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Localization of Generalized Wannier Bases
Implies Chern Triviality in Non-periodic
Insulators

Giovanna Marcelli, Massimo Moscolari and Gianluca Panati

Abstract. We investigate the relation between the localization of gener-
alized Wannier bases and the topological properties of two-dimensional
gapped quantum systems of independent electrons in a disordered back-
ground, including magnetic fields, as in the case of Chern insulators and
quantum Hall systems. We prove that the existence of a well-localized
generalized Wannier basis for the Fermi projection implies the vanishing
of the Chern character, which is proportional to the Hall conductivity in
the linear response regime. Moreover, we state a localization dichotomy
conjecture for general non-periodic gapped quantum systems.

Contents

1. Introduction
1.1. Further References

2. Setting and Fundamental Concepts
2.1. Generalized Wannier Bases: A Short Review
2.2. A Topological Marker in Position Space

3. Main Result
4. Proofs

4.1. Well-Posedness of the Chern Character
4.2. The Proof in a Nutshell
4.3. Proof of Theorem 3.1

Acknowledgements
Appendix A. Proof of Proposition 2.13
Appendix B. Technical Results

B.1. Generalized Maclaurin–Cauchy Test
B.2. Properties of the Operators Γi

B.3. Proof of Proposition 4.2
References

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-022-01232-7&domain=pdf
http://orcid.org/0000-0001-6813-7634


G. Marcelli et al. Ann. Henri Poincaré

1. Introduction

Wannier bases have become, in the last few decades, a fundamental tool in
theoretical and computational solid-state physics, as they provide a reasonable
compromise between localization in position space and localization in energy,
as far as compatible with the uncertainty principle [59]. Whenever it is well
localized, a Wannier basis:

(i) allows to implement numerical algorithms whose computational costs
scale only linearly with the system size [33];

(ii) provides a key tool for a simple and transparent description of macro-
scopic polarization and orbital magnetization in solids, yielding to com-
putable formulae [16,43], later proved in a broader setting by more
advanced mathematical techniques [74,76];

(iii) allows an efficient numerical treatment of deformed periodic systems [83];
(iv) helps to justify the so-called atomic limit, i. e. , the description of macro-

scopic solids as “consisting of well-localized atoms”, a classical paradigm
whose violation has opened the new field of topological chemistry [11].

Last but not least, the variational characterization of Wannier functions pro-
posed by Marzari and Vanderbilt has turned Wannier bases into an efficient
and flexible computational tool [59,60,73].

Since these advantages rely on good decay properties of Wannier func-
tions, several works have been dedicated to the rigorous proof of the existence
of an exponentially localized Wannier basis in periodic (time-reversal sym-
metric) insulators. These research efforts started with the pioneering work of
Kohn and des Cloizeaux [27,28,45] and continued with the work of Nenciu and
Helffer-Sjöstrand [38,67–69], till the modern bundle-theoretic methods [13,72].
More recently, the emphasis has shifted from abstract to algorithmic proofs of
existence [19,20,22,23,31], which allow a direct numerical implementation [15].
Neglecting the linear independence condition, the related concept of Parseval
frame has also been investigated [2,22,47].

When the Hamiltonian breaks time-reversal symmetry (TRS), as, for
example, in Chern insulators and quantum Hall systems, the existence issue
becomes more involved and interesting. A Localization–Topology Correspon-
dence, also dubbed Localization Dichotomy, has been noticed and proved
in [62]. There the authors proved that in a gapped Γ-periodic insulator in
dimension d ≤ 3, with Γ � Z

d a Bravais lattice, a Wannier basis w =
{wγ,a}γ∈Γ,1≤a≤m which is well localized, in the sense that there exists M∗ < ∞
such that

〈X2〉w :=
m∑

a=1

∫

Rd

|x|2 |wγ,a(x + γ)|2dx ≤ M∗ ∀γ ∈ Γ,

exists if and only if the Bloch bundle associated with the Fermi projection P
is Chern trivial. In d = 2, the latter condition is equivalent to the vanishing of
the (first) Chern number, defined by

c1(P ) =
1
2π

∫

T2∗

Tr
(
P (k)

[
∂k1P (k), ∂k2P (k)

])
dk1 ∧ dk2, (1.1)
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where T
2
∗ = R

2/Γ∗ is the two-dimensional Brillouin torus and UBF P U−1
BF =∫ ⊕

T2∗
P (k) dk is the Bloch–Floquet–Zak decomposition of P ; see, e.g., [48] or

[61].
For d = 3, the Chern triviality corresponds to the vanishing of three “first

Chern numbers” defined, for i 
= j ∈ {1, 2, 3}, by1

c1(P )ij =
1
2π

∫

Bij

Tr
(
P (k)

[
∂ki

P (k), ∂kj
P (k)

])
dki ∧ dkj , (1.2)

where Bij ⊂ T
3
∗ is the two-dimensional subtorus of the Brillouin torus T

3
∗ =

R
3/Γ∗ obtained by fixing the coordinate different from the i-th and the j-th

(e.g., equal to zero). Moreover, if the Bloch bundle is Chern trivial, then an
exponentially localized Wannier basis always exists for d ≤ 3 [13,72].

