of the generated wave oscillates with
propagation distance. The behavior in the quasi-phase-matching condition is illustrated by curve (b). Here
it is assumed that the period of the alternation of the crystalline axis has been set equal to twice the coherent
buildup length Lc of the nonlinear interaction. Figure taken from [23].

26 Alessandro Laneve



1.2. Quantum Optics

amount of time, using microstructured electrodes, so that the crystal orientation and thus the sign
of the nonlinear coefficient is permanently reversed only below the electrode fingers. The poling
period (the period of the electrodes pattern) determines the wavelengths for which certain non-
linear processes can be quasi-phase-matched. In this case, the fulfillment of quasi-phase matching
condition can be controlled by tuning the temperature of an oven enclosing the PPKTP crystal.

Parametric Down Conversion

The process consists of the annihilation of a photon of frequency ωp from a single narrow-band
incident pump beam and the generation of two photons of frequency ω and ωp − ω. We review
this phenomenon in the quantum framework, using the annihilation and creation operators of fields
defined above. This kind of event is characterized by a low probability, such that the single event has
not a negligible occurrence, while, on the other hand, a double event does. It is customary to address
the generated photon with higher frequency as the signal, while the second one is called idler. Both
the signal and idler modes are initially in their vacuum state, until the photons are generated by
spontaneous emission. In particular, we are interested in degenerate Parametric Down Conversion,
characterized by two emitted photons which are indistinguishable in frequency, as depicted in Fig.
1.10. The Hamiltonian of the process can be written as:

𝑆𝑖𝑔𝑛𝑎𝑙

𝐼𝑑𝑙𝑒𝑟

𝜔𝑝/2

𝜔𝑝/2

𝑃𝑢𝑚𝑝

𝜔𝑝

Figure 1.10: Sketch of degenerate SPDC. An intense pump field stimulates the generation of a pair
of photons, signal and idler, such that ωs + ωi = ωp for energy conservation. In the degenerate case we are
interested in ωs = ωi =

ω
2 .

H = γ(â+s â
+
i âp + âsâiâ

+
p ) (1.100)

where γ includes the pump amplitude, the non-linear coefficient, the crystal thickness and any other
relevant parameter. The pump is assumed to be strong enough to not experience sensitive amplitude
changes during the process, while the signal and idler do; it can be treated like a classical radiation,
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in a plane wave fashion:
H = γEp(â

+
s â

+
i − âsâi) (1.101)

the minus sign arising from the definition of the annihilation and creation operators in Eq. (1.90).
We apply the temporal evolution operator to the initial state:

|0⟩ = |0⟩s |0⟩i → |Ψ(t)⟩ = e−
iHt
ℏ |0⟩ ∼ |0⟩s |0⟩i −

iHt

ℏ
|0⟩s |0⟩i −

H2t2

2ℏ2
|0⟩s |0⟩i + ... (1.102)

We have expanded the exponential accounting for the fact that the probability of interaction
(thus the strength of the interaction Hamiltonian) is low. In this framework, the production of a
double photon pair can be neglected. In this process, post-selection is clearly necessary for a fruitful
employment of the generated photons. In fact:

• the time of photon generation is unknown

• there are many losses

• dark counting of photodetectors may be significant, due to the generally low probability of
the event

Therefore, even if only one of the two photons has to be exploited, the other one is still necessary
in order to perform a coincidence measurement and assess the actual occurrence of a generation
event.

1.2.6 Hong-Ou-Mandel effect

The Hong-Ou-Mandel (HOM) effect [25] is a unique quantum phenomenon, that can be observed
when two indistinguishable bosonic wavefunctions overlap, as in the case of two indistinguishable
photons that are injected at the same time in the two input modes of a BS. Two photons are
indistinguishable if they are identical with respect to all of their degrees of freedom; the detector
must have no clue about which photon of the pair it is counting (for example the signal or the
idler generated by an SPDC process). Thus, the two photons must have same frequency (like the
outcome of a degenerate SPDC), same polarization (a phase-matching type I would be needed),
they must feature the same propagation mode k⃗, and they must arrive at the detectors at the same
time, i.e. they have to travel equally long paths. Thus, we have the initial state of the two photons
â1â2 |0⟩1 |0⟩2 = |1⟩1 |1⟩2. The BS is again represented by the operator:

B̂S =

[
R T

T R

]
, (1.103)

where R = |R|eiϕR and T = |T |eiϕT . From the commutation relations, we have that ϕR − ϕT = π
2 .

Thus, we can write the BS operator as:

B̂S =

[
|R| i|T |
i|T | |R|

]
. (1.104)
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1 1 1 2 → 2 3 0 4 1 1 1 2 → 0 3 2 4 1 1 1 2 → 1 3 1 4

1 2 1 2 1 2

3 4 3 4 3 4

Figure 1.11: Sketch of the outcome of Hong-Ou-Mendel effect. Hong-Ou-mandel effect arises when
two identical bosons, namely particles described by an identical symmetrical wavefunction, overlap their
wavefunction completely. We consider the case of two photons impinging on a Beam Splitter (BS) from two
opposite input ports. The system emerging from the BS can not be found in a configuration such that the
two photons travel opposite paths, due to their indistinguishably and their bosonic nature.

We can now compute the output state:

B̂S |1⟩1 |1⟩2 = (|R|â3 + i|T |â4)(i|T |â3 + |R|â4) |0⟩ = |R|2 |1⟩3 |1⟩4 − |T |2 |1⟩3 |1⟩4+
+i|R||T | |2⟩3 |0⟩4 + i|R||T | |0⟩3 |2⟩4

(1.105)

The four terms represent the four possible occurrences:

1. first term: both the photons are reflected

2. second term: both the photons are transmitted

3. third and fourth term: one photon is transmitted and the other one is reflected

If the BS is symmetrical, namely |R| = |T | = 1√
2
, it is straightforward that the probability to

find an output state with the photon travelling along different modes is 0. The photons are said
to bunch; this effect, summarized in Fig. 1.11, is genuinely quantum and only occurs when the
photons are completely indistinguishable. This phenomenon can be used as a tool to evaluate the
indistinguishability of photons; collecting the number of coincidences occurring between the two
output modes of the BS, we can assess the indistinguishability of the input photons. It is also worth
noting that the output state of a photonic HOM effect is an entangled state of the two particles
1
2

(
|2⟩3 |0⟩4 + |0⟩3 |2⟩4), known as a NOON state with N = 2. This bosonic phenomenon, also

known as bosonic coalescence, can also be applied to the study of fermionic interactions; in fact, in
the case of two indistinguishable fermions, we would expect to find a peak of coincidences between
two distinct outputs of the BS, namely an anti-bunching phenomenon, due to Pauli’s principle.
This situation could be simulated by means of an entangled pair of photons, if we generate an
anti-symmetric state, for instance, in the polarization degree of freedom:

1√
2
(|H⟩ |V ⟩ − |V ⟩ |H⟩) (1.106)
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and we inject them in the two output ports of a BS. This strategy has been employed to study
the behavior of particles featuring different statistics undergoing a coherent disordered evolution
[26, 27].

1.2.7 Quantum Dots

SPDC has been considered for decades the most prominent and efficient way of producing single
or pairs of photons, notwithstanding the intrinsic issues related to the non-linear nature of the
underlying physical process. Indeed, the production of a high flux of photon pairs requires great
input power stimulating down-conversion, leading in turn to an increase of undesired multi-photon
emission, which is detrimental for the properties pursued in genuine photon pairs generation. Solid-
state based quantum emitters, such as Quantum Dots (QDs), promise to bypass this issue, thanks
to their near deterministical single-photon generation and their capability of producing entangled
photon pairs without a significant corresponding amount of multi-photon emission [28]. In this
section, we review general properties of this kind of emitters, with a particular focus on Gallium
Arsenide (GaAs)-based Quantum Dots.

From semiconductors to Quantum Dots

Quantum Dots working principles rely on semiconductors’ properties. A semiconductor is any
crystal with Fermi energy sitting in an electronic band Energy gap Eg, whose optical and electronic
properties can be modified by inserting a certain percentage of dopants in the crystal lattice [29].
A semiconductor material that does not need the addition of any dopants is called intrinsic and
is characterized by having its Fermi level in the middle of the bandgap. At 0K all the available
states in the valence band (VB) are occupied by the electrons. By pumping an electron with light
featuring a frequency ν such that ℏν ≥ Eg, it is possible to make the electron jump from the VB
to the next available band, the conduction band (CB). Regarding the momentum k, if an available
state is present (at the bottom of the CB) directly above the current occupied state by the electron
(top of the VB), it is possible to achieve a vertical transition by just pumping the right energy into
the material: such crystals are known as direct bandgap materials. In the case of indirect bandgap,
these two states are found with a ∆k ̸= 0 so that the promotion (or demotion) of an electron
between these two states in the band structure requires a contribution in momentum from another
excitation, such as a phonon. We are interested in particular in direct bandgap semiconductors, that
are widely used for quantum information applications. After an electron is promoted from the VB to
the CB, it leaves an empty state in the VB, a hole h, a collective excitation behaving as a positively
charged quasi-particle. These excitation, before annihilation by either emission of a photon (a
phenomenon known as luminescence) or through non-radiative alternative channels, endures in
the crystal for a time ranging from nanoseconds to hundreds of picoseconds depending on the final
recombination process. If the excitation of an electron from VB to CB is triggered by the absorption
of light, the phenomenon is classified as photoluminescence (PL) [19]. The fundamental idea
underlying the realization of a QD is reducing the spatial extension of a semiconductor down to
the De Broglie length of electrons in the material: this represents the operative definition of a QD.
In this framework, the system can be described by the model of an electron confined in a 3D well,
hence featuring discretized energy levels rather than continuous energetic bands. In order to apply
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Figure 1.12: Qualitative sketch of hybrid energy diagram a QD with type I band alignment.
The energy bands are reported as a function of the spatial coordinates of the QD. As we scan along the
heterojunction, energy bandgap changes since we are considering different materials, that in this case are
AlGaAs and GaAs. The flat bands reflect the effective-mass approximation around the CB minimum and
VB maximum.

this model to the behavior of an electron/hole excitation in a semiconductor we have to add the
3D potential to the crystal Hamiltonian and look for a solution to the corresponding eigenfunction
problem. In order to do this, we have to invoke the effective-mass approximation [30]. Specifically,
from [31] we get that the energy dispersion of the CB at its bottom is approximately parabolic:

ϵn(k) ∼ Ec +
ℏ2k2

2m0me
(1.107)

where Ec is the energy of the bottom of the conduction band and me is the effective mass of
electrons. The corresponding Schrödinger equation is similar to the one for free electrons with an
effective mass and energy measured from the bottom of the CB:(

− ℏ2

2m0me
∇2 + Vimp(R)

)
χ(R) = (E − Ec)χ(R) (1.108)

where χ(R) is the envelope spatial part of the electron wave-function. This equation is useful to
describe heterojunctions between different materials, where Vimp is represented by the offset between
the two energy bands.
Indeed, a way to fabricate a QD is by enclosing a semiconductor material of size in the order of the

nanometer inside another one with a wider bandgap, by choosing materials so as to obtain a band
alignment of type I, i.e., the smaller bandgap material CB and VB are respectively lower and higher
than the CB and VB of the larger bandgap material, such as in the diagram in Fig. 1.12. In this
framework, the potential well is represented by the energy mismatch between the CB minimum and
VB maximum at the boundary of the two materials. In a heterostructure, effective masses and Bloch
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functions are in principle different between materials, but, under the approximation we mentioned
above, electron and holes in a QD can be modeled as free particles with effective masses depending
on the curvature of bands at the interface, enclosed in a potential well of the same magnitude of
the CB and VB offsets respectively. In particular, we can consider such a system as a QD if the
size of the small semiconductor is L < πℏ√

2mkBT
.

Excitations

The presence of an electron-hole pair generates a further contribution to the system Hamiltonian,
consisting of a Coulomb interaction potential. In particular, this effect results in the generation
of an electron-hole bound state, that we refer to as exciton, or X for brevity. This system can be
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Figure 1.13: Electron and hole spins configurations for the s-shell of a quantum dot. The
absolute value of the total angular momentum M is given for every configuration. The exciton (X) state has
four possible configurations that can be identified as "bright" states (top, white background) which can decay
emitting a single photon and "dark" ones (bottom, gray background), which can not decay emitting a single
photon. The two trion states (X+ and X ) feature two possible configurations each. The biexciton state (XX)
represents the completely filled up shell and can occupy one feasible configuration.

described as a hydrogen-like atom, thus X can in principle occupy various possible energetic shells,
although in the following we will focus on the fundamental s-shell, corresponding to both electron
and hole being in the ground state. In a QD at low temperature, because of quantum confinement,
no free electron-hole pairs can exist and the fundamental excitation is the neutral X. Because of
Pauli’s exclusion principle, two electron-hole pairs at most with antiparallel spins can occupy the
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same energy level. For the neutral X state, there are 4 possible states, as we show in Fig. 1.13.
The two states with |M | = 2 can not decay to the ground state by the emission of a single photon
and are called "dark" states. The remaining two, with anti-parallel spin projection configuration
and |M | = 1 can emit a photon when decaying to the ground state and are known as "bright"
states. An odd particle number excited state of the s-shell is known as a trion or charged exciton
(X+ with |M | = 1

2 and X− with |M | = 3
2). When the whole s-shell is complete, two electron-hole

pairs are present and we have a single possible configuration, known as biexciton (XX), featuring
|M | = 0. Electrons are usually excited using photons with an energy above the bandgap of the
barrier semiconductor. The generated electron-hole pairs are trapped in the QD and afterwards
thermalize to the lowest available energy level, before recombination through the emission of a
photon. Exciton recombination transition is customarily employed for efficient generation of single
photons, but it is also possible to exploit the XX state to realize a cascade emission of two entangled
photons, as sketched in Fig. 1.14. The XX state consists of two electron-hole pairs. As soon as
one of the excitations recombines by the emission of a photon of energy equal to the difference of
the XX energy and the X energy, the system is left in one of the two degenerate X bright state.
Depending on the emission path followed by the biexciton state, the first emitted photon has right
(R) or left (L) circular polarization. A second photon is then emitted after the recombination of the
remaining X in the QD, with an energy corresponding to the X state energy and orthogonal circular
polarization with respect to the previously emitted XX photon. If the X state is truly degenerate,
i.e., the energy difference between the two exciton states, commonly known as fine structure splitting
(FSS), is much smaller then the homogeneous linewidth of the photons, the two-photons cascade
delivers as an outcome the entangled state of two photons |ϕ+⟩ = 1√

2
(|RXX⟩ |LX⟩ + |LXX⟩ |RX⟩).

It is worth pointing out that the energy levels corresponding to a biexciton and an exciton does not
follow the relation EXX = 2EX , so that the photons resulting from the cascade emission feature
different frequencies ωXX ̸= ωX . In conclusion, Quantum Dots are near-deterministic source of
single photons, that have fostered new and favourable perspectives for the further development of
quantum technologies. Their high brightness and their negligible generation of multiphoton states
make them great candidates for future implementation of Quantum Communication protocols [32–
35].
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Figure 1.14: The two-photon cascade from the XX state in a QD. The two radiative decay paths
toward the ground state pass through the degenerate X state emitting two photons with orthogonal polarization
configurations. If the degeneracy is not broken, the two paths are indistinguishable and the emitted photon
pair is entangled in polarization.
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1.3 Quantum State Discrimination

As we discussed in Sec. 1.1, the state of a quantum system is not an observable itself, thus it can not
be measured. Nevertheless, there are some choices of observables that can help gaining information
about it. We can look at this task as a game between two parties, Alice and Bob (see Fig. 1.15).

𝐵
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Figure 1.15: Basic setting for Quantum State Discrimination. Alice (A) prepares a system in one
of N possible states {ρi}, her alphabet. Bob (B) does not know the state chosen by Alice, thus he receives
the system in a statistical mixture and tries to learn something about its state by performing one of a set of
L measurements {Mk}Lk=1.

Alice prepares a quantum state and sends it to Bob, who performs a suitable measurement. We
assume that the two parties have agreed on a limited "alphabet" of quantum states that Alice can
prepare. Knowledge about the set of possible quantum states and their probability of preparation
provides Bob with a priori information, that allows him to optimize the choice of the measurement
he applies. It is not trivial to understand how much information Bob can extract about the quantum
state by a single measurement. Indeed, a measurement on a quantum system does not provide full
information about its state (since it is not an observable) and an arbitrary set of quantum states
is not generally orthogonal so that they are generally not distinguishable one from each other by a
single shot measurement. We remark that this indistinguishability is not due to lack of knowledge,
but rather to the way quantum states are described. In classical systems, indistinguishability of
states come from uncertainty in the preparation stage, hence is due to overlapping probability
distributions. This is not true for quantum states, as we mentioned in Sec.1.1, and as it was
demonstrated in [36]. Thus, quantum states can not in general be discriminated perfectly, by direct
measurement. This apparently annoying feature bears various benefits for applications. Bennett and
Brassard demonstrated that this impossibility in precisely measuring the state of a quantum state
allows the existence of fundamentally secure protocols for secret communication. Unlike classical
cryptographic protocols, relying on the complexity of the key (such as RSA) or a secure private
channel, the quantum ones rely on physical laws [15]. The discrimination between quantum states
is also related to other matters, such as the issue of cloning quantum states, and the manipulation
of non-local correlations between quantum systems [37]. Thus, we need to discriminate quantum
states, but an alternative strategy to straightforward measurement is required: a figure of merit is
adopted, the discrimination scheme is developed and the measurement set to apply to the states is
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optimized accordingly. In particular, this procedure corresponds to designing a quantum receiver,
a device aimed at discriminating quantum states given some boundaries. It is possible to choose
among many different figures of merit, depending on the requirements we wish to impose, that are
usually derived from the application we are considering. This results in a variety of theoretical
and experimental approaches to the method: it is possible to apply measurement in a single-shot
fashion, which is suitable for actual quantum platform (once measured, the state collapses), or
measurements can be repeated, with the chance of developing adaptive protocols, applicable to
coherent light experimental implementations. In the following, we review the two main approaches
for Quantum State Discrimination together with various examples of theoretical and experimental
strategies.

1.3.1 Quantum Hypothesis Testing or Minimum Error Discrimination

The aim of Quantum Hypothesis Testing (QHT) [37] or Minimum Error Discrimination (MED)
[38] is the minimization of the average error occurring in the discrimination procedure (or the
maximization of success probability for the guess). The outcome of the measurement performed
by the receiver Bob gives him information about the state sent to him by Alice. Schematically, if
a detection event occurs at the kth output port, Bob concludes that Alice has prepared state ρk.
Such a deduction cannot be certain unless states {ρi}Ni=1 are all pairwise orthogonal. Otherwise,
the process is inevitably prone to errors. Quantum measurements are described by POVMs, so
an optimization procedure that yields measurement devices featuring minimum error is a quest
for optimal and experimentally viable POVMs. We seek for a set of POVMs {Mk}Nk=1 such that
outcome k reveals state ρk with the minimum average error probability. We address the device
implementing these measurements as the quantum receiver; when the state ρi is sent to the receiver,
the probability of the POVM Mi producing a detection event is p(i|i) = Tr[Miρi]. The average
probability of correct guess is given by taking into account the a priori probability qi of each possible
input state ρi, so that the maximum probability of correct guess is:

Pmaxguess = max
M

N∑
i=1

qip(i|i) = max
M

N∑
i=1

qiTr[Miρi]

subject to
∑
i

Mi = I, ∀Mi ≥ 0

(1.109)

where M = {Mi}Ni=1. The minimum failure probability is readily obtained: Pminerr = 1− Pmaxguess.
In general, it is not straightforward to find the measurement realizing the optimal Pguess, even if
the latter has been calculated. The aim of MED consists both of finding the maximum achievable
Pguess and determining the POVMs that fulfill it. The optimal measurement for a set of quantum
states {qi, ρi}Ni=1 is not unique and there is not a general method for the identification of such mea-
surements, but for the case of some specific applications. Numerical methods are usually employed,
such as semidefinite programming [39].

Two State Discrimination

We discuss the basic case of minimum error discrimination of two quantum states: we have two
states {qi, ρi}2i=1 and two output ports corresponding to the POVMs {M1,M2}. The maximum
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probability of correct guess is easily computed:

Pmaxguess = max
{M1,M2}

(q1Tr[M1ρ1] + q2Tr[M2ρ2]) = max
{M1,M2}

Tr[K] (1.110)

where K = q1M1ρ1 + q2M2ρ2 is an operator determined by the optimization of the measurement.
Since M1 +M2 = I:

K =

q2ρ2 +M1X

q1ρ1 −M2X
where X = q1ρ1 − q2ρ2 (1.111)

and by symmetrization:

K =
1

2
(q1ρ1 + q2ρ2) +

1

2
(M1 −M2)X (1.112)

If we define M = M1 −M2, the maximization procedure turns into a simpler one-parameter opti-
mization in function of −I ≤M ≤ I:

Pmaxguess = max
M

Tr[K] =
1

2

(
1 + max

M
Tr[MX]

)
(1.113)

We can find the optimal M by spectral decomposition of operator X: for the case of two states
{qi, ρi}2i=1, we can write X as X = λ+X+ − λ−X− with positive (negative) projector X+ ( X− )
and λ+ (λ−) a positive (negative) eigenvalue. The optimal choice of M is M = X+−X−, resulting
in Pmaxguess =

1
2(1 + λ+ + λ−). We can also rewrite the maximum guessing probability:

Pmaxguess =
1

2

(
1 + ||q1ρ1 − q2ρ2||) (1.114)

that is known as the Helstrom bound [40]. In conclusion, M1 = X+ and M2 = X− which together
form a quantum measurement. This method is valid for any given pair of quantum states, while
multiple states discrimination problems are seldom prone to general strategies.

Multiple state discrimination: the case of geometrically uniform states

For more than two states, optimal state discrimination can be only achieved in some limited cases
where the given states possess certain symmetries or the dimension of the Hilbert space of the
quantum states is small. For instance, optimal discrimination of multiple states is known for arbi-
trary qubit states that are given equal a priori probabilities, or for geometrically uniform states. A
set of quantum states {ρi}Ni=1, where ρi ∈ S(Hd), is said to be geometrically uniform [41] if there
exists a symmetry represented by a unitary transformation U such that each state ρi is transformed
cyclically into ρi+1 by application of the unitary transformation for all i = 1, . . . , N ; in other words,
they form a finite Abelian commutative group jointly with U [42]. So, we have that ρi+1 = UρiU

†

∀i = 1, ..., N where UN = I and we define ρN+1 = ρ1. It is possible to exploit this symmetry for
quantum state discrimination: we consider d non-orthogonal states in a d-dimensional Hilbert space
Hd assuming equal a priori probability q = 1/d for each state. We consider the states:

|ψα⟩ =
d−1∑
n=0

cn exp

(
2πi

d
nα

)
|xn⟩ for α = 0, ..., d− 1 (1.115)
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where {|xn⟩}d−1
n=0 form an orthonormal basis for the space Hd. The symmetry is here related to the

unitary operator:

U =
d−1∑
m=0

exp

(
2πi

d
m

)
|xn⟩ ⟨xn| such that U |ψα⟩ = |ψα+1⟩ ∀α (1.116)

For these states, it is possible to find an orthogonal basis that spans explicitly their support:

|xn⟩ =
1

dcn

∑
α

exp

(
−2πi

d
nα

)
|ψα⟩ (1.117)

such that the mixed state sent to the receiver, with equally likely terms, will result in:

ρ =
1

d

∑
α

|ψα⟩ ⟨ψα| =
∑
n

c2n |xn⟩ ⟨xn| . (1.118)

We can use the spectral decomposition in terms of the basis {|xn⟩} to compute the probability of
correct guess. From the eigenvalues

λn = c2n =
1

d2

∑
α,β

exp

(
2πi

d
n(β − α)

)
⟨ψβ|ψα⟩ (1.119)

we can find a spectral decomposition for the basis corresponding to the optimal measurement,
following the method depicted in [41]. The optimal POVMs are the set {Mj = |mj⟩ ⟨mj |}d−1

j=0

where:
|mj⟩ =

1√
d

∑
k

exp

(
2πi

d
jk

)
|xk⟩ (1.120)

where the equivalence ⟨ψβ|ψα⟩ = ⟨ψβ−α|ψ0⟩ has been implemented. This measurement is known
as a square root measurement, and it is considered as a "pretty good" measurement in the general
case, while optimal for specific scenarios such as the one we are considering [43]. In conclusion, the
maximum probability of correct guess can be expressed as:

Pmaxguess =
∑
j

qj ⟨mj |ψj⟩ =
1

d2

∣∣∣∣∑
η

(∑
m

exp

(
2πi

d
ηm

)
⟨ψm|ψ0⟩

) 1
2

∣∣∣∣2 (1.121)

since qj = 1/d for all js. It is interesting to understand how this maximum achievable probability
of correct guess changes as we increase the number of states we wish to encode in the d-dimensional
system. In [44], it is proved that in a Quantum Hypothesis Testing problem (i.e. MED problem)
where the states are equally likely and pure, the error probability is bound from below:

Perr ≥ 1− d

N
(1.122)

where d is the dimension of the Hilbert space Hd in which the states are defined and N is the
number of states we are trying to discriminate among. As a consequence, the general equality stands
Pmaxguess = 1− d

N , which is only fulfilled under some conditions. We give here a heuristic demonstration
of the above inequality and we explicitly state these conditions, relying on the discussion reported
in [44]. The problem of MED of N states ρiNi1 , with corresponding preparation probabilities can be
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summarized as choosing the set of projectors {πj}Nj=1 that minimize the cost function:

Perr =
∑
i

∑
j ̸=i

piTr(πiρj) (1.123)

which represents the average probability of applying one of the "wrong" projectors πj when the
state is ρi. We consider the case of equally likely states pi = 1/N ∀i and pure states, i.e. states
for which the density matrix is a projector on a corresponding vector li ∈ Hd: ρi = Pli . As a
consequence ρ2i = ρi. In this framework, if it is possible to find N real numbers {αj}Nj=1 such that∑

i αiρi = Id, the N optimal projectors are represented by πj = αjρj for j = 1, . . . , N . Indeed,
these projectors fulfill all the optimality conditions that are discussed in [44]. In this case, we can
compute the minimized error probability:

Perr =
1

N

∑
i

∑
j ̸=i

Tr(πiρj) =
1

N
(
∑
i

∑
j

Tr(αiρiρj)−
∑
i

Tr(αiρiρi)) =

=
1

N
(
∑
j

Tr(Idρj)− Tr(Id)) =
1

N
(1− d) = 1− d

N

(1.124)

If the condition on the αj is not fulfilled, we have that:

Perr =
1

N

∑
i

∑
j ̸=i

Tr(πiρj) =
1

N
(
∑
i

∑
j

Tr(πiρj)−
∑
i

Tr(πiρi)) =

=
1

N
(
∑
j

Tr(Idρj)−
∑
i

Tr(πiρi)) ≥
1

N
(1−

∑
i

Tr(πi)) = 1− d

N

(1.125)

given that Id > Plj and, as we assumed, ρj = Plj then
∑

i Tr(πiρi) ≤
∑

i Tr(πi) = d. The equality
is only achieved in the optimal case, when the πis are proportional to the ρis. Geometrically uniform
states satisfy these conditions thanks to their symmetry properties, thus it is possible to achieve
the general maximum guess probability for them.

1.3.2 Quantum State Estimation or Unambiguous State Discrimination

We briefly review also the other main approach in Quantum State Discrimination problems. In
this case, we want to address an error-free case: we wish to have a discrimination strategy that
always yields correct results, with no uncertainty. This is possible, but at some cost: we have to
allow for inconclusive measurements, i.e. measurements from the outcome of which we can not get
any information about the state we have received [37, 45]. For a given ensemble of quantum states
{qi, ρi}Ni=1, it is indeed possible to find a set of N + 1 measurements {Mi}N+1

i=1 such that:

p(i|j) = Tr[Miρj ] = 0 for i, j = 1, ..., N (1.126)

A detection event on projector Mk unambiguously corresponds to the revelation of state ρk. In the
case of pure states, the N POVMs associated to the N states can be found by considering the N
orthogonal spaces to the N possible subsets of N − 1 states, leaving one of the N states out of
the grouping each time. Thus, if we wish to find the Mj corresponding to state |ψj⟩, we have to
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consider the subset {|ψi⟩}i ̸=j and then the projector on the orthogonal space to this subset will be
Mj . Therefore, we can find Mj = |ϕj⟩ ⟨ϕj | such that:

⟨ϕj |ψi⟩ = 0 ∀i ̸= j (1.127)

In general, the completeness relation is not satisfied by the N projectors
∑N

i=1Mi ̸= I and it is
possible to find a MN+1 measurement such that

∑N+1
i=1 Mi = I. This additional projector collects

the probability that the state |ψk⟩ is not detected by Mk, since ⟨ϕk|ψk⟩ ̸= 1 unless the states
are orthogonal. Therefore, it is possible to detect any of the N on MN+1 and the unavoidable
detection events occurring in this measurement have to be discarded. It has been demonstrated
that Unambiguous State Discrimination is only possible for linearly independent states [45]. It is
worth noting that, as a consequence, it is not possible to discriminate among N > D states, where
D is the dimension of their encoding space. In general, it is necessary to minimize Tr[MN+1ρ] where
ρ =

∑
i qiρi, to get the optimal strategy for the considered states set. General analytical approaches

have been developed for linearly independent pure states [46], while for general purposes a numerical
approach is necessary, like semidefinite programming [47].

1.3.3 Overview of experimental Quantum State Discrimination protocols

There are some theoretical bounds for the achievable performances in Quantum State Discrimination
protocols, that vary depending on the number of states, the number of available copies and any
boundary condition [40, 44, 48, 49]. These works yielded analytical results regarding two-state
discrimination, while there aren’t many general analytical results for multi-state discrimination,
as mentioned above. Therefore, the quest for better achievements is quite platform-oriented and
many experimental attempts have been produced in the last twenty years, aiming at developing
effective protocols and correspondingly feasible experimental implementations. The first realization
of USD [50] and of a multi-state MED [51] are very straightforward: they used a bulk-optics
implementation where detection in a photodetector would signal the presence of a specific input
state, with a maximum probability. In other terms, they unravel the differences among the target
quantum states, encoded in photon polarization, turning them in a classical probability distribution
in space, since each detector is placed at a different output port of their quantum receiver made
of Polarizing Beam Splitters and Waveplates. This is the general procedure in Quantum State
Discrimination protocols when the number of projectors that have to be applied is greater than
the dimension of the system: some kind of multiplexing strategy, mapping in another degree of
freedom, is necessary to distinguish among the quantum states. Another option is performing a set
of measurements on the same system, which is only possible if multiple copies are available or we
are working with coherent states, either as a simulation of quantum light (weak laser pulses) or in a
continuous variable framework (as opposed to the discrete variable framework of photonic number
states [52]). The latter case has been extensively investigated in the last years, with excellent
results. In particular, many attempts have been produced employing the procedure of Quaternary
Shift Phase Keying (QSPK) to encode four non-orthogonal states in a 2D coherent light system
[53]. Many of them exploit the advantage of working with substantially classical light to implement
adaptive protocols [54–60], which allow for a substantial enhancement of performances with respect
to one-shot strategies. Although they generally demonstrate the effectiveness of their schemes for
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a very low average photon number, this approach does not grant the fundamental security that
single photons, hence actual quantum states, can guarantee. Following the success of adaptive
protocols, neural networks [61, 62] and Machine Learning (ML) methods [63] have been applied to
QSD problems from a theoretical point of view. In Chapter 3, we discuss our specific theoretical
and experimental contribution to this approach.

1.3.4 Applications of Quantum State Discrimination strategies

Strategies developed in the framework of Quantum State Discrimination have wide applications.
We briefly review some of them, with a specific attention for MED related issues.

Quantification of quantum state preparation For many Quantum Information and Commu-
nication tasks, the preparation of the quantum system in a precise state is rather important. In
general, two states, although different, may not produce different outcomes, thus discrimination
among two states can be applied to the problem of veryifing and quantifying how similar the actual
and the ideal states are, by the guessing probability:

Pguess =
1

2
(1 +

1

2
||ρactual − ρideal||). (1.128)

It is possible to use this quantification via two-state distinguishability in many quantum information
applications involving accurate state preparation [38].

Distinguishing measurements We have seen that in two-states Minimum Error Discrimination,
the maximum probability of correct guess depends on the measurement M :

Pguess =
1

2
+ max

−I≤M≤I
Tr[MX] where X = q1ρ1 − q2ρ2 (1.129)

If the two states and their preparation probabilities are fixed, there are different ways of choosing the
measurement, each one producing different upper bounds for the guessing probability. Measurement
classification is related to this issue, especially in the case of multipartite systems. We can have non-
local, separable, and local measurements, or local operations and classical communication (LOCC).
It is possible to demonstrate that the set of separable measurements is strictly larger than LOCC
measurements, using quantum state discrimination. Indeed, there is a set of quantum states that
can be perfectly distinguished by separable operations but not by LOCC protocols [6].

The Pusey–Barrett–Rudolph (PBR) theorem Notwithstanding the detailed formulation of
Quantum Mechanics and its great effectiveness in describing the microscopic world, the interpreta-
tion of quantum mechanical states and concepts is still an issue. In this sense, many attempts have
been devoted to establish ways to determine whether quantum states are mere states of knowledge
(epistemic) or real physical entities (objective). In this sense, a no-go theorem was formulated by
Pusey, Barrett, and Rudolph [64], asserting that if a quantum state merely represents informa-
tion about the real physical state of a system, then experimental predictions that contradict those
of quantum theory can be constructed. This theorem is valid under the assumption that two quan-
tum systems at different locations can be prepared independently and its proof relies on a specific
Quantum State Discrimination method, known as Quantum State Exclusion [65, 66].
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Discrimination of unitary transformations A very interesting case is the one where we have
a channel applying with a certain probability a unitary U1 or U2. We wish to discriminate which of
the two unitaries was applied to the system travelling through the channel. It would be possible to
straightforwardly choose a suitable state |ψ⟩ and to perform Quantum State Discrimination among
the states U1 |ψ⟩ and U2 |ψ⟩, but the problem can be addressed in a different and more effective
way. Since we aim at discerning one of the two unitary transformations rather than discriminating
among two states, it is possible to exploit ancillary systems, that is, discriminating between I ⊗U1

and I ⊗U2. The addition of ancillary systems can make two unitaries, even if they don’t commute,
completely distinguishable, though they were not without the ancillas [38, 67].
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1.4 Quantum Walks

A Quantum Walk (QW) is ideally the quantum counterpart of a Classical Random Walk (CRW);
first introduced by Aharonov et al. in 1993 [68], the Quantum Walk is a model for the coherent
evolution of quantum particles. Its more distinctive feature is the possibility for the walker to
occupy superposition states during the propagation, hence the occurrence of interference effects,
that determine a stark dissimilarity with the classical model. Because of this fundamental difference,
the way a Quantum Walk distribution spreads, quantifiable by the variance evolution, is quadratic
in time and the spreading behaviour is said to be ballistic, in contrast with the linear, diffusive
one of a CRW. In this section we will briefly review the Classical and Quantum RW models and
discuss some of the main properties of ordered and disordered Quantum Walks, with a specific
focus on the aspects that are more inherent to the object of our investigation. In addition to the
applications we will discuss in this thesis, Quantum Walks have been found useful in a wide variety
of frameworks, for instance as a tool for universal quantum computing [69–71], state engineering
and transfer [72, 73], and modeling of biological processes [74].

1.4.1 Classical Random Walk

A classical discrete random walk on a line is a particular kind of stochastic process. The simplest
classical random walk on a line consists of a particle (“the walker”) jumping to either left or right
depending on the outcomes of a probability system (“the coin”) with (at least) two mutually exclusive
results, i.e. the particle moves according to a probability distribution. The generalization to discrete
random walks on spaces of higher dimensions (graphs) is straightforward. Classical random walks
on graphs can be seen as Markov chains. Let Zn be a stochastic process which consists of the path
of a particle which moves along an axis with steps of one unit at time intervals also of one unit;
each Zn is the position of the particle at time n [75]. At any step, the particle has a probability p of
going to the right and probability q = 1−p of going to the left. We define the random variables Xi,
corresponding to the direction taken by the particle at a certain step i, which are independent and
identically distributed; they take the value 1 or −1 according to the outcome of the try described
above. Chosen as initial position Z0 = 0, the position at a certain step n is given by:

Zn = X1 +X2 + ...+Xn (1.130)

We now define the random variable Yi:

Yi =

1, Xi = 1

0, Xi = −1
(1.131)

We can write Yi = 1
2(Xi + 1) and, because of the fact that Yi is a Bernoulli variable, we can define

the random variable Tn =
∑n

k=1 Yi =
1
2(Zn + n), which is distributed according to the binomial

distribution Bin(n, p). Therefore we can calculate the probability of finding the particle in position
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k after n steps:

P (Xn = k|X0 = 0) = P (Tn =
1

2
(Zn + n) =

1

2
(k + n)) =

=


1
2

 n

1
2(k + n)

 p 1
2
(k+n)q

1
2
(n−k), 12(k + n) ∈ N

0, otherwise

(1.132)

Since Tn follows Bin(n, p), the expected value is E[Tn] = np and the variance is V [Tn] = npq; thus,
V [Zn] = 4npq, hence V [Zn] = O(n). Therefore, the standard deviation of a classical random walk
scales as O(

√
n) with the number of steps n.

1.4.2 Quantum Random Walk

It was demonstrated by Meyer in [76] that a quantum process consisting only of a quantum particle
(the walker) which, at each time step, moves in superposition both to left and right with equal
amplitudes, is physically impossible in general, except for the trivial case of motion in a single
direction. Working on Quantum Cellular Automata (QCAs), Meyer formulated the following No-
Go Lemma:

Theorem 1.1 In one dimension there exists no nontrivial, homogeneous, local, scalar QCA. More
explicitly, every band r-diagonal unitary matrix U which commutes with the one-step translation
matrix T is also a translation matrix T k for some k ∈ Z, times a phase.

We do not linger on the mathematical details of the matter, and we refer to [76] for the demonstration
and further insights. We only report here the meaningful consequence of this theorem for Quantum
Walks: a homogeneous, local process acting on a 1D system , hence represented by a band diagonal
unitary commuting with the translation operator, must be a trivial translation itself. Thus, not a
proper Quantum Random Walk, as required. In order to realize an actual Quantum Walk, it was
suggested to incorporate a second auxiliary system in the Quantum Walk model, a coin system, as
reported in [68] as well as in [77]. Thus, we should in principle speak of Coined Quantum Walks, but
in the following we are going to simply address them as Quantum Walks (QWs). In particular, we
are interested in a QW model with a very general applicability and a great flexibility, joint with a
comparative simplicity: the Discrete Quantum Walk on a Line (DQWL). This model describes the
coherent and time-discrete evolution of a quantum particle (walker) through a 1D lattice, mediated
by an auxiliary coin system. The mathematical description of a DQWL was provided by [77] and
[78] and we review it in the following.

Model of single coined DQWL

The main components of a coined DQWL are a walker, a coin, evolution operators for both walker
and coin, and a set of observables.

Walker and Coin The walker is a quantum system described by a Hilbert space of infinite
but countable dimension Hp. It is customary to use vectors from the canonical (computational)
basis of Hp as "position sites" for the walker. So, we denote the walker as |position⟩ ∈ Hp and
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assume that the canonical basis states |i⟩p that span Hp, as well as any superposition of the form∑
i αi |i⟩p, bound by

∑
i |αi|2, are valid states to represent the walker’s positions. The walker is

usually initialized to the "origin" state, i.e. |position⟩initial = |0⟩p. The coin is a quantum system
living in a 2-dimensional Hilbert space Hc. The coin may take the canonical basis states |0⟩ and |1⟩
as well as any superposition of these basis states. Therefore |coin⟩ ∈ Hc and a general normalized
state of the coin may be written as |coin⟩ = a |0⟩ + b |1⟩, where |a|2 + |b|2 = 1. The total state of
the quantum walk resides in HT = Hp ⊗Hc. It is customary to use product states of HT as initial
states |initial⟩ = |position⟩initial |coin⟩initial.

Evolution Operators The evolution of a QW is divided into two parts that closely resemble the
behaviour of a CRW. In the classical case, chance plays a key role in the evolution of the system.
In the quantum case, the equivalent of the previous process is to apply an evolution operator to the
coin state followed by the application a conditional shift operator to the total quantum system. The
purpose of the coin operator is to turn the coin state in a superposition, introducing randomness in
the evolution in a quantum fashion. The most commonly employed coin operator (usually denoted
as Ĉ) is the Hadamard operator:

Ĥ =
1√
2
(|0⟩c ⟨0|+ |1⟩c ⟨0|+ |0⟩c ⟨1| − |1⟩c ⟨1|) =

1√
2

[
1 1

1 −1

]
(1.133)

The conditional shift operator is a unitary operator, chosen so as to allow the walker to go one
step forward if the joint coin system occupies one of the two basis states (e.g. |0⟩), or one step
backward if the coin state is in the other one (e.g. |1⟩), in a coherent way. A suitable conditional
shift operator has the form:

Ŝ = |0⟩c ⟨0| ⊗
∑
i

|i+ 1⟩p ⟨i|+ |1⟩c ⟨1| ⊗
∑
i

|i− 1⟩p ⟨i| . (1.134)

Thus, the unitary operator representing a single step of a DQWL is Û = Ŝ(Ĉ⊗Ip), and the evolution
of a DQWL for t steps can be written |ψ(t)⟩ = (Û)t |ψ(0)⟩.

Observables Several potential application advantages of quantum walks over classical random
walks are a consequence of interference effects appearing after several applications of Û (other
advantages come from quantum entanglement between walker(s) and coin(s) as well as partial
measurement and/or interaction of coins and walkers with the environment). However, we must
perform a measurement at some point in order to gather knowledge about our walker. To do so,
we define a set of observables according to the basis states that have been used to define coin and
walker. There are several ways to extract information from the composite quantum system. For
example, we may first perform a measurement on the coin using the observable

M̂c = α0 |0⟩c ⟨0|+ α1 |1⟩c ⟨1| . (1.135)

A measurement must then be performed on the position states of the walker by using the operator

M̂p =
∑
i

αi |i⟩p ⟨i|p . (1.136)
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In particular, we are interested in the average behavior of the Quantum Walk; we wish to compare
the spreading behavior of a DQWL with its classical counterpart, through the analysis of the variance
of operator Mp as a function of time, or rather the mean square displacement of the particle position
σ2p(t).

Properties of a DQWL A thorough mathematical analysis of the DQWL was carried by Nayak
and Ambainis [77, 78], specifically oriented to establish the asymptotical behaviour of the Hadamard
walk, i.e. the DQWL featuring a Hadamard coin operator. By means of a "Schrödinger approach",
based on the Discrete Time Fourier Transform, they demonstrated that the Hadamard Walk has
an asymptotic quadratic spreading of the position variance as the evolution proceeds, in contrast
with the linear diffusion of CRWs. Therefore, Quantum Walks feature a pronounced superdiffusive
spreading behavior, which is said to be ballistic. A stark difference in the spatial distribution of
the walker arises with this behavior, as depicted in Fig. 1.16. It is worth observing the asymptotic
(t → ∞) output probability distribution for the particle to occupy a certain site i of the lattice at
step t, after position measurement:

P (i, t) = p0(i, t) + p1(i, t) (1.137)

where each term represents the probability of being in the site i with 0 or 1 coin state. We have a
theorem about Hadamard Walks [77, 78]:

Theorem 1.2 Let ϵ > 0 be any constant and α ∈ [−1√
2
+ ϵ, 1√

2
− ϵ]. For t→ ∞, we have, uniformly

in n:

p0(i, t) ∼
2(1 + α)

π(1− α)
√
1− 2α2t

cos2(−ωt+ π

4
)

p1(i, t) ∼
2

π
√
1− 2α2t

cos2(−ωt+ π

4
− ρ)

(1.138)

where ω = αρ+ θ, ρ = arg(−B +
√
∆), θ = arg(B + 2 +

√
∇),B = 2α

1−α and ∆ = B2 − 4(B + 1).

This result shows that the output probability distribution of the walker’s position is almost
uniformly spread in the region α ∈ [−1√

2
+ ϵ, 1√

2
− ϵ] and it decays very fast outside this area. By

integrating the two probability distributions in Eq. 1.138, it is possible to see that the probability is
mainly concentrated in the region [(−1√

2
+ ϵ)t, ( 1√

2
− ϵ)t], which provides an evidence of the fact that

the width of the probability distribution grows linearly with time t, thus the distribution variance
grows quadratically. The variance of the Hadamard Walk has been also computed by Konno [79]
and by Kendon and Tregenna [80], confirming that the standard deviation of a Quantum Walk
scales linear with time. Explicitly:

σ(X)

t
→

√√
2− 1

2
as t→ ∞ (1.139)

it is in contrast with the behaviour of standard deviation for a Classical Random Walk, which scales
as O(

√
t). We wish to stress out that any result standing for the Hadamard Walk is also valid for

any other kind of coined DQWL, as demonstrated in [78]. There have been many efforts aiming
at implementing more and more complex Quantum Walks, in particular on photonic platforms.
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Figure 1.16: Comparison between spatial distribution of Quantum Walk (QW) and Classical
Random Walk (CRW). In the left, we report the spatial distribution of a classical random walker after
20 evolution steps: the probability of finding the walker is localized around the initial position (x = 0) and
features the characteristic Gaussian shape. On the right, we see the completely different case of a quantum
walker, which started its evolution at position 0, but with a specific initial coin state: as a consequence,
the probability focus on a position far from the center, depending on the starting coin state. Thus, a QW
process involve memory effects, in contrast with the CRW. Moreover, the rest of the population is distributed
almost constantly around a very wide range of positions. This particular feature has been deemed useful in
the development of quantum search algorithms [86].

As of late, integrated optics have become the preeminent platform for QWs implementation [71,
81], and even more so since a way to fabricate tunable optical chips was designed [82]. Bulk
optics remain important for high-dimensional QWs implementations, featuring the manipulation of
alternative degrees of freedom to path and polarization [83–85]. In this section we focus on models
and experimental implementations of QWs featuring disorder, in order to establish the framework
for the next two Chapters.

1.4.3 Disordered Quantum Walks

Quantum Walks have been a powerful tool to analyze dynamical properties of a wide variety of
systems and also a platform to investigate general quantum phenomena. For instance, there has
been consistent interest towards the study of localization effects in Quantum Walks. The Anderson
localization effect [87] implies that an excitation propagating through a lattice tends to localize, i.e.
stops propagating, if inhomogeneities are inserted in the medium. This effect applies in principle to
Quantum Walks, and it can and has been investigated through the years by means of QW platforms.
The abundance of studies, that we will review in the following, highlighted how the insertion of
disorder may in general produce a transition from a quantum regime (ballistic propagation) to a
classical one (diffusive propagation). Disorder can be introduced in the QW evolution by means of
decoherence, that is a physical phenomenon typically arising from the interaction between quantum
systems and their environment, hence explicitly disrupting the coherence (and quantumness) of
the system. Anyway, there are cases in which decoherence may result a useful noise, such as
in application to quantum algorithms development [80]. Decoherence via measurement or free
interaction with a classical environment is a typical framework for studying transitions of quantum
walks into classical random walks [83, 88]. Nevertheless, disorder can be also imposed coherently on
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the QW evolution, as we will explicitly show in the next Chapter. In the following, we will discuss
different disorder regimes, each providing a different outcome in terms of spreading behaviour and
we will focus on the corresponding experimental efforts, which mainly developed in an optical
framework.

Static Disorder Regime

In 1958, P.W. Anderson [87] predicted that the wavefunction of a quantum particle shall localize
under an inhomogeneous static potential. As a consequence, it is expected that particle and energy
transport through a disordered medium should be strongly suppressed and that an initially localized
wave packet should not spread out with time. Anderson analysed this problem for the case of an
electron in a periodic crystal, in the quantum regime, leading to the conclusion that conductive
materials can actually become insulators under a broad range of conditions. The localization phe-
nomenon derives from path interference due to multiple scattering of the electron by lattice defects
and relies on two hypotheses: the inhomogeneous potential is time-invariant and particles must be
non-interacting. These conditions are hardly satisfied in solid state systems: the presence of tempo-
ral fluctuations (such as phonons) reduces the coherence of the scattering process and electrons are
fermions, fundamentally interacting particles. As a consequence, the experimental demonstration
of Anderson localization in crystals was very hard to perform. On the other hand, such conditions
are readily achieved in photonic systems. Since localization is essentially a wave-mechanics related
phenomenon, it can be naturally extended to any wave-like system, such as light [89–91]. Indeed,
photonics are the ideal framework to study localization: coherence is easily preserved and photons
are non-interacting bosons. Localization effect can be straightforwardly formulated for optical sys-
tems by a "transverse localization scheme" [91–93]. Anderson localization of light was observed in
a 2D photonic lattice [94], highlighting three different disorder regimes as a function of disorder
intensity:

• without any disorder, the light beam diffracts in the periodic medium, exhibiting ballistic
transport

• introducing weak disorder, lattice symmetry is lost and light tunnels randomly among sites,
in a diffusive transport regime

• with a high disorder level, the light intensity distribution narrows and the beam localizes
(after a short diffusive propagation)

A similar experiment was carried out by Lahini et al. [95], showing that in a 1D photonic lat-
tice, transport changes from ballistic to localized without any intermediate diffusive regime for
low disorder levels. By definition, a photon undergoing a QW evolution is a particle propagating
through a lattice. Hence, Quantum Walks are an advisable theoretical platform for investigating
localization-related phenomena in optical system, because of many properties. They are unitary
(unless decoherence is introduced), they provide a very general model, useful for photonic simula-
tion of other systems [96]; inhomogeneities can be introduced easily in the evolution and the system
can be measured after each evolution step (depending on the experimental implementation). In
[83], thanks to a clever time-multiplexing platform that we will discuss in the next Chapter, it was
possible to implement different disorder regimes in the Quantum Walk evolution of a laser pulse by
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means of an Electro-Optical Modulator (EOM), observing a wide variety of spreading behaviors,
such as localization.

Co-localization In the previous discussion, we have mentioned an experimental examples that
employ laser light as a quantum walker, i.e. coherent states [83]. As we discussed in Sec. 1.2,
coherent states can be described as classical objects, but they can simulate the behaviour of single
photons in a QW. Indeed, the issue resides in the nature of single particle QW: they can effectively
be described in terms of classical waves [97]. This is somewhat controversial, although the disagree-
ment about the actual quantumness of single particle QWs revolves around the way light has to
be considered, since light waves and particles feature very peculiar properties with respect to any
other physical objects. This dispute does not extend to the case of multi-particle QWs: no classical
system could simulate or reproduce the genuine quantum effects on the evolution of two or more
indistinguishable/quantum correlated particles, such as the HOM effect reviewed in Subsec. 1.2.6.
This motivated a large number of studies regarding the behaviour of indistinguishable and entan-
gled particles undergoing a QW evolution. How correlations of two indistinguishable particles evolve
under evolution through a periodic lattice was described in [98], inspiring further theoretical and ex-
perimental works, employing actual photon pairs [99–101]. In particular, it was demonstrated that
the results were different for bosons and fermions, which could be simulated by suitably engineered
two-photon states [26]. In the disordered case, theoretical studies [102, 103] implied that contem-
porary localization of two particles would be affected by correlation, different in case of bosonic or
fermonic systems. This result was experimentally demonstrated by the groundbreaking experiment
reported in [27], through an integrated photonic Quantum Walk platform, featuring static phase
inhomogeneities.

Dynamical Disorder regime

In case we relax the hypothesis of stationary potential in time, localization breaks down, but other
effects emerge. Specifically, transport resumes. There are many different ways of introducing
dynamical disorder in a QW evolution, yielding different outcomes. We can have pure dynamical
disorder, namely homogeneity in space but not in time, such as in the case of a medium with
homogeneous refractive index but varying in time; in this situation, QWs feature classical-like
diffusive spreading [104]. In [83], this regime was investigated by introducing decoherence through
the imposition of random phases (space-wise uniformly) at each evolution step, leading to the
expected diffusive propagation pattern. On the other hand, a spatially random potential which
also fluctuates in time can produce hyper-transport, namely a super-ballistic behaviour [94]. Some
earlier theoretical works [105–108] suggested hyper-transport was possible in presence of such a
potential and the first experimental demonstration was provided by Levi et al. [109].
In the following Chapter, we present another disorder model for QWs and its application. This
model, namely the p-diluted model, preserves the unitarity of the evolution and is characterized
by spatial and temporal inhomogeneity; we will show how, thanks to its very general features,
it is a particularly suitable model for investigating transitive regimes or for the manipulation of
propagating quantum objects.
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Chapter 2

Disordered Quantum Walks as a
theoretical and experimental platform
for the investigation of coherent
propagation phenomena

In the introduction, I have illustrated different models of disordered Quantum Walks, providing a
wide overview of the many possibilities offered by this theoretical platform. In the present Chapter,
we start discussing the main contents of this thesis, presenting some of the works I contributed to.
In particular, we introduce a theoretical and experimental framework that will be the basis for the
next Chapter too: the p-diluted disorder model and its experimental implementation, that led to
the first observation of superdiffusive behavior in a QW [110]. The idea of p-diluted served as a
foundation for further works, that we report in this Chapter. This model was employed to observe
subdiffusion in a QW [111], through an experiment based on my preliminary numerical analysis.
My expertise in the field of disordered QWs also benefit a study regarding the relationship between
extractable information and disorder in a QW-like network [112], establishing a first QW-based
approach to quantum metrology problems.

2.1 The p-diluted model

In order to introduce the main subject of the thesis, we present another disorder model for Discrete
Time Quantum Walks (DTQWs) which was explicitly developed in order to observe a transition
from the ballistic to the diffusive behavior corresponding to the ordered and time-wise disordered
case. In particular, the model is similar to the ones reported in the last subsection of Section 1.4,
but for the important difference that the so-called p-diluted model introduces completely coherent
disorder in the Quantum Walk evolution. In the p-diluted model, first introduced and employed in
[110], we consider the case of a quantum particle propagating as a one dimensional (1D) DTQW that
undergoes a sequence of phase shifts, each of which depends on the particular site and coin state
where it is imposed, as well as on the step number. Therefore, the resulting disorder configuration
will be inhomogeneous in the time, position and coin degrees of freedom. For sake of simplicity, we
refer to the joint states of position and coin state as the modes {|k⟩} of the QW. We can always write
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Figure 2.1: Example of a network representation of a p-diluted disordered QW.The green circles
represent π phases randomly added on the edges corresponding to QW modes, according to the p-diluted
generated phase map. Coin and shift operations are here represented by black bars, that in a photonic
framework can be straightforwardly implemented by Beam Splitters (BSs). The |0⟩c and |1⟩c coin basis states
are reported.

the state of the system as a superposition of these modes |Ψ(t)⟩ = ∑
k αk(t) |k⟩. The probability

amplitudes depend on the past evolution of the walker (a QW is a non-Markovian process) and we
can write the single step evolution of the system as:

|Ψ(t+ 1)⟩ =
∑
k

eiϕk(t)Ûkαk(t) |k⟩ (2.1)

where ϕk(t) is the phase shift that is imposed on the system at mode k and time step t, and Ûk is
the one-step evolution operator acting on the mode k. The phase shifts ϕk(t) are randomly chosen
according to a sequence of independent Bernoulli processes characterized by the same real coefficient
p ∈ [0, 1]: for each possible joint pair of time steps and QW modes {t, k}, a random Bernoulli "coin
toss" determines if ϕk(t) = 0 with probability 1−p or ϕk(t) = π (a "flipped" phase) with probability
p. All of these phase shifts form a so-called phase map [110]. A phase map generated with coefficient
p is a set of matrices {Φp(t)}t=0,...tmax describing the phase shifts that are imposed on the walker
during the QW evolution. there are many different realizations, hence phase maps, that can be
produced by the random generation protocol described above for a fixed p. Nevertheless, since we
are considering a sequence of Bernoulli processes, i.e. binomial processes, we will have that, for
a given probability p of "flipping" the individual phase, the average percentage of flipped phases
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in a phase map will be equal to p [110]. For this reason, the model is referred to as p-diluted,
in analogy to the model of diluted lattices in statistical mechanics [113]. In principle, the value
p can be chosen in the range [0, 1], but it is worth mentioning that half of this interval is enough
for most applications: indeed, if we consider p = 1

2 , we will have, on average, half of the phase set
to 0 and the other half set to 1, which we can consider as a completely disordered configuration.
If we choose p > 1

2 , we will have an unbalanced ratio between 0 and π phase, with an exceeding
amount of flipped phases, therefore we will face a situation of greater order than in the p = 1

2 case.
Thus, increasing the p above the 1

2 value leads to a "return to order", symmetrical to the transition
from p = 0 to p = 1

2 and culminating in the completely ordered configuration consisting of all
phases flipped. As we have shown in Section 1.4, inhomogeneities are usually inserted in Quantum
Walks with the aim of investigating different disorder regimes: in this case, the possible disorder
regimes are fully covered by p values in [0, 0.5]. In the applications of the model, the parameter p is
redefined in order to run over the interval [0, 1], while the actual "disorder level" corresponds to p

2 .
Thus, in the following, whenever we refer to the case of p = 1, or a transition up to p = 1, we are
considering the situation of complete disorder, namely a disorder level of 1

2 . As a final remark, we
stress the fact that the inhomogeneity model we described does not impose any decoherence effect
on the system, mantaining the purity of the initial state throughout the whole evolution. This kind
of disordered Quantum Walk has been realized for the first time via an optical implementation in
[110], with the aim of demonstrating a continuous superdiffusive transition between ballistic and
diffusive behaviour in Quantum Walks. This work was the starting point for further investigations
on anomalous diffusion phenomena in Quantum Walks and their applications, that we discuss in
this Chapter. In the next section, we describe an improved setup with respect to the one employed
in [110], which made possible further studies and achievements.

2.2 A bulk-optics setup to implement disordered Quantum Walks
in the time and space domains

As we mentioned in Sec 1.4, Quantum Walks have been mostly analyzed from an experimental
point of view through photonic implementations. Both bulk and integrated setups have served as
important platforms for the investigation of Quantum Walks behavior, especially in the case of
disordered evolution. Integrated systems have a clear advantage in terms of compactness, hence
technological applications, and losses reduction [114]. On the other hand, until recently, they lacked
in flexibility: the ability to tune the parameters of a photon evolution imposed by an optical chip
has been developed as of late only [82, 115, 116]. Moreover, it is not possible, in general, to measure
each step of the Quantum Walk evolution in integrated implementations. In order to reproduce
a Quantum Walk evolution featured by the p-diluted disorder model described above, the ability
to address phase shifts both in the time and space degrees of freedom is necessary. Specifically,
we wish to reproduce a Galton board made of BSs, reproducing the network structure of Fig. 2.1,
that corresponds to a network of Mach-Zehnder Interferometers (MZIs), in which some edges of
the network may feature a π phase shift. These phase shifts combine to determine the global
phase shift of each MZI, corresponding to each mesh of the network. A setup for this task was
realized, implementing both single photon and photon pair p-diluted disordered Quantum Walk
evolution. Earlier application of the same experimental method can be found in [117], while the
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complete setup is described in detail in [110, 118]. In this section, we describe the improved version
of the experimental platform, that I implemented during my PhD and that was employed for the
experimental investigation of enhancement in nonclassical correlation of a biphoton due to coherent
disorder configurations [119], which will be discussed in the next Chapter.

2.2.1 Experimental scheme

(a)

input 1

BS1

SI1SI2

X

Y

Z

L=40cm

M1

(b)

input 1

BS1

SI1SI2

X

Y

Z

L=40cm

M1

Figure 2.2: Building an all optical QW platform. (a) Double Sagnac Interferometer (SI1 and SI2),
for intrinsic phase stability; (b) displacing one mirror M1 generates different possible paths, which recom-
bine on the central Beam Splitter (BS1) in different position as light propagates through the setup. This
procedure effectively reproduces a chain of Mach-Zender interferometers, where it is possible, in principle, to
individually address each phase shifting.

The experimental setup consists of two displaced multi-pass Sagnac Interferometers (SIs), that are
connected through a common BS. Figure 2.2 shows the first step for the realization of such a setup:
at first, the two SIs are identical, so that light entering the system would just travel the same path
over and over (Fig. 2.2 a) ). By shifting the angular mirror of one of the two SIs, namely SI1, it
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is possible to produce a horizontal displacement of photon trajectories as light passes through SI1.
Eventually, a sequence of displaced loops lying in the X-Y plane is obtained (Fig. 2.2 b) ). This
is equivalent to a chain of Mach-Zehnder interferometers (MZIs), as the one reproduced in [117],
where the length of the chain is determined by the amount of times light passes through the BS.
These interferometers have intrinsical phase stability, because of the Sagnac geometry.
Using the propagation plane of light, it is possible to reproduce the evolution in time of the system,
but we still lack the spatial propagation we require to reproduce a MZIs network as in Fig. 2.1.
To this aim, the transversal direction to the propagation plane was exploited as well, thanks to
the employment of suitably designed Beam Displacers (BDs). The BD consists of a thick tilted
glass prism. Fig. 2.3 sketches its working principle: light passing through the BD is up-shifted by
an amount which is determined by inclination, thickness and refraction index of the BD. Photons
travelling multiple times through a BD will change their propagation height of a discrete amount,
resulting in a discrete evolution in the transversal direction to the propagation plane. Two BDs were
positioned so as to intercept clockwise light trajectories in SI1 and counter-clockwise ones in SI2.
The QW sites are encoded in the transversal axis: the BS applies the coin operator, and, depending
on the output port photons emerge, the path of light will either be lifted or not, representing the
action of the shift operator and yielding as a result the QW one-dimensional propagation we wish to
reproduce. In conclusion, we are able to reproduce the network structure of Fig. 2.1 by the setup

Figure 2.3: Sketch of the functioning of the Beam Displacer. A beam travelling through the Beam
Displacer (BD) is lifted off a set height, which is chosen aiming at keeping planes corresponding to different
QW position well distinguishable one from another. Values of implemented geometrical parameters are
reported. In order to get the optimal height step (around 6 mm) and to limit further effects on the beam,
such as the unavoidable angular spreading, the parallelism between the BD’s faces has to be accurate below
1µrad. Figure from the Supplemental material to [110].

sketched in Fig. 2.4: the multiple BSs are replaced by multiple passages in the central Beam Split-
ter, corresponding to different points on the planes parallel to the BS faces. Each of these points
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input 1

input 2
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BS2

SMF + 
Detector 1

SI1SI2

SMF + 
Detector 2

X1 X2

Figure 2.4: 2D sketch of the experimental setup. Optical elements are refferred to as BS: beam
splitter, BD: beam displacer, RP: rotating glass plates, MM: moving mirror, SI1: Sagnac Interferometer 1,
SI2: Sagnac Interferometer 2. Blue and red beams circulate in opposite directions and impinge on the BS1
in the same horizontal point but at different heights along the z direction, due to the effect of BDs. BS2
allows the detection of two photon coincidences collected from the same output mode.

corresponds to a different site, coin state and evolution step, so that it is possible, through some
Moving Mirrors (MM) to collect signal at any evolution step and reconstruct the output probability
distribution of the QW throughout the whole evolution. This peculiar spatial structure is clarified
in Fig. 2.5.
Indeed, as we show in Fig. 2.4, it is possible to have two photons travelling the QW at the same
time, by suitably engineering a second input path. As a consequence, this platform also allows us
to study the behavior of two photons sharing quantum correlations (such as indistinguishability or
entanglement) as they face a disordered QW evolution.
In fact, our very flexible setup grants the possibility of individually addressing the phase shift for

each mesh of the network in Fig. 2.1, in order to implement p-diluted disordered configurations.
This can be done by positioning some thin glass plates along the photon paths, one for each pos-
sible transversal propagation mode. By suitably tilting these Rotating Plates (RPs), it is possible
to change the total phase shift corresponding to one of the BS network meshes from 0 to π at will.
We provide a more detailed discussion of the phase tuning procedure in the following.
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Figure 2.5: Transverse spatial distribution of light beam trajectories. (S1) Looking at the BS
from the plane X1 to light propagation in SI1. (S2) Looking at the BS from the plane X2 of SI2, defined
as the orthogonal planes to light propagation direction. For each cut, the number of steps increases along the
horizontal axis of the pattern, going from inside to outside with respect to the central dashed line. Indeed,
paths exiting from the BS at step k are external with respect to the paths of the step k − 2 (note that odd
steps belong to SI1, while even steps belong to SI2). Columns with the same index k show the modes of the
kth step. Each step is represented twice because of the two possible states of the coin (|0⟩c, |1⟩c). Different
planes of a column represent different sites, and the number associated with the site increases going from the
bottom to the top. In this way, the same plane represents different sites for different steps. For example,
in the S1 cut, the zero-plane represents the site −1, but for step k = 3, the same plane represents the site
−3. Point-marked trajectories (|0⟩c) proceed towards the viewer, while cross-marked ones (|1⟩c) travel in the
opposite direction. The yellow regions correspond to the effective transverse BD areas. Figure from [119].

Phase tuning

As mentioned in Sec. 2.1, the disorder is inserted in the system by imposing a random phase, chosen
in {0, π} with probabilities P0 = 1−p and Pπ = p, on each mode, at each step. A graphical example
of phase map is depicted in Fig. 2.7: our Quantum Walk acts as a Mach-Zehnder interferometers
network, so that the only meaningful quantities are the phase differences between the two branches
of each MZ. Therefore, the operation of phase tuning consists in rotating the RP while observing
the outputs of the selected MZ (this is possible by using the MMs) until the requested interference
condition is satisfied. In order to do this, we need to individually address the phase shift of each
MZI, hence use a different RP for each and every one. The RPs are designed to only intercept light
corresponding to one QW mode at a given step, as we show in Fig. 2.6.
We consider the case of Fig. 2.7, where yellow circles indicate the actual presence of a RP intercepting
light propagating along the corresponding edge of the BS network. By means of the Moving Mirrors
we can collect the output of any mode we wish at any step. In order to correctly set the phase shift of
a specific MZI, we need to observe in the output the interference effect corresponding to the desired
MZI only. We can do this through a set of Path Selectors (PS), that can mechanically block single
edges of the network, i.e. specific photon trajectories at any step, allowing the photon to propagate
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Figure 2.6: Sketch of the rotating glass plates used in the actual setup.The glass plates naturally
add a phase shift to travelling light, with respect to a path through air, due to the difference in refractive
index. By mounting these plates on suitable rotating supports, it is possible to increase the distance travelled
by light through glass, hence tuning the phase shifting. In order to realize this effect individually on each
different mode, in a space and time wise fashion, the size of the device has to be accurately tailored. Values
of relevant geometrical parameters are reported.

only through the MZ under tuning. In this way, it is possible to observe the interference effect at
the output of each MZ in Fig. 2.7, setting the {0, π} phases according to the disorder configuration.
It is worth noting that, as visible in Fig. 2.7, the phases of adjacent MZs are correlated, thus the
phases have to be set step-wisely, considering earlier MZIs first.
The operation of positioning of the RPs and that of phase tuning are performed by means of a laser
with the same wavelenght of the single photons exploited for the measurements; in fact the phase
imposed on the radiation by the plates only depends on its wavelenght and we may expect the effect
to be the same on single photons. The same procedure can be employed also in the preparation
stage of two photon experiments.
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Figure 2.7: An example of phase map on the one-dimensional quantum walk (QW) realized
by the setup. Yellow circles represent the presence of a rotating glass plate, one for each individual MZI
of the network. Green boxes highlight the modes where a π phase has been randomly extracted. The phase
differences of each Mach-Zehnder, corresponding to the given phase map, are explicitly shown and actually
implemented by the glass plates. It is worth noting that an even number of π phases within a Mach-Zehnder
gives raise to a total phase difference 0.

2.3 Experimental investigation of subdiffusive propagation regime
in quantum walks

In [110], the experimental setup described above was used to demonstrate the transition from a
ballistic to a diffusive propagation behavior in a single and two-particle one-dimensional discrete
Quantum Walk, driven by the insertion of p-diluted disorder in the system. In particular, a phe-
nomenon analogous to a phase transition as a function of the parameter p was observed. These
results inspired further analysis and investigation: indeed, as we reported in Sec. 1.4, Quantum
Walks are susceptible to a localization phenomenon similar to the so-called Anderson localization
[87] even in their photonic implementations [91]. We have already mentioned the plethora of ex-
perimental demonstrations following this discovery in the corresponding Subsection. Nonetheless,
as well as an experimental demonstration of an intermediate regime between ballistic and normal
diffusion was missing, an exploration of the propagation behavior comprised between normal diffu-
sion and localization had never been tackled, nor its very existence and actual feasibility had ever
been demonstrated.