To avoid any source of confusion, we emphasize here that the Localization–
Topology Correspondence (LTC) refers to a different kind of localization mech-
anism than the one appearing in the well-known Anderson localization. More-
over, while Anderson localization concerns the decay properties of eigenfunc-
tions of Schrödinger operators with random potentials, the LTC refers to the
decay properties of particular orthornormal bases, namely generalized Wannier
bases, that span the spectral subspaces of a (possibly non-periodic) Hamilton-
ian operator.

This paper aims at the generalization of the LTC from the periodic set-
ting considered in [62] to the non-periodic one. Since both sides of the corre-
spondence, namely Wannier bases and Chern numbers, are defined by using
periodicity in an essential way, even the formulation of a reasonable conjecture
requires some care.

On the side of Wannier bases, a generalization of this concept to non-
periodic systems has been discussed since the early work of Kohn and Onffroy
[46]. Later, Kivelson noticed that for d = 1 a generalized Wannier basis is
provided by the eigenfunctions of the reduced position operator X̃ := PXP ,
where X is the usual position operator [44]. This intuition has been put on
solid mathematical grounds in [71], where it is proved that for any gapped
one-dimensional Schrödinger operator the spectrum of X̃ is discrete, and the
corresponding eigenfunctions form a generalized Wannier basis (GWB)2,
as reviewed in Example 2.7. While the above construction does not gener-
alize to d > 1, the existence of a GWB can be proved for several specific
d-dimensional systems, as discussed in Sect. 2.1 following [70] and [10]. More-
over, in [26] it has been shown that the construction of [71] is optimal, in the
sense that the obtained GWB has the same exponential decay of the associated

1The vanishing of the numbers below expresses the vanishing of the first Chern class c1(P )
as an element of the cohomology space H1(T3∗,R), which also implies the vanishing of the
integer first Chern class in H1(T3∗,Z); see [72].
2Whenever we use the adjective “generalized” we refer to Wannier functions for non-periodic

systems. However, this terminology is far from universal. The reader is warned that the

adjective “generalized” has been occasionally used referring to Wannier functions for a multi-

band periodic system (which are called composite Wannier functions in the mathematical
literature), as, for example, in [60].
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Fermi projection. An alternative strategy to construct a GWB for a generic
two-dimensional non-periodic system has been recently suggested and numer-
ically validated [79]. We shortly review the whole topic of GWB in Sect. 2.1.

On the other side of the correspondence, for d = 2 the Chern number
of the Bloch bundle is naturally generalized to non-periodic models by the
Chern character , defined, for a sufficiently regular orthogonal projection P
acting on L2(R2), by

C(P ) := 2π τ
(
iP
[
[X1, P ], [X2, P ]

])
(1.3)

where τ(·) is the trace per unit volume. Whenever P is periodic the above
formula reduces to (1.1), so that C(P ) = c1(P ). Physically, 1

2π C(P ) gives in
Hartree units3 the Hall conductivity of the system, which agrees with the Hall
conductance under mild technical assumptions [5].

In connection with solid-state physics, formula (1.3) first appeared—to
the best of our knowledge—in 1986 in a conference proceedings by J. Bellissard
[6], where C(P ) is baptized Chern character and it is specified that formula
(1.3) applies to orthogonal projectors affiliated to a specific C∗-algebra of
ergodic operators (reducing to periodic operators in the deterministic case).
However, as early envisaged by Bellissard himself, the same formula makes
sense in a broader context, for projectors P whose kernel is sufficiently fast
decreasing away from the diagonal [66]. In an ergodic setting, this viewpoint
and its relation with non-commutative geometry have been deeply explored in
[7]. The relation with the index of a pair of projections and with the Fredholm
index has been also clarified [5,6,42], see the review paper [34] and references
therein.

The same formula (1.3) has later been reconsidered in a non-ergodic
and non-covariant setting, provided the trace per unit volume exists, which it
happens in particular for exponentially localized projections, as in Definition
2.3. Interpreted in this broader sense, formula (1.3) still produces an integer
whenever the trace per unit volume exists, as proved in [29] for discrete models.
The latter proof, which is essentially based on the identity between the Chern
character and the index of a Fredholm operator as previously established in
the covariant and ergodic setting [5,42], is generalized to gapped continuum
models in Proposition 2.13.

Finally, in 2011 physicists rediscovered an equivalent version of formula
(1.3), namely C(P ) = 2πi τ([PX1P, PX2P ]), labeling the corresponding quan-
tity as Chern invariant [8] and Chern marker [14,40]. The latter name has
been also used in the recent mathematical literature [21,55].

In this paper, we conjecture a Localization–Topology Correspondence
for non-periodic gapped systems (Conjecture 3.2) and we prove one of the
conjectured implications, with a non-optimal threshold (Theorem 3.1): if an

3In this system of units the reduced Planck constant, the electron charge and the electron
mass are dimensionless and equal to 1. In particular, the quantum of charge conductivity

in the quantum Hall effect is e2

h
= 1

2π
, where −e is the electron charge and h is the Planck

constant.
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orthogonal projection P , which acts on L2(R2) and is exponentially localized
in the sense of Definition 2.3, admits a GWB {ψγ,a}γ∈D,1≤a≤m(γ) (here D is
a discrete set, as in Definition 2.5) which is s-localized for some s > 4, i. e. ,
for s > 4 there exists M < +∞ such that∫

R2
〈x − γ〉2s |ψγ,a(x)|2 dx ≤ M ∀γ ∈ D, 1 ≤ a ≤ m(γ),

then the corresponding Chern character C(P ) vanishes. Notice that neither
periodicity nor covariance with respect to the action of a group is required. The
fact that our result does not assume periodicity or covariance makes it suitable
for applications also to random Schrödinger operators [1]. In that context, it
has been proved that localized eigenfunctions, whose localization might be
caused by very different mechanisms, do not contribute to the conductivity:
The case of localization of eigenfunctions due to deep wells has been analyzed
in [66], while the case of Anderson localization has been treated in [32]; see also
the earlier work [49]. Although Wannier functions are not eigenfunctions, our
results say—coherently with the latter papers—that the existence of a well-
localized GWB implies the vanishing of the transverse charge conductivity.