In this section, we report on our collaboration with the University of Paderborn that led to the
experimental demonstration of the conceptual idea that p-diluted disorder can generate a subdiffu-
sive spreading regime in a QW, at least for the accessible number of evolution steps [111]. In this
case, the experimental setup is a highly flexible time-multiplexing platform [83, 120, 121] that acts
like a simulator of subdiffusive processes. The results we review in the following demonstrate the
possibility to realize any transient sublinear propagation regime ranging from statically disordered
QWs, to completely disordered ones, by controlling disorder in the spatial degree of freedom (that
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here is represented by time bins) and in time (that is the number of evolution steps).

2.3.1 Theoretical model

We use a very general model for transport processes to formalize our framework. Such broadly
applicable model can be formulated in terms of the partial differential equation

0 = ∂tP (x, t) + LP (x, t), (2.2)

where P (x, t) represents a space-time dependent probability distribution and L is a potentially time-
dependent differential operator in the spatial degree of freedom x. For a large family of randomized
media, the asymptotic solution for large times t reads

P (x, t) ∝ exp

(
−
∣∣∣∣ axσ(t)

∣∣∣∣b
)
, (2.3)

where b describes the type of the exponential decay and a is a scaling factor. Furthermore, σ(t) is
the standard deviation with the characteristic power law behavior,

σ(t) = ctd, (2.4)

where 2d determines the spread of the variance over time and c is another scaling factor; see Ref.
[122] for a thorough derivation of this model. We apply this model here as an heuristic approach
to interpret the experimental data. For example, for b = 2 and 2d = 1, we get from the rigorous
model a Gaussian distribution in space with a linear increase of the variance, while the parameters
b = 1 and 2d = 0 result in Anderson-like localization as a consequence of the static disorder. Here,
we aim at exploring the theoretically predicted intermediate regime, 1 < b < 2, with a subdiffusive
behavior, 0 < d < 1/2.

We have mentioned how discrete QWs can simulate certain diffusion regimes, such as superdiffu-
sive power laws [110]. We wish to study general anomalous diffusion in QWs, so we model different
anomalous diffusion regimes with a corresponding mixture of static and dynamic disorder in the
choice of a space-time dependent coin. In particular, the degree of dynamic disorder will be mapped
into a parameter p, according to the p-diluted model of Sec. 2.1. First of all, we consider a coin oper-
ator which is inhomogeneuous in space, but static in time, Ĉ(x, t) = Ĉ(x), leading to Anderson-like
localization (b = 1), which is a static effect (2d = 0). Now, this static disorder can be perturbed by
the p-diluted model to approximate the differential operators L in Eq. (2.2) for different physical
scenarios. This perturbation consists of the independent and random choice of time-dependent coin
configurations according to the percentage of dynamic disorder p,

Ĉ(x, t) =

{
Ĉ(x, t) with probability p,
Ĉ(x) with probability 1− p,

(2.5)

so that an inhomogeneity in time is introduced, too. Specifically, p = 0 yields Anderson-like
localization (b = 1 and 2d = 0), and p = 1 results in a completely disordered QW (b = 2 and
2d = 1). Most importantly, the region 0 < p < 1 should theoretically enable us to control our QW
in such a way that it explores the full intermediate range of exponential spatial decays, 1 < b < 2 in
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Figure 2.8: Sketch of the experimental setup. The optical components depicted are polarization
controllers (PCs), polarizing beam splitters (PBSs), and electro-optical modulators (EOMs). The PC allows
to precisely compensate the polarization rotation caused by propagation through the fibers, while the required
polarization-resolving detection is achieved by splitting the output of the loop with PBSdet followed by one
detector for each polarization. Figure taken from [111].

Eq. (2.3), with sublinear temporal spreads, 0 < 2d < 1 in Eq. (2.4). It is important to mention that
such p-diluted strategy applies to the transient regime of a limited step number in experiments and
it is not confirmed for the rigorous asymptotic behavior, which may tend to saturate in a diffusive
long-term propagation.

2.3.2 Experimental implementation

In order to implement this transient subdiffusion regime in a Quantum Walk, a well-established time-
multiplexing scheme was employed, based on an unbalanced Mach-Zehnder interferometer with a
feedback loop [83, 120, 121]; see Fig. 2.8. This platform, realized at the University of Paderborn,
provides high resource efficiency, long-lasting stability, and homogeneity, which we exploit for the
realization of QWs over a sufficiently large number of steps that is mandatory to clearly distinguish-
ing signatures of subdiffusive behavior. In particular, the setup described in Sec. 2.2 couldn’t have
been employed for this study, because the finite size of the optical elements and the unavoidable
losses crucially limit the number of evolution steps that can be achieved by a QW implemented via
that platform.

In the scheme in Fig. 2.8, the QW sites are encoded in different time bins occupied by a weak
coherent laser pulse at the single-photon level (central wavelength 1 550 nm, pulse width 1 ps, and
repetition rate 4 kHz). This pulse acts as the walker while the coin information is embedded in its

Alessandro Laneve 61



2.3. Experimental investigation of subdiffusive propagation regime in quantum walks

polarization, |H⟩ = |0⟩ or |V ⟩ = |1⟩. The QW evolution starts when the pulse impinges on the top
port of PBS1 for the first time. The initial position of the quantum walker is x = 0 with horizontal
polarization, so that the initial state is globally |ψ(0)⟩ = |0⟩ ⊗ |0⟩.

The setup realizes an unbalanced interferometers with a well-defined time delay between the
polarizations (105ns), realizing the shift operation Ŝ in the temporal degree of freedom. This in-
cludes polarization dependent splitting at PBS1, propagation of horizontal and vertical polarization
through long (∼ 473 m) and short (∼ 453 m) fibers, respectively, and the coherent recombination of
the two paths at PBS2 to introduce the delay between the two polarizations. The interferometer is
closed with a free-space feedback loop that redirects the light back to PBS1 for the next evolution
step, corresponding to another trip through the MZI.

We harnessed a position- and step-dependent coin operation in order to apply p-diluted disorder
to the evolution and realize subdiffusive dynamics. To this aim, a fast-switching Electro Optical
Modulator (EOM) was employed in the feedback loop for a dynamical coin control via polarization
rotations without introducing further significant losses. The two fast-switching EOMs, EOMH

and EOMV, enable redirection of the pulses either back to the feedback loop or to detection,
granting the ability to measure the output probability of the QW at any evolution step. This
active polarization control makes deterministic in- and out-coupling easier to achieve, so that it is
possible to effectively realize large evolution steps for a single particle QW. The detection unit allows
for polarization-resolved photon counting at individual time bins, using PBSdet and high-efficiency
(> 90%) superconducting nanowire single-photon detectors with a dead time of ∼ 100 ns, from
which we can extract the output QW probability distributions.

The setup described above is designed to have a step separation of ∼ 2.3 µs and site (time bin)
separation of ∼ 105 ns and, in principle, can be employed for the implementation of single particle
QWs up to 36 steps by allowing time-bin interlacing for successive steps [121]. In the experiment
reported in this section, we limited the investigation to 20 steps, which is enough to unambiguously
discern transient subdiffusive dynamics, while minimizing the uncertainties deriving from interlacing
between different time steps.

2.3.3 Experimental results

We wish to observe the transient subdiffusive regime of a disordered QW by analyzing the walker’s
behavior as a function of the disorder level. Given the disorder level p, there are several possible
global coin configurations which can be generated by local random choices of the coin, as by Eq. (2.5).
We refer to these configurations as coin maps, in analogy with the phase maps of the original p-
diluted model. We experimentally implemented 400 coin maps for each disorder scenario under study
p ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 1.0} and we averaged the output distributions P (x, t) over all the disorder
realization for each p. The resulting average probability distribution was measured for step numbers
t ∈ {5, 8, 11, 14, 17, 20}. The total 2400 coin maps were generated by randomly creating initially
static disordered coin configurations; this was achieved by randomly picking one coin value from
three possible ones independently for each site of the line and setting the resulting static disorder
patterns as the 2400 initial random configurations. This is a crucial difference with the original p-
diluted model: there are three possible values for the disordering parameter, rather than two. The
coin maps were then divided into six sets, each composed of 400 coin maps, and a different disorder
level was imposed on each subset. Practically, the coin value at each position and time was changed
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to another one, with a probability equal to p, in a p-diluted fashion. The new coin values were
chosen with uniform probability among the remaining two. The result is a set of 400 different coin
maps featuring the same average disorder level p, for each of the chosen ps. Since the initial static
disorder is randomly implemented for each coin map, the final results do not depend on a particular
static configuration but only on the disorder level p. Thus, we experimentally implemented such
disorder configurations, measuring the output probability distributions. The resulting data allow
to analyze both the spatial features of the average P (x, t), following a certain exponential behavior
with 1 < b < 2 and the time-wise spreading pattern, crucial to certify anomalous diffusion, featuring
0 < 2d < 1.

Spatial characterization

For a fixed step number t, and for p = 0, we expect the output probability distribution of light
to be exponentially localized, as a consequence of an Anderson-like localization effect [27, 91]. By
increasing disorder level p, we disrupt the static pattern of disorder, thus we expect a broadening
of the distribution. Eventually, for p = 1, we expect the system to reach a diffusive propagation
regime, showing a Gaussian spatial distribution typical of a classical random walk propagation. It
is convenient to work with a modified expression of Eq. (2.3),

ln(P ) =

(
−
∣∣∣a
σ

∣∣∣b) |x|b − ln

(∑
x

e−|ax/σ|b
)
, (2.6)

in order to better represent the collected experimental data, after they have been analyzed by a non-
linear fit. Measurements outcomes corresponding to t = 20 steps for different amounts of disorder are
reported in the left column of Fig. 2.9. In the top-left plot, dots correspond to experimental average
probability distributions. Dotted lines represent theoretical probability distributions, obtained from
a numerical simulation. Experimental and theoretical distributions show a very good agreement,
featuring similarities above 99%, even without considering unavoidable experimental imperfections
in the simulation parameters.

The bottom-left picture in Fig. 2.9 shows data (dots) together with the fitted curves (dashed
lines) according to Eq. (2.6), demonstrating the transition from a linear (b ≈ 1) to a parabolic
(b ≈ 2) decay in this logarithmic depiction. Therefore, the presence of higher disorder p diminishes
the probability to find the walker in the starting position x = 0 for t > 0, hindering the localization
effect. As a consequence, the probability distributions broadens. It is worth noting that other
imperfections may lead to an even broader range of parameters, such as b > 2 [109].

2.3.4 Temporal characterization

The second trait we focused our analysis on is the spatial distribution variance behavior as a function
of the step number t, for different disorder levels. It is convenient again to use a logarithmic form
of Eq. (2.4) to represent the data:

ln
(
σ2
)
= 2d ln(t) + ln

(
c2
)
, (2.7)
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Figure 2.9: Experimental results for space and time behavior. Top-left: Probability distribution P
for a range of disorder values p. Experimental data (dots) agree within the uncertainties with the theoretical
results (dotted lines). Error bars account for Poissonian statistics of the detection process and experimental
imperfections of the setup. Bottom-left: Logarithm of the experimental probability distribution (dots) together
with fitted function (dashed lines) according to Eq. (2.6). We only show part of the analyzed p values to
maintain clarity. Top-right: Logarithm of the variance as a function of the logarithm of the step number
t for various disorder levels p. Dots correspond to experimental data and dashed lines represent the fitting
functions according to Eq. (2.7). The growth trend featuring slopes between zero and one in this doubly
logarithmic graph for each value of p demonstrates an excellent agreement with the predicted subdiffusive
behavior of the evolution. Bottom-right: Values of the exponents for the spatial (b) and temporal (2d)
characteristics, obtained by fitting the theoretical predictions of Eqs. (2.6) and (2.7) to the measured data in
bottom-left and top-right plots. Figures are borrowed from [111].
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in order to assess the presence of subdiffusive spreading. Results are reported in the top-right plot
of Fig. 2.9 on a logarithmic scale for both axes. Dashed lines correspond to the curve in Eq. (2.7)
which is fitted to the data (dots) for different p values. The transient subdiffusive propagation
of the QW evolution is confirmed by the linear trends with slopes 0 ≲ 2d ≲ 1 (see bottom-right
depiction in Fig. 2.9 for the values). For p = 0, we would expect localization, hence a constant
value of variance, corresponding to an absence of spreading in time. Indeed, this effect shall be
considered as an asymptotic limit, which can be approached by enormously increasing the evolution
time of the system. This is the reason for us denoting the phenomena we observe as corresponding
to a transient regime. As in the previous spatial analysis, error bars on the experimental data have
been computed considering a Poissonian statistic of counting as well as experimental imperfections.
Beyond earlier studies, we analyzed both the spatial and temporal impact of the amount of disorder
p. Our results confirm that such an approach enables the simulation of almost any subdiffusive
behaviors, within the harmless restriction of a finite number of steps in experiments. Thus, the
transient sublinear spread over time and the characteristic shapes of the spatial distributions that
we were able to measure indicate that the interplay between a static disorder and completely random
disorder, freely controlled and interpolated via p, can provide an accessible method to reproduce
complex subdiffusion phenomena, modeled by the very general framework of discrete QWs.

2.3.5 Conclusion

The work we reviewed in this section was conceived as an additional tile on the path towards the
implementation of a universal quantum simulator. We reported on the experimental demonstration
of the capability of simulating a well-resolved range of subdiffusive propagation behaviors via disor-
dered QWs. Indeed, the system was driven from Anderson-like localization to Gaussian distribution
in a controllable fashion, and, at the same time, an exploration of the sublinear regime for a QW was
performed for the first time. These results complete earlier investigations about superlinear prop-
agation in QWs [110], providing with an experimental platform which can implement any regime
from localized to ballistic.

Earlier works implied the possibility of subdiffusive dynamics in QWs by considering the presence
of non-linearities in the coin operator [123, 124], an approach that requires high complexity and
low efficiency as far as experimental demonstration is concerned [125], in addition to a complicated
theoretical description. In contrast, we were able to realize subdiffusive QWs in a significantly more
accessible manner, providing an efficient tool for the investigation of anomalous diffusion, as long as
asymptotic limits are not considered. This was possible through a crossover between two disorder
models: a static one, leading to Anderson-like localization, and a dynamical one, inducing diffusion.
Thus, we were able to encode in a single parameter p a continuous transition from one model to the
other, sweeping the entirety of the subdiffusive region.

This study exceeded a proof-of-principle experiment, providing a platform that could simulate
a wide range of propagation phenomena, possibly for two walkers, as already demonstrated for the
superdiffusive regime [110], by means of the very same setup [126].

The p-diluted disorder approach and the experimental platform we discussed in this section
grant the ability to reproduce different spreading behaviours in a single, stable, and completely
reconfigurable setup, which may foster further understanding of properties of quantum particles
propagating in even more complex environments.
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Personal contribution

I implemented the preliminary numerical simulations necessary to understand the feasibility of the
subdiffusive QW transition and the experimental requirements for the actual realization of a visible
subdiffusive transition.

66 Alessandro Laneve



2.4. Quantum metrology approach to anomalous diffusion

2.4 Quantum metrology approach to anomalous diffusion

In the previous sections, we have reviewed a high number of studies about transport features in
a QW. Quantum walks have only recently started being also explored in the context of quantum
metrology [127], although some QW-like architectures, inspired by boson sampling, have been ex-
ploited to experimentally address the problem of multiphase estimation [128–130]. Indeed, the
connection between QWs and quantum metrology is not straightforward, until we consider, for
example, the p-diluted QW model: a network featuring a certain set of phases, that is explored
by propagating quantum objects. In [112], we investigated the possibility of gathering information
about the features of a QW network by the analysis of the quantum walker behavior. In particular,
we were able to connect the Quantum Fisher Information (QFI),which quantifies the extractable
information about an unknown parameter such as a phase ϕ, to the transport regime of a QW
undergoing an evolution characterized by the parameter ϕ. This theoretical study revealed that
disorder plays a significant role in the spreading behaviour of quantum information. In the follow-
ing, we report on this work, showing that the step-wise trend of QFI allows one to recognize the
disorder pattern imposed on the walker.

2.4.1 Quantum metrology

In this section we will review some basic concepts regarding Quantum Metrology (QM), in order to
improve the readability of this section. The main reference we employ is the review from Polino et
al. [131], because of the "photonic" framework we maintain throughout the following discussion.
The ability to precisely measure a physical quantity is of fundamental relevance, for instance in
order to precisely test the predictions of a theory. Along with the measured value of a quantity,
an uncertainty has to be provided, summarizing both the technical and fundamental errors. The
first type of error mostly consists in accidental errors, due to imperfect control in the measurement
process. The second type of error is of a different nature: it is the consequence of physical laws.
Quantum mechanics provides an ultimate bound for the maximum achievable precision in the esti-
mation of a physical quantity.
Metrology aims at developing the optimal protocol to measure an unknown physical parameter ϕ,
characterizing a physical system, by means of an interaction between a probe and the system itself,
after which the information is encoded in the probe state. In the quantum case, the probe is set
to be a quantum object, provided with quantum features. Quantum metrology is meant to develop
ways to enhance the accuracy of measurements by exploiting genuine quantum traits of the probe.
The general scheme of a measurement process can be outlined as

• preparation of the probe state ρ̂0, which must be sensitive to variations of the parameter ϕ;

• interaction between the probe and the system through the unitary evolution Ûϕ as ρ̂ϕ =

Ûϕρ̂0Û
†
ϕ;

• extraction of information about ϕ by means of suitable operators acting on the probe;
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• computation of a suitable estimator which provides an estimation Φ(x) of the unknown pa-
rameter ϕ based on the measurement result x.

Such a protocol has to be repeated M times in order to obtain a more and more accurate
estimation of the value ϕ. An estimator Φ can have different properties, which determine its
quality. An estimator can be:

• consistent: the estimator asymptotically converges to the actual value of the parameter

• unbiased: the estimator’s mean value corresponds to the unknown parameter, i.e.

⟨Φ⟩ =
∑
x

P (x|ϕ)Φ(x) = ϕ, (2.8)

where P (x|ϕ) is the output probability of obtaining a certain measurement result x, condi-
tioned to a certain value of the parameter ϕ.

Accuracy of the measurement cam be evaluated in terms of the mean square error (MSE), defined
as

MSE(ϕ) =
∑
x

(Φ(x)− ϕ)2P (x|ϕ) (2.9)

which, for an unbiased estimator, yields an estimate of the variance of the parameter

∆ϕ2 =
∑
x

(Φ(x)− Φ̄)2P (x|ϕ). (2.10)

Optimization of a measurement protocol can be pursued through different paths, aiming at
increasing the accuracy of parameter estimation; the choice of estimator can be optimized, as well
as the measurements performed on the probe or the initial state of the probe. We consider a fixed
probe state and fixed measurement set; in order to optimize over the estimator choice, we define
Fisher information (FI) as

F (ϕ) =
∑
x

P (x|ϕ)
(
∂log(P (x|ϕ))

∂ϕ

)2

=
∑
x

1

P (x|ϕ)

(
∂P (x|ϕ)
∂ϕ

)2

(2.11)

FI quantifies the amount of information encoded in the output probabilities of the estimation
protocol. We also introduce the symmetric logarithm derivative (SLD) L̂ϕ defined by the relation:

F (ϕ) =
∂ρ̂ϕ
∂ϕ

=
ρ̂ϕL̂ϕ + L̂ϕρ̂ϕ

2
(2.12)

It is possible to rewrite FI as a function of the SLD:

F (ϕ) =

M∑
x=1

Re[Tr[ρ̂ϕÊxL̂ϕ]]
Tr[ρ̂ϕÊx]

(2.13)

where Êx is an element of the chosen M measurements set {Ex}Nx=1

The sensitivity of F (ϕ) to variations of the parameter ϕ is based on the dependence of F (ϕ) on

68 Alessandro Laneve



2.4. Quantum metrology approach to anomalous diffusion

the derivative with respect to ϕ. Such dependence is framed by the Cramer Rao Bound (CRB),
an inequality establishing the ultimate bound on precision achievable by any estimator, with fixed
probes and measurements

∆Φ2 =
∑
x

(Φ(x)− Φ̄)2P (x|ϕ) ≥ ∂Φ̄/∂ϕ

MF (ϕ)
(2.14)

which, in the case of a local unbiased estimator (∂Φ̄/∂ϕ = 1) becomes

∆ϕ2 ≥ 1

MF (ϕ)
. (2.15)

This bound has been computed as the result of an optimization over the estimator choice,
so that it can be overcome by optimizing the Fisher Information over the possible measurements
performed on the probe after the interaction with the system. Indeed, we define as Quantum Fisher
information (QFI) the maximum value of FI over any choice of measurements {Êx}Mx=1:

FQ(ϕ) = max{Êx}Mx=1
F (ϕ). (2.16)

By definition, FQ(ρ̂ϕ) ≥ F (ϕ) and the CRB can be extended to a quantum CRB. The new
bound for the maximum achievable accuracy holds:

∆ϕ2 ≥ 1

MF (ϕ)
≥ 1

MFQ(ϕ)
. (2.17)

The right hand side of this equation represents the ultimate limit on the achievable precision
value regardless of the measurement,although it depends on the particular choice of initial probe
state ρ̂0.
QFI can be demonstrated to be associated with the symmetric logarithmic derivative L̂ϕ by the
following relation:

FQ(ϕ) = Tr[ρ̂ϕL̂
2
ϕ]. (2.18)

Maximization of QFI over any possible input probe state shall yield the ultimate bound for max-
imum achievable estimation accuracy. We consider n independent and at most classically correlated
states. We get the so called Standard Quantum Limit (SQL):

∆ϕ ≥ 1√
MnFmax

Q

where Fmax
Q is the maximum FQ over the n states. If we allow the input states to share quan-

tum correlations, such as entanglement, it is possible to further overcome this bound, leaving the
Heisenberg limit as the only boundary to measurement accuracy. The Heisenberg limit is directly
derived by Heisenberg’s uncertainty principle and corresponds to a linear decrease in function of
the amount of measurements ∆ϕ ∝ 1

M .
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Figure 2.10: Representation of a quantum probing protocol using disordered quantum walk
representation.The parameter ϕ that we wish to estimate can be in principle affected by random noise,
completely inhomogeneous in time and space. This picture is taken from [112].

2.4.2 Theoretical proposal

We design a protocol in which a quantum walker acts as the probe and we observe how extractable
information spreads through the corresponding QW network, analyzing the propagation behavior
of the walker from a quantum estimation point of view.

A quantum estimation strategy aims at providing an estimate of the maximum extractable
information about an unknown parameter ϕ through a set of repeated measurements on a probe
state interacting with the system characterized by ϕ. In general, the interaction is formalized by a
unitary operator featuring the parameter ϕ. In the present case of study, ϕ is encoded in the QW
evolution through the global unitary operator of the QW evolution Û(ϕ) = Ŝ(Î ⊗ Ĉ)P̂ , where P̂ (t)
is a phase-shift operator:

P̂ (t) =
∑
x

|x⟩ ⟨x| ⊗
(
|1⟩c ⟨1|c + ei(ϕ+∆ϕ′(t,x)) |0⟩c ⟨0|c

)
. (2.19)

As shown in Fig. 2.10, the phase-shift operator P̂ produces a phase difference ϕ between the
two different coin states |1⟩c and |0⟩c for any position. In particular, here we are interested in
the condition in which the application of ϕ might come with unwanted time-position-dependent
fluctuations ∆ϕ′(t, x) that coherently affect the accuracy of encoding of the phase shift ϕ. Thus,
our probing quantum walker will travel the QW network characterized by the phase ϕ, but the
estimation process may be hindered by disorder, which may follow various patterns.
In a quantum metrology scenario, the measurement sensitivity of the parameter is given by the
Cramér-Rao inequality ∆ϕ ≥ ∆ϕmin = 1/

√
MFQ(ϕ) where ∆ϕ is the mean square error in the

measure of parameter ϕ and M is the number of measurements [40, 132–135]. The QFI is given
by FQ(ϕ) = Tr[L̂2ρ̂], where, as we stated above, ρ̂ and L̂ satisfy the equation dρ̂/dϕ = {L̂, ρ̂}/2
and {., .} denotes the anticommutator. For a pure state, the corresponding density operator ρ̂ is a
projector, hence ρ̂2 = ρ̂ holds and the SLD operator reduces to L̂ = 2dρ̂/dϕ. QFI can be computed
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Figure 2.11: Quantum Fisher information trends for different disorder patterns.Average QFI FQ

of a quantum walker (blue dots) as a function of the number of steps t for different values of disorder. a)
p = 0, b) p = 0.1 and c) p = 1 for both static (top) and dynamic disorder (bottom). For each picture. we
choose as the initial input the state |ψ0⟩ = |0⟩p ⊗ |0⟩. Red lines correspond to a fitted curve F ∝ tα. Figures
borrowed from [112].

numerically from the walker state at step t: |Ψt⟩ = Û(ϕ) |Ψt−1⟩. The derivative with respect to the
parameter ϕ reads:

∣∣∣∣∂ψt∂ϕ

〉
t

=
∂Û(ϕ)

∂ϕ
|ψ⟩t−1 + Û(ϕ)

∣∣∣∣∂ψt−1

∂ϕ

〉
. (2.20)

In the framework depicted in Fig. 2.10, we may expect the protocol to be more effective as we
measure the probe at a later step: indeed, the probe interacts coherently with the parameter unitary
a larger number of times as we let it evolve through the network for a longer time, hence collecting,
in principle, more information. We are interested, in particular, to analyze how the QFI behaves
when the ϕ parameter is affected by some random fluctuations. We focus our analysis on a p-diluted
disorder scenario: random fluctuations ∆ϕ′(t, x) can only be 0 or π and the degree of disorder p
is on average the percentage of random phases that the walker finds throughout its propagation.
These phases are also randomly distributed in time and position, as they are generated according
to a p-diluted framework.
We used p-diluted to increase disorder from an ordered configuration as well as to scramble static
disorder configurations, in order to investigate the disorder regime employed for the experiment
discussed in Sec. 2.3. We slightly change here the generation of such disorder configurations: we
do not scramble with time-position disorder an already statically disordered QW, but rather we
apply static disorder with a certain probability p, so that the system becomes statically disordered
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Figure 2.12: Quantum Fisher Information trend, logarithmic analysisa) Logarithmic scale of the
average QFI FQ trend of a quantum walker (blue dots) in comparison with a fitted curve F ∝ tα (red line) in
terms of the step number t for complete static disorder, corresponding to p = 1. b) Step-dependent coefficient
α(t) (blue dots) in comparison with the corresponding theoretical fitted curve (red line) as a function of the
step number. The decrease to the asymptotic vale of zero can be straightforwardly deduced. Figures appearing
in [112].

(affected by position-wise only inhomogeneity) with a certain percentage p of perturbed phases, thus
deviating by the standard p-diluted model. As a consequence, the perturbations only depend on
position, while the disorder pattern repeats in time. If the walker encounters a random fluctuation
∆ϕ′ for the first time from site x to x− 1, it will experience that for any following evolution steps.
In conclusion, when p = 0 an ordered QW is obtained while when p = 1 a completely statically
disordered QW is retrieved. Despite the different approach to the the p-diluted technique, also this
procedure yields a subdiffusive behavior of the walker. We also investigated the regime of dynamic
disorder, which was implemented by the standard p-diluted method. In the following, we deliver
the results of an investigation over average behavior of QFI in presence of a certain disorder level
p, according to different disorder patterns.

2.4.3 Results

At first, we focus on the case of a quantum probe starting its QW evolution from site x = 0 with
|0⟩c coin state, hence featuring a global initial state |ψ0⟩ = |0⟩ ⊗ |0⟩c. We simulated the behavior
in time of the average QFI regarding the parameter ϕ featured by the walker state, for different
values of disorder p, according to either static or dynamic disorder. Simulation has been performed
by averaging over 10000 different generated phase maps, analyzing the QW evolution up to the
50th step. The average QFI trends are reported in Fig. 2.11 as a function of the step number t.
Numerical average QFI follows a power law with FQ ∝ tα, where α depends on p and 0 ≤ α ≤ 2

for the static disorder, while 1 ≤ α ≤ 2 for the dynamic disorder. In Fig. 2.11 a) we show that the
QFI featured by the QW state grows quadratically in time, F ∝ t2, in analogy with the ballistic
position spreading that we would expect for an ordered QW. In that case, the variance over the
position state of the walker grows quadratically in time, as discussed in Sec 1.4 . As a consequence,
we find a bound for the variance of the estimated phase value, that is proportional to the inverse of
the number of steps, i.e ∆ϕ ≥ O(t−1).
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Figure 2.13: Quantum fisher information trends for the two-walkers case. Average QFI FQ trend
for a pair of quantum walkers as a function of the number of steps t for a) the ordered case p = 0, b) complete
static disordered case p = 1, and c) p = 1 complete dynamic disordered case. In the three plots, the blue
circles and red squares correspond to indistinguishable and distinguishable two-particle inputs respectively.
From these trends we can conclude that extractable information is generally higher for quantum correlated
probes. Figure drawn from [112].

As we insert disorder, a strong change in the QFI growth is noticeable. In the static disorder case
(Fig. 2.11 top), a super-diffusive α > 1 to sub-diffusive α < 1 transition is achieved by increasing
the value of disorder p, maintaining a stark analogy with the expected spatial spreading behavior
of the quantum walker. The same phenomenon occurs in the case of dynamic disorder, where
the average QFI trend turns from ballistic to superdiffusive, and eventually to diffusive (Fig. 2.11
bottom). As a consequence of this result we understand that the information which can be collected
along the quantum network depends on the disorder strength: the higher the disorder, the lower
the extractable information about the unknown parameter ϕ.
Here, we demonstrate that it is possible to use the QFI to probe the transition from the ballistic
spreading regime with p = 0 (Fig. 2.11 a)), through the super-diffusive one with p = 0.1 (Fig. 2.11
b)) down to the diffusive spread with maximum degree of disorder p = 1 (Fig. 2.11 c)), analogous
to the case of a classical probe. The presented results indicate that the output information, which
is inferred trough measurements performed exclusively on the probe, show a super-diffusive to
classical transition, such as the one for the transport pattern. Similarly to the variance of the
position operator of the quantum walker [83, 110, 111], QFI provides us with a way to quantify the
disorder pattern of the probed system. It is worth mentioning that the probing pattern depends on
the number of steps that a walker takes. We consider the static disorder case, where we can see that
the QFI growth slows down. In Anderson localization phenomena [87], which occur in statically
disordered QWs [27, 91, 111], we have that the walker stops spreading after a reasonable amount of
evolution time. Thus, in analogy with that, we would expect the QFI to have some upper bound
for the static disorder case: indeed, this is highlighted by the logarithmic plot for 500 steps of the
average QFI in Fig. 2.12 a), where the α(t) decreases dramatically with respect to the 50 step case.
In conclusion, we may well expect the growth to slow down until average QFI reaches a maximum
value. As an additional clarification, we fit QFI with a power function F ∝ tα(t), where α(t) is the
step-dependent coefficient in a nonlinear fitting process. In Fig. 2.12 b), α(t) is reported in function
of the step number of the QW process. We observe how the growth trend depends on the step
number t, and how it significantly declines for higher t. This property shows that the walker stops
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collecting useful information within the quantum network as an indicator of particle localization.
Therefore, there is a well defined upper bound for the ∆ϕ which can be obtained by this probing
protocol, for the static disorder case.

Besides the single walker analysis, to enrich the physics of the phenomenon, we consider a
probe of two quantum walkers either distinguishable or indistinguishable with initial opposite coin
states. In the first case, the state can be written in a separable form in the first quantization
formalism as |ψs0⟩ = |0⟩1p |↑⟩1c ⊗ |0⟩2p |↓⟩2c, while in the latter case, the state is entangled in coin

state
∣∣ψ±

0

〉
= |0⟩1p |0⟩2p ⊗

(
1√
2
(|↑⟩1c |↓⟩2c ± |↓⟩1c |↑⟩2c)

)
. The evolution can be studied by applying

the two-particle unitary operator Û(ϕ) ⊗ Û(ϕ) to the states above. We plot the average QFI in
terms of the step number t in Fig. 2.13 for the ordered case p = 0 and the completely disordered
one p = 1, for both the cases of b) static and c) dynamic disorder. In general, the state of two
indistinguishable particles exhibits a higher value of QFI compared to the distinguishable one.
This property is explained by the fact that particle indistinguishability is an enriching resource for
quantum information distribution within a composite system of identical particles [136, 137]. It is
also interesting to note that both input states follow the same growth trend. In the case of ordered
case p = 0, the increase is ballistic, while for the completely disordered one p = 1, the QFI follows
a sub-diffusive pattern (Fig. 2.13 b)) or a diffusive one (Fig. 2.13 c)), due to static and dynamic
disorder, respectively. It is worth noting that QFI, as a disorder pattern indicator, is independent
of the number of quantum walkers, in contrast with the position variance dimension, which grows
with the particle number [110].

2.4.4 Conclusion

In this section, we have discussed a quantum probing protocol that exploits QW processes to infer
information about defects and perturbations occurring in both quantum and classical networks, such
as reported in [112]. We applied quantum metrology techniques to a disordered QW framework,
employing QFI to describe extractable information concerning an unknown phase ϕ that the quan-
tum walker collects at each evolution step. Even though the framework is general, we have studied
coherent static and dynamic disorder in the QW to describe the efficiency of information collection
about the unknown parameter ϕ when it is prone to random fluctuations. We found that different
disorder regimes, corresponding to different disorder percentages p in the QW process, lead to differ-
ent QFI growth patterns in time, including ballistic, superdiffusive, classical, subdiffusive regimes,
and Anderson localization, in complete analogy with spreading patterns of quantum walkers in the
same disorder conditions. Thus, QFI can act as a spreading pattern indicator, and it is independent
of the number of quantum walkers, in contrast with the position variance dimension, which grows
according to the particle number [110]. Our results show how a QW can play the role of a readout
device of information about the internal features of complex networks. Our results provide a general
characterization of disorder level using the quantum probing scheme of QFI bound. Through the
platform described in Sec. 2.2, it is possible to experimentally realize a QW evolution featuring the
disorder configurations required by the scheme discussed above [110, 118, 119]. Nevertheless, it is
challenging to implement an optimal estimation strategy with accuracy associated with QFI bound
[135]. The quantum Cramér–Rao bound needs some prior knowledge to adopt a local approach
and a large number of experimental observations. Also, the SLD operator itself may not represent
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the optimal observable to be measured. One can compute the classical Fisher information (FI) by
exploring all possible POVMs for a fixed input state and see if QFI is reached. To saturate the
Cramér–Rao bound, one may also try to classically postprocess data using maximum likelihood,
which is known to provide an asymptotically efficient estimator [40]. In addition, adaptive meth-
ods can be used to reduce the number of measurements [138] as well as machine learning methods
[131, 139]. An experimental realization of this quantum probing protocol faces many challenges, but
the most challenging one is probably utilizing phase-stable POVMs along multiple paths. Indeed,
the experiment also depends on measurement devices featuring low noise and phase stability. In
conclusion, the study we discussed in this section intimately links QW dynamics with quantum
metrology theory, exploiting the usefulness of quantities as QFI in the analysis of QW dynamics.
Due to the increasing interest in studying the spread of information in complex networks, the work
we have presented here can be of pivotal importance for further investigations, that could involve a
high-dimensional propagation space for the walker, as well as a higher number of walkers.