1.1. Further References

We conclude the Introduction mentioning some results appeared during the
revision of our manuscript. The result in this paper was first announced in [55],
and a preliminary version of the proof was provided in the PhD thesis of one
of the authors [64]. These preliminary papers, together with the results in [62],
resparked the interest of part of the community for the analysis of Wannier
bases for non-periodic systems. Besides the aforementioned [79,80], we notice
the preprint by Lu and Stubbs [52] (see also [51]) where they manage to show
Theorem 3.1 with s > 1. Nevertheless, Theorem 3.1 with the optimal threshold
s ≥ 1 is still an open problem. Finally, it is worth to notice that the LTC has
been recently generalized also in a different direction, within the C∗-algebraic
approach to solid-state physics [9,53].

2. Setting and Fundamental Concepts

As explained in the Introduction, the aim of this paper is to generalize results
from the periodic setting to the non-periodic one. In order to model materials
that are not exactly crystalline we have to replace the Bravais lattice4, which
models the periodicity of a crystalline system, by a discrete set D. We require
some uniformity as in the following definition, where Bρ(x) ⊂ R

d denotes the
open ball of radius ρ > 0 centered in x ∈ R

d.

Definition 2.1. A set D ⊂ R
d is said to be r-uniformly discrete if there exists

r > 0 such that ∀x ∈ R
d the set Br(x) ∩ D contains at most one element.

4Recall that a Bravais lattice Γ ⊂ R
d is defined as a discrete subgroup of (Rd, +) with

maximal rank. It follows that there exist a (non-unique) linear basis {a1, . . . ,ad} ⊂ R
d such

that Γ = SpanZ {a1, . . . , ad} � Z
d.
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Obviously, a Bravais lattice Γ � Z
d is a r-uniformly discrete set for a suitable

r > 0.
A central role in our analysis will be played by the concept of localization

in space; hence, the following Definition will be useful.

Definition 2.2 (Localization function). We say that a continuous function

G : [0,∞) → (0,∞)

is a localization function if limx→∞ G(x) = +∞ and there exists a constant
CG > 0 such that

G(‖x − y‖) ≤ CG G(‖x − z‖)G(‖z − y‖) ∀x,y, z ∈ R
d. (2.1)

Natural examples of localization functions are G(x) = eαx for some α > 0, and

G(x) = 〈x〉2s for some s > 0, where 〈x〉 :=
(
1 + x2

) 1
2 as usual.

Our aim is to investigate the relation between localization of GWBs
and transport properties in non-interacting gapped quantum systems, whose
dynamics is generated by a one-particle (magnetic) Schrödinger operator [3].
The spectral projections onto an isolated component of the spectrum of such
operators provide archetypal examples of exponentially localized projections,
defined as follows.

Definition 2.3 (Exponentially localized projection). We say that an orthogonal
projection P acting on L2(Rd) is exponentially localized if P is an integral
operator with a jointly continuous integral kernel P (· , ·) : Rd × R

d → C and
there exist two constants C, β > 0 such that

|P (x,y)| ≤ Ce−β‖x−y‖ ∀x,y ∈ R
d. (2.2)

The following proposition provides examples of exponentially localized
projection for a large class of two-dimensional quantum systems, including
magnetic Schrödinger operators with constant magnetic field.

Proposition 2.4. Let V : R
2 → R be in L2

uloc(R
2), which means that V is

uniformly locally square-integrable, i. e. ,

sup
x∈R2

∫

‖x−y‖≤1

|V (y)|2dy < ∞. (2.3)

Assume that the magnetic vector potential A : R2 → R
2 is in L4

loc(R
2,R2) with

distributional derivative ∇·A ∈ L2
loc(R

2). Consider the Hamiltonian operator

HA := −1
2
ΔA + V ,

where −ΔA := (−i∇ − A)2. Then,
(i) HA is essentially self-adjoint on C∞

c (R2). We denote its closure again
by HA.

(ii) The domain DA of self-adjointness of HA is contained in C(R2).
(iii) HA is bounded from below.
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Moreover, assume that σ(HA), the spectrum of HA, has an isolated compo-
nent, i. e. , there exist two non empty sets σ0, σ1 ⊂ R and E± ∈ R \ σ(HA)
such that

σ(HA) = σ0 ∪ σ1, σ0 ⊂ (E−, E+) and (E−, E+) ∩ σ(HA) = σ0.

(2.4)

Let P0 be the spectral projection corresponding to σ0. Then,
(iv) P0 is an exponentially localized projection in the sense of Definition 2.3.

We refer to P0 as the Fermi projection, interpreting it as the projection onto
the space of “occupied” states of a system of non-interacting particles.