Personal contribution

I provided insights and expertise regarding QWs behavior and meaningful figures of merit, in addi-
tion to physical interpretation of the phenomenon.
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Chapter 3

Enhancement of bosonic correlations
through disordered Quantum Walks

In Subsec. 1.4.3, we have discussed how disordered QWs travelled by multiple particles feature some
differences with respect to the single walker case, such as the possibility of co-localization. However,
some open questions remain, such as whether, in the case of disorder patterns other then the static
one, any unique effects arise or not. Indeed, an analysis focusing on the spreading behavior does
not seem to reveal any [110].
As a matter of fact, single particle Quantum Walks can be effectively simulated by classical light
[97] and do not feature genuine quantum effects. Indeed, as in the work reported in Sec. 2.3, a laser
pulse can act as the walker, featuring an analogous behavior with respect to an actual single photon.
This motivated further investigation, that we illustrate in the following. In this Chapter, we report
on the results of our experimental study of bosonic correlations behavior through a disordered QW
[119]. We experimentally observed the propagation of two indistinguishable photons (a biphoton)
in a one-dimensional inhomogeneous Discrete Time Quantum Walk (1D DTQW). By numerical
simulation, I found out that initial quantum correlations in the system feature a global and local
decrease as the evolution proceeds, for the ordered case, while I was able to identify specific disorder
configurations that partially preserve the initial quantum correlation of the biphoton, after some
propagation time. The experimental demonstration of this effect was realized through the photonic
setup described in Sec. 2.2, which can therefore be considered as an experimental platform capable
of enhancing biphoton quantum correlation between two selected modes of the QW, thanks to the
imposition of coherent disorder configurations, without any interaction with auxiliary systems or
the environment.

3.1 Introduction

In [110], the spreading behavior of two walkers was investigated through the setup described in
Sec. 2.2, revealing the possibility of driving a biphoton to superdiffusive propagation. In Sec. 2.4,
we discuss how this effect can be useful for the collection of Quantum Information in complex
systems, thanks to the exploitation of bosonic indistinguishability. Indeed, indistinguishability of
quantum identical particles can be considered as a useful nonclassical resource [140, 141]. From an
operational point of view, particles are denoted as indistinguishable if they are in the same mode
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with respect to a given characterization via two-particle interference [142]. From a broader per-
spective, the indistinguishability concept is related to a given set of quantum measurements [136].
In fact, indistinguishability underlies various quantum processes, such as many-body interference
[142, 143], entanglement generation [137, 140, 141, 144–146], quantum teleportation [137], quan-
tum metrology [147, 148], quantum coherence [149–151], quantumness protection [136, 152, 153],
quantum key distribution [154, 155], and the high state complexity exploited by Boson Sampling
algorithms [156, 157]. In this context, it can be crucial to understand how quantum features re-
lying on indistinguishability behave in a dynamical framework, specifically in the case of bosons
propagating through a non-homogeneous system. For a large variety of systems, disorder plays a
detrimental role because it drives the system into decoherence [158]. On the other hand, for some
systems, disorder can enhance physical properties such as coherent transport [74], quantum algo-
rithms speedup [80], and quantum correlations [159–162]. These effects commonly appear due to
the interaction with an external environment, though not always featuring a back-action mechanism
[163, 164].
A suitable theoretical platform to perform such a study can be Quantum Walks, which provide
with a very general coherent propagation model: indeed, QWs allow to preserve genuine nonclassi-
cal features such as superposition, interference, and entanglement [68, 71, 78], while classical RWs
do not. We wish to stress again how QWs provide powerful models to describe energy transport
phenomena in different types of systems like photosynthetic complexes [74, 165], or solid state ones,
as in the case of Luttinger Liquids [166]. We have already discussed how adjustable disorder can
play a significant role in the evolution of quantum walkers in which the ballistic growth can become
anomalous, classical, or localized [27, 83, 110, 111, 167]. Moreover, the dynamics of a quantum
walker is intimately connected to its nonclassical features. The way quantum-correlated walkers,
realized by photon pairs, evolve in a homogeneous optical lattice has been investigated, highlighting
the different behavior of distinguishable or indistinguishable photons [26, 98, 100, 101, 168]. On the
other hand, the analysis carried in [110] does not directly yield information about non-classical cor-
relations behavior in a disordered medium, but rather their effect on propagation properties. Some
previous studies [162] tried to achieve the manipulation of correlations among different degrees of
freedom of the same particle through disorder; nonetheless, strategies employing disorder control
for enriching two-particle quantum correlations, hence actual non-local quantum correlations, were
still missing.

3.2 Theoretical framework

We apply the p-diluted disorder model we already discussed in Sec. 2.1 to a 1D DTQW. We give
here a brief summary: the single step evolution of the quantum state of the system can be written
as

|Ψ(t+ 1)⟩ =
∑
k

eiϕk(t)Ûαk(t) |k⟩ , (3.1)

where step-position dependent phases ϕk(t) are chosen out of two values 0 or π. We assume that
the phases experienced by the quantum walker are independently and randomly generated. Thus,
a sequence of Bernoulli processes depending on p generates a phase map {Φp(t)}t=0,...tmax , such as
described in Sec. 2.1. In the following, we especially focus on the single phase maps that enhance
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the quantum correlation between the walkers: in that case, the average level of disorder p is no
more a relevant quantity.

We wish to study the effect of disorder over nonclassical bosonic correlations in a QW dynamics,
thus we consider two indistinguishable photonic walkers as input. Indeed, the state of the so-called
biphoton:

∣∣Ψ(2)
〉
= |k1, k2⟩ (where |ki⟩ = |xi⟩ |σi⟩) exhibits intrinsic quantum correlations even

without any particular state engineering; two bosonic indistinguishable particles, can be seen as
occupying the symmetrical entangled state:∣∣∣Ψ(2)

〉
= |k1, k2⟩ =

1√
2

(
|k1⟩(1) |k2⟩(2) + |k2⟩(1) |k1⟩(2)

)
(3.2)

where the different particles are here identified by different superscripts. This approach feature an
inherent contradiction: indistinguishable particles are treated as distinguishable objects by means
of fictitious labels. However, a recent alternative approach demonstrates that indistinguishable
particles can unequivocally feature "intrinsic" non-local entanglement, when they spatially overlap
[169, 170]. In this sense, the generation of an entangled NOON state as the output of an HOM effect
between two indistinguishable bosons may be regarded as some kind of entanglement translation.
The two-particle QW evolution is simply described by the application of Û ⊗ Û to the initial state,
besides the local phase factors eiϕk(t)⊗eiϕk(t). One way to detect the nonclassicality of the correlation
between two outputs, such as two QW modes, is by violating the inequality, reported in [98, 100]:

Vij =
2

3

√
PiiPjj − Pij < 0, (3.3)

where Pij is the probability of finding a photon in mode i and the other one in j, namely the
probability of measuring a coincidence between modes i and j. Inequality (3.3), which is inspired
by the detection of classical Hanbury, Brown and Twiss correlations [20], stands for classically
correlated light and its violation, corresponding to a positive Vij , is assumed to witness and quantify
the presence of quantum correlations, as a signature of photon bunching [98, 100, 101]. It is
worth trying to provide some interpretation of this Vij value. Eq. (3.3) links three experimentally
measurable quantities, i.e. Pi,i, Pj,j , and Pi,j , to the amount of quantum correlations between modes
i and j or, more precisely, to the degree of indistinguishability of the photons travelling along those
modes.
To clarify the meaning of Eq. (3.3), it is convenient to refer to a HOM effect framework. We recall
here that this effect, which we discussed in Sec. 1.2.6, is visible when two indistinguishable photons
(i. e. photons with exactly the same features) impinge at the same time on a BS from the two
input ports. In an ideal case, the state of the system at the output of the BS reads:

|ψ⟩ind =
i

2
(â†

2
+ b̂†

2
) |0⟩ = i√

2
(|2, 0⟩+ |0, 2⟩)

where the ket states are written as |na, nb⟩. We remark we are considering now a second
quantization framework, where we describe the system in terms of the number of particles occupying
its possible modes. In this case, the two possible modes are the output ports of a BS.

This straightforward computation shows that the probability to find the particles travelling
along two different modes, i.e. Pa,b, drops to 0, while the probability to find them travelling along
the same mode, namely Pa,a and Pb,b is 1/2. If we compute the quantity from Eq. 3.3 with these
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values we get a value Va,b = 1
3 > 0.

On the other hand, in the case of distinguishable photons, the output state after the interaction
with the BS reads

|ψ⟩dist =
1

2
(i · â†â′† + â†b̂′

† − b̂†â′
†
+ i · b̂†b̂′†) |0⟩ =

1

2
(i · |1, 1, 0, 0⟩+ |1, 0, 0, 1⟩ − |0, 1, 1, 0⟩+ i · |0, 0, 1, 1⟩)

where the ket states are written as
∣∣∣â†, â′†, b̂†, b̂′†〉, and the different creation and destruction

operators represent the two distinguishable particles. The total probability Pa,b = Pa,b′ + Pb,a′ of
the two particles travelling two different modes results to be 1

2 while, for Pa,a′ and Pb,b′ we get
1
4 . Thus, the resulting value of Va,b is −1

3 < 0. In the indistinguishable photons case, a positive
value witnesses the presence of non classical correlation between the two modes under study, namely
they are correlated in a way that can not be described in classical terms. On the contrary, in the
distinguishible case, we obtain a value < 0 which corresponds to correlations that can be interpreted
as originating from a classical state.
For our purposes, it is interesting to understand how this kind of correlations can be influenced by
phase shiftings in an interferometrical framework such as the one of an optical 1D QW (such as the
one described in Sec. 2.2). We consider a MZI, such as the one depicted in Fig. 1.4, travelled by two
photons. We observe now the output modes of the interferometer, denoted as a and b. If we insert
a phase shift ϕ along one of the two arms of the MZ, we obtain the following analytic expression
for the value of Va,b as a function of the phase ϕ, in the case of indistinguishable photons.

Va,b = −1

3
− 2

3
cos(2ϕ)

In the distinguishable photons case, we obtain the following relation

Va,b = −2

3
− 1

3
cos(2ϕ)

In the distinguishable photons case, the 0 "non-classical threshold" value is never reached, while
in the indistinguishable case it is possible to obtain larger values than 0 that witness the presence
of a quantum input travelling the network.
It is worth understanding how the amount of violation V from Eq. (3.3) featured by a biphoton
state can be trusted to quantify the amount of indistinguishability of the two particles. It is possible
to establish a link between this value and the state of the system, in the case of two partially
indistinguishable photons entering the QW. This framework can be addressed as an imperfect
process of generation of indistinguishable photon pairs, featuring a known probability q of generating
a distinguishable pair instead of an indistinguishable one. The initial state can be written as:

ρ̂0 = (1− q)â†b̂† |0⟩ ⟨0| âb̂+ qâ†b̂′
† |0⟩ ⟨0| âb̂′ = (3.4)

(1− q) |1, 1⟩ind ⟨1, 1|ind + q |1, 1⟩dist ⟨1, 1|dist (3.5)

where q can be also interpreted as the overlap of the two photon wave-functions, so that the
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photons are distinguishable with classical probability q. The two modes correspond to the input
ports of a BS. After impinging from different directions on the BS, we have a mixture of two terms,
the indistinguishable output, featuring HOM effect, and the distinguishable one:

ρ̂1 = (1− q)

(
i · |2, 0⟩+ |0, 2⟩√

2

)(
...

)T
+ (3.6)

+ q

(
i · |1, 1, 0, 0⟩+ |1, 0, 0, 1⟩ − |0, 1, 1, 0⟩+ i · |0, 0, 1, 1⟩

2

)(
...

)T
. (3.7)

We can evaluate the inequality Eq. (3.3) for the output state of the process, considering Pa,a =
Pb,b =

1−q
2 + q

4 and Pa,b = q
2 . We get:

2

3
(
1

2
− q

4
)− q

2
< 0 (3.8)

which, in order to be violated, requires a value q > 1
2 , corresponding to photons which are

more likely to be indistinguishable than distinguishable. Hence, the inequality (3.3) provides a
straightforward quantifier of the effective indistinguishability of photons, in the operative context
of boson bunching occurrence.
In the general case of a BS network, such as the one exploited in the present work, a value of Vij > 0

can be subject to multiple interpretations. For a pure initial state, after a n step propagation, the
system will be in a superposition state which can be written considering the number of photons
travelling in the modes of interest:

|Φ⟩ =
√
1−Π

(
...
)
+
√
Π
(
αk1k1 |2⟩k1 |0⟩k2 + (3.9)

+αk1k2 |1⟩k1 |1⟩k2 + αk2k2 |0⟩k1 |2⟩k2
)

(3.10)

where Π is the overall probability of having both photons in the selected modes, which normalizes
the αij coefficients, while {|k1⟩ , |k2⟩} are the two output modes under observation, corresponding
to combined states of position and coin of the form |k⟩ := |x⟩ |σ⟩. We do not consider contributions
of other modes, included in the first term (...). It is also possible to have single photon states of the
two modes, but they would be invisible to coincidence-like measurements. In this case, the amount
of violation between modes k1 and k2 can be computed as:

Vk1k2 = Π×
(
2

3

√
|αk1k1 |2|αk2k2 |2 − |αk1k2 |2

)
(3.11)

Therefore, the violation amount depends on two factors:

• the actual non-classicality of the correlation determining a positive or negative value;

• the global probability of the selected output modes (given by Π).

The first factor is the one pointing out the form of a hypothetically post-selected state of the two
photons emerging from the considered modes. The higher this factor, the cleaner is the distillation
of NOON states by post-selection, since it necessarily corresponds to a low |αk1k2 |2. The second
factor is an amplification parameter, which gives the probability of actually finding two photons
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in the two-modes selected subsystem, hence it gives the efficiency of the NOON states distillation.
In conclusion, the violation value provides with information regarding the composite effect of the
two parameters, hence its maximization can be related to either one or the other. Therefore, this
aspect needs to be taken into account in hypothetical applications of this protocol. For instance,
the most external output modes will provide the purest NOON states, since they are the mere
propagation of the first HOM resulting state, but with a very low probability. On the other hand,
by means of inhomogeneous phase configurations, we will show that it is possible to manipulate the
probability for central modes and get an higher efficiency, although at the cost of a non-zero chance
of extracting a useless state.
All of this discussion was inspired by a very thorough numerical study I performed, which took into
account the behavior of these correlations in an ordered case as well as in the average disordered
case. As we will show in the next sections, non-classical correlations are bound to disperse and
decrease in these cases, while the only way to preserve them and even focus them is by imposing a
specific disorder configuration on the evolution. In the following, we discuss these findings and the
experimental results they led to.

3.3 High brilliance SPDC source of indistinguishable photon pairs

In order to implement disordered QW evolution of a biphoton, we employed the all-optical setup
described in Sec. 2.2. The input indistinguishable photon pairs are produced through SPDC by a
PPKTP crystal embedded in a phase-stable bulk optics triangular Sagnac Interferometer, realized
with two broadband dielectric mirrors on its vertices and a dual wavelength Polarizing Beam Splitter
(PBS) as the input/output vertex (see Fig. 3.1). This setup was directly inspired by the one designed
and realized by Fedrizzi et al. in [171].

A single-mode continuous wave laser at a wavelength of 405nm, coherence time ∼ 0.33µs, acts
as the pump, entering the SI after being reflected by an external dichroic mirror (DM). The pump
is then reflected and redirected towards the dual wavelength PBS. The polarization of the pump
can be tuned by means of a quarter wave plate QWPλp and an half wave plate HWPλp , working at
the pump wavelength λp and placed along its path before entering the SI. As an example, the pump
can be prepared in a diagonal polarization state |ψ⟩ = 1√

2
(|H⟩+ |V ⟩). After encountering the dual

wavelength PBS, the |H⟩ component is transmitted along the counter-clockwise trajectory, while
the |V ⟩ one is reflected along the clockwise one.
A non-linear PPKTP crystal is positioned in the middle of the SI path. The pump laser interacts
with the PPKTP, yielding photon pair generation by SPDC. Since the crystal is uniaxial negative,
the type II quasi-phase matching (QPM) condition has to be fulfilled:

ne(ωp)ωp = (ne(
ωp
2
) + no(

ωp
2
))
ωp
2

where ne(ωp) is the extraordinary refractive index and no(ωp) is the ordinary one, both depending
on the pump laser frequency ωp.
The crystal is placed inside an oven that keeps it at fixed temperature, since temperature fluctuations
can produce thermal expansion of the crystal, changing the QPM condition. Due to the linear
superposition of the polarization state of the pump, two SPDC processes take place in superposition.
The H polarized part of the pump can generate two degenerate photons at 810nm in a |H⟩ |V ⟩ state.
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Figure 3.1: Sketch of the photon pair source. The pump laser (wavelength λp = 405nm) is represented
as a violet-coloured beam. Its polarization state is prepared by an Half Waveplate (HWP) and a Quarter
Waveplate (QWP), designed to properly work at wavelength λp. The pump is directed by a Dichroic Mirror
(DM) into the Sagnac Inteferometer, made of a Polarizing BeamSplitter (PBS) and two mirrors (M). The
laser impinges on the PPKTP crystal from two directions (in one of them, polarization is rotated by a
HWP). The produced photons (wavelength λs,i = 808nm) are sent into two different paths depending on
their polarization, where their polarization state is processed in turn by the sequence QWP, HWP and PBS,
before collection by a Single Mode optical Fiber (SMF). An interferential filter F centered on λs,i is also
inserted on both paths, to filter out residual laser signal. The beams are suitably collimated by lenses (L), in
order to guarantee efficient pumping and photon collection.

The V polarized part of the pump, circulating clockwise, needs to be rotated into |H⟩ in order to
fulfill the QPM relation and to produce photon pairs. To this aim, a broadband HWP is placed
right before the crystal on the |V ⟩ component trajectory, rotating the pump polarization to |H⟩ and
fulfilling QPM. At the same time, photons generated by the |H⟩ pump will be accordingly rotated
by the HWP. The resulting state of down-converted photon pairs is a superposition of two possible
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generation events, where the photons are separated in polarization and spatially distributed by the
dual wavelength PBS to two output spatial modes that we identify as the system (s) and the ancilla
(a):

|ψ⟩ = α |H⟩s |V ⟩a + βeiϕ |V ⟩s |H⟩a (3.12)

where |α|2 + |β|2 = 1 and ϕ represents the total phase factor between the two parallel SPDC pro-
cesses. The balance between α and β (thus between the populations of the two states) can be tuned
by means of an external HWP applied on the pumping state |ψ⟩. In turn, the phase ϕ can be con-
trolled by a Quarter Wave Plate (QWP) acting on the pumping state or, in order to achieve a better
control, by a liquid crystal (LC) positioned along the trajectory of the signal/idler mode. Indeed,
LCs feature a different refraction index depending on the polarization of traversing light [172], and
this refractive index can be tuned by the application of an electric field, allowing to precisely set
the phase shift between the two terms. The state generated in this way is entangled, and the two
photons are always found with opposite polarization states. For the experiment we are discussing,
we only employed indistinguishable photons, without any path-polarization entanglement. On this
purpose, the pump polarization was prepared in a completely H(or V )-polarized state, so that a
single possible generation event was produced. The resulting state reads |Hs, Vi⟩, thus, imposing a
polarization rotations on one of the two output modes we get a final state of two identical photons.
After preparation, the photons are injected into the setup of Sec. 2.2 through Single Mode Fibers
(SMFs). In order to have two actually indistinguishable photons propagating through the QW
evolution, we have to ensure that they enter the setup at the same time, i.e. they travel the same
distance from the source to the first collision with the BS. To this aim, a motorized optical cage is
inserted along the fiber line carrying one of the two photons; in this way, one of the two photon
paths features a segment in air, the length of which is tunable with an accuracy of O(µm). Thus, we
can achieve maximum photon indistinguishability by observing the visibility of HOM effect among
the two photons (see Subsec. 1.2.6) as a function of the tunable time delay and deduce the optimal
one. In order to perform this optimization, photons were injected in the setup, hitting the central
BS of the platform and reproducing the traditional HOM scheme. Then, they were collected by
the Moving Mirrors and sent to detectors via SMFs. The detectors were connected to a correlator,
measuring the number of coincidence events. For indistinguishable photons we expect to register
no simultaneous counts on the detectors, because of HOM effect. Thus, we tuned the path in air
provided by the cage, so that the HOM dip resulted as low as possible. An experimental scanning of
the Hong-Ou-Mandel dip as a function of the tunable length is shown in Fig. 3.2. After correction
of accidental coincidences, the visibility of HOM effect resulted to be V ∼ 93%. This high value of
photon indistinguishability is also the result of a thorough optimization in function of the temper-
ature degree of freedom: as we mentioned above, crystal temperature changes the QPM condition,
so that there is, in general, a temperature leading to the generation of more indistinguishable pho-
ton pairs in terms of wavelength and polarization. In Fig. 3.3, we show the HOM dips for various
temperature, which led to the resulting optimal temperature T = 109.8◦C.
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Figure 3.2: Normalized HOM coincidences as a function of the optical delay between pho-
tons. Red dots represent experimental data with error bars computed considering poissonian distributed
coincidences. The black solid line represents a gaussian fit of the experimental data. Photon indistinguisha-
bility is confirmed by the high dip visibility V ∼ 93%.
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Figure 3.3: Normalized HOM dip as a function of the optical delay for various temperatures
(reported in ◦C). The indistinguishability of photons generated by our source changes depending on the
crystal temperature. The best photon indistinguishability (thus the best QPM condition) is achieved around
a temperature of 109.8◦C.

Alessandro Laneve 85



3.4. Numerical Results

3.4 Numerical Results
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Figure 3.4: Numerical simulation of coincidences matrices. Step 15 output distributions of indistin-
guishable photons in the a) ordered case (p = 0) and the completely b) disordered one (p = 1). The disordered
matrix has been computed by averaging over 104 disorder configurations. Figures reported in [119].
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Figure 3.5: Numerical simulation of coincidences matrices. Step 15 output distributions of distin-
guishable photons in the a) ordered case (p = 0) and the completely b) disordered one (p = 1). The disordered
matrix has been computed by averaging over 104 disorder configurations. Pictures reported in [119].
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I carried preliminary simulations in an ideal p-diluted framework: two indistinguishable photons
travelling a bulk-optics 1D DTQW, provided with space-time disorder. As we discussed in the intro-
ductory section, there are no examples of studies regarding the behavior of biphoton non-classicality
evolving in a disordered medium. The first step in our analysis is understanding how the QW output
distribution is affected by p-diluted disorder. We compare the output distributions of an ordered
evolution p = 0 and a completely disordered one for the case of perfectly indistinguishable photons
(Fig. 3.4) and distinguishable ones (Fig. 3.5). These matrices show the values of probability Pij of
finding a coincidence between two photons emerging from mode i and j. As the disorder increases,
the output coincidences distributions for the indistinguishable and distinguishable case become

more and more similar. This is also highlighted by the similarity S(P ind, P dist) =
∑

i.j

√
P ind
ij P dist

ij√
P ind
ij

√
P dist
ij

between the two distribution, reported in function of the disorder level p in Fig. 3.6. Indeed,
the output coincidences distribution does not yield direct information regarding the way quantum
correlations are affected by a disordered evolution.
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Figure 3.6: Similarity between output distributions at 15 steps of indistinguishable and dis-
tinguishable photons for variable p. The output distributions for indistinguishable and distinguishable
photons are practically identical for highlevel of disorder. This is compatible with the notion that a disordered
QW features a classical-like behavior.

In turn, we can use the average probability coincidences distributions to obtain the output vio-
lation matrices. We show the violation matrices corresponding to the output distributions reported
in Figures 3.4 and 3.5: the output violation matrix for an indistinguishable photon pair after 15

steps is shown in Fig. 3.7, both for the ordered case (a), and the completely disordered one (b)
featured by maximal randomness p = 1. In this case, the disorder level p is a relevant quantity,
since it indicates the average quantity of disorder imposed on the evolution. It is straightforward
to notice that violations are present both in the ordered and in the disordered case, though there
is an evident migration of the violating values towards the matrix tails as disorder is inserted. On
the other hand, for distinguishable photons no violations are present at all (Fig. 3.8).
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Figure 3.7: Numerical simulation of coincidences matrices. Step 15 output distributions of indis-
tinguishable photons in the a) ordered case (p = 0) and the completely b) disordered one (p = 1). The
disordered matrix has been computed by averaging over 104 disorder configurations. Figures from [119].
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Figure 3.8: Numerical simulation of coincidences matrices. Step 15 output distributions of indis-
tinguishable photons in the a) ordered case (p = 0) and the completely b) disordered one (p = 1). The
disordered matrix has been computed by averaging over 104 disorder configurations. Figures from [119].

It is worth comparing the coincidence and violation matrices for the indistinguishable case:
indeed, in the completely disordered case, a strong funneling of population towards central modes is
present, while quantum correlations disappear in the central region. Non-classical correlations tend
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to appear between modes which have low coincidences (and less population). This phenomenon
may nourish the idea that correlations specifically generated by the QW dynamics are classical and
may even smother the underlying non-classical correlations [97, 173], especially in the completely
disordered case, when the QW dynamic emulates the one of a Classical Random Walk [80, 83, 110].

In order to describe the dynamical average behavior of violation-quantified non-classicality, we
define a quantity capable of displaying the amount of non-classicality exhibited by a violation ma-
trix, i.e. the total non-classicality which the correlations of the system feature at a given evolution
step for a given disorder level p. We define the Total Violation (Tot V) of the system as the sum of
all the positive Vi,j , namely the ones corresponding to non-classical correlations, that we deem as
a measure of the total quantum correlation present in the system. Its normalized trend in function
of the disorder level is reported in Fig. 3.9, for different evolution time lengths. Total Violation has

Figure 3.9: Numerical simulation of Total Violation trends. Step 15, step 10 and step 6 plot of
the average Total Violation, computed over 104 disorder configurations, as a function of the disorder level p.
Figure taken from [119].

a decreasing trend as p increases, which can be explained as a consequence of the migration picture
described above. Since violations are bound to appear only between scarcely populated modes, the
global quantum correlation diminishes.
On the other hand, the average evolution seems to feature a decrease of global non-classicality in
time, regardless of the disorder level. Nevertheless, this property only stands for average quantities.
Global and local quantifiers of quantum correlations can exhibit quite a different trend as we observe
the output distributions of specific disorder realizations rather than the average ones. There may be,
indeed, some individual phase configurations which do not lead to decrease of quantum correlations,
although this is the case on average. I investigated in this direction both from a global point of
view, analyzing Total Violation, and focusing on local quantities. In particular, I aimed at finding
the maximum value of Vij which could be achieved at any given step number for any disorder con-
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figuration and considering any modes pair {i, j}, which we define as Maximum Achievable Violation
(MAV). In order to check for the existence of such phase maps, I adopted a random search protocol:
I simulated the evolution with 104 different phase maps for each step number t up to 30 steps, for
a total amount 3 · 105 of explored configurations. These configurations were generated for a fixed
level of disorder, but, since we focused on individual phase maps, the average level of disorder was
not relevant anymore. We computed the Vij between each pair of output modes for each simulated
probability distribution, obtaining the corresponding violation matrices. The resulting entire set of
Vij elements corresponding to any combination of i and j modes was reported and I compared the
values for any pair (i, j) and for each simulated phase map at a given step, to find the MAV and the
maximum achievable Total Violation after a certain number of evolution steps, i.e. the maximum
positive value of Vij which could be achieved at that given evolution time. In this way, we can also
record the individual phase maps producing the MAVs and the maximum values of Total Violation,
which are generally different.

Figure 3.10: Numerical simulation compression between ordered and enhancing disordered
QW. a) Maximum Achievable Violation (MAV) and b) maximum achievable Total Violation versus the
number of steps (discrete time) t for the ordered (blue circles) and enhancing disordered (red squares) QW.
Figures appearing in [119].

Summarizing, for each configuration the procedure consists of comparing maximum positive
violations of inequality (3.3) at step t. This also allows to know where and when it is beneficial
to apply the π phase shift within the quantum walk network so to identify and select enhancing
phase maps. Simulation results are shown in Fig. 3.10 a) and b), respectively. We report the MAV
as a function of the number of steps, and the step-wise trend of the maximum achievable Total
Violation. The highest MAV, besides the first step, is achieved at the output of the 9th step: the
MAV for each modes pair (i, j) of the 9th step output distribution was computed, by analyzing 106

different phase maps each. The resulting landscape in Fig. 3.11 shows that this maximum can be
achieved in different positions, depending on the chosen enhancing disorder configuration. In par-
ticular, it suggests that the proper MAV can be achieved only in "central" modes pairs: the MAV
can be induced between different mode pairs by imposing different (yet equally enhancing) phase
maps, although that is not possible in modes which have not interfered enough. In fact, photons
emerging from central modes will have the most interfering paths, getting to be more affected by
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inhomogeneities along the evolution. This phenomenon is quite understandable if we consider the
underlying network structure of a QW evolution (as depicted in Fig. 2.7). Indeed, central modes
are subject to more complex interference phenomena with respect to the ones close to the bound-
aries, even more complex when their correlations are considered. This can be directly linked to the
amount of MZIs jointly travelled by photons emerging from the two selected modes, i.e. the amount
of phase shifts that are imposed over both photons. Therefore, the manipulation of non-classicality
results more powerful and effective as central modes are considered.

0

0.05

0.10

0.15

0.20

Figure 3.11: Numerical simulation of 9 step MAV landscape. Plot of the maximum violation achiev-
able for each output modes pair at step 9, obtained by comparing 106 different disorder realizations.Figure
appearing in [119].

Since the explored configurations may not cover the entire set of possible disorder patterns,
the results can not be considered absolutely optimal, but rather enhancing in comparison with the
ordered case. Nevertheless, the analysis highlights that disorder helps to retrieve quantum corre-
lations after a specific step of QW, both for MAV and Total Violation, suggesting that the two
quantities are related although not bound to be maximized together. From numerical results, we
can conclude that disorder, acting through mere interference, significantly modifies the evolution of
the walker, not only reshaping the probability distribution but also affecting the amount of quan-
tum correlation between the photons. As a consequence, disorder may enable enhancement of the
quantum correlation of a bipartite system. We stress again the fact that no violations are observed,
whatever the phase map, when a state of distinguishable photons is employed, as shown above
and also demonstrated in [100]. The numerical analysis we reported in this section represented the
preliminary work for an experimental demonstration of the enhancement effect due to inhomoge-
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neous evolution, which was implemented thanks to the completely bulk-optics setup we described
in Sec. 2.2, which is capable of actually implementing any p-diluted phase configurations both for
single or double walkers.

3.5 Experimental results
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Figure 3.12: Comparison between the theoretical and experimental violation matrices at the
6th step. a) Numerical simulation of the violation matrix corresponding to the 6th step output distribution of
a Quantum Walk evolution featured by an enhancing disorder configuration. Simulation was performed taking
into account experimental parameters. In b), the corresponding experimental violation matrix is reported: the
expected peak in the value of V is experimentally confirmed, and the measured output coincidence distribution
reach a similarity value of 97.5(±1.3)% in comparison with the one expected by numerical simulation. Figures
drawn from [119].