Sketch of the proof. The statements (i) and (iii) are a special case of [50, The-
orem 3]. The property (ii) is a consequence of the fact that the Schrödinger
semigroup e−tHA is a bounded operator from L2(R2) to L∞(R2) [12, equation
(2.40)] and maps L2(R2) into the space of continuous functions [12, Theorem
4.1]. Therefore, repeating the proof of [77, Corollary B.3.2, Theorem B.3.3] one
can show that, for λ > 0 large enough, the resolvent (HA + λ)−1 maps L2(R2)
into the space of continuous functions. Regarding the statement (iv), the exis-
tence and joint continuity of the integral kernel of P0 is a standard result in
the theory of Schrödinger operators [12, Remarks 6.2.(ii)] [77]. The exponen-
tial localization of the integral kernel is a consequence of the Combes–Thomas
estimates on the resolvent [17], which can be shown by adapting the proofs of
[24, Proposition 3.1, Appendix A], coupled with the spectral gap assumption
on σ0, which allows to choose an integration contour C ⊂ C with a uniform
positive distance from σ0, and the fact that P0 = − i

2π

∮
C dz z(HA − z)−2; see

[64, Appendix A.1.1] for details. �

2.1. Generalized Wannier Bases: A Short Review

Following the seminal idea in [70,71] we define generalized Wannier bases and
functions as follows.

Definition 2.5 (Generalized Wannier basis). Let P be an orthogonal projec-
tion acting on L2(Rd) . We say that P admits a generalized Wannier basis
(GWB) if there exist a localization function G, a discrete set D ⊂ R

d, a con-
stant m∗ > 0 and a set {ψγ,a}γ∈D,1≤a≤m(γ) ⊂ L2(Rd) with m(γ) ≤ m∗ for
every γ ∈ D, such that:

(i) {ψγ,a}γ∈D,1≤a≤m(γ) is an orthonormal basis for RanP ;
(ii) there exists M < ∞ such that every ψγ,a is G-localized around γ, i. e. ,

∫

Rd

|ψγ,a(x)|2G(‖x − γ‖) dx ≤ M ∀γ ∈ D, 1 ≤ a ≤ m(γ). (2.5)

If the above conditions are satisfied, we say that P admits a GWB which is
G-localized around the set D. One also says that ψγ,a is a generalized Wannier
function (GWF) G-localized around γ ∈ D.

Notice that the localization center γ ∈ D is far from being unique, even
in the periodic case. In the physics literature, the vector 〈ψγ,a,Xψγ,a〉 is called
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centroid of ψγ,a. Moreover, in contrast with the usual definition of Wannier
functions for periodic systems, the index m(γ) might depend on γ ∈ D. Indeed,
without a periodicity assumption, one may in general expect a different number
of orbitals in different lattice sites. The only constraint we require is that such
a number is uniformly bounded, namely m(γ) ≤ m∗, ∀γ ∈ D.

Finally, it might seem natural to require, in the definition of GWB, that
the set D is a Delone set, i. e. , both uniformly discrete and uniformly nowhere
sparse5. However, as we do not use both these properties in our Theorem
(only uniform discreteness is assumed), we preferred not to include them in
the definition.

The following terminology agrees with [62]:
� if (2.5) holds true with G(‖x‖) = e2α‖x‖, for some α > 0, we say that
the GWB is exponentially localized ;
� if (2.5) holds true with G(‖x‖) = 〈x〉2s for some s > 0, we say that the
GWB is s-localized.
In the case of an exponentially localized projection P , the L2-localization

estimate (2.5) implies a L∞-estimate on any GWF ψγ,a, as in the following

Lemma 2.6 (From L2-estimates to L∞-estimates). Let P be an exponen-
tially localized projection acting on L2(Rd). Assume that P admits a GWB
{ψγ,a}γ∈D,1≤a≤m(γ) with localization function G(‖x‖) ≤ C1eλ‖x‖, with C1 > 0
and λ < 2β for β as in (2.2). Then, there exists a constant K > 0, independent
of γ ∈ D, such that each GWF ψγ,a satisfies

|ψγ,a(x)| ≤ K G(‖x − γ‖)−1/2 ∀x ∈ R
d, ∀ γ ∈ D. (2.6)

Proof. Using the fact that ψγ,a = Pψγ,a, one has
∣∣∣G(‖x − γ‖)1/2ψγ,a(x)

∣∣∣ ≤
∫

Rd

dy G(‖x − γ‖)1/2 |P (x,y)| |ψγ,a(y)|

≤ C
1/2
G

(∫

Rd

dy G(‖x − y‖) |P (x,y)|2
)1/2

(∫

Rd

dy G(‖γ − y‖) |ψγ,a(y)|2
)1/2

,

where in the second and third inequality we have used property (2.1) and the
Cauchy–Schwarz inequality, respectively. In view of (2.2) and of the hypothesis
on G, there exists a constant K > 0, independent of γ ∈ D, such that

C
1/2
G sup

x∈Rd

(∫

Rd

dy G(‖x − y‖) |P (x,y)|2
)1/2

(∫

Rd

dy G(‖γ − y‖) |ψγ,a(y)|2
)1/2

≤ K .

Therefore, (2.6) is proved. �

5A discrete set is said to be R-uniformly nowhere sparse if there exists R > 0 such that
∀x ∈ R

d the set BR(x) ∩ D contains at least one element.
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Whenever the projection P admits a GWB, it can be written as (using
the Dirac notation)

P =
∑

γ∈D

∑

1≤a≤m(γ)

|ψγ,a〉 〈ψγ,a| (2.7)

where the series is understood as the strong limit of the finite sums of the
projections on the one-dimensional spaces spanned by each GWF. Notice that
the strong limit is independent of the ordering of the series. Moreover, if the
set D is r-uniformly discrete, it is convenient to rearrange the above series as

P ϕ = lim
L→∞

∑

γ∈D∩ΛL

∑

1≤a≤m(γ)

〈ψγ,a|ϕ〉ψγ,a, ∀ϕ ∈ L2(Rd),

with ΛL = [−L,L]d. Furthermore, if P = P0 is the Fermi projection of an
operator satisfying the hypotheses of Proposition 2.4 and admitting a GWB
that is exponentially localized or s-localized, with s > 1, the equality

P0(x,y) =
∑

γ∈D

∑

1≤a≤m(γ)

ψγ,a(x)ψγ,a(y) , ∀x,y ∈ R
2, (2.8)

holds true pointwise, since ψγ,a ∈ RanP0 ⊂ DA ⊂ C(R2) by Proposition 2.4(ii)
and ψγ,a satisfies (2.6).

We emphasize a crucial point: The fact that P0 is an exponentially local-
ized projection does not imply that the GWFs appearing in (2.8) are them-
selves exponentially localized, as it is explained in [62] for the periodic case.
While the exponential localization of P0 is a mere consequence of the gap con-
dition, via Combes–Thomas estimates, the existence of an exponentially local-
ized Wannier basis is related—in the periodic case—to the Chern triviality of
the vector bundle associated with P0 [13,19,22,31,48,72]. Notice, moreover,
that not every orthonormal basis is able to capture the topological properties of
the former vector bundle. Indeed, if one relaxes the definition of GWB, allow-
ing, for example, an orthonormal basis whose elements are localized around
circles of increasing radii as in [75], it is always possible to find an exponen-
tially localized orthonormal basis such that (2.8) holds true; see [65]. In this
sense, the definition of GWB is a good compromise between generality and
ability to “read” the vanishing of the Chern character.

Whenever the Hamiltonian operator is Γ-periodic and satisfies suitable
regularity conditions, see, e.g., [62, Remark 3.2], the Fermi projection P0 com-
mutes with a unitary representation of the group Γ � Z

d, denoted by {Tγ}γ∈Γ,
and one constructs via Bloch–Floquet theory the usual composite Wannier
basis for P0, denoted by {Tγw0,a}γ∈Γ,1≤a≤m, for some fixed integer m ≥ 1
(equal to the number of Bloch bands associated with P0). It is easy to see that
such composite Wannier basis satisfies Definition 2.5, so it is indeed a GWB.
According to the value of the first Chern number(s) of P , such a GWB can be
chosen exponentially localized if c1(P ) = 0, or s-localized for any s < 1 (but
not for s = 1!) if instead c1(P ) 
= 0 [62].

It is of relevance to note that there are non-periodic systems in which is
not possible to construct a composite Wannier basis—in view of the lack of
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periodicity—but is still possible to have a generalized Wannier basis. In this
direction, we review here some examples6:

Example 2.7 (Generic one-dimensional insulators). Consider the one-
dimensional Schrödinger operator

H = − d2

dx2
+ V with V ∈ L2

uloc(R). (2.9)

H is a self-adjoint operator in L2(R), bounded from below. Assume that the
spectrum of H has an isolated component σ0, such that the range of the
spectral projection P0 corresponding to σ0 has infinite dimension. Inspired
by Kivelson [44], the authors of [71] consider the reduced position operator
P0XP0 with domain D(P0XP0) = D(X) ∩ Ran P0 and prove that:

(i) the resolvent of P0XP0 is a compact operator; hence, the spectrum of
P0XP0 is purely discrete. The corresponding eigenvectors ψγ,a ∈ L2(R)
satisfy

P0XP0ψγ,a = γψγ,a ∀ γ ∈ σ(P0XP0), 1 ≤ a ≤ m(γ),

where m(γ) is the degeneracy index of the eigenvalue γ;
(ii) there exist two constants 0 < α,M < ∞ such that

∫

R

|ψγ,a(x)|2eα‖x−γ‖ dx ≤ M ∀ γ ∈ σ(P0XP0), 1 ≤ a ≤ m(γ).

Setting D0 = σ(P0XP0), the orthonormal basis {ψγ,a}γ∈D0,1≤a≤m(γ) is
a GWB in the sense of Nenciu–Nenciu, as defined in [71], exponentially local-
ized around the discrete set D0. To prove that {ψγ,a} is a GWB according
to our (stronger) Definition 2.5, one has to show that ∃m∗ : m(γ) ≤ m∗ for
all γ ∈ D, which is not known in general. Whenever the Hamiltonian is peri-
odic, the generalized Wannier basis constructed with the previous strategy [71]
coincides with a usual composite Wannier basis [25,64]. Furthermore, in [26] it
has been proved that the number of eigenvalues of P0XP0, counted with their
multiplicity, contained in an interval of length L, grows at most linearly with
L. However, this result does not imply that the set σ(P0XP0) is r-uniformly
discrete or R-uniformly nowhere sparse for some r,R > 0. The proof of the
latter claims is, to our knowledge, still an open problem.