To experimentally verify disorder-induced changes in the violation matrix, we measured both or-
dered and disordered evolution QW output distributions. Indeed, according to the simulation results
displayed in Fig. 3.10, we expect the first unquestionable occurrence of the quantum correlation en-
hancement effect due to disorder to appear at the 6th step of QW. Therefore, the output violation
matrices for optimal phase maps were measured up to the 6th step. Since there is no enhance-
ment until the 5th step, the corresponding optimal phase maps can be considered equivalent to
the ordered one, while for the 6th step it is possible to find many specific disorder configurations
enhancing the non-classicality in the correlation between two chosen output modes, both for the
ideal case and accounting for experimental parameters. The phase map selected for the experimen-
tal implementation features phase shifters at step t = 4, position x = −2 with coin σ = L and
x = 2 with coin σ = R set to π, while all the others are set to 0. The BS network underlying the
disordered evolution we picked was straightforwardly implemented by the multi-pass SI of Sec. 2.2.
The experimental output violation matrix for a biphoton travelling such an inhomogeneous network
is shown in Fig. 3.12, compared with the expected one, where a mode |k⟩ = |x⟩ |σ⟩ is represented
by the notation xσ. A strong quantum correlation peak appears at modes (2L,−2R) and (−2R, 2L)
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Figure 3.13: Experimental results compression between the order and the enhancing disor-
dered configuration QW. Experimental results for (dark dots) a) Maximum Achievable Violation (MAV)
and b) corresponding Total Violation versus the number of steps. The trends are compared with the sim-
ulation for enhancing disorder (red squares) and ordered evolution (blue circles). The expected results are
obtained by numerical simulations performed accounting for experimental parameters and asymmetries, so
that the theoretical trends show some discrepancies with respect to the ones in Fig. 3.10. Images drawn from
[119].

confirming the expectation.
It is interesting to compare these violation matrices with output violation distributions correspond-
ing to the 5th step, reported in Fig. 3.14. Since there is no optimal configuration for this step
number, we chose a random phase map to demonstrate the dependence of quantum correlation
distributions from the disorder pattern imposed on the evolution, although any kind of quantita-
tive enhancement is absent. It is also useful to observe the corresponding coincidence matrices
for the ordered 5th step and the optimal 6th step (Fig. 3.15). Evolution inhomogeneities, as we
mentioned above and as demonstrated in several previous works [27, 83, 110, 171], determine an
effect of spread hindering, for multiparticle systems as well. This effect can be noticed even in the
case of a single disorder configuration (Fig. 3.15). The manipulation of this localization effect can
change the non-classicality pattern in the output distribution in many different fashions, changing
the probability of finding coincident photons between the output modes. Indeed, the correspond-
ing experimental coincidences distributions result in good agreement with the expected ones. It is
also worth mentioning the experimental method of measurement of the autocorrelation terms Pii
for each i, that correspond to the diagonal terms in the coincidence matrices: a BS placed at the
output of the setup allows to split two photons travelling the same mode with probability 2RT with
R (T ) being the reflectivity (transmissivity) of the BS. By carefully characterizing the BS we can
weigh the measured coincidences in order to compare them with the values of Pij for j ̸= i.
From the violation matrices we can compute the experimental step-wise trend for MAV, which is
shown in Fig. 3.13a), in comparison with the expected enhanced one obtained by numerical analysis,
taking into account experimental constraints. They are plotted together with the ordered case trend
to provide a clear display of the beneficial effect of the non-homogeneous evolution. Theoretical
patterns are shown up to the 10th step, as a reference. The corresponding trends for the Total Vio-
lation computed over the same output distributions are also reported in Fig. 3.13b). Simulations of
the MAV values in the ordered case show that the quantum correlation spreads in a homogeneous
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Figure 3.14: Violation matrices at the 5th step. Ordered evolution: theoretical a) and experimental
b) violation matrices at the 5th step. Disordered evolution: theoretical c) and experimental d) violation
matrices at the 5th step. The disorder configuration has been chosen randomly. Figure taken from [119].

network, so that the values of Vij and the Total Violation are going to decline as the propagation
proceeds. However, as can be seen in Fig. 3.13a), inhomogeneity enriches the quantum correlation
between two indistinguishable photons at the selected modes. Experimental evidences, reported in
Fig. 3.13b), show that the very same configuration also enhances the total quantum correlation of
the Quantum Walk. Experimental errors are derived from the Poissonian statistics of the measured
coincidences. Deviations from the expected results are mainly due to modest drops in photons in-
distinguishability along the evolution. Nevertheless, the indistinguishability decline slightly affects
the exact violation values, while not changing the overall trend. Our QW implementation is limited
to a six steps evolution because of the internal losses in each unit passage (nearly 17%) and because
of both the geometrical structure and the length of the QW that make it difficult to guarantee a
high quality spatial overlap of the two photons at each passage of light through the central BS of the
platform. On the other hand, the main advantages of this QW configuration consist of both phase
stability and a flexible disorder reconfigurability, and also by the fact that the output distribution
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for any step of the QW is directly accessible and measurable. An evolution of six steps through this
setup is enough to investigate on the photon correlation enhancement effect. Indeed, the numerical
analysis reported in the main text indicates that a larger number of steps would have not brought
any further physical insight to the experiment.
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Figure 3.15: Numerical and experimental coincidences matrices. 5th step a) theoretical coincidences
matrix and b) corresponding experimental measurement output for the ordered quantum walk. 6th step
c) theoretical coincidences matrix and d) corresponding experimental measurement output for the optimal
disordered configuration. The similarities between theoretical and experimental coincidences distributions are
98(±1)% for the 5th step case (a-b) and 97.5(±1.3)% for the 6th step case (c-d). Errors are computed
accounting for Poissonian statistics of measured coincidences. Figures appearing in [119].

3.6 Conclusion

Two indistinguishable particles evolving through some kind of homogeneous lattice are bound to
feature less and less quantum correlations as they propagate through the medium. On average, the
same behavior occurs as inhomogeneities are inserted in the evolution. In this Chapter, we have
discussed a technique for the retrieval of these correlations and their localization by the imposi-
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tion of suitable inhomogeneous phase configurations on the evolution, that has been experimentally
demonstrated and reported in [119]. The experiment relied on a sophisticate bulk optics setup and a
very bright photon pairs source, which allowed to realize a six step two particle disordered QW, with
great flexibility and the possibility of measuring the output distributions at every step number. At
the time of the experiment realization, this was the highest step number ever achieved for a bipho-
ton QW with such disorder tunability features. We observed that by the imposition of different
phase configurations, it is possible to tune the two-mode and total enhancement of non-classicality
in position and intensity; this corresponds to implementing an adaptive network whose parameters
evaluation determines the focusing of nonclassical resources in selected modes. These results deliver
a method for enriching quantum correlation through controlling unitary evolution (effective Hamil-
tonian engineering) of the biphoton. In conclusion, two-mode quantum correlation diminishes in
the case of random phase disorder in the system, which can be interpreted as a manifestation of
detrimental classical noise, but this quantum correlation degradation can be challenged by single
realizations of disorder. These results supply a conceptual and practical advance compared to pre-
vious studies limited to single-photon disorder-assisted quantum correlation enhancement between
two degrees of freedom of the photon [162]. In fact, since violations of Eq. (3.3) witness biphoton
quantum correlations between two modes, our method may well be interesting for applications re-
quiring the distribution of Quantum Correlations among nodes of a network. Further research on
the topic should focus on understanding whether this enhancement procedure can be generalized
to systems with N > 2 photons or not; if so, our results would pave the way for the development
of new methods and tools for the generation and distribution of NOON states, crucial, among the
other Quantum Information tasks, for Quantum Metrology ones. The same problem may be inter-
esting to investigate for a fermionic system, although it would be necessary to develop a new witness
and quantifier of non-classicality, possibly related to the fermionic antibunching effect in a HOM
context. Indeed, the same experimental platform may even be employed for such an experimental
study, using indistinguishable photons in a fermionic entangled state, as mentioned in Subsec. 1.2.6.

Personal contribution

I personally studied the problem of indistinguishable particles travelling a disordered QW from
a theoretical and numerical point of view. Not conclusive preliminary material was not reported
here for sake of clarity and brevity. After analyzing the average behavior of indistinguishable
biphotons and the effect of disorder on their spreading, I decided to switch to individual disorder
configurations. As a consequence, I developed the idea for the experiment reported in this Chapter.
Thus, I performed the numerical simulations aimed at finding the enhancing disorder configuration
to employ for the experimental demonstration. I also worked to the actual implementation of the
experiment thanks to the preexisting setup described in Sec. 2.2 after some improvements.
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Chapter 4

Time-binning approach for efficient
Quantum State Discrimination through
a network-like receiver

In the previous Chapters, we have dealt with explicit applications of the QW model, as we aimed
at analyzing the effect of disorder in systems that could be described as coherently propagating
excitations. Indeed, we have already seen how a discrete QW dynamic features an inherent network
structure. This property has been exploited to develop an approach based on Quantum Walks to
the issue of Quantum State Discrimination [61]. In this case, a QW-like evolution is employed as a
tool to dynamically process a quantum system in order to identify its state among a given number
of possible ones. In collaboration with Prof. Caruso from University of Florence, we realized the
first experimental demonstration of this dynamical approach to QSD [174], and we exploited the
same strategy to implement a further very powerful protocol, capable of discriminating the state of
high-dimensional systems [175]. We report on both works in this Chapter.

4.1 Quantum Stochastic Walk dynamics for Quantum State Dis-
crimination through a network receiver

In Section 1.3, we described the basics of Quantum State Discrimination. We also mentioned the
many different approaches that are possible while developing QSD protocols. In particular, there
are some of them that feature the application of the Quantum Walk model. In [176–178] the appli-
cation of Quantum Walks as quantum state measurement devices is investigated and demonstrated,
with some reminiscence of weak measurements protocols [179, 180]. A recent work suggested the
employment of a generalized model of Quantum Walk as a tool for Quantum State Discrimination
[181], a quantum evolution pattern known as Quantum Stochastic Walk (QSW) [182]. This gener-
alized model interpolates Quantum and Classical Random Walk evolution as a function of a real
parameter. In [61], a quantum receiver with a neural network structure is conceived and studied,
featuring QSW dynamics. We briefly review the methods and results of this work, in order to gain
some useful insights for the following discussion. We consider a QSW on a graph G = (N , E), where
N is the set of nodes of the graph and E is the set of edges connecting the nodes and outlining
the graph. We denote the edges as node pairs (Ni,Nj). We can summarize the edges set as the
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receiver

adjacency matrix A:

Aj,i =

wj,i, if (Ni,Nj) ∈ E
0, if (Ni,Nj) /∈ E

(4.1)

where wj,i ∈ R is the weight of the corresponding edge. We consider equal weights and an undirected
graph, such that Aj,i = Ai,j . In a random walk on a graph, the dynamics are defined by a transition
matrix T = AD−1, where D =

∑
j Aj,i represents the number of nodes connected to i. T makes

the distribution of occupation probability q⃗(t) evolve in time, q⃗(t + 1) = T q⃗(t). In the quantum
case, the nodes are the basis vectors of the Hilbert space describing the graph and the evolution is
driven by the system Hamiltonian H and the Schrödinger equation. We can interpolate between
the two scenarios considering the general case of both a quantum and classical evolution. We
consider the density matrix ρ describing the state of the system and and the evolution driven by
the Gorini-Kossakowski-Sudarshan-Lindblad master equation:

dρ

dt
= −(1− p)i[H, ρ] + p

∑
i,j

(
Li,jρL

†
i,j −

1

2
{L†

i,jLi,j , ρ}
)

(4.2)

that is the equation regulating a Quantum Stochastic Walk evolution, where {Li,j} are the Lindblad
operators [183]. In practice, we interpolate between the quantum evolution driven by H and the
classical, incoherent evolution driven by the Li,j =

√
Ti,j |i⟩ ⟨j|, through the parameter p represent-

ing the probability of classical "noise" occurring in the quantum dynamics, hence the probability
of the quantum walk collapsing into a classical random walk. In [61], H and T are optimized inde-
pendently of the adjacency matrix, that is only used to define the topology of the considered graph,
while accounting for the constraints on T :0 ≤ Ti.j ≤ 1 ∀i, j∑

i Ti,j = 1
(4.3)

and taking a symmetrical H, such that Hi,j = Hj,i. Nodes of the graph may have different
characterizations: in the network, they are divided among input nodes, where the initial state is
prepared at the start of the dynamics, sink nodes, where the system is trapped, i.e. if if the system
reaches this nodes its evolution stops, and sinker nodes, sites from which it is possible to be sent to
a sink node. In particular, sink nodes are conveniently considered as external nodes, attached by
means of directed edges to the sinker nodes, so that the symmetrical properties of the remaining
graph are not hindered (without any drawback, since the system in the sink nodes does not follow
any dynamics). This addition to the network evolution can be expressed through a further term
in Eq. 4.2, featuring an additional Lindblad operator Ln = |n⟩ ⟨sn|, where |n⟩ represents the sink
node and |sn⟩ the corresponding sinker one:

M∑
n=1

Γ(2 |n⟩ ⟨sn| ρ |sn⟩ ⟨n|)− {|sn⟩ ⟨sn| , ρ} (4.4)

where M is the number of sink nodes, and Γ is a timescale factor. It is worth stressing that Ln
is the only operator involving the sink nodes {|n⟩}, since the Lindblad operators {Li,j} only act
on internal nodes of the network. Thus, there is no way of evolving back from the sink nodes to
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the network. In conclusion, the dynamics of a Quantum Stochastic Walks on a graph featuring
additional sink nodes can be written as:

dρ

dt
= −(1− p)i[H, ρ] + p

∑
i,j

(
Li,jρL

†
i,j −

1

2
{L†

i,jLi,j , ρ}
)
+ |n⟩ ⟨sn| ρ |sn⟩ ⟨n|)− {|sn⟩ ⟨sn| , ρ} (4.5)

in the continuous time case. In general, the sink nodes represent the measurement apparatus, where
the system exits the network and is detected. We are interested in the population of these sinks at
a certain time τ : ρn,n(τ) = ⟨n| ρ(τ) |n⟩ = 2Γ

∫ τ
0 ρsn,sn(τ). This result provides us with the fact that

the population of the sinks is proportional to that of the sinker nodes, which depends in turn on
the evolution parameters.
The method employed in [61] to harness QSWs for Quantum State Discrimination stems from this
considerations: they conceive a quantum receiver with a neural network structure, composed of an
input layer (where the states to be discriminated are encoded), an intermediate layer that contains
the sinker nodes, and an output layer made of the sink nodes. The number of sink nodes equals
the number of states to be discriminated, and each of them |n⟩ is associated to a state |ψn⟩. The
Hamiltonian H is set in such a way that, at the end of the measurement time τ , the cumulative
probability ρn,n(τ) is maximum for an initial state of the network |ψn⟩. They show that by their
method, the authors are able to achieve optimal results corresponding to the theoretical bounds
mentioned in Sec. 1.3. We established a collaboration with Professor Caruso of the University of
Florence (one of the author of [61]), aiming at the experimental realization of a simple network-like
receiver; we were able to even exceed this goal, by devising a protocol that employs the network for
a more powerful task than it was initially foreseen.

4.2 Experimental realization of a network-like receiver

We were interested in the p = 0 and discrete time case of the model described above; this required
a new formalization of the problem, that is described in detail in the following. In particular, some
operators and parameters are neglected or completely redefined, in order to make the discussion
linear and provide a better adherence between theoretical model and experimental implementation.

4.2.1 Theoretical model

We aimed at experimentally realizing a network featured by a 2 nodes-2 nodes-2 nodes topology,
characterized by 2 nodes in the input layer, 2 sinker nodes and 2 sink nodes. In particular, we
wished to realize a network without connections between nodes of the same layer, as depicted in
Fig. 4.1 for binary QSD. In compliance with the nomenclature adopted in [61], we refer to such
topology as 2r-2r-2 in the following discussion. The network features six nodes and six edges; in
particular we denote as {1, 2} the input layer’s nodes, which are connected in an undirected way
to the nodes {3, 4} of the intermediate layer. In turn, the intermediate layer nodes share directed
links with nodes {5, 6}, that form the output layer, composed of the sink nodes.

Though our theoretical scheme is undoubtedly derived from [61], we propose a slightly different
model, where the evolution is time discrete and the system can not linger on the same state after
an evolution step. Thus, the evolution of the system can be pictured as follows: the state of the
network switches from a superposition of the input nodes to a superposition of the intermediate
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Figure 4.1: 2r-2r-2 model of the quantum network. The system goes from a superposition state of
input layer nodes {1, 2} to one of {3, 4}, evolving according to the unitary evolution ÛF . Then, the population
of the system which has not been trapped in the sinks evolves through ÛB to a new general state of the input
layer nodes, starting a new evolution loop. This figure is drawn from [174].

ones. Then, it has a certain probability of getting caught in a superposition of the sink nodes or to
turn again into a combination of the input nodes. Hence, the loop evolution starts again, although
the dynamics necessary vanishes as time progresses, since all the population will be eventually lost
to the sinks. Through this model, we achieved both the dynamical binary discrimination suggested
in [61] and a novel protocol, that extend the employment of the time degree of freedom.

4.2.2 Experimental implementation

We developed a bulk optical setup reproducing the network described above in the polarization
and position degrees of freedom of single photons, reported in Fig. 4.2. The nodes of each layer
correspond to the orthogonal polarization states {|H⟩ , |V ⟩}, while the different layers correspond to
different positions along the photon path. First of all, the initial state |ψ⟩ of the system has to be set
by a unitary preparation stage ÛP . We apply unitary operations to the photon polarization through
waveplates sets composed by a sequence of a quarter waveplate (QWP), a half waveplate (HWP)
and a further QWP; we remind here that by means of this waveplates sequence it is possible to apply
any unitary operator to the polarization degree of freedom of light. Since the state of the photon
coming from the source is |H⟩, we can easily transform it into any superposition |ψ⟩ = α |H⟩+β |V ⟩
we require through such a waveplates set. After preparation, we can consider the system to be in
the input layer of the network in Fig. 4.1, where the superposition of polarization states |H⟩ and
|V ⟩ corresponds to a superposition of the nodes 1 and 2. The evolution begins then, and the single
photons undergo the first evolution stage by the application of the forward unitary operator ÛF

that brings the system from nodes {1, 2} to {3, 4}, that act as the sinker nodes, encoded again in
polarization. Since the nodes in each layer are encoded in the same degree of freedom, different
layers are identified by different positions in the setup. After this first evolution step, a Beam
Splitter (BS) is placed along the path. Then, the photon can be transmitted to the sink nodes with
probability ps or sent back into the network with probability 1 − ps, where it continues the evolu-
tion from the input layer. In the first case, the photon travels towards the sinks and impinges on a
Polarizing Beam Splitter (PBS) which separates the |H⟩ and |V ⟩ components of the photon state,
corresponding to the sink nodes {5, 6}, and then it is measured by Avalanche Photodiodes (APD)
detectors. If, instead, the photon is driven again into the network, it is subject to the backward
unitary operator ÛB, the operator describing the propagation of the system from nodes {3, 4} to
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Figure 4.2: Experimental implementation the 2r-2r-2 network. The total unitary operator Û =
ÛF · ÛP is actually encoded in a single QWP-HWP-QWP set, in order to reduce losses and systematic
errors. Each of the optical elements imposes a phase shift ϕx between the different polarization components.
The phase shifts are compensated by the supplemental waveplates sets ÛϕA/B

. One lens, identified by L1, is
positioned along the loop to prevent losses due to beam divergence; a second one, L2, is located along the
extraction path to allow photon collection through multi-mode fibers. This figure is drawn from [174].

{1, 2}. The system is again in a superposition of the input nodes, where the evolution can start
again, by another application of ÛF . In this way, the system evolves from a state of nodes {3, 4} to
{1, 2} and then again to nodes {3, 4}. It is worth mentioning that, in our setup, we use a single set of
waveplates QWP-HWP-QWP to apply the joint operator ÛF · ÛB. At this point, the walker passes
again through the BS, beginning another loop evolution or being detected in the sinks. Clearly, this
setup provides an experimental realization of a 2r-2r-2 network, where we have the ability to gather
how many loop evolution the system has performed before being detected. That is possible be-
cause the detection of photons that have travelled through the network is performed in coincidence
with another photon produced by the same generation event. Indeed, we generate photon pairs
through the high brilliance SPDC source described in Section 3.3: their initial state of polarization
is |H⟩s⊗|H⟩a ≡ |H,H⟩, where we use the subscript s to denote the system photon, which undergoes
the network evolution, while the subscript a indicates the ancilla photon, which is directly sent to
detection and is exploited as an external trigger. After both photons are collected, we process their
detection event by an ID-Quantique time tagger ID800: this device features the possibility of setting
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a narrow coincidences window (up to 81 ps), the capability of recording the relative detection time
of a photon, hence the possibility of electronically setting any delay between two photon counters
with the aim of computing coincidences and also to perform high-resolved time scanning of the delay
between two detecting channels. In this way, we can set as contemporary the events corresponding
to the detection of the ancilla and the photon extracted after the first step of the evolution (0 loops
completed) and, in general, we can find out the number of loops travelled by the system photon by
analyzing the delay between its detection and the ancilla’s. In order to perform this kind of oper-
ation, we need to have a negligible contribution from successive photon generations. The flux rate
of pairs of photons generated by the source is Np/s ∼ 100000/s. Therefore, the mean time between
the generation of one photon and the subsequent one is t = 1s/100000 = 10−5s, corresponding to a
mean space separation between two consecutive photon pairs of l = t ·c ∼ 3000m. Therefore, we set
the length of the optical loop to x ∼ 2m, corresponding to a travel time of ∼ 7ns, which grants on
average a time distance corresponding to around 1500 loops between one photon generation and the
next. We focused on the observation of the first 20 steps of the evolution, which we estimated as a
good compromise between feasibility and data significance, considering a net loss of signal per loop
completion L = 0.057%. The probability that a second photon pair is generated in the time interval
corresponding to these 20 steps is (x × 20/c)/t ∼ 0.02, which is far under other systematic errors.
Thus, the experiment is barely affected by spurious coincidences, even employing a CW source such
as ours. It is worth mentioning that we didn’t take into account the first extraction step, but we
rather started from the second one. Indeed, the first step features a different extraction probability
with respecte to the following: we employed an unbalanced Beamsplitter (BS) for the extraction
of signal, characterized by a transmittivity T ∼ 70% and a reflectivity R ∼ 30%. Therefore, as
understandable from Fig. 4.2, the first extraction step features R as the ps mentioned above, while
for the remaining ones the rate corresponds to T . Because of that, we chose to neglect the coin-
cidences of photons extracted at the first step. This experimental scheme was at first exploited to
demonstrate the binary discrimination protocol proposed in [184].

4.2.3 Experimental binary quantum state discrimination with a network-like
receiver

In order to test its capabilities, we used the receiver described above to perform a simple binary
quantum state discrimination scheme that relies on dynamical processing of the input states. We
considered two non-orthogonal states {|ψ1⟩ , |ψ2}⟩ encoded in the input layer of the network in
Fig. 4.1; we tailored the unitary evolution regulating the network so as to associate the detection
of the system in one of the two sinks with the presence of one of the two possible input states
rather than the other, with the minimum probability of error. As a consequence, detection in
the other sink reveals the other input state. In general, the one-shot protocol for the optimal
discrimination of two states consists of the simple projection of the system onto two orthogonal basis
states. Suitably choosing the basis, it is possible to achieve the maximum theoretical probability
of successful guess, corresponding to the Helstrom bound [40]. Therefore, we can straightforwardly
extend this method to a multi-step scheme: we perform an optimal binary discrimination at any
step, i.e. each time the system is sent to the output layer. To do that, we only need to present an
"optimal" output state at the first extraction step, through the tuning of operator ÛF , and then
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tailoring ÛB to produce the same state at any extraction step. In conclusion, ÛF must be the
optimally discriminating projector and ÛB must be such that the product ÛF · ÛB = Î. Such an
optimal network can discriminate among two states up to the Helstrom bound, by the computation
of the cumulative population of the sinks in time. The states experimentally exploited for the
protocol were |ψ1⟩ = cos

(
π
8

)
|H⟩ + sin

(
π
8

)
|V ⟩ and |ψ2⟩ = cos

(
π
8

)
|H⟩ − sin

(
π
8

)
|V ⟩, setting a direct

correspondence with the case studied in [61]. The optimal unitary matrix for the realization of a
suitable dynamical discrimination protocol was analytically found by maximizing or minimizing the
output probability of each sink with respect to the corresponding input state. The result of this

optimization led to the evolution matrix U = UF = UB = 1√
2

(
1 1

1 −1

)
, which has some analogy to

the one computed in [61], besides some peculiar property. Indeed, employing this evolution matrix,
the discrimination protocol consists of a repeated optimal single-shot discrimination protocol: the
network periodically brings the system in the state of the sinker nodes that allows optimal two state
discrimination. In this way, after each round trip through the network, the information on the state
is optimally extracted, leading to the output probabilities in time P5 and P6 reported in Fig.4.3,
where the sink node 5 is associated to the detection of state |ψ1⟩, while sink 6 to the detection of
|ψ2⟩. It is now interesting to understand the dynamical behaviour of the probability of correct guess
(as well as the dynamics of the extracted information). To this aim, the cumulative probability of
correct discrimination in time is computed, for both states: C1 =

∑t
τ p

(1)
5 (τ), C2 =

∑t
τ p

(2)
6 (τ),

where p(i)k (σ) is the population of sink k, with input state |ψi⟩, measured after the σth loop.
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Figure 4.3: Cumulative curve and output probability in time Temporal evolution of the experimental
output probability P5(6) in sink 5(6) for the input state |ψ1⟩, together with the experimental average cumulative
curve Pright, corresponding to the total probability of correct discrimination. The experimental results are
reported in comparison with the numerical expectations. Black solid line represents the Helstrom Bound
computed for the two selected states. A systematic error in the state preparation leads to an imperfect match
of the bound, as the extracted information saturates. Figure appearing in [174].

The curve resulting from the average between C1 and C2, normalized to the total cumulative
probability, is exhibited in Fig. 4.3 as Pright, in comparison with the numerical expectations. The
experimental analysis proved the effectiveness of this protocol to achieve Helstrom level binary
quantum state discrimination in a dynamical context. These positive results paved the way towards
the exploitation of these dynamical features in more complex and powerful protocols, fully taking
advantage of a time-binned extraction of information. The following section clarifies this idea and
reports on the results of a protocol I designed as another, more powerful, application of the optical
network receiver in Fig- 4.2 to a four-state quantum discrimination problem in dimension D = 2,
in a minimum error probability scenario.

4.3 Multi-state minimum error discrimination protocol via time-
binning approach

As we have highlighted in Sec. 1.3, the discrimination of N > 2 non-orthogonal states, encoded
in a D-dimensional space where N > D, is not a problem for which a general solution is known
[38]. In particular, we focus on the problem of discriminating sets of four states encoded in the two-
dimensional space of photon polarization and we use our network-like receiver to realize a protocol
for this task that employs time-multiplexing as a decoding tool. Our method can be applied to
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different sets of states and doesn’t require auxiliary systems for decoding of information while
featuring a clear saving of equipment resources.

4.3.1 Theoretical approach

The protocol consists of a mapping of the quantum features of states in time-wise probability
distributions by means of the dynamical features of the network-like receiver. We exploit the time
degree of freedom as a supplemental resource in this QSD strategy and, in order to clarify this,
we provide a rigorous mathematical discussion of our framework. The network in Fig. 4.1 can be
described in terms of two separate subspaces: the first one represents the two layers connected in
an undirected way, i.e. the input and intermediate layers, while the second one represents the sink
nodes. We write the state of the first subsystem as a 4-dimensional vector, where the first two
dimensions represent the input layer and the remaining two stand for the intermediate one. The
same framework is adopted in [61]. The state of this subspace, that we denote as network space,
evolves according to a unitary evolution, determined by the network parameters. On the other hand,
we address the subspace of the sink nodes as sink space, where no evolution runs, but measurement
only. We focus initially on the evolution of a particle (photon polarization) that is prepared in a
state of the network space. In our model, the system can not occupy a superposition state of the

input and intermediate layers, the only possible states have the form


α

β

0

0

 or


0

0

γ

δ

. Therefore, the

one-step evolution of the system is described by a 4x4 unitary matrix, composed of two antidiagonal

blocks U =


0 0 a b

0 0 c d

a′ b′ 0 0

c′ d′ 0 0

. We remind here that also the permanence of the system in the same

layer after an evolution step is not allowed by our model. The left-bottom block represents UF , the
forward evolution of the system from input layer nodes {1, 2} towards the sinker nodes {3, 4}, while
the right-top block stands for UB, the backward evolution of the system from sinker nodes {3, 4}
to the input layer nodes {1, 2}. In the actual implementation, as sketched in Fig. 4.2, both layers
are encoded in the polarization degree of freedom, but they are well distinguished one from the
other in terms of time and space. This is why, notwithstanding the four dimensional description,
we can practically describe the evolution as an alternate application of operators ÛF and ÛB to the
same 2-D vector. These two matrices can be identically or differently set, producing a symmetric
or asymmetric network. We have discussed how we are able to discriminate the extraction time
of photons, i.e. the number of round trips the photon has completed through the network before
being sent to the sinks. This supplemental degree of freedom, which is crucial in our protocol,
can be formally addressed as an auxiliary system, featuring two subspaces: one for the photon
travelling through the network, representing the evolution step of the system, and one for the sinks,
representing the extraction time. In the following discussion, we label with the subscript n the
vector state of the network subspace and with subscript s that of the sinks subspace, both for the
actual nodes and the corresponding time degree of freedom. The unitary evolution operators ÛF
and ÛB, which only act on the network subspace, represent now the joint operator ÛF/B⊗ Îs, being
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Îs the identity over the sink subspace. Moreover, we define as ÎN the identity over the joint space
of network and sinks, while the identity over the time auxiliary system will be It. In conclusion, the
evolution of the system in terms of its state in the network subspace n and in the sink subspace s,
besides the time degree of freedom, can be divided in three different segments, given the initial state
|ψ0⟩n,s = (α0 |1⟩n+β0 |2⟩n) |t0⟩n. In the first one, the initial state evolves from input to intermediate
layer through ÛF : ∣∣∣ψ(1)

0

〉
n,s

= (ÛF ⊗ Ît) |ψ0⟩n,s = (γ0 |3⟩n + δ0 |4⟩n) |t0⟩n , (4.6)

The second step consists of the extraction to the sink nodes, which corresponds to the generation
of a superposition state of the system being in the network or in the sinks at a certain time step,
through a projector from the network to the sinks: ∣∣∣ψ(2)

0

〉
n,s

=

[√
T
(
ÎN ⊗ Ît

)
+

+
√
1− T

(
|5⟩s ⟨3|n + |6⟩s ⟨4|n

)
⊗
( ∞∑
k=0

|tk⟩s ⟨tk|n
)] ∣∣∣ψ(1)

0

〉
=

=
√
T
(
γ0 |3⟩n + δ0 |4⟩n

)
|t0⟩n +

√
1− T

(
γ0 |5⟩s + δ0 |6⟩s

)
|t0⟩s ,

(4.7)

where T is the probability that the system stays in the network and 1−T the probability of it being
extracted towards the sinks. The last step leads again the network to a state of the input layer,
while the sinks do not evolve at all:

|ψ1⟩n,s =
(
ÛB ⊗

∞∑
k=0

|tk+1⟩n ⟨tk|n
) ∣∣∣ψ(2)

0

〉
n,s

=

=
√
T
(
α1 |1⟩n + β1 |2⟩n

)
|t1⟩n +

√
1− T

(
γ0 |5⟩s + δ0 |6⟩s

)
|t0⟩s ,

(4.8)

where the "time state" of the network has been updated, because a forward and backward evolution
has been completed. The evolution continues as a repetition of these three steps, leading to a general
state, after M completed loops:

|ψM ⟩ =
√
T
M(

αM |1⟩n + βM |2⟩n
)
|tM ⟩n+

+

M∑
k=1

√
T
k−1√

1− T
(
γk−1 |5⟩s + δk−1 |6⟩s

)
|tk−1⟩s ,

(4.9)

where αk, βk, γk, δk with k = 0, ..,M are the coefficients for each basis state of the network after a k
steps evolution. The measurement we are able to perform, in the end, corresponds to a projection
on both the sink state and the time step, which determines the probability of finding the system in
a given sink, hence a certain polarization state |π⟩ ∈ {|H⟩ , |V ⟩}, at a certain time tk:

P ({πs, tks}) =
∣∣∣⟨π|s 〈tk∣∣∣

s
|ϕ⟩s

∣∣∣2 (4.10)

where |ϕ⟩s is a general joint state of the sinks and the associated extraction time. The whole
evolution is completely deterministic until the measurement, so that the initial state determines
the output probability distribution: P ({πs, tks}) = P ({πs, tks}| |ψ0⟩n). This formalism allows us to
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intuitively describe the capability of our setup to exploit time as a further degree of freedom for dis-
crimination, while the actual realization is implemented through a set of subsequent post-selection
procedures.
The exploitation of a globally asymmetrical network unitary, with UF ̸= UB, is at the basis of the
four state discrimination protocol I devised. In particular, this method is effective for a set of geo-
metrically uniform states [38], since we consider the network parameters to be fixed in time. Indeed,
the first implementation of our model for four state discrimination involved a set of geometrically
uniform states (GUSs), i.e. a set of equally likely states that feature a particular symmetry with
respect to a given transformation Û ; specifically, they form a finite Abelian commutative group [42].
We took into account the case of the geometrically uniform quantum states:

|+⟩ = 1/
√
2 (|H⟩+ |V ⟩),

|−⟩ = 1/
√
2 (|H⟩ − |V ⟩),

|R⟩ = 1/
√
2 (|H⟩+ i |V ⟩),

|L⟩ = 1/
√
2 (|H⟩ − i |V ⟩).

(4.11)

The unitary representing the network evolution is tailored with the aim of producing the most
different output probability distributions as the four different states occur in the input layer. That
was achieved selecting one of the two sinks and requesting that each different input state featured
the relative highest probability of extraction in one of the first four time bins. This corresponds
to associate an output polarization-time pair {πi, ti} with one of the states |ψi⟩ and to maximize
the conditional probability P ({πi, ti}| |ψi⟩). We aim at guessing correctly the input state from the
outcome of our measurements: hence we need to associate each state |ψi⟩ with a pair {πi, ti} and
we want to maximize the conditional probability P (|ψi⟩ |{πi, ti}). By Bayes’ rule:

P (|ψi⟩ |{πi, ti}) =
P ({πi, ti}| |ψ⟩i)× P (|ψ⟩i)

P ({πi, ti})
(4.12)

where P ({πi, ti}) =
∑4

j=1 P ({πi, ti}| |ψj⟩) × P (|ψj⟩). Therefore, thanks to the optimization per-
formed above on the network parameters, we shall also get the optimal guessing probability.

The optimal evolution matrices that were found following our maximization method were UF =

1√
2

(
1 1

1 −1

)
and UB = 1√

2

(
1+i
2

1+i
2

1−i
2

−1+i
2

)
. The product matrix, representing the loop evolution of

the system between two distinct extraction steps, resulted then UL = UFUB = 1√
2

(
1 i

i 1

)
. It is

worth noting that U4
L = I, from which a four steps-periodicity of the output probability distributions

derives. Therefore, the first four time bins contain all of the information on the input state, while
the experimental exploitation of the further ones is only useful for collecting a greater amount of
meaningful signal. Actually, the information extracted in one of the sinks is complementary to
that extracted in the other one, so that even the first two time bins would suffice. Indeed, in the
experimental realization of the protocol, this would correspond to a heavy waste of signal, as we
discuss in the following. From an analytical point of view, if we consider only one of the two sinks,
e.g. the one corresponding to horizontal light polarization, the measurement at each time step t

represents the application of the POVM U tL ◦ |H⟩ ⟨H|. Hence, our setup is capable of reproducing
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the families of POVM identified by the global unitary of the loop and depending on the evolution
step parameter {U tL ◦ |H⟩ ⟨H| |t ∈ N} and {U tL ◦ |V ⟩ ⟨V | |t ∈ N}, although the actually distinct
POVMs for each set are only four. Since the states we are considering are geometrically uniform,
separated by a π

2 rotation around the same axis, this kind of procedure yields an optimal output.
Indeed, without changing the network parameters in time, it is possible to achieve a Perr = 0.5,
which is the analytical bound for a set of four GUSs, as we demonstrated in Sec. 1.3. This is
understandable by looking at Fig. 4.4a), where the numerical probability of detection in the first
four time bins is displayed for the geometrically uniform set. The distributions are normalized in
such a way that, given a certain polarization and time outcome, the total probability equals to 1;
we are indeed considering the P (|ψi⟩ |{π, t}) for each i = 1, ..., 4. In this way, the error probability
of guess can be straightforwardly computed considering the right time and polarization pairs:

P̄guess =
1

4

∑
i

P (|ψi⟩ |{ti, πi}) (4.13)

In this theoretical analysis, we are not considering that in the experimental framework the total
signal decreases as the system experiences an extraction step, as well as the fact that some of the
signal will be detected at further step of the evolution. These aspects are discussed in the following.

The theoretical probability distributions of Fig. 4.4, each of which provides an unambiguous
"time signature" of a given input state, clearly show the four step-periodicity of the probability
trajectory in time that we anticipated above. This feature relies on the network structure of our
receiver and is intimately connected to the number of its intermediate layers. In this particular
case of study, we considered two pairs of orthogonal states, providing an intrinsic advantage in
producing maximally different time dependent distributions. The same protocol was also applied
to the set known as Tetrad set [51], consisting of four mutually maximally distant states on the
Poincaré sphere:

|ψ1⟩ = 1/
√
3 (− |H⟩+

√
2e−2πi/3 |V ⟩)

|ψ2⟩ = 1/
√
3 (− |H⟩+

√
2e2πi/3 |V ⟩)

|ψ3⟩ = 1/
√
3 (− |H⟩+

√
2 |V ⟩)

|ψ4⟩ = |H⟩

(4.14)

featuring several interesting properties for quantum communication and cryptography [51]. The
results of the theoretical analysis for the Tetrad set are shown in Fig. 4.4b). For this latter set, the
network optimization was carried according to the same method as for the other set, that practically
corresponds to the maximization of the discrimination probability between different pairs of states
at each extraction step. The resulting evolution matrices, resulting from a numerical maximization,
were

UF =
1√
2

(
0.953 0.303

−0.303 0.953

)
and UB =

1√
2

(
−0.675 + 0.217i 0.212− 0.673i

−0.212− 0.673i −0.675− 0.217i

)
(4.15)

which, again, produce a loop evolution UL ∼ 1√
2

(
1 i

i 1

)
. In this case, the method produces

a theoretical Perr > 0.5, therefore the protocol is slightly suboptimal. Indeed, the distribution
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𝑎)

𝑏)

Figure 4.4: Theoretical output probability distributions for both states sets. Time-wise output
probability of the first four extraction steps when a) the geometrically uniform states and b) the Tetrad states
circulate in the network. Figure taken from [174]

minima are not vanishing (see Fig. 4.4b) ), but a more powerful optimization procedure may return
more effective results. Nevertheless, as discussed below, as the number of available copies increases,
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the error probability scales down exponentially.

4.3.2 Experimental results

In our experiment, we focused on the observation of the information dynamics rather than on the
actual performances of our receiver. Therefore, we measured the population for as many time steps
as possible, considering one sink only, i.e. a single one of the two output polarizations, namely |H⟩.
We were interested in observing the differences among the probability dynamics we imposed and
we quantified them by different figures of merit. First of all, we considered the probability that a
photon featuring a given initial polarization state left the network, function of the evolution step,
P ({|H⟩ , t}| |ψi⟩), normalized in such a way that P (|H⟩) = 1 and P (|ψi⟩) = 1, since we knew the
initial state of the photon. Such experimental detection probability distributions in time for both
sets of states are reported in Fig. 4.5, in comparison with the numerical ones, computed account-
ing for signal decrease after each evolution step and experimental parameters. These probability
distributions were reconstructed recording the number of photons extracted in the |H⟩ sink after
any number of travelled loops up to t = 20; this was possible thanks to the heralding procedure
described in Subsec. 4.2.2. The measured coincidences had to be cleaned off the background noise:
as we discussed above, the first actual detection step, not taken into account in the analysis, fea-
tured a much higher signal with respect to the following ones. Therefore, it caused a high rate
of spurious coincidences for any considered delay. A measurement of the background noise due to
the first extraction photons was performed for the delays corresponding to output time bins and
directly subtracted to the time-binned measurements, in order to get time-wise coincidences profiles
which only displayed actual coincidences.
In conclusion, clean step-wise coincidences counts were obtained, for each input state of both the
considered sets. Because of the high number of detected coincidences, the resulting output was
considered as an average result per se. Therefore, the output probability distribution for each input
state, displayed in Fig 4.5, were directly deduced by the normalization of the clean coincidences
profiles. The time dependent distributions show a good agreement with the numerical expecta-
tions computed accounting for actual parameters, demonstrating a reliable procedure of multi-state
discrimination, without the exploitation of any supplementary system, or spreading the states in
multi-mode configurations which would require an abundance of detecting devices. Specifically, by
combining Eq. 4.21 and Eq. 4.13, the average probabilities of guess which can be computed by such
experimental distributions are P̄ compassguess = 0.483± 0.027 and P̄ tetradguess = 0.444± 0.021.
The discrepancy with the ideal case values can be understood in terms of the losses and imper-
fect phase-compensation, which produce small but significant polarization rotations, hence slightly
lower maxima and higher minima in the distributions. The losses are considered by the simulation
results reported in Fig. 4.5, where the experimental errors are computed according to a Montecarlo
procedure, considering a Gaussian uncertainty of 0.5◦ on every wave-plate angular position. It is
worth noting that error bars computed according to this procedure yield larger uncertainties on
values that are not minimum nor maximum values of the distributions, while they are smaller on
maxima and minima, that are practically used to estimate the effectiveness of our protocol: we can
provide little insight regarding this matter, apart from a possible resilience to internal noise of the
joint POVMs-states chosen set, which may deserve further investigation. Indeed, the normalization
we impose to data reported in Fig. 4.5 also plays a part in the error propagation process leading to
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𝑎)

𝑏)

Figure 4.5: Step-wise output probability for a) geometrically uniform states and b) the Tetrad
set, sink 5 (horizontal polarization). Experimental output probability as a function of the number of
round trips travelled by photons when a) the geometrically uniform states and b) the Tetrad states circulate
in the network. Normalization of each distribution is performed summing over the total output probability
for each single state, in order to account for the experimental signal decrease as the observed time bin grows.
Data are reported in comparison with corresponding numerical results (dashed lines). Figure taken from
[174].
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the aforementioned behavior. Another very important source of noise consists of the background
coincidence counts, which are only partially removed by the procedure described above.
By our scheme, we need half the photon-counting detectors which would be needed if we were to
actually apply separately each projective measurement, together with the capability of discriminat-
ing the arrival time of photons without strict precision requirements. In this case, we were able to
do that by an additional APD detector performing coincidence measurements, but this issue may
be easily addressed by using a pulsed pump single photon source, so that the presence of a trigger
photon could be simply replaced by a suitable synchronization procedure.
In order to verify the effectiveness of the multi-state discrimination protocol in an actual scenario,
we tuned the photon source depicted in Sec. 3.3 to a low average photon number regime: through
this source, it is not possible to deterministically generate photons, but it is rather possible to set an
average rate of generation of single photons. Nevertheless, through this procedure, it was possible to
test the average quality of the protocol by computing the average error probability Perr as a single
copy of the system is available and how this quantity scales as the average available number of copies
grows. The experimental strategy to compute the average Perr starts by setting the average rate of
photon generation per second of the source. An average rate of 1-2 total observed coincidences per
second was set, and a higher average photon number was straightforwardly obtained by integrating
for a longer time. In this regime, the same time-binned measurements exploited to evaluate the
step-wise output distributions were performed, registering n-seconds events for different integra-
tion time intervals n. We address as n-seconds event a time-binned measurement performed for n
seconds. The events measured in this way still had to be cleaned off the accidental coincidences,
as mentioned in the previous section. Hence, it was not possible to consider single instances of
n-seconds events, but rather an average n-seconds event had to be taken into account, to get the
chance of subtracting background noise (which is only meaningful as an average quantity).
We considered the temporal probability distributions sampled in the previous section: for each of
the two sets, we had four time-wise sampled probability distributions Pi(t| |ψi⟩), one for each of the
states in the set, describing the conditional probability of a photon being extracted at time t, given
a certain input state |ψi⟩. We normalized these probability distributions to 1 without particular
consequences, since we were considering the case of equally likely states and we limited observation
to one sink only. Indeed, we ignored events from the |V ⟩ polarized output because they represented
complementary data with respect to the ones yielded by the other output port. In application
cases, the corresponding signal must naturally be taken into account, since it carries meaningful
information. Thus, if we have an average m-photon event Ēm, measured as described above and
cleaned off the noise, we can compute the probability of this event, given the input state we set, as
P (Ēm|ψi) =

∏
t Pi(n

(m)
t ) where n(m)

t is the number of photon detected at time t for the event Ēm.
As a consequence, the probability of error in guessing the input state can be computed as:

Perr(ψi,m) = 1− P (ψi|Ēm) = 1− P (Ēm|ψi)∑
ψj
P (Ēm|ψj)

(4.16)

exploiting Bayes’ rule. The resulting trends of Perr in function of the average number of detected
photons, which act as the available amount of copies of the system, are shown in Fig. 4.6, for both
sets of states.
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Figure 4.6: Error probability scaling for both states sets. Scaling of the error probability as a
function of the number of analyzed copies of the system, for the geometrically homogeneous states (top) and
the Tetrad states (bottom). It is worth noting that, in our specific framework, experimental asymmetries
appear to produce a scaling of the probability of correct detection as the number of employed photons grow
which deviates from theoretical expectations. In addition to the experimental uncertainty over the y-axis, the
photon number n has to be considered as affected by a Poissonian uncertainty equal to

√
n. Figure taken

from [174].
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4.3.3 Noise-robustness: preliminary analysis

We investigated the robustness of the protocol to the kind of noise which is most likely in application
scenarios: the receiver is usually easy to isolate from the environment, while, if the exchange of qubits
is remote, the transmission channel may be prone to environmental noise. In particular, we perform
an experimental simulation in order to understand how the protocol would perform if the initial
state were to be affected by some degree of decoherence before reaching the receiver. We simulated
this behaviour by measuring the output time-wise distribution of photons featuring initial state
|H⟩ and |V ⟩ and suitably mixing it to the experimental outcome of the GUS or Tetrad set in the
analysis step. Indeed, we can describe a photon which was prepared in a polarization state |ψ⟩ and
has undergone decoherence as represented by the state:

ρ0 = (1− d) |ψ⟩ ⟨ψ|+ d(A |H⟩ ⟨H|+B |V ⟩ ⟨V |) (4.17)

where d is the intensity of the decoherence effect, namely the probability for the system to be in
a completely classical state, and A = ⟨H|ψ⟩ ⟨ψ|H⟩ , B = ⟨V |ψ⟩ ⟨ψ|V ⟩. The evolution through the
network receivers applies in parallel to the two terms in Eq. 4.17, without any interplay among
them. We want to compute the average Pguess for different sets of initial states as a function of
the level of decoherence affecting the system before analysis. Without accounting for the losses, we
have that the probability for the system to be found at a certain time in the sink |H⟩ corresponds
to:

P ({t, |H⟩}| |ρ0⟩) = ⟨H| ρ(t) |H⟩ = (1− d) ⟨H|U t |ψ⟩ ⟨ψ| (U+)t |H⟩+
+d(α ⟨H|U t |H⟩ ⟨H| (U+)t |H⟩+ β ⟨H|U t |V ⟩ ⟨V | (U+)t |H⟩) =

= (1− d)× P ({t, |H⟩}| |ψ⟩) + d× (αP ({t, |H⟩}| |H⟩) + βP ({t, |H⟩}| |V ⟩)).
(4.18)

Thus we can simply evaluate the three contributions separately and mix them according to the level
of decoherence we wish to simulate. In this way, we obtain different trends of the average Pguess
in function of the decoherence level, depending on the states set we employ. We show the behavior
of the GUS set, the Tetrad set and we compare them to the pure numerical results corresponding
to the employment of another possible set of GUS states {|+⟩ , |−⟩ , |H⟩ , |V ⟩}, that we address as
Compass set, because of the particular way the states are distributed on the Bloch sphere. We
report the results in Fig. 4.7.

We can conclude, by observing Fig. 4.7, that the GUS set we considered in the experiment
described above is the worst set in terms of noise resilience, although this is a mere consequence of the
noise model we chose: indeed, the disruption of coherence would lead all the states in the set to the
same ρ = 1

2(|H⟩ ⟨H|+|V ⟩ ⟨V |), while the Tetrad and Compass sets would maintain a certain amount
of distinguishability. As a consequence, we decided to employ the set {|+⟩ , |−⟩ , |H⟩ , |V ⟩} for further
application and extension of the protocol, since it does feature the nice symmetry properties of a
GUS set, while being more resilient to decoherence.

4.3.4 Remarks regarding experimental time-binning strategy for QSD

Optimal strategies for Quantum State Discrimination of actual quantum states have a great deal
of relevance and a wide range of applications: Quantum Communication [185], Quantum Key Dis-
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Figure 4.7: Probability of correct guess as a function of decoherence Experimental simulation
scaling of the probability of correct guess in function of the amount of decoherence in the state preparation,
for the geometrically uniform states (yellow), the Tetrad states (black) and the Compass set (red), that is
marked by diamonds to highlight the theoretical nature of the corresponding trend. The comparison is a mere
qualitative analysis, thus we don’t report experimental error bars.

tribution [186] and also Quantum Sensing, in the case of distinguishing different external fields
affecting the system dynamics (such as in NV-center noise spectroscopy [187] or avian magnetore-
ception [188]). In recent years, the development of actual single-photon protocols for QSD has been
generally set aside, in favour of protocols requiring the exploitation of coherent states (adaptive
strategies, Quantum Phase Shift Keying [54–56, 58]). However, it is well known that the use of
coherent states in Quantum Communication protocols does not grant equal security as compared
to the exploitation of actual quantum states [189, 190].
In the work reported in this section, as well as in the next one, we exploited actual single-photon
states and we achieved a nearly optimal protocol featuring a clear spare of resources, in terms of
auxiliary systems and physical measurement devices. For clarity’s sake, we stress here that the same
protocol can be straightforwardly implemented by means of weak laser pulses, rather than single
photons. Anyway, the aim of our work was indeed to realize a protocol that could achieve optimal
and effective results without needing to resort to coherent states of light, hence reduced transmis-
sion security. The spare of auxiliary physical systems is achieved by the network structure of our
receiver, which allows us to implement strategies based on time-binning of information extraction,
in the case of binary and multi-state discrimination, without the need for an individual physical
implementation for all of the projective measurements; that is a relevant property for applications.
This scenario shares some similarities with the weak-measurement framework developed in [179]
and [180]; in stark contrast with that, we were able to develop a protocol applying to a higher
number of states, to the problem of minimum error probability and with a completely novel the-
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oretical and experimental quantum network approach. The exploitation of actual quantum states
in this protocol makes it quite interesting for the application to secure Quantum Communication
tasks and Quantum Key Distribution, tightly relying on the quantum nature of the implementing
platforms for their effective realization. The results we reported in this section represent on one side
a basic proof of the effectiveness of our protocol, but they also potentially pave the way to further
extensions, such as the adoption of adaptive methods for more general tasks, or the implementation
of more complex networks, in order to increase the maximum possible number of states which could
be discriminated.
With some improvements,this simple model may be turned in a proper Quantum Neural Network
[191], with a potential which is yet to be uncovered in the QSD field. Noise-robustness analysis
of the protocol still needs to be thoroughly carried out, consistently with the approach of [61], in
order to reveal possible usefulness for Quantum Computing in NISQ devices. Even Machine Learn-
ing techniques may be applied to our framework, aiming at the development of quantum machine
learning protocols in which quantum information is classified as in classical supervised deep learning
schemes. This approach in experimental realizations of QSD protocols features some practical and
theoretical advantages for the applications and leaves a lot of room for improvement and general-
ization. For instance, it is possible to extend the same protocol to more than one degree of freedom
in parallel, in order to implement a more complex network and gain the ability to discriminate
among a larger set of states. This is the best and most feasible way to scale up our approach: the
addition of further layers, hence further concatenated optical loops, may be challenging and would
involve a large amount of losses. Moreover, there would not be any increase in the encoding system
dimensionality, so that we may be able to discriminate among more states, but with lower accuracy.
Therefore, I developed an extended protocol based on the exploitation of photon energy, that led to
the realization of a network-like receiver capable of discriminating at the optimal level among eight
states encoded in the four-dimensional joint space of energy and polarization of single photons. We
report on the experimental demonstration of this protocol in the following section.

Personal contribution

I helped developing and building the experimental setup. I personally designed the four state time-
binning protocol and found the optimal configurations for discrimination. I also worked to the
realization of the experiment and to data analysis.

4.4 Frequency embedding for enhancement of time-binning QSD
strategies

The quest for more powerful QSD protocols is inevitably linked to the search for high-dimensional
carriers of quantum information. In general, it is important for quantum communication appli-
cations that each carrier that is sent can be filled with as much information as possible, i.e., that
high-dimensional systems are exploited [192]. Indeed, qudits, d-dimensional quantum bits, can carry
much more information than both qubits and classical bits [193]. For example, it has been demon-
strated that entangled qudits allow to get further the capacity of a classical channel [194–196].
As an additional favourable property, high-dimensional quantum states are robust to noise, either
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environmental or due to eavesdropping, providing a greater security for Quantum Communication
purposes [186, 197, 198].
Thus, the increase in dimensionality of systems employed for Quantum Information tasks repre-
sents in any case an advancement towards more powerful and secure Quantum Communication
[192]. Quantum State Discrimination is no exception, and the development of protocols harnessing
high-dimensional systems is crucial in order to extend their effectiveness and range of application.
We have already discussed how single photons represent one of the best candidates for the role of
flying qubits and feature several fundamental properties such as resistance to decoherence, ease of
manipulation with bulk linear optic elements, possibility of encoding information in their several
degrees of freedom [199]. In Sec. 1.2.7 we have described the working principles of semiconductor
quantum dots (QDs), that are emerging as one of the most promising candidates in the wide land-
scape of single-photon emitters. They can emit single and entangled photons on-demand [200, 201],
with high level of indistinguishability [202] and high degree of entanglement, ultra-low multiphoton
emission probability [203] and their properties can be enhanced with the combination of photonic
cavities [204–207] and strain-tuning [208]. The possibility to successfully employ quantum light
from semiconductors QD has been already demonstrated for quantum communication protocols
such as quantum teleportation [209, 210], entanglement swapping [211, 212] and their use in quan-
tum key distribution [34, 213, 214]. The increasing performance of QDs in terms of brightness
and indistinguishability [205, 215] are drawing interest on this class of emitters for applications in
quantum cryptography. Indeed, the simultaneous emission of two photons with a different energy
in the biexciton-exciton cascade has already been exploited for spectral multiplexing in quantum
cryptography [216]. This is an example of how increasing the Hilbert space dimension of a quantum
state can be useful, combining the frequency degrees of freedom with single photon polarization.
As we highlighted in Sec. 1.3, light polarization has been the first and main degree of freedom ex-
ploited for experimental Quantum State Discrimination and the only one to be employed in actual
single photon experimental attempts [50, 217–219], while, in a coherent state experimental frame-
work, it is possible to increase the system dimensionality in different ways, such as by Quantum
Phase Shift Keying (QPSK) [54, 55, 57, 58, 220] or the employment of complex modal structures
[221]. Another viable way is represented by the exploitation of multiple copies of the system to in-
crease effectiveness of QSD protocols and allowing for adaptive measurements [49, 54, 56, 222, 223].
The time multiplexing scheme that is described in Sec. 4.3, which led to the experimental demon-
stration in [174], is flexible to an extension to further photonic degrees of freedom. In the following,
I present a protocol exploiting such time-multiplexing method as a tool to achieve a benchmarking
result in the framework of single-photon QSD protocols: we implemented an experimental MED
protocol for the discrimination of eight non-orthogonal states, using single photons generated by a
QD. We harnessed the photon energy as an additional degree of freedom to realize a 4D encoding
space. In particular, the eight states were vectors of the joint 4D Hilbert space obtained composing
the photon polarization degree of freedom and the 2D space spanned by the two different possible
frequencies of photons produced by a biexciton-exciton cascade.

4.4.1 Protocol description

We aim at the discrimination of eight non-orthogonal states encoded in a four-dimensional qudit
with the maximum probability of success. Our approach focuses again on saving resources, in terms
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of hardware and signal, and also on the conservation of a fundamental-level security that could only
be guaranteed by the employment of single photons, as we pointed out repeatedly throughout the
manuscript.
In this sense, the MED framework is again the best choice, since we wished each measurement
outcome to be useful. We wished to perform discrimination among N states of a D-dimensional
system, achieving the highest possible average probability of correct guess. This time we only
consider a set of geometrically uniform states (GUSs). We stress again that we are taking into
account the case of geometrically uniform quantum states in a discrete variable framework, rather
than their coherent continuous variable counterpart. In any case, we know that for GUSs the
minimum error probability of guess (averaged over all the initial states) that is achievable is Perr =
1− D

N [44]. In particular, we are interested in the N = 8, D = 4 case, which yields again a minimum
Perr = 0.5, that is in turn equal to the successful guess maximum probability Pguess = 1−Perr = 0.5.
The space we consider is the composition of the one spanned by the orthogonal polarization basis
|H⟩ , |V ⟩ and the one spanned by a basis of two different frequencies |ω1⟩ , |ω2⟩. In principle, light
frequency could span an infinite dimensional space, but we limited to the two possible distinguishable
frequencies that we were able to prepare our input states into and that we were able to discriminate.
Hence, we had a joint basis {|H⟩ |ω1⟩ , |V ⟩ |ω1⟩ , |H⟩ |ω2⟩ , |V ⟩ |ω2⟩}.
We chose eight states that are globally non-orthogonal, although some subsets of them are:

|ψ1⟩ = |+⟩ |ω1⟩
|ψ2⟩ = |−⟩ |ω1⟩
|ψ3⟩ = |H⟩ |ω1⟩
|ψ4⟩ = |V ⟩ |ω1⟩
|ψ5⟩ = |+⟩ |ω2⟩
|ψ6⟩ = |−⟩ |ω2⟩
|ψ7⟩ = |H⟩ |ω2⟩
|ψ8⟩ = |V ⟩ |ω2⟩

(4.19)

This set is not properly a geometrical uniform one but, in practice, we can treat it as such, since
it is composed of two orthogonal subsets that are, in turn, geometrically uniform. The eight states
set is indeed a "frequency embedding" of the Compass set defined in Subsec. 4.3.3.
Our discrimination strategy can be summarized as a four state discrimination analogous to the
one discussed in Sec. 4.3 as well as in [174], followed by a binary discrimination among the two
orthogonal frequency subspaces.
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Figure 4.8: Model of the network-like receiver. The system is prepared in a certain frequency and
polarization state, that corresponds to a superposition state of input layer nodes. The system evolves back
and forth from the input layer to the intermediate one of two parallel networks, according to the unitary
operators ÛF and ÛB, with a chance of being sent to the output when in the intermediate layer. There,
the two identical networks become different, since the output with ω2 frequency is delayed with respect to
the one featuring ω1. Specifically, this delay is half the travel time of the back and forth evolution between
the intermediate and input layers. In this way, signal featuring one of the two frequencies is maximally
distinguishable from the other in time. Figure taken from [175].

This was performed thanks to the imposition of a periodical dynamic on the polarization state
of the system. Such an evolution pattern made possible to associate the detection of a photon after
a certain evolution step and in a certain polarization state with the presence of a specific input state
among the possible eight given in Eq. 4.19.
Our protocol can be described as the processing of the input state through the network depicted
in Fig. 4.8, which corresponds to two parallel networks, each analogous to the one in Fig. 4.1
employed for the four states case, inspired by [224]. The polarization state is sent forward and
backward through the input and intermediate layers of the network, with a certain probability of
being sent to the output layer. The frequency degree of freedom, on the other hand, does not evolve
throughout the process and it is globally discriminated by a final projection. There is no way that
the two frequencies are mistaken; therefore, states in different frequency subspaces can be regarded
as processed through different networks. The evolution from the input layer to the intermediate
layer follows again the forward unitary evolution ÛF , while the backward unitary ÛB describes
evolution from the intermediate layer back to the input one. These are 2x2 unitary matrices acting
on the polarization degree of freedom only. These operators act on both frequency subspaces in
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parallel, so that the global forward and backward operators ÛGF and ÛGB are:

ÛGF =


ÛF

(
0 0

0 0

)
(
0 0

0 0

)
ÛF

 and ÛGB =


ÛB

(
0 0

0 0

)
(
0 0

0 0

)
ÛB

 , (4.20)

since in our model switching from a frequency to the other is not allowed. After the application
of ÛF the system is in the intermediate layer. With a certain probability, it is either sent to the
output layer, where the frequency discrimination takes place, or it keeps evolving, as in the four
state protocol.
We now consider the polarization-wise discrimination, briefly repeating for clarity’s sake some of
the discussion of Sec. 4.3: in the output layer, we can detect the system in one of two states of
polarization, |H⟩ or |V ⟩, that from now on we denote as |H⟩ = π1 and |V ⟩ = π2. The probability
of finding the system in π1 or π2 depends on the initial state and the dynamics it is subject to.
The dynamics we impose are such that if the system does not travel towards the output, it may
return at a larger evolution step after propagating back and forth through the network. At this
point, the probability for the system to be found in one of the two polarization states may have
changed. Therefore, we consider the conditional probabilities P ({t, π}|ψi) and manipulate them by
tailoring the evolution parameters. In particular, we can associate a specific duple {ti, πi} to each
state |ψi⟩ and set the evolution unitary so as to maximize the probabilities P ({ti, πi}|ψi). If the
initial state is |ψi⟩, the probability that the system is detected at the chosen time bin ti with chosen
polarization πi is maximum. This kind of strategy is the same that produces an optimal protocol
for four geometrically uniform states, as we demonstrated in Sec. 4.3.
In order to apply the same method to the eight states defined in Eq. 4.19, we need to split the
time bins we are considering: for each time bin ti we consider two sub-bins, one for each frequency.
We apply a delay line to one of the two frequencies (|ω2⟩ arbitrarily), imposing a time delay to the
detection of states in the |ω2⟩ subspace. We set the delay as half of the cycle time of the network.
This is schematically depicted in Fig. 4.8. We can consider all the time bins and renumber them,
so that detection in even time bins {t0, t2, t4, ...} corresponds to an initial state in the |ω1⟩ subspace
while detection in odd time bins {t1, t3, t5, ...} reveals that the system features an |ω2⟩ frequency.
Thanks to this strategy, we can in principle produce a discrimination protocol for eight polarization-
frequency GUSs featuring the optimal probability of correct guess Pguess = 0.5.

4.4.2 Single photon source: GaAs QD in a cavity

For this experiment, we established a collaboration with the Nanophotonics group of Sapienza
University, that allowed us to employ their Quantum Dot (QD) sources, which we briefly describe
here. The source of single photons we used was specifically a single GaAs/AlGaAs QD placed in a
circular Bragg resonator (CBR) cavity (also known as bullseye cavity) [225]. This kind of sample
is grown with the Al-droplet etching technique on a GaAs commercial wafer [226]. The sample
is then subject to several processing steps to fabricate positioned and size-tailored CBR around
selected QDs, following a procedure similar to previously developed ones [204, 227]. Afterwards,
the sample is processed with the aim of isolating the AlGaAs membrane containing the QDs. A
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broadband mirror (made of a layer of aluminum oxide and a layer of gold) is placed at the bottom
of the membrane [204, 206] and the whole membrane is eventually glued to a substrate with SU8
photoresist. The positions of single QDs with respect to reference markers are gathered by means of
computer analysis of microscope images of the surface of the sample at cryogenic temperature (5K),
under illumination with uncollimated blue LED [227]. A mask is tailored by means of electron beam
lithography on the surface of the sample and the photonic cavities are etched around single QDs
using a chlorine-based inductive coupled plasma reactive ion etching machine. The CBR cavity is
designed to have the main resonant mode in the vicinity of the X-XX energies. In this way, the
lifetimes of the excitations are critically reduced. In order to work as an emitter, the sample must
be placed in a cryostat at low temperature (5K) and it is possible to excite a single QD by suitably
focusing laser light by an aspheric lens placed inside the cryostat in a confocal configuration, as
depicted in Fig. 4.2a). The signal coming from the QD is collected by the same lens and directed
to the optical table. In our case, the XX level of the QD was resonantly excited by tuning the
energy of a Ti:Sapphire pulsed laser at half of the transition energy from the ground state inducing
a two-photon absorption. In order to activate the transition, the QD charge environment had to be
stabilized with the aid of an uncollimated halogen lamp with blackbody spectrum [228, 229]. It is
worth noting, that no heralding procedures were needed in this case, because of the pulsed pump
we employed.

4.4.3 Experimental realization

The time-multiplexing scheme we describe above can be experimentally implemented by a linear
optics setup which consists of an extension and improvement of the one employed in the four state
discrimination experiment, employing again two Single Photon Avalanche Diodes (SPADs) only,
connected to a time tagger.
The input states from Eq. 4.19 can be encoded in the polarization and frequency degrees of freedom
of single photons generated by a Quantum Dot source, driven under resonant two-photon excitation
by a Ti:sapphire laser at frequency 781.2nm. This excitation leads to the production of two photon
at different wavelengths via the biexciton-exciton cascade we discussed in Sec. 1.2.7. The setup can
be divided in two parts: the first one, in Fig. 4.9 a), is the single photon source, while the second
one (Fig. 4.9 b)) is the quantum receiver. The system is prepared in one of the states in Eq. 4.19 as
follows: the chosen frequency was selected by sending to the receiver in Fig. 4.2b) the single photons
generated by an exciton-to ground transition (exciton or X for brevity) or a biexciton-to-exciton
one (biexciton or XX). As shown in Fig. 4.9 a), this selection is performed by two optical Volume
Bragg Filter (VBG) filters. The VBGs feature a wavelength tunable narrow-band reflection, the
tunability of which is obtained by changing the incoming light angle of incidence. Thus, by suitably
setting the angular positon of the two VBGs we can select only the frequency corresponding to the
biexciton and the exciton respectively. An additonal VBG filters out the pump laser backreflection.
The exciton wavelength is 780.3 nm and the biexciton one is 782.3 nm. The FWHM of the emission,
obtained with a Gaussian fit of the peaks, are 22.3± 6 pm for the exciton and 37.3± 7 pm for the
biexciton, while an individual VBG filter has a bandwidth < 60 pm and an extinction ratio OD3 as
stated by the manufacturer. Therefore, the filter bandwidth is much wider than the QD linewidth,
which allows to collect a specific emission line avoiding losses, while still effectively separating
different emission lines. This approach features some limitations: if the linewidth of the photons
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Figure 4.9: Experimental scheme of the a) source setup and the b) optical receiver. A Ti:Sa
Pulsed Laser pumps a Quantum Dot (QD), that generates single photons at different frequencies. The residual
laser light is filtered out by an optical volume Bragg grating (VBG) filter suitably oriented. The |H⟩ output
of the exciton (purple) or the biexciton (green) light is used as an input for the b) actual discriminator,
depending on the state we wish to prepare. Polarization state is prepared through a Linear Polarizer (LP)
and a waveplates set QWP-HWP-QWP (λ

4 − λ
2 − λ

4 in the picture) that also drive the first evolution step,
globally applying ÛF · ÛP . Along the loop L1, a set of waveplates imposes the transformation ÛF · ÛB on
photon polarization. Further sets are employed for phase compensation through the unitaries Ûϕ1

, Ûϕ2
. After

escaping L1, the signal arrives on a VBG set to reflect photons at the exciton frequency ω2, sending them in a
second optical loop L2. The signal is reflected again, after travelling for a length lL2 = lL1/2, so that ω1 and
ω2 are time delayed and perfectly distinguishable. Eventually, photons are coupled to multimode fibers and
sent to Single Photon Avalanche Diodes (SPADs), connected to a correlator and interfaced to a computer.
Figure taken from [175].
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is larger than the spectral bandwidth of the VBG filter, the preparation of the frequency state
may be unreliable. To this aim, we cleaned the band around the X and XX emissions with two
additional suitably positioned VBG filters. After the photon is prepared in the frequency subspace
we require, a single mode fiber directs it into the second part of the setup, sketched in Fig. 4.9 b),
where the polarization state is prepared by a linear polarizer and a waveplate (WP) set composed
of the sequence of a Quarter-Wave Plate (QWP), a Half-Wave Plate (HWP), and a QWP. The
application of the WPs sequence corresponds to the preparation of the polarization state by the
unitary operation ÛP and the discrimination protocol begins right after.
The application of unitary ÛF bringing the system from the initial to the intermediate network layer,
is practically performed by the same WP set as the preparation stage, as highlighted in Fig. 4.9 b).
Photons find then an unbalanced BS on their path, featuring an average reflectivity R ≈ 27.5%. This
reflectivity value was chosen to maximize the amount of signal collected throughout the protocol
and to make population in the different time bins as homogeneous as possible, in order for them to
feature similar uncertainties. In particular, without considering the losses, this value of R allows to
collect approximately the 98.5% of the input signal by measuring the output of the first four passages
through the L1 loop (corresponding to the first eight time bins). If photons are reflected by the
BS, they travel a loop of mirrors, propagating through a second WP set, that applies the unitaries
ÛB and ÛF , so that the system has completed a back and forth evolution through the network
before encountering again the BS. If the photon is reflected again, another loop evolution begins
and the polarization state changes accordingly. In this way, we are able to apply a dynamic on the
single photon polarization degree of freedom. The frequency-wise discrimination takes place after
the extraction from the first optical loop, addressed as L1: single photons impinge on a VBG filter
along their path, which is set to reflect the ones originating from exciton transition at ω2. Then,
reflected photons travel a supplemental optical loop, called L2, after which they impinge again on
the VBG and are redirected on the same path as the ω1 photons, but provided with a delay in time,
which is tailored to be half the loop evolution time of L1. In this way, we end up with doubled time
bins, one for each possible frequency. The pump pulses have a 80MHz repetition rate, meaning
that the narrowest time interval between two consecutive photon generations is around 12.5 ns. We
engineered the length of the optical loops in order to fit eight detection time bins in the 12.5 ns laser
repetition period, one for each of the possible input states. To this aim, the two loops lengths were
set to lL1 = 90 cm and lL2 = 45 cm. It is evident that very narrow time distributions of the photon
generation are required from the Quantum Dot, that are achieved through the fast recombination of
GaAs/AlGaAs nanostructures further enhanced by Purcell effect, leading to the very short lifetime
of 22±4 ps for the XX transition and 41±2 ps for the X transition. This guarantees an emission
time distribution after each laser pulse which is much shorter than the period of the pulse train,
minimizing in this way the cross-talking between two subsequent pulses. The L2 optical loop, also
because of its relatively short length, had to be aligned very carefully: the VBG reflects only a small
band around a certain wavelength depending on the angle of incidence with a very high angular
selectivity (circa 0.4mrad). Thus, in order to close the loop, it is necessary not only to impinge on
the VBG with the same angle at the second reflection, but also to hit the same spot in order to
align with the trasmitted beam.
To make the whole system flexible to wavelength changes, for example when using a different QD,
the VBG was placed on a rotating mount that allows for a precise and flexible angular alignment.
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In order to adapt the setup to different angles of reflection of the VBG filter, the optical loop L2

was placed on a platform that can rotate independently from the VBG filter. We collected signal for
the first eight time bins, corresponding to four L1 trips with the L2 doubling, both for the |H⟩ and
|V ⟩ polarized output. In Fig. 4.10, we report histograms of the sampled probabilities P (|ψi⟩ |{t, π})
of having an input state |ψi⟩ if the photon is detected at {t, π}. From these quantities we can
estimate the performance of our receiver, and we can rest assured that they will yield the best
result achievable since they are proportional to the probabilities P ({t, π}| |ψi⟩) we considered in our
optimization procedure. This can be deduced by Bayes’ rule:

P (|ψi⟩ |{t, π}) =
P ({t, π}| |ψ⟩i)× P (|ψ⟩i)

P ({t, π}) (4.21)

where P ({t, π}) =∑8
j=1 P ({t, π}| |ψj⟩)× P (|ψj⟩).