The previous construction for one-dimensional systems does not directly
generalize to higher dimensions, essentially for two reasons:

(i) generically, the compact resolvent property of P0XP0 holds true only in
L2(R), as one can easily see for d = 2 when P0 is Z

2-periodic;
(ii) in general P0XiP0 and P0XjP0 do not commute for i 
= j, so the attempt

to simultaneously diagonalize them fails. It is worth noticing that the
topological and transport properties of the system are encoded exactly
in the commutator between P0X1P0 and P0X2P0; see Sect. 2.2 and specif-
ically equation (2.14). The relation with the theory of almost-commuting
operators has been explored in [37].

6See (2.3) for the definition of L2
uloc(R

2), which can be easily generalized to any dimension.
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Some proposals to circumvent these difficulties appeared recently in [79,80],
where the authors show that, under the additional crucial assumptions of uni-
form spectral gaps for the spectrum of the operator PX1P , it is possible to
prove the existence of an exponentially decaying GWB for the projection P .
Proving that PX1P satisfies such uniform spectral gaps hypothesis is still an
open problem, but in [79] the authors present numerical simulations show-
ing that in explicit tight-binding models the spectrum of PX1P has spectral
gaps only when the projection P is Chern trivial, which is in accordance with
Conjecture 3.2.

Despite the difficulties to deal with generic non-periodic systems for d >
1, there are several specific d-dimensional models for which the existence of a
well-localized GWB has been proved, as in the following examples.

Example 2.8 (d-dimensional insulators with weak disorder). Generalized Wan-
nier bases can be useful in the analysis of periodic systems perturbed by impu-
rities and weak disorder. Given λ ∈ R and a Bravais lattice Γ ⊂ R

d, d ≤ 3, we
consider the Hamiltonian operator, acting in L2(Rd),

Hλ = −Δ + VΓ + λW

where VΓ ∈ L2
uloc(R

d) is Γ-periodic. Assume that W ∈ L2
uloc(R

d), so that Hλ

is an entire family of type A in the sense of Kato. The potential VΓ models
the periodic background of the crystalline insulator, while W models either a
sum of localized impurities or a delocalized disorder.

Assume that the spectrum of H0 has an isolated component σ0. Since
H0 is time-reversal symmetric, the projection P0 onto the isolated component
σ0 admits a Wannier basis {ψγ,a := ψ0,a(· − γ)}γ∈Γ,1≤a≤m, for some m > 0,
where each Wannier function ψγ,a is exponentially localized around γ in the
sense of Definition 2.5. By standard perturbation theory [41, Remark VII.2.3,
p. 379] one can prove that there exists a λ0 > 0 small enough such that,
for |λ| < λ0, the spectrum of Hλ has an isolated component σλ that varies
continuously with λ in the Hausdorff distance. Denote by Pλ the spectral
projection onto σλ.

In [70], it is shown how to transport an exponentially localized GWB from
the range of P0 to the range of Pλ. Let us review here the main steps of the proof
rewritten in our setting. First of all, since Hλ is an analytic family of type A,
the family of projections is analytic in λ [41, Theorem VII.3.1.7], in particular
‖Pλ − Pλ′‖ ≤ C|λ − λ′| for some positive constant C. It follows that, for
|λ−λ′| small enough, there exists a unitary operator which intertwines the two
projections and, as a consequence, it unitarily maps an orthonormal basis for
the range of Pλ into an orthonormal basis for the range of Pλ′ . Furthermore, in
view of the hypothesis on the Hamiltonian and the gap condition, one can prove
that the projections, Pλ and Pλ′ , are both exponentially localized projection in
the sense of Definition 2.3. In addition, using again the Riesz formula, together
with the Combes–Thomas rotation and the relative smallness of W , one gets
that, for some δ > 0 small enough, supa∈Rd ‖ e−δ〈·−a〉 (Pλ − Pλ′) eδ〈·−a〉 ‖ ≤
C|λ − λ′| which implies that the intertwining unitary, explicitly given by the
Kato–Nagy formula, preserves the exponential localization; see [70]. Therefore,
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starting from an exponentially localized GWB for P0 and iterating the unitary
transport a finite number of times, one obtains a GWB for every Pλ, with
|λ| < λ0, which is exponentially localized around the same discrete lattice Γ
as the original one.

Notice that this argument relies on the fact that Pλ is a spectral pro-
jection onto an isolated component of the spectrum, namely we are assuming
that the Fermi energy lies always in a spectral gap. In the setting of random
Schrödinger operator, it is usually considered also the case of the Fermi energy
lying in a region of mobility gap. In such a situation, even though the integral
kernel of the Fermi projection is not exponentially localized, it might still be
possible to construct special orthonormal basis that is localized in space; see,
for example, [32] and references therein.

Example 2.9 (Deformed d-dimensional insulators: the Gubanov model). A
class of examples of non-periodic gapped quantum systems that admit an
exponentially localized GWB is provided by a Schrödinger operator modeling
the deformation of a periodic d-dimensional insulator. We recall the defini-
tion of this model, following [10], where it is called quasicrystalline model of
Gubanov.

The Hamiltonian H0 describing the undeformed system, acting in L2(Rd)
for d ≤ 3, is given by

H0 = −Δ + V with V ∈ L2
uloc(R

d).

We assume that the spectrum of H0 has an isolated component σ0, and denote
by P0 the corresponding spectral projection. In order to describe the deforma-
tion of the system, we consider g ∈ C2(Rd,Rd) and Ω ⊂ R

d and set

b(g;x) = max
1≤i,j,k≤d

[|∂i∂jgk(x)| , |∂igk(x)|]
b(g; Ω) = sup

x∈Ω
b(g;x).