In Fig. 4.10, we can recognize the expected periodical dynamics, featuring a different time
shift depending on the input state. The maximum probabilities are achieved at a different {ti, πi}
for each |ψi⟩. It can be useful to analyze one specific instance: let us consider the input state
|ψ1⟩ = |+⟩ |ω1⟩. The corresponding probability values are represented by blue bars in Fig. 4.10: we
have XX frequency, thus the system can end up in even time bins only, corresponding to transmission
through the VBG of L2; our receiver is designed in such a way that if an event is detected at t = 2

and π = π1, we can guess that the input state was |+⟩ |ω1⟩ with a success probability that is
maximum time-wise and state-wise. In fact, the bars in Fig. 4.10 are normalized so as to have the
total probability P ({t, π}) = 1 for any {t, π}, that corresponds to a situation in which a detection
event has been recorded and a guess about the input state has to be made. Since we consider
the case of equally likely input states, it is clear by Eq. 4.21 that the probability distributions in
figure are proportional to the P ({t, π}| |ψ⟩i) representing the evolution of the system depending
on its initial state. Hence, a time-wise pattern medium-maximum-medium-minimum of probability
values arises, clearly noticeable in Fig. 4.10 a), representing the fixed polarization rotation imposed
by passage through L1. Indeed, the time evolution is always fixed, but the initial point changes,
so that the periodical probability dynamics is shifted in time, depending on the input state. This
can be understood by means of a comparison between Fig. 4.10 a) and c) ( H polarized output):
an initial polarization state |+⟩ produces an output time-wise distribution featuring a two time
bins shift (corresponding to one trip through L1) with respect to an initial |H⟩ or |V ⟩. The same
behaviour can be observed for the other frequency, but for a global one time-bin shift. On the other
hand, the dynamics of the V polarized output (reported in Fig. 4.10 b) and d)) are complementary,
yielding the same information as the H polarized one. Thus, since we measure eight time bins,
we actually measure two probability maxima for each state, one for the H output and another for
the V one. The experimental data are shown in comparison with the expected ones, represented as
scattered symbols, which were produced by a simulation performed taking into account experimental
parameters. Data were taken over the eight time bins at the same time, with a count rate oscillating
around ≈ 3− 3.5 · 103/s, and each measurement take lasting 3 minutes. Right after collection, data
were cleaned off background noise, due to dark counts of the SPADs, spurious signal from the QD
due to white light illumination, and environmental noise.
Nonetheless, in Fig. 4.10 it is possible to notice the effect of some parasite counts in the output
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Figure 4.10: Probabilities for each of the eight states conditioned to the detection of a photon in
each time bin and in the a)-c) |H⟩ polarization or b)-d) |V ⟩ polarization. The data are normalized
so as to have P ({t, π}) = 1 for any {t, π}. They are compared to their expected values, that are the results of
a simulation run accounting for experimental parameters, here represented by symbols of similar colours with
respect to their experimental counterpart. Some discrepancies are present, that are extensively discussed in
the text, together with the error computation. For each state, it is possible to recognize the same "triangular
wave" dynamics (medium-maximum-medium-minimum) with a different time shifting. Some asymmetries
can be ascribed to the slight unbalanced behavior of the Beam Splitter with respect to polarization. Figure
taken from [175].
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distributions corresponding to X frequency: photons featuring ω1 should end up in odd time bins
only, while, especially for larger delays where the proper signal is lower, there are some counts
that occurred also at even times. This means that some of the photons which should be reflected
by the VBG in L2 loop were transmitted instead; it is possible to ascribe this issue to the finite
extinction ratio of the VBG, which is supposed to be OD3. From the experimental counts, we
can estimate an actual extinction ratio of 0.0125 for H polarization and 0.0055 for V polarization
corresponding to the double reflection on the VBG in L2. This discrepancy with respect to the
constructor’s indications, as well as to the flawless working of the VBGs employed in the source
setup, can be straightforwardly attributed to an imperfect angular positioning of the frequency-
discriminating VBG filter and, above all, an imperfect angle of the second impingement of photons
after traveling the L2 loop. Indeed, the setting of the latter is a challenging task to achieve with
high precision and we estimate that an error of 0.1% in the angle of incidence on the VBG can
result in a decrease of one order of magnitude in the extinction ratio. Nevertheless, we did not
include this effect in our statistical error computation, since, although it may appear relevant from
Fig. 4.10, it did not significantly affect the performance of the receiver, as we show below. Indeed,
the experimental parameters we had to account for in our simulations consisted of asymmetries
and imperfections in the optical components. These features affect the protocol performance, and
the most relevant among them is the uneven response to polarization of the unbalanced BS in L1:
specifically, it features RH = 0.26± 0.02 and RV = 0.29± 0.02 together with losses of ≈ 21%, that
sum up with another 11% of losses for every loop completion. Moreover, these asymmetries can
apparently yield an over-performance of the protocol for some input states: for instance, in Fig. 4.10
d), the expected maximum guessing probability for the state |V ⟩ |ω1⟩ is higher than the theoretical
maximum 0.5. Indeed, this effect is compensated by under-performance for other states, so that
the two contributions compensate when considering the average probability of correct guess, hence
the average performances of the receiver. Since the BS and the loop L1 are travelled repeatedly,
the asymmetry and the losses heavily condition the performance of the receiver; as a result the
theoretical probability of correct guess we expected was Pguess = 0.488 instead of the ideal 0.5.
The experimental errors we supply in Fig. 4.10 have been computed by considering possible errors in
the parameters setting and evaluation: indeed, the waveplates angles positioning and calibration are
subject to random errors, that we estimated jointly as a ±1◦ uncertainty on their angular position,
and the BS reflectivities feature the uncertainty reported above. The errors are computed through
a Montecarlo procedure and then summed in quadrature to the Poissonian error computed on the
raw counts.
From the experimental samples, we can compute the average probability of correct guess, where
we guess the input state to be |ψ⟩i if the system is detected in the corresponding {ti, πi}, weighing
with the total probability for the system to be found in {ti, πi}:

P̄guess =
1

2

1

8

∑
i

P (|ψi⟩ |{ti, πi})P ({ti, πi}) (4.22)

where we consider equally likely input states (hence the 1/8 factor), and we sum two terms for
each state, as mentioned above (hence the 1/2 factor). The result of this computation delivered a
P̄guess = 0.486±0.002 which is in agreement with the expected value P̄ simguess = 0.488, thus confirming
that the BS asymmetry was our main limiting factor.
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4.4.4 Conclusion and perspectives

All of the considerations reported in Subsec. 4.3.4 also apply to the protocol discussed in this section,
especially concerning the employment of single photons and the clear experimental advantages of
our time-binning strategy. In addition to that, we employed a solid state source, featuring excellent
efficiency and control over different aspects of the emission process, to experimentally realize a
scheme for discrimination among eight quantum states of actual single photons, encoded in their
polarization and frequency degrees of freedom. The protocol was implemented through a time-
multiplexing dynamic that allows the achievement of optimal results using linear optics, with no
feedback mechanisms and only two photodetectors.
The importance of our results resides not only in the fact that, to the best of our knowledge, this
is the largest alphabet ever implemented with a single photon platform for QSD, but also from the
novel employment of photon energy as an encoding variable. Energy is very robust to environmental
noise and, in principle, it can even be used to span spaces with dimension D > 2.
The possibility of writing information into photon frequency with such reliability derives from the
exceptional properties of our solid state source: not only the source is nearly deterministic, but the
generated photons also feature a convenient trade-off between fast emission and narrow bandwidth,
granting reliable encoding and decoding effectiveness. There are, naturally, some limits to additional
developments with this approach: the preparation of a superposition state in frequency as well as
its possible manipulation inside the receiver are not trivial. However, some recent efforts have been
successfully devolved to efficient frequency conversion and manipulation [230–232].
Moreover, we delivered a novel experimental method for frequency-wise delay lines, that may feature
a wide applicability. For these reasons, the work reported here represents a relevant step in the
implementation of high-dimensional quantum communication protocols and the start for further
promising investigations.

Personal contribution

I had the idea of using frequency as a photon encoding variable for QSD, and exploiting energy non-
degeneration of photon pairs generated by a Quantum Dot. I designed the eight-state discrimination
protocol and personally realized the double loop quantum receiver. Eventually, I collaborated to
perform the experiment and the data analysis.
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Chapter 5

A protocol for multipartite entanglement
distribution via separable carriers

In Sec. 2.4, we reported on the employment of a quantum walker as a probe in a quantum metrology
scenario. The idea that a flying quantum system, a photon for instance, could perform some task
by travelling through a network and interacting with nodes, has a wide range of applicability.
In particular, this is the main concept behind Entanglement Distribution via Separable Systems
(EDSS): this approach aims at generating entanglement between remote nodes without actually
exchanging entangled particles, but rather employing an uncorrelated quantum "walker" acting as
some sort of spool, travelling from one node to the other, entangling them while never getting
entangled. Thanks to a fruitful collaboration with Prof. Mauro Paternostro at Queen’s University
of Belfast (UK), I was able to design a powerful protocol for multipartite EDSS. This work [233]
delivers the first generalization of this kind of protocol to N entangled nodes in such a way that
the carrier system is actually separable at all times. In this Chapter, we briefly review the topic
of EDSS and we report on the results of our analysis, which is completely theoretical, although
including proposals for experimental demonstration.

5.1 Entanglement Distribution via Separable States (EDSS)

Entanglement is a crucial ingredient in quantum networking and communication, as several bench-
marking protocol and experimental demonstrations have established since long [5, 234–240]. There-
fore, the development of efficient methods to build entanglement among the nodes of a network is
mandatory, in the quest for real-life application of quantum technologies. Specifically, it is impor-
tant that entanglement distribution protocols account for the inherent fragility of entanglement.
One way to deal with this, would be to create this resource right before it is needed for some task.
Typical entanglement distribution protocols involve two parties, Alice and Bob, who wish to share
some entanglement. A direct way to set entanglement between them would involve Alice creating
an entangled state of two particles in her laboratory and then sending one to Bob through some
quantum channel. An alternative to this would be to make use of an ancillary particle: this ancilla
would interact with Alice’s particle first and then it would travel to Bob. In general, in this latter
kind of process, the entanglement carrier must become entangled itself with the two systems. These
two general methods, that summarize most of the specific entanglement distribution protocols cur-
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rently in use, feature both a critical issue: entanglement can be easily damaged by environmental
noise, thus the transmission of one entangled system through a channel, that is generally affected
by noise, can jeopardize the success of the protocol. Indeed, there exists a third way to address the
problem of entanglement distribution, which also exploits an ancillary system (known as a carrier
system) that interacts with the parties to entangle while, on the other hand, never getting entan-
gled itself with any part of the total system into account. This is possible thanks to a particular
tailoring of the initial state of the remote particles and the carrier, together with a suitable choice
of the interaction among them. The first analysis of this kind of protocol was reported in [241] by
Cubitt et al.: in this work, the possibility of establishing entanglement between two remote particles
without sending entanglement is demonstrated in a general fashion, and an explicit protocol is also
exhibited as an example. The crucial point resides in allowing the system to occupy a non-pure
state: if we consider three systems A, B and C, where A and B are the two systems we wish to
get entangled at the end of the protocol, that we address as the nodes, through the interaction
with the carrier system C, and we allow them only to be in a pure state such as |a⟩A |b⟩B |c⟩C ,
it is possible to demonstrate that no entanglement can be generated among A and B with local
interactions of the two systems with C, without the latter becoming entangled with them during
the process. We consider an evolution Hamiltonian corresponding to the interaction having the
form HAC ⊗ IB + IABC , thus the condition for the carrier separability is:

(I+ δt(HAC +HBC)) |a⟩A |b⟩B |c⟩C = (|a⟩A |b⟩B + δt |ψ⟩AB)(|c⟩C + δt |ϕ⟩C) (5.1)

where |ψ⟩AB and |ϕ⟩C are unnormalized states. The condition for entanglement between A and B
is that |a⟩A |b⟩B + δt |ψ⟩AB has a non-vanishing overlap with the state

∣∣a⊥〉
A

∣∣b⊥〉
B

, which can be
readily demonstrated to be unfulfilled by multiplying the first term of Eq. (5.1) by

〈
a⊥
∣∣
A

〈
b⊥
∣∣
B

.
Therefore, if we require the total system of the nodes and the carrier to be separable and pure,
we can not distribute entanglement via LOCC while not getting the mediating particle entangled.
The intuition of Cubitt et al. consists of observing that in an entanglement distribution process,
two nodes can be made strongly entangled by multiple repetition of distribution protocol in which
the carrier is indeed barely entangled with the two nodes. Thus, accounting for the fact that
noise can disrupt entanglement in a way proportional to its intensity, it should be in principle
possible to insert in the system an amount of noise that dissolves entanglement between C and
the two nodes, while maintaining (at least partially) entanglement among A and B. In particular,
in [241] the authors provide an explicit example for the discrete case and some general bounds
for the continuous one that show the possibility to achieve distillable entanglement distribution
through interaction with a separable system thanks to the preparation of the system in an initial
mixed state, imposing a sufficient amount of noise for weak carrier entanglement to be waived
while the nodes remain entangled. However, the idea of weak entanglement being disrupted while
cumulative strong one is preserved suits well continuous processes, but does not fit discrete, one-
shot protocols, such as the one the authors even yielded in their seminal work. Indeed, we dare
say that the results delivered in [241] feature some dark spots and lack of fundamental insight,
namely there is little discussion regarding the physics underlying the protocol, in terms of quantum
resources. Nevertheless, their contribution deserves enormous credit for the discovery of this exciting
phenomenon and for paving the way for further studies and generalization to the continuous variable
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framework [242]. A thorough characterization of Entanglement Distribution via Separable Systems
(EDSS) in terms of quantum resources, explaining from a theoretical point of view, rather than
an operational one, how entanglement could be generated without any direct interaction between
the entangled systems, or any transmission of entangled ancillas, came out many years later: in
[243] the connection between generation of entanglement and the presence of a preexisting amount
of quantum correlations, quantifiable by Quantum Discord [244], is discussed for the first time.
Indeed, from [241], it can be implied that the amount of distributed entanglement is not bounded
by the entanglement initially shared by the carrier and the sender. Since entanglement can not be
generated by local node-carrier interactions and classical communication only [245], there must be
some pre-existing quantum correlation between the nodes or some genuine quantum features in the
carrier system. This idea had been suggested in [246, 247], but in [243], Chuan et al. achieved
the formulation of a general bound for entanglement distribution involving pre-existing quantum
correlations quantified by Quantum Discord. We consider again the case of two remote agents,
Alice and Bob, holding two quantum systems A and B, respectively. They wish to increase the
entanglement that they share by sending an auxiliary quantum system—the carrier C—with which
they interact locally. The whole system features a certain global state ρ. The entanglement residing
in the bipartitions A : BC and AC : B, corresponding to the cases of the carrier being in Alice’s or
Bob’s lab, can be quantified by the relative entropy of entanglement E(ρ) [9, 248] and the following
bound stands [243]:

|EA:BC(ρ)− EAC:B(ρ)| ≤ DAB|C(ρ) (5.2)

where DAB|C(ρ) is the relative entropy of discord [249, 250] for the bipartition AB|C of the total
state ρ. A very similar relation was also reported in the parallel work by Streltsov et al. [251].
We can now apply this bound to a practical protocol for entanglement distribution between two
nodes with a separable carrier: the initial state of the total system is α. We perform then a so-
called encoding operation, a local map MAC that drives an interaction between the node A and the
carrier C and leads to the new state β = MAC(α). By a local operation on AC it is not possible to
increase entanglement in the AC : B bipartition, hence EAC:B(β) ≤ EAC:B(α). The carrier is then
transferred to Bob’s laboratory, where a decoding local operation on BC is used to localize on B

the entanglement built between the labs [252]. Applying Eq. (5.2), we have that:

EA:BC(β) ≤ EAC:B(α) +DAB|C(β). (5.3)

Thus, entanglement increase between the nodes is bound by the amount of quantum discord shared
by the nodes with the carrier system. It is very interesting to review here further considerations
reported in [243], before specifically addressing actual protocols for EDSS. First of all, if no quantum
discord is present in the state β, considering the cut AB|C: the state then has the quantum-classical
form β =

∑
i piρ

i
AB⊗|i⟩C ⟨i|. In this case, the carrier system stores only classical information, hence

we reduce to the case of a protocol based completely on LOCC, which can not increase entanglement
[245]. So, Eq. (5.3) represents an extension of the monotonicity of entanglement with respect to
LOCC, since it implies that entanglement can be increased by LOCC and quantum communication.
In conclusion, it is worth understanding which conditions have to be implemented in order to make
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an EDSS protocol possible, namely a protocol fulfilling the following requirements:

a) EAC:B(α) = 0

b) EAB:C(β) = 0

c) EA:BC(β) > 0

(5.4)

We consider Eq. (5.3), exchanging the role of B and C:

EA:CB(β) ≤ EAB:C(β) +DAC|B(α). (5.5)

If we apply the condition Eq. (5.5) b), we see that entanglement which can be created by an EDSS
protocol is only bounded by the initial amount of quantum discord EA:CB(β) ≤ DAC|B(α). In
particular, the carrier can be chosen as completely uncorrelated at the start of the protocol, so
that the creation of entanglement between the nodes only relies on their initial quantum correlation
DA|B(α), and the generation of entanglement in this framework consists of some sort of translation
of discord into entanglement. Other possibilities involve particle exchange but eventually reduce to
the one mentioned above. As discord is way more resilient to noise than entanglement [253–257],
protocols that rely on discord presence rather than entanglement feature an inherent advantage.
This kind of protocols requires suitable and interdependent choices of initial nodes state, initial
carrier state and quantum encoding and decoding operations, as we review in the following.

5.2 Binary EDSS protocols

After the seminal work from Cubitt et al. [241], various protocols for EDSS have been designed both
for discrete variable encoding [258] or continuous variable platforms [242, 259, 260], addressing the
problem of binary EDSS, i.e. distribution of entanglement between two nodes via a separable carrier
system. Binary EDSS was also experimentally demonstrated in the following years [261–263]. We
take as a reference scheme Kay’s EDSS protocol for qubits [258], which will provide the framework
for our analysis. The protocol can be described as follows: at the start, Alice and Bob initially share
a separable state of their systems A and B, though featuring some quantum correlations quantified
by quantum discord. Afterwards, Alice introduces an ancilla system K which is uncorrelated from
AB. Then, Alice performs the encoding operation, that is, a unitary operation UAK on her system
and the carrier and sends K to Bob. In Ref. [258] it is shown that when AB is in an initial Bell-
diagonal state and UAK is a controlled-phase gate, it is possible to choose a suitable initial state
for K so that the state of the total system at the end of the protocol is entangled in the bipartition
A|BK and K remains separable from A and B throughout the process. In the following, we will
build on a slightly different scheme, adding a supplemental step to the protocol: Bob performs a
decoding operation on his particle and the carrier after he receives K from Alice. This leads to
entanglement in both the A|BK and B|AK bipartitions while the ancilla remains separable with
no entanglement in the partition K|AB. This version of the protocol for entanglement distribution
with separable states has been employed for the experimental demonstration in Ref. [261] such as
illustrated in Fig. 5.1. In this section, we thoroughly review this scheme, which is crucial for the
generalization I developed.
As we mentioned, the initial state of the two nodes A and B is set as separable, yet featuring
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non-classical correlations (quantified by quantum discord [243]). Specifically, we prepare the mixed
state:

αAB =
1

4
(|00⟩ ⟨00|+ |11⟩ ⟨11|)AB +

1

8
(|DD⟩ ⟨DD|

+ |AA⟩ ⟨AA|+ |RL⟩ ⟨RL|+ |LR⟩ ⟨LR|)AB ,
(5.6)

where |D⟩ = 1√
2
(|0⟩ + |1⟩), |A⟩ = 1√

2
(|0⟩ − |1⟩), |R⟩ = 1√

2
(|0⟩ + i |1⟩) and |L⟩ = 1√

2
(|0⟩ − i |1⟩).

We use here the notation |D/A⟩ rather than |+/−⟩ in order to keep homogeneity with the rest of
related literature. While αAB is invariant under partial transposition, it is endowed with non-zero
quantum discord, as quantified by the relative entropy of discord [250, 264]

D(αAB) = min
ΠB

[S(ΠB(αAB))]− S(αAB), (5.7)

where S(ρ) is the von Neumann entropy of state ρ and ΠB(ρ) =
∑1

j=0 πjρπj is a rank-one projective
measurement of ρ with π0,1 two orthogonal projectors on qubit B. We have D(αAB) = 0.0612781.

The state of the nodes then undergoes encoding and decoding operations, each consisting of a
controlled-phase (CPHASE) gate acting on the joint state of either A or B and the carrier K:

CPHASE := |0⟩ ⟨0|A/B ⊗ IK + |1⟩ ⟨1|A/B ⊗ σz,K (5.8)

where I is the two-dimensional identity matrix and σz is the z Pauli matrix. This gate sets a relative
phase between the two states of the computational basis of the target qubit K, depending on the
state of control one A/B. The initial state of the carrier system must be a mixture of orthogonal
vectors that are maximally distant from the eigenstates of σz, in order to amplify the effect of the
encoding and decoding operations. We thus choose

αK =
1

4
(|D⟩ ⟨D|+ 3 |A⟩ ⟨A|)K , (5.9)

although a mixture of |R⟩ and |L⟩ would also be suitable. These mixing probabilities are chosen
so as to guarantee that the carrier does not get entangled throughout the process, while achieving
the largest possible entanglement between the two nodes at the end of the protocol. In this sense,
a mixture with balanced probabilities would be suitable too, although less effective. Adding more
weight on the heavier term will lead to entanglement with the carrier, while lowering its probability
would lead to lower entanglement between the nodes.
The protocol first involves the encoding step, where the CPHASE gate is applied to qubit A and
the carrier. That is followed by a decoding step, consisting of the application of the CPHASE to
node B and carrier. The first step reads

βABK = PAK(αAB ⊗ αK)P†
AK (5.10)

where
PAK = |0⟩ ⟨0|A ⊗ IK + |1⟩ ⟨1|A ⊗ σz,K (5.11)

is the CPHASE gate between A and the carrier K. The decoding step then yields

γABK = PBKβABKP†
BK . (5.12)
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Figure 5.1: Sketch of the two-qubit protocol. (a) Nodes A and B are initially separable and they
share quantum discord (dashed line). (b) The auxiliary system K (the carrier) is prepared in such a state
that K is completely uncorrelated from AB. The encoding operation, that we consider as a controlled-phase
gate in this case, is performed between A and K. (c) The carrier K is sent to Bob and B and K interact
via the decoding operation, which is again a controlled-phase gate. (d) At the end of the protocol nodes A
and B share quantum entanglement. Picture from [233].
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The resulting state γABK features distillable entanglement in the bipartitions A|BK and B|AK with
the carrier K being in a separable state with respect to the state of the nodes (either collectively
or individually taken). In particular, entanglement can be witnessed by the minimum eigenvalues
λA|BK (λB|AK) of the partial transpose of γABK with respect to the bipartition A|BK(B|AK),
according to Peres-Horodecki criterion [11]. This witness is tightly related to the negativity of
entanglement N [10], that we defined in Subsec. 1.1.4: NX|Y = (|λX|Y | − λX|Y )/2. For this binary
protocol, they obtained NA|BK = 0.0625 as well as for the B|AK bipartion, which is the maximum
achievable entanglement with binary EDSS [258], while NAB|K remains zero throughout the protocol.
Although the generation of entanglement is inherently probabilistical, Ref. [261] demonstrates with
a thorough analysis of noise robustness, that there exists a consistent range of noise parameters for
which EDSS is the optimal way to distribute entanglement between two remote qubits.

5.3 Scheme for multipartite EDSS

In this section, directly based on our work [233], we report the generalization of the protocol in
Ref. [258] to the distribution of multipartite entanglement through EDSS, specifically focusing
on the conditions of its experimental demonstration in Ref. [261]. Multipartite EDSS had been
previously addressed in Ref. [265], where a systematic method was proposed based on the EDSS
protocol by Cubitt et al. [241]. In this case, AB and K are initially correlated (yet unentangled),
but the bipartition K|AB does not remain unentangled at all times. Entanglement must be wiped
out after each interaction with the nodes, in a way that the carrier may remain entangled more
likely in their proposal and extra effort must be made to ensure its prevention. As the initial state
of K in Refs. [258, 261] shares no classical or non-classical correlations with A or B, we avoided
this problem and we exhibited that favouring this type of protocol offers a promising avenue for
successful EDSS with fewer restrictions.

5.3.1 General protocol

I employed the same encoding and decoding mechanisms illustrated for the binary case to design a
generalization of the two-qubit protocol to a multipartite set of nodes. The resource being exploited
is a mixed state that features initial non-classical correlations between each of the node pairs. The
aim of the process is to entangle the elements of the network according to a chosen entanglement
pattern. We review here the protocol in its general formulation.

Initial state of network and carrier, encoding and decoding operation

We consider the case of a network of N nodes {Qi} (i = 1, . . . , N) and we need to devise a way to
establish a pattern of entangled links between such nodes, according to a desired structure. Thus,
we require the definition of a state which features non-classical correlations between the nodes we
wished to get entangled. In order to do that, we use the two-qubit state featuring quantum discord
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that was employed in the two-qubit case of Eq. (5.6).

ρ0QiQj
=

1

4
|00⟩QiQj

⟨00|+ 1

4
|11⟩QiQj

⟨11|+

+
1

8
|DD⟩QiQj

⟨DD|+ 1

8
|AA⟩QiQj

⟨AA|+

+
1

8
|RL⟩QiQj

⟨RL|+ 1

8
|LR⟩QiQj

⟨LR|

(5.13)

As we discussed in the previous section, this state has been shown to be optimal for the two qubit
EDSS protocol, in terms of the amount of entanglement created while always keeping the carrier in
a separable state.
Proceeding in analogy with the bipartite case, we generalize this state to N qubits by imposing
a mixed initial state, consisting of a balanced mixture of terms featuring non-classicality between
every pair of nodes targeted by our protocol. Each of such terms features a correlated state of a
given pair of nodes, while the other nodes are set in an eigenstate of the encoding and decoding
operation. We define a list of two-element sets containing the M pairs we wish to entangle, labelling
them as {Ck}Mk=1, where each Ck = {Qi, Qj} represents a different node pair {i, j} among the chosen
ones. The initial state of the network αN has thus the form

αN =
1

M

M∑
k=1

ρ0Ck

 ⊗
Qi /∈Ck

α0
Qi

 , (5.14)

where α0
Qi

= |0⟩ ⟨0|Qi
and ρ0Ck is the initial state in Eq. (5.6), but for the pair Ck. For instance, we

can choose to distribute entanglement according to a chain-like structure, namely a linear network
in which each node is entangled with its closest neighbours. The initial state can be written in the
compact form as

αlinearN =
1

N − 1

N−1∑
k=1

ρ0Qk,Qk+1

 ⊗
Qi ̸={Qk,Qk+1}

α0
Qi

 . (5.15)

Such an initial state is necessary to keep the carrier in a separable state with respect to the network.
Basically, in this way we are able to carry the two-qubit protocol in parallel over any node pair we
want to entangle, without interference between the various terms. As we will see later on, this has
some interesting implications for the features of the final state.

The encoding and decoding operations consist of CPHASE gates PQiK acting on the state of
node Qi and the carrier K, which can be written as:

PQK = |0⟩Q ⟨0| ⊗ IK + |1⟩Q ⟨1| ⊗ σZ,K (5.16)

that is just the general expression for the CPHASE gate in Eq. (5.11).

The initial state of the carrier is chosen again as in Eq. (5.9).

αK =
1

4
|D⟩ ⟨D|+ 3

4
|A⟩ ⟨A| (5.17)

since the choice of the most suitable carrier state is tightly related to the choice of the encoding and
decoding gate. Other equivalent gate-carrier initial state pairings exist, though they do not result

136 Alessandro Laneve



5.3. Scheme for multipartite EDSS

in better performance of the protocol. The scheme consists of the application of the local encoding
and decoding operations to each of the node qubits and the carriers. Indeed, I also developed a
variation of the protocol involving a multi-qubit or qudit carrier, featuring some slight differences
in procedure and performance.

Single qubit carrier

In this case, we only have one carrier K and the total initial state of the system can be set as

αT = αN ⊗ αK (5.18)

so that the preparation of the network system and the carrier can be independently addressed. As
the carrier is the same for each pair of nodes, a single encoding and decoding step for each qubit is
enough for weaving multiple entanglement links. The effect of the local CPHASE gate on the total
state is

PQlKαTP†
QlK

=
1

M

M∑
k=1

χk,Ql

 ⊗
Qi /∈Ck

α0
Qi

 , (5.19)

where

χk,Ql
=

ρ0Ck ⊗ αK for Ql /∈ Ck,
PQlK

(
ρ0Ck ⊗ αK

)
P†
QlK

for Ql ∈ Ck.
(5.20)

The CPHASE gate on qubit Ql acts as an encoding operation on the terms involving Ql as a target
or a decoding one, while acting as the identity on the others.

Multiple qubit carriers

It is possible to tailor the above protocol to work with multiple carriers. We investigated this case
in order to understand which beneficial effects or costs may derive from this choice. We consider
a compound of n qubits {Ki}ni=1 and choose αK in Eq. (5.9) as the initial state for each of them.
Therefore, the total product state of the carrier compound results

αK̄ =

n⊗
i=1

αiK =

n⊗
i=1

(
1

4
|D⟩ ⟨D|Ki

+
3

4
|A⟩ ⟨A|Ki

)
, (5.21)

so that the total initial state is simply

αT = αN ⊗ αK̄ . (5.22)

The main difference with respect to the one qubit carrier protocol is that, in the present case, we
proceed to entangle each qubit pair making them interact with a different carrier. Therefore, node
qubit Qi is subject to encoding via the carrier qubit Ki, which also mediates the local decoding at
Qi+1. Then, the encoding between Qi+1 and Qi+2 is mediated by carrier Ki+1. As a consequence,
separate encoding and decoding operations are needed.
In general, the final state of the nodes will have the form of a mixture of terms stemming from the
various two-qubit processes, which could take place in parallel, and an incoherent term ΩN , thus
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reading

ρfN = P ΩN + (1− P )
M∑
k=1

∣∣ϕ+〉 〈ϕ+∣∣Ck
 ⊗
Qi /∈Ck

α0
Qi

 , (5.23)

where |ϕ+⟩ = 1√
2
(|00⟩+|11⟩) is a Bell state and, as stated previously, {Ck}Mk=1 is the list of node pairs

we aim to entangle. The mixing coefficient P is determined by the terms we insert in the initial
mixed states, hence the number of entangled links we wish to establish. For each contribution,
an incoherent residual term appears in the final state, forming the global incoherent term ΩN .
Therefore, the final state is a mixture of terms featuring bipartite entanglement, one for each of
the initially non-classically correlated node pairs. Clearly, that implies a probabilistic generation
of entanglement. Nevertheless, as we explicitly show in the following examples, the final state of
the system unambiguously exhibit multipartite entanglement, namely the network is entangled with
respect to any possible bipartition.

5.4 Performance analysis

In this section, we report the analysis of the performance of both single- and multiple-carrier pro-
tocols by addressing two explicit examples.

5.4.1 Four nodes example: Ring configuration

Single carrier

We consider a four-node case where the qubits Q1,..,4 are entangled as a result of the application of
the protocol illustrated before. As we request explicitly that Q1 and Q4 are entangled, we would
thus realize a ring-like structure [cf. Fig. 5.2 (a)]. The initial state of the nodes, then, must include
non-classical correlations between every possible pair {Ck}4k=1, where Ck = {Qk, Qk+1} and we set
Q5 = Q1, so that

α4 =
1

4

(
ρ0Q1,Q2

⊗ α0
Q3

⊗ α0
Q4

+ ρ0Q2,Q3
⊗ α0

Q1
⊗ α0

Q4
+

+ρ0Q3,Q4
⊗ α0

Q1
⊗ α0

Q2
+ ρ0Q4,Q1

⊗ α0
Q2

⊗ α0
Q3

) (5.24)

where ρ0Ck and α0
Qi

are the same as in Eq. (5.14). The protocol consists of only four steps, taking
the initial state α4 to the final one as

η4 =
(
Π4
j=1PQjK

)
(α4⊗αK)

(
Π4
j=1P†

QjK

)
. (5.25)

In particular, the amount of entanglement in each of the one-vs-four bipartitions of the form
Qj |GK with GK = {Q1, Q2, Q3, Q4,K} \ Qj that can be identified in state η4 is the same: the
corresponding partially transposed density matrices ηPTQj all have a single negative eigenvalue
equal to -0.0175206, so that the entanglement EQj |GK

does not depend on j = 1, .., 4. On the
other hand, the entanglement EK|Q1,..,4

between the carrier K and the network is identically zero,
thus achieving a successful distribution of entanglement without involving the carrier. It is worth
noting that after projecting the carrier system onto state |A⟩ and tracing the carrier system away
we obtain a reduced matrix of the network only which exhibit the same entanglement values. In
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State Description Encoder/
label of evolution Decoder
βT PQ1K1αTP+

Q1K1
K1

γT PQ2K1βTP+
Q2K1

K1

δT PQ2K2γTP+
Q2K2

K2

ηT PQ3K2δTP+
Q3K2

K2

ζT PQ3K3ηTP+
Q3K3

K3

κT PQ4K3ζTP+
Q4K3

K3

χT PQ4K4κTP+
Q4K4

K4

ωT PQ1K4χTP+
Q1K4

K4

Table 5.1: Description of the steps required in a multi-qubit carrier protocol. We provide the label of the
state achieved at each step of the scheme, the corresponding encoding (decoding) operation and the associated
encoder (decoder).

order to demonstrate that the system actually features multipartite entanglement, we check the
eigenvalues of the partial transpose with respect to any possible bipartition of the system From the
Peres-Horodecki separability criterion [11, 266], we know that a negative eigenvalue of the partially
transposed density matrix of a bipartite system witnesses entanglement between the parties and we
have negative eigenvalues for any bipartition apart from ABCD|K, as reported in Tab. 5.2.