Let Vg be the potential given by Vg(x) = V (x + g(x)), for all x ∈ R
d. Then

the Hamiltonian of the deformed system is Hg = −Δ + Vg.
Assume that b(g,Rd) = ξ < +∞ and that P0 admits a GWB which is

exponentially localized around some r-uniformly discrete set D. A consequence
of [10, Proposition 4] is that, for ξ small enough, the spectrum of Hg has an iso-
lated component σg that varies continuously with ξ in the Hausdorff distance.
The corresponding spectral projection Pg of Hg is not norm continuous with
respect to ξ. However, if, for ξ small enough, one defines the unitary operator
[10] (Y ψ)(x) = (det (|∂j(x + g(x))i|))1/2

ψ(x + g(x)) for every ψ ∈ L2(R2),
then Y PgY

∗ depends continuously on ξ; hence, ‖Y PgY
∗ − P0‖ < 1 for ξ suf-

ficiently small. Therefore, by repeating the steps described in Example 2.8
one can unitarily transport the GWB from the range of P0 to the range of
Y PgY

∗, without spoiling the localization properties. Let {ψγ,a}γ∈D,1≤a≤m(γ)

be the GWB of Y PgY
∗. Exploiting the explicit expression of the operator Y ∗

and the fact that the derivatives of g are uniformly bounded by ξ, one gets
that {ϕγ̃,a := Y ∗ψγ,a}γ̃∈D̃,1≤a≤m(γ̃) is an exponentially localized GWB for the



Localization of Generalized Wannier Bases

range of Pg, where D̃ := {x ∈ R
d | x = γ + g(γ), γ ∈ D} is an r′-uniformly

discrete set and m(γ̃) = m(γ).

Example 2.10 (Magnetic perturbations of Chern-trivial 2D insulators). Gen-
eralized Wannier functions naturally appear when a two-dimensional system
is subjected to a constant magnetic field whose flux through the periodicity
cell does not necessarily satisfies a commensurability condition with respect
to the quantum of magnetic flux. While it is not possible, in such a case, to
rely on any type of magnetic Bloch–Floquet transform, it is still possible to
exploit the covariance with respect to magnetic translations. This problem has
been tackled in [19] and [22]. Consider a Z

2-periodic insulator modeled by a
Bloch–Landau Hamiltonian, acting in L2(R2), that is

Hε = (−i∇ − AZ2 − b0A − εA)2 + VZ2 (2.10)

where VZ2 is a smooth Z
2-periodic scalar potential, AZ2 is a smooth Z

2-periodic
vector potential, ε ∈ R, b0 ∈ 2πQ and A(x) = 1

2 (−x2, x1) is the magnetic
potential of a constant magnetic field in the symmetric gauge. Assume that
the spectrum of H0 has an isolated component σ0 and let P0 be the corre-
sponding spectral projection. Then, for |ε| small enough, the spectrum of Hε

has an isolated component σε which varies continuously with ε in the Hausdorff
distance. If P0 has a vanishing Chern number, then P0 admits a (magnetic)
Wannier basis {ψγ,a}γ∈Z2,1≤a≤m, for some m > 0, where each Wannier func-
tion ψγ,a is exponentially localized around γ. A consequence of the results
in [19] is that, if |ε| is small enough, then Pε admits a GWB exponentially
localized around the same lattice Z

2. Notice that the “magnetic” GWB for
the perturbed projection Pε present an almost-ladder structure, in the sense
that it can be written just using a finite set of vectors together with magnetic
translation and a position dependent phase, as explained in [22], where also a
constructive algorithm for the GWB is provided.

2.2. A Topological Marker in Position Space

The TKNN approach to the quantum Hall effect [82] established that the
Hall conductivity, as given by the Kubo formula for linear response, is always
an integer in units of e2

h = 1
2π . Shortly after, the topological origin of such

an integer has been recognized [4,78], thus establishing a Transport–Topology
Correspondence: For gapped periodic magnetic systems, the Hall conductivity
equals (up to a universal constant) the Chern number c1(P ) of the (magnetic)
Bloch bundle corresponding to the Fermi projection. Later, Haldane noticed
that such a correspondence and the existence of a non-trivial topology only
rely on the breaking of TRS, thus paving the way to the flourishing new field
of topological insulators [35,36].

The former Transport–Topology Correspondence for periodic systems has
been later extended to non-periodic models, either by methods from non-
commutative geometry [6,7,66], or by using the index of a pair of projections
[5,6]. As mentioned in the Introduction, in the non-periodic setting the Chern
number is replaced by the Chern character C(P ), given by formula (1.3)
[6,7]. Its main advantage is that it provides a topological marker defined in
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position space, with no reference to a quasi-momentum space which is available
only in a periodic setting.

We emphasize that the Chern character can be defined without any ergod-
icity or covariance assumption on P , as in the following

Definition 2.11 (Chern character). Let P be an orthogonal projection in
L2(R2). Let X1 and X2 be the multiplication operators by the respective com-
ponent of the position operator, i. e. , (Xiψ)(x) = xiψ(x), for ψ ∈ D(Xi).
Given L > 1 and ΛL := [−L,L]2, we denote by χΛL

the characteristic func-
tion of the set ΛL. Assume that [X1, P ] , [X2, P ] uniquely extend to bounded
operators and χΛL

P [[X1, P ] , [X2, P ]]PχΛL
is a trace class operator for every

L > 1.
Under these assumptions, the Chern character of P is defined by the

following trace per unit volume:

C(P ) := lim
L→∞

2π

4L2
Tr
(
iχΛL

P
[
[X1, P ] , [X2, P ]

]
PχΛL

)
(2.11)

whenever the limit exists.