Multi-qubit carrier

We now focus on the study of a multi-carrier configuration, and how this might affect the effec-
tiveness of the protocol. Since in the ring pattern we have to weave four entanglement links, we
define a 16-dimensional qudit K̄, that we can consider as a compound carrier system of 4 qubits
Kj (j = 1, .., 4). The protocol differs from the single-carrier one in the exploitation of different
carrier subspaces for the encoding and decoding operations affecting different node pairings. This
implies that each operation will only act on a certain link, depending on the nodes that are involved.
Therefore, the protocol needs twice the number of steps required in the single-qubit carrier scheme.
Such steps are explicitly illustrated in Table 5.1.

We report a sketch of the procedure in Fig. 5.2 (b). We compute again the eigenvalues for
any possible bipartition of the system, reporting them in Tab. 5.2. The results of our analysis
show that also a qudit carrier approach produces multipartite entanglement, since the eigenvalues
of the partially transposed density matrix are negative with respect to any bipartition of the nodes
system.A main drawback comes from the fact that, although the carrier is in a separable state,
tracing it away presents some complications. Since each of the different entanglement links is
mediated by a different subspace, the projection of the qubit carrier on the state |A⟩ will result
in the preservation of that link in the reduced network state. Unfortunately, that can’t be done
simultaneously for all the node pairs: by projecting every qubit carrier on their respective |A⟩ state,
we get a separable reduced state of the network. Therefore, the final state for the system remains
multipartite entangled as far as the carrier state is not further manipulated. The carrier can be
only traced away in case we wish to observe a specific entanglement link between two nodes.
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(a)

K

Q1

Q2 Q3

Q4

K

(b)

K
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K

K
1
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3

Q1

Q2 Q3

Q4

Figure 5.2: Ring topology protocols. (a) Single-carrier protocol: the carrier qubit K interacts once
with each node; (b) qudit carrier case: the carrier proceeds in one direction, interacting twice with each
node, once for encoding and the second time for decoding, since different subspaces of the carrier system are
involved in each encoding and decoding operation. Picture from [233].
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Bipartition Single-carrier Multiple-carrier
Q1|Q2Q3Q4K -0.0175206 {−0.011786,−0.00392868,−0.00392868,−0.001309565}
Q2|Q1Q3Q4K -0.0175206 {−0.011786,−0.00392868,−0.00392868,−0.001309565}
Q3|Q1Q2Q4K -0.0175206 {−0.011786,−0.00392868,−0.00392868,−0.001309565}
Q4|Q1Q2Q3K -0.0175206 {−0.011786,−0.00392868,−0.00392868,−0.001309565}
Q1Q2|Q3Q4K {−0.0078125, {−0.00769043,−0.00769043,−0.00286949,−0.00256348,

−0.0078125} −0.00256348,−0.00256348,−0.00256348,−0.000956497,
−0.000956497,−0.000854492,−0.000854492,−0.000318832}

Q1Q3|Q2Q4K −0.03125 {−0.0117871,−0.0117871,−0.00395737,−0.00395737,
−0.00395737,−0.00395737,−0.00195313}

Q1Q4|Q2Q3K {−0.0078125, {−0.00769043,−0.00769043,−0.00286949,−0.00256348,
−0.0078125} −0.00256348,−0.00256348,−0.00256348,−0.000956497,

0.000956497,−0.000854492,−0.000854492,−0.000318832}

Table 5.2: Negative eigenvalues of every possible partition, ring pattern, qubit and qudit carrier protocols

General remarks on ring topology protocols

In order to compare the effectiveness of the two protocols we compute the average negativity of
the final state for both cases. Given a certain partition p of a composite state ρ, we have defined
negativity as in [10]

Np(ρ) =
||ρTp || − 1

2
(5.26)

which is equal to the sum of all negative eigenvalues of the transposition of ρ with respect to
the partition p. We consider the geometrical average of the negativity values for all the possible
partitions of the system, denominating this value N . We obtain a N = 0.0184179 (N = 0.0261631)
for the single qubit carrier (multi-qubit carrier) protocol. These results show some advantage coming
from the employment of a high-dimensional carrier in terms of entanglement production, though
implying, in the perspective of an experimental realization, far heavier efforts and drawbacks.

It is worth noting that the amount of entanglement produced on average for a single link is lower
than in the binary case of [261]. This is understandable considering the fact that the four-nodes
initial mixed state contains many more terms which generate “noise" contributions in the final state,
with respect to the two nodes case. Indeed, we expect the average produced negativity to decrease
as the number of nodes increases, together with the number of terms to be included in the initial
state. It may even be possible that, after a certain size of the network, entanglement between the
nodes is no longer detectable.
Nonetheless, we can define the total negativity as the sum of all the negative eigenvalues over
any bipartition TotN =

∑
{p}Np, and this quantity is not bound to decrease, since the initial

state features the same amount of initial quantum correlation disregarding of the number of nodes.
Specifically, the quantum correlation remains the same as the two qubit case in [261], even if split
among a larger number of terms in the total initial mixture. The ring pattern case was investigated
up to N = 10 nodes, in order to understand the trend of negativity in function of the size of the
network, and the results are reported in Fig. 5.3. My simulations confirmed the expected decrease
of the average negativity, but also highlighted that the total negativity remains constant as we
increase the number of entangled nodes; therefore, the addition of more nodes does not seem to
jeopardize the protocol efficiency in converting discord into entanglement.
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Figure 5.3: Negativity vs number of network nodes. The average negativity N , computed over any
bipartition, is plotted in function of the number of nodes N in the entangled network, together with the
corresponding total negativity. The results correspond to the single qubit carrier case, in the ring pattern
scenario. Picture from [233].

5.4.2 Four nodes example: Star Topology

In order to provide a more thorough analysis of the potentialities of our approach, we tailored the
protocol to generate a star-like entanglement pattern. We designed the initial state and the protocol
steps with the aim of producing a final state in which one central node is entangled with all the
others. In this case, the final state results in entanglement with respect to any possible bipartition of
the system. We briefly report on this analysis, because of the many analogies with the ring pattern
case. We consider four nodes Q = {Q1, Q2, Q3, Q4}, with Q1 as the central node. Hence, our initial
state needs to be the mixture of three terms, each featuring non-classical correlation between qubit
Q1 and the others:

α4 =
1

3

4∑
j=2

ρ0Q1,Qj
⊗

⊗
j∈Q

ρQj

 (5.27)

with Q = Q\{Q1, Qj}. In this case, the single qubit carrier protocol proceeds identically to the
ring case: the carrier interacts at first with the central node and then once with each other qubit,
as depicted in Fig. 5.4, since the first operation acts as encoding for every entanglement link. The
only difference consists of the initial state preparation of the network, a remarkable feature in terms
of flexibility of our strategy.

The qudit carrier case is more complex: each encoding and decoding operation have to be
addressed separately, having the nodes interact with different sub-qubits of the carrier. Therefore,
the carrier has to travel back and forth from the central node to the periferic qubits, until each link
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Q1

Q2
Q

3
Q 4

K

Figure 5.4: Star topology protocol. Single qubit carrier case: the qubit travels in one direction, inter-
acting once with each node. We leave the description of the qudit carrier case to the main body of text, as it
is quite complex to illustrate graphically. Picture from [233].

has been woven. Considering a eight-dimensional qudit carrier and three qubit subsystems K1, K2

and K3, we can explicitly write down the protocol:

βT = PQ1K1αTP+
Q1K1

encoding mediated by K1

→ γT = PQ2K1βTP+
Q2K1

decoding mediated by K1

→ δT = PQ1K2γTP+
Q1K2

encoding mediated by K2

→ ηT = PQ3K2δTP+
Q3K2

decoding mediated by K2

→ ζT = PQ1K3ηTP+
Q1K3

encoding mediated by K3

→ κT = PQ4K3ζTP+
Q4K3

decoding mediated by K3.

(5.28)

We report in Tab. 5.3 the negative eigenvalues relative to every bipartition of the system for both
methods. The average negativity computed from these results reads N = 0.019268 for the qubit
carrier protocol and N = 0.0262659 for the qudit carrier one. In this case, the gap in entanglement
production due to the exploitation of a high-dimensional carrier is slightly lower with respect to the
ring pattern case, while the other issues remain. In general, the comparison between the usage of a
qubit or a qudit carrier may provide different answers according to the application case and, more
importantly, the actual experimental situation we are dealing with.

5.4.3 Explicit decomposition for the four-qubit protocol

In general, the Peres-Horodecki criterion is sufficient to witness entanglement but for composite
systems of joint dimension D > 6, such as the cases we took into account, it is not enough to
establish the separability of a system with respect to a given bipartition. In particular, for N
nodes systems, we can not demonstrate the separability of the carrier system K by computing
the eigenvalues of the partially transposed density matrix only. We have to exhibit an explicit
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Bipartition Single-carrier Multiple-carrier
Q1|Q2Q3Q4K −0.0342865 {−0.0291511,−0.00642872,−0.00642872,−0.00642872}
Q2|Q1Q3Q4K −0.0121071 {−0.00681022,−0.00227007,−0.00227007,−0.000756691}
Q3|Q1Q2Q4K −0.0121071 {−0.00681022,−0.00227007,−0.00227007,−0.000756691}
Q4|Q1Q2Q3K −0.0121071 {−0.00681022,−0.00227007,−0.00227007,−0.000756691}
Q1Q2|Q3Q4K −0.0245719 {−0.0235657,−0.00681022,−0.00460722,

−0.00460722,−0.00460722,−0.00227007}
Q1Q3|Q2Q4K −0.0245719 {−0.0235657,−0.00681022,−0.00460722,

−0.00460722,−0.00227007}
Q1Q4|Q2Q3K −0.0245719 {−0.0235657,−0.00681022,−0.00460722,

−0.00460722,−0.00460722,−0.00227007}

Table 5.3: Negative eigenvalues of every possible partition, star pattern, qubit and qudit carrier protocols

decomposition, as it is done in the Supplementary material to [261] for the two qubits-one carrier
qubit case. Indeed, the situation we treat here is a direct generalization of the two qubit protocol: in
practice, we run in parallel the binary scheme over different and non interacting terms. Nonetheless,
we report here an explicit decomposition for the four qubit case (easily generalizable to the N qubit
case), demonstrating the separability of the carrier throughout the process. We consider the two-
qubit protocol in Sec. 5.2, acting on the initial state αAB⊗αK with the encoding operation produces
state βABK , which can be written as [261]

βABK =
3

16
|00⟩ ⟨00| ⊗ |A⟩ ⟨A|+ 3

16
|11⟩ ⟨11| ⊗ |D⟩ ⟨D|

+
1

8

∣∣ϕ+〉 〈ϕ+∣∣⊗ |0⟩ ⟨0|+ 1

8

∣∣ϕ−〉 〈ϕ−∣∣⊗ |1⟩ ⟨1|

+
1

16
|01⟩ ⟨01| ⊗ |A⟩ ⟨A|+ 1

16
|10⟩ ⟨10| ⊗ |D⟩ ⟨D|

+
1

16

∣∣ϕ+i〉 〈ϕ+i∣∣⊗ |L⟩ ⟨L|+ 1

16

∣∣ϕ−i〉 〈ϕ−i∣∣⊗ |R⟩ ⟨R|

+
1

32
|01⟩ ⟨01| ⊗ |L⟩ ⟨L|+ 1

32
|10⟩ ⟨10| ⊗ |L⟩ ⟨L|

+
1

32

∣∣ψ+
〉 〈
ψ+
∣∣⊗ |R⟩ ⟨R|+ 1

32

∣∣ψ−〉 〈ψ−∣∣⊗ |R⟩ ⟨R| ,

(5.29)

where {|ϕ±⟩ , |ψ±⟩} is the Bell basis and
∣∣ϕ±i〉 = 1√

2
(|00⟩ ± i |11⟩). Therefore, the state βABK is

separable with respect to the carrier at this point. After the decoding operation, we have the state
γABK where

γABK =
1

4

∣∣ϕ+〉 〈ϕ+∣∣⊗ I
2
+

3

16
|00⟩ ⟨00| ⊗ |A⟩ ⟨A|

+
3

16
|11⟩ ⟨11| ⊗ |A⟩ ⟨A|+ 1

16
|01⟩ ⟨01| ⊗ |D⟩ ⟨D|

+
1

16
|10⟩ |10⟩ ⊗ |D⟩ ⟨D|+ 1

16

∣∣ϕ+〉 〈ϕ+∣∣⊗ |A⟩ ⟨A|

+
1

16

∣∣ϕ−〉 〈ϕ−∣∣⊗ |D⟩ ⟨D|+ 1

16
|01⟩ ⟨01| ⊗ I

2

+
1

16
|10⟩ ⟨10| ⊗ I

2
,

(5.30)

144 Alessandro Laneve



5.5. Variations on the theme

which demonstrates that this state too is separable with respect to K. We can move now to the
four-qubit case in Sec. 5.4. The ring structure has initial state as in Eq. (5.24). Each element of
the sum takes the form

1

4
ρQiQj ⊗ |0⟩ ⟨0|Ql

⊗ |0⟩ ⟨0|Qm
⊗ αK . (5.31)

A CPHASE gate with Ql or Qm as the control qubit will have no effect on this term. However,
with Qi as the control qubit, βQiQjK ⊗ |0⟩ ⟨0|Ql

⊗ |0⟩ ⟨0|Qm
is generated. Alternatively, acting on

QjK will give β′QiQjK
⊗ |0⟩ ⟨0|Ql

⊗ |0⟩ ⟨0|Qm
where

β′ =β − 1

16
|01⟩ ⟨01| ⊗ |A⟩ ⟨A| − 1

16
|10⟩ ⟨10| ⊗ |D⟩ ⟨D|

+
1

16
|01⟩ ⟨01| ⊗ |D⟩ ⟨D|+ 1

16
|10⟩ ⟨10| ⊗ |A⟩ ⟨A| ,

(5.32)

and therefore we are still left with a separable decomposition with respect to the carrier. When the
CPHASE gate on QiK acts on the state β′QiQjK

, we retrieve γQiQjK . As a consequence, after the
four CPHASE gates have been applied, the final state of the total system is

ρfinal = γQ1Q2K ⊗ |0⟩ ⟨0|Q3
⊗ |0⟩ ⟨0|Q4

+ γQ2Q3K ⊗ |0⟩ ⟨0|Q4
⊗ |0⟩ ⟨0|Q1

+ γQ3Q4K ⊗ |0⟩ ⟨0|Q1
⊗ |0⟩ ⟨0|Q2

+ γQ4Q1K ⊗ |0⟩ ⟨0|Q2
⊗ |0⟩ ⟨0|Q3

.

(5.33)

We can proceed similarly for the star structure case; starting from the initial state in Eq. (5.27), we
achieve the final state

ρfinal =
1

3

4∑
j=2

γQ1QjK

⊗
j̄∈Q̄

|0⟩ ⟨0|Qj̄

 , (5.34)

where Q̄ = Q\{Q1, Qj}. Therefore, the carrier is separable from all other subsystems at each stage
of the protocol. The multi-qubit case can be addressed following similar lines, that we omit as they
do not add consequential material to the global discussion.

5.5 Variations on the theme

In order to better exhibit the flexibility and effectiveness of our protocol, we report here some
modified schemes that were at first proposed in [233], addressing different possible scenarios of
entanglement distribution.

5.5.1 Simultaneously entangled pairs

At the end of Section 5.3.1, we described the form of the final state of the network as a mixture
of terms featuring entanglement between a single node pair each. Clearly, the initial state can be
tailored to obtain different mixtures. We show this via a ring pattern example, where we consider a
network of N nodes {Qi}Ni=1 and we take an even N for sake of simplicity. We want to obtain a final
state of the network featuring multipartite entanglement and the possibility of having simultaneously

Alessandro Laneve 145



5.5. Variations on the theme

entangled node pairs in the system. We set the initial state as the mixture of two terms

αN =
1

2

N/2⊗
k=1

ρQ2k−1,Q2k
+

N/2−1⊗
j=0

ρQ2j ,Q2j+1

 (5.35)

where we consider Q0 = QN . In this case, simply applying the single qubit carrier protocol, we
would obtain a final state of the network fulfilling our initial requirements, but the carrier would
end up being entangled during the process. Therefore, we mix these two terms with the initial state
for a N nodes ring-like entanglement distribution pattern

αN =
1

N + 2

N/2⊗
k=1

ρQ2k−1,Q2k
+

N/2−1⊗
j=0

ρQ2j ,Q2j+1+

+

N∑
k=1

(
k⊗
i=1

|0⟩ ⟨0|Qi

)
⊗ ρ0Qk,Qk+1

⊗

 N⊗
j=k+2

|0⟩ ⟨0|Qj

 (5.36)

where we consider QN+1 = Q1. In this way, we are inserting "noise" in the state of the system,
which helps keep the carrier separable, while diminishing the probability of finding the network in a
final state featuring simultaneously entangled node pairs. After the application of the single-qubit
carrier protocol, the final state will be

ρfN = pΩN + q

(
N∑
k=1

∣∣ϕ+〉 〈ϕ+∣∣
Qi,Qi+1

)
⊗

 N−1⊗
j=1,j ̸=i,i+1

α0
Qj


+ r

N/2⊗
k=1

∣∣ϕ+〉 〈ϕ+∣∣
Q2k−1,Q2k

+

N/2−1⊗
j=0

∣∣ϕ+〉 〈ϕ+∣∣
Q2j ,Q2j+1

 (5.37)

where p, q, r ∈ R with p + q + r = 1, and ΩN is again a completely diagonal contribution to the
state of the network, hence classical. Therefore, we have a certain probability of actually finding
the system in the state we desire. Alternatively, if we relax the request of complete multipartite
entanglement, we can use the initial state α =

⊗N/2
k=1 ρQ2k−1,Q2k

, relatively increasing the probability
of finding the network in a product state of entangled node pairs, although the system shall remain
separable with respect to some bipartitions.

5.5.2 Relay scheme for single qubit carrier

In the perspective of an experimental realization, the protocols that we described above can be
very demanding from a practical point of view. If we consider the optical framework, photonic
control-phase gates require the photons to be indistinguishable in order to work. The request of
producing and holding N indistinguishable photons, even for low N > 3, may actually be difficult
to comply with. There is another suitable way to demonstrate the protocol in an experimental
implementation and it is reported in the following: indeed, I devised a variation of the protocol, a
single qubit carrier "relay" scheme, where the carrier system is measured and replaced with another
after a certain number of protocol steps. This scheme is less efficient than the standard one, but
possesses some interesting features as we face experimental realization. We explicitly show the
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details of this relay scheme in a four nodes ring pattern example. We have four nodes A,B,C,D
and a carrier qubit K. The initial state of the network and carrier is the same as in the standard
ring pattern case αT , as well as the encoding and decoding operations. The only difference consists
in the fact that after two interactions, we project the qubit system on the |A⟩ ⟨A| state, we trace it
away and we insert a new qubit carrier in the initial state αK

βT = PAKαTP+
AK

→ γT = PBKβTP+
BK

→ γ
′
T = |A⟩K ⟨A| γT |A⟩K ⟨A|

→ γN = TrK(γ
′
T )

→ γ
′′
T = γN ⊗ α′

K

→ δT = PCK′γ
′′
TP+

CK′

→ ηT = PDK′ δTP+
DK′

(5.38)

At the end of the protocols, we get the following negative eigenvalues from the partial transpo-
sitions of ηT 

EA−BCDK′ = {−0.00986842,−0.00328947}
EB−ACDK′ = −0.00986842

EC−ABDK′ = {−0.00986842,−0.00328947}
ED−ABCK′ = −0.00986842

EK′−ABCD = 0

(5.39)

and, by analyzing all the partitions, the system exhibits multipartite entanglement. It is quite evi-
dent that the average negativity produced is lower than in the standard case, although the requested
multipartite entanglement and carrier separability are achieved. Therefore, the relay scheme pro-
vides with a weaker yet effective protocol for EDSS, which may prove to be useful in practical
applications.

5.6 Experimental proposals

We present here some feasible experimental ways of demonstrating the effectiveness of our protocol in
an optical framework, that were proposed in [233]. It is important to mention that such proposals can
be regarded as suitable platforms for mere proof-of-principle demonstrations. Indeed, the required
initial state of the system, although disentangled, is quite complicated to prepare, since it involves
the controlled setting of a statistical mixture of many parties, which is generally demanding.

Single qubit carrier

The direct experimental implementation of the single qubit carrier may well be a direct general-
ization of the apparatus of [261]: N single photons are employed, one as a carrier qubit, while the
others act as the network nodes. The state of the network is encoded in the polarization degree
of freedom of photons. All photons have to be indistinguishable with the carrier (hence recipro-
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Figure 5.5: Experimental scheme for the Distribution Protocol, 3 nodes ring pattern case. Four
indistinguishable photons are necessary, possibly with a further one for heralding. Three of them act as nodes
and interact in turn with the fourth photon, that represents the carrier qubit. Initial state preparation in the
degree of freedom of polarization can be addressed through the following set of optical elements: Polarizing
Beamsplitter/Polarizer, Half-wave Plate and Quarter-wave plate. The interaction between photonic qubits
can be realized via the optical CPHASE gate described in [261, 267]. The sequence of physical interactions
depicted here results in a ring-like multipartite entanglement pattern among the photons, or a star-like pat-
tern, depending on the initial state of the system. Picture from [233].

cally indistinguishable) in order to implement the optical quantum CPHASE gate as described in
[261, 267], which acts as the encoding/decoding operation. That may be very difficult to obtain
for a high number of photons: they have to be synchronized and identical in any degree of free-
dom. Indeed, it is possible to build sources with a such a control on the photon generation, which
allow many photons interaction [268]. In Fig. 5.5, we report a sketch of the possible experimental
implementation of the protocol for the ring pattern for three nodes. After each encoding/decoding
operation the photon acting as carrier is sent to the next node and interacts with the corresponding
photon, until it has interacted with all the network nodes and it can be projected and measured,
leaving, in principle, an entangled state of the network. As mentioned above, the most complex
part of the protocol resides in the state preparation, but, if we wish to provide a mere experimental
demonstration of the protocol effectiveness, the mixing probabilities of the various terms in the
initial state may be simulated by different sampling times, as already done in [261]. That could not
be the case in actual application scenarios.
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Single qubit carrier, relay scheme

Indeed, the relay strategy implies that the carrier needs only to be indistinguishable with the qubit
nodes it interacts with. In particular, we consider the case in which a new qubit carrier is employed
after the previous one has interacted with two nodes. Therefore, again in an optical framework,
we only need to generate three indistinguishable photons, plus a triggering one, which corresponds
to what has been already realized in [261] for the binary protocol. The N nodes protocol may be
realized by exploiting N/2 sources in an actual scenario.
In case of a proof-of-principle framework, it would be even possible to use the same photon source,
since the different parts of the systems remain completely isolated throughout the protocol. It
would only be necessary to suitably set the photons’ state as the qubit pair which is simulated to
be under observation. A sketch of the possible experimental implementation of the scheme for the
case of the ring pattern and four nodes is reported in Fig. 5.6.

5.7 Discussion and conclusion

In this Chapter, we have reported on a scheme for the achievement of mutlipartite EDSS in a net-
work. In contrast with the proposal in Ref. [265], where the carrier is made separable by additional
operations, our strategy is a generalization of the protocol employed in [261], the carrier is always
separable throughout the procedure and supplemental manipulation of the carrier system, aimed
at disentangling it, are not needed. It is also characterized by a remarkable flexibility in terms of
feasible distribution patterns and possible variations of the standard scheme. Indeed, our strategy
may be extended to a continuous-variable framework, as in the binary case, in order to make experi-
mental implementations easier to realize. The results of our work provide a very general alternative
approach to direct protocols in the problem of entanglement distribution, although, as highlighted
in the text, it is a probabilistic approach. Nevertheless, the advantages of using a separable state
carrier in some environmental conditions [261], may be eventually extended to the N qubits sce-
nario, where noise can play a very relevant part. Therefore, these results may pave the way to the
development of the general and useful application of EDSS protocols in actual multiparty Quantum
Communication and Information tasks. For instance, an application of this work worth mentioning
is quantum conference key agreement (QCKA) [269], namely the problem of harnessing properties
of quantum states to securely share secret keys between N > 2 parties. Quantum key distribution
is becoming increasingly important as we approach the realization of quantum computers which
would render existing security protocols useless. In particular, QCKA is growing in relevance as
quantum networks of many nodes are being developed for the purpose of secure communication (for
instance, see Refs. [270–272]). Remarkably, the resources for QCKA are precisely states with the
entanglement structure achieved through the protocol illustrated here [273]. Once the entangled
state has been shared among the desired N nodes according to the protocol in Sec. 5.3, the N-BB84
protocol [269, 274] for QCKA could then be used to establish a secret key. Therefore, not only can
we distribute keys securely between N parties without needing to send, for instance, fragile Green-
Horn-Zeilinger (GHZ) states [275] to several nodes, but we show that it is in fact possible without
sending any entanglement at all. A natural drawback of our approach is the current experimental
unfeasibility, due to two main issues:
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Figure 5.6: experimental scheme for the Relay Protocol, 4 nodes ring pattern case. Two BBO
crystals pumped by pulsed laser are synchronized to generate four indistinguishable photons at the same time.
Three of them are sent into the setup, while the fourth is used as a herald for photon generation. Two photon
sources allow to generate two triplets of indistinguishable photons, each of which can be used to address two
nodes and one carrier. The photons are prepared in the requested initial state after traveling through an
optical fiber, then three of them are used to perform the encoding and decoding of entanglement between A
and B via K. After the measurement of K, a second triplet can be used to generate entanglement between
C and D via K ′ and, in parallel, between B and C and D and A. Picture from [233].
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• challenging initial state preparation, since it is hard to tailor multipartite mixed states

• low efficiency for photonic implementations, since photonic quantum gates are currently prob-
abilistic

Nonetheless, the solution to these problems is of general interest for experimental quantum infor-
mation and the pace of technical enhancement in this field is such that thinking of improvements
in the very next years is far from preposterous.

Personal contribution

I personally devised the generalized entanglement distribution protocol and all of its variations, run
the numerical analyses, and designed the experimental proposals.
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He who has come only in part to a freedom of reason cannot feel on
earth otherwise than as a wanderer - though not as a traveler towards
a final goal, for this does not exist. But he does want to observe, and
keep his eyes open for everything that actually occurs in the world;
therefore he must not attach his heart too firmly to any individual
thing; there must be something wandering within him, which takes its
joy in change and transitoriness.

Human, All Too Human, Friedrich W. Nietzsche

It is worth summarizing the varied material we have provided in this thesis: first of all, we deal
here with quantum objects and their stark difference with respect to classical ones. To genuine
quantum features, such as superposition, indistinguishability and entanglement, can be associated
corresponding problems and tasks. In Chapter 1, we have briefly reviewed some of these traits and
we have focused on selected issues deriving from them. We have thoroughly described the problem
of Quantum State Discrimination as well as the Quantum Walk model, both tightly related to the
superposition principle which is applied to quantum states. The topic of Quantum Walks, as we
anticipated in the foreword, is spread across the various Chapters, sometimes as the object of in-
vestigation, some other times as a tool or an inspiration. In addition to this, we provided a concise
description of relevant quantum optics phenomena and quantum optical elements, in order to es-
tablish the experimental framework we refer to throughout this work, even when reporting on mere
theoretical results. A proper discussion of the activities developed during the PhD course starts in
Chapter 2: we establish the p-diluted disorder model, which is pivotal to introduce the contents of
both Chapter 2 and 3, and we describe an experimental setup that realizes coherent disordered 1D
Quantum Walks, with a great amount of flexibility, such as the one needed to implement p-diluted
disorder. A report follows on two works that we partook in as providers of the necessary theoretical
ground. The first one consists of a collaboration with the Univeristy of Paderborn, an experiment
that realized an optical Quantum Walk simulating subdiffusive propagation by suitable applica-
tion of disorder. The second one represents the first step of a collaboration with the University
of Palermo, an all-theoretical analysis aiming at understanding how disorder can affect the ability
to extract information out of a Quantum Walk network. In this Chapter, the duality of Quantum
Walks, both interesting objects per se and useful tool for quantum information related tasks, clearly
emerges. In the third Chapter, we report the results of the first experiment in this manuscript that
we actually realized, as the main outcome of the collaboration with University of Palermo mentioned
above. Right at the start of the Covid-19 pandemic, I started studying indistinguishable bosons
undergoing a disordered but coherent evolution, such as the one dictated by a p-diluted Quantum
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Walk, and the way they featured changes in their quantum correlation depending on the disor-
der configurations they found along their propagation. I found out that it is possible to spatially
manipulate the correlation of bosons emerging out of a Quantum Walk evolution, by imposing suit-
able disorder realizations and we experimentally demonstrated this effect on the optical platform
described in Chapter 2. Chapter 4 apparently features an abrupt change of topic: we step from
quantum correlation and disordered Quantum walks to Quantum State Discrimination protocols.
As a matter of fact, we move from Quantum Walks as the object under investigation to Quantum
Walks as an approach for problem solving. This transition is actually smoother than it looks: since
Chapter 2 even, we have regarded Quantum Walks as a platform, rather than a phenomenon. Thus,
we have a Quantum Walk-based simulator, a Quantum Walk-based probing scheme for phase es-
timation in a disordered environment and a Quantum Walk-based protocol for enriching bosonic
correlation. In Chapter 4, we illustrate a quantum receiver for discrimination of quantum states
that is based on coherent propagation on a graph, which is, by definition, described by a Quantum
Walk evolution. This quantum discriminator was designed in collaboration with the University of
Florence and realized at Sapienza University. We achieved benchmarking experimental results for
an actual single particle protocol thanks to this platform, managing to apply it to the states of
four-dimensional qudits encoded in single photon’s polarization and energy degrees of freedom. In
the last and the most "standalone" Chapter, I report on the work I developed during a visiting
period at the Queen’s University of Belfast, under the supervision of Prof. Mauro Paternostro. In
this case, I was asked to try and formulate a Quantum Walk-inspired solution to an open problem:
the N -nodes generalization of a protocol for Entanglement Distribution via Separable Systems.I
was able to address this issue, devising a protocol for the distribution of multipartite entanglement
throughout a network composed of any number of nodes, by local interaction of the parties with
an always separable carrier system. This scheme is reported in Chapter 5, together with ideas for
experimental implementation.
We have mentioned in the foreword how the thread sewing together the variety of concepts and
frameworks employed in this thesis is represented by the quest for dynamical approaches to quantum
information problems, approaches that are mainly based on the Quantum Walk model. Nonetheless,
we understand that the resulting landscape can not avoid resembling some kind of patchwork. This
thesis demonstrates the wide range of problems that can be addressed by dynamical methods based
on the Quantum Walk model, as well as it bolsters the notion of quantum optics as the most suitable
platform for associated experimental implementations. The manifold subject we have displayed and
discussed in this thesis has also led to some impact for the research community, represented by the
corresponding publications, that we have cited throughout the body of this work. Nonetheless, in
the end, little remains of these results to the authors: projects conclude, setups are dismantled, old
ideas are pushed into the shadow by new and compelling commitments. What really is bound to
last is the acquaintance with a wide range of topics in the quantum information spectrum, and the
practical and intellectual abilities deriving from working on different experimental setups (different
light sources even), from addressing different theoretical frameworks and, crucially, from dealing
with different people.
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List of Papers

The following list reports the works that were developed as a result of my PhD activities. These
papers represent the main source of the present manuscript. The first paper I featured in as an
author, namely Experimental investigation of superdiffusion via coherent disordered quantum walks
[110] has not been included in this list, neither extensively reported in the text, since the development
and publishing of that work dates back to my master thesis activity.

Publications

• A scheme for multipartite entanglement distribution via separable carriers, Laneve A.,
McAleese H., and Paternostro M., New Journal of Physics 24 123003, Ref. [233]

• Experimental multi-state quantum discrimination through optical networks, Laneve A.,
Geraldi A., Hamiti F., Mataloni P., and Caruso F., Quantum Science and Technology 7 (2),
025028 (2022), Ref. [174]

• Enhancing nonclassical bosonic correlations in a quantum walk network through experimental
control of disorder, Laneve A., Nosrati F., Geraldi A., Shadfar M. K., Pegoraro F., Mah-
davipour K., Lo Franco R., and Mataloni P., Phys. Rev. Research 3, 033235 (2021), Ref.
[119]

• Readout of quantum information spreading using a disordered quantum walk, Nosrati F.,
Laneve A., Shadfar M. K., Geraldi A., Mahdavipour K., Pegoraro F., Mataloni P., and
Lo Franco R., JOSA B, 38(9), 2570-2578 (2021), Ref. [112]

• Transient subdiffusion via disordered quantum walks, Geraldi A., De S. Laneve A., Barkhofen
S., Sperling J., Mataloni P., and Silberhorn C., Physical Review Research 3 (2), 023052 (2021),
Ref. [111]

Preprints

• Experimental Multi-state Quantum Discrimination in the Frequency Domain with Quantum
Dot Light, Laneve A., Rota M.B., Basso Basset F. Fiorente N. P., Krieger T.M., Covre da
Silva S.F., Buchinger Q., Stroj S., Hoefling S., Huber-Loyola T., Rastelli A., Trotta R., and
Mataloni P., arxiv preprint arXiv:2209.08324 (2022), Ref. [175]
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