Formula (2.11) coincides up to a universal constant with the Hall conduc-
tivity in gapped systems, in the linear response regime, provided Kubo formula
holds true. For the validity of the latter, see the recent papers [54,56,63,81]
and references therein; concerning the Kubo formula for spin conductivity, see
[57,58] and references therein.

The limit in (2.11) equals 2π times the trace per unit volume of the
operator

CP := iP [[X1, P ] , [X2, P ]]P, (2.12)

hence, it agrees with formula (1.3) in the Introduction. It is interesting to notice
that it is possible to rewrite (2.12) in terms of commutators of the so-called
reduced position operators. Let P be an exponentially localized projection
and X̃j := PXjP be the reduced position operator in direction j ∈ {1, 2}. A
direct computation7, exploiting only P 2 = P and [X1,X2] = 0, yields

χΛL
CP = χΛL

iPX1PX2P − χΛL
iPX2PX1P = χΛL

i
[
X̃1, X̃2

]
, (2.13)

so that

C(P ) = 2π τ
(
i
[
X̃1, X̃2

])
, (2.14)

where τ(·) denotes the trace per unit volume, which is conditionally cyclic8.
Notice that the operator

[
X̃1, X̃2

]
is densely defined since the projection P

7Notice that all the terms involved in the direct computation are trace class operators, as
it is proved in Proposition 4.1.
8Here, we use the adverb “conditionally” to stress the fact that τ(·) is cyclic under some
additional conditions, e.g., the operators involved in its arguments are periodic. Indeed, even
if the Chern character can be expressed as the trace per unit volume of the commutator

between the reduced position operators X̃1 and X̃2, it may very well be nonvanishing. (The
reduced position operators are not periodic.)
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maps pointwise exponentially decaying functions, with exponential decay less
than β in (2.2), into pointwise exponentially decaying functions.

Definition 2.11 contains two relevant constraints: the trace class condition
of χΛL

CP χΛL
and the existence of the limit of (2.11), which are not trivial

when P is a generic orthogonal projection. Whenever the orthogonal projection
is exponentially localized and time-reversal symmetric, the Chern character
vanishes, independently of any periodicity hypothesis, cf. [5, Theorem 3.9], as
detailed in the following.

Proposition 2.12 (Chern character vanishes under TRS). Let P be an expo-
nentially localized projection acting on L2(R2). Let time-reversal symmetry be
encoded by9 an antiunitary operator Θ such that Θ2 = ±1 and [Θ,Xi] = 0 for
any i ∈ {1, 2}. If P is time-reversal symmetric in the sense that ΘPΘ−1 = P ,
then C(P ) = 0.

Proof. First, notice that by Proposition 4.1, the sequence of traces defining
the Chern character is well defined. Then, by using that Tr(A) = Tr(ΘAΘ−1)
for every trace class operator A and exploiting the time-reversal symmetry of
P , we have the chain of equalities

i Tr (χΛL
P [[X1, P ] , [X2, P ]]PχΛL

)

= iTr (ΘχΛL
P [[X1, P ] , [X2, P ]]PχΛL

Θ−1)

= i Tr
(
(χΛL

P [[X1, P ] , [X2, P ]]PχΛL
)∗)

= −i Tr (χΛL
P [[X1, P ] , [X2, P ]]PχΛL

)

which implies that the Chern character is zero. �

Notice that the exponential localization hypothesis in Proposition 2.12
is only used to justify the formal computations with the double commutator
formula; however, a sufficiently fast polynomial decay of the integral kernel
would be sufficient to prove the statement.

Even though the limit (2.11) defining the Chern character might not exist
for generic orthogonal projections, this is never the case when P is an exponen-
tially localized projection. Moreover, in such situation, the Chern character is
an integer. This fact has first been proved in [29, Appendix, Proposition 3 and
Remark 3] in the discrete setting and using a different terminology10, covering
also the more general case of a mobility gap. The proof in [29] is based on
the index of pair of projections defined in [5,6,66], and here we adapt their
argument to our setting, i. e. , exponentially localized projections on the con-
tinuum. We notice that the profound reason for the quantization of such index
can be traced back to the Fedosov formula for the index of elliptic operators
[30,39]. Before formulating the results, let us briefly remind the definition of
the index of pair of projections.

9In our setting, a canonical time-reversal operator is simply given by the complex conjugation
operator.
10Notice that in [29] the authors focus on the Hall conductance, which, however, for d = 2, as
in our setting, equals the Hall conductivity and hence is proportional to the Chern character.
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Consider the unitary multiplication operator U , defined by (Uψ)(x) =
U(x)ψ(x) with

U(x) :=

⎧
⎪⎨

⎪⎩

x1 + ix2√
x2

1 + x2
2

x1 + ix2 /∈ [0,+∞)

1 x1 + ix2 ∈ [0,+∞).
(2.15)

The unitary U represents a singular gauge transformation associated with
the insertion of a magnetic flux tube carrying one unit of quantum flux. As
emphasized in [5], it is not restrictive to consider only unitary operators with
unit winding number, like (2.15), see [5, Theorem 4.2]. Then, the index of pair
of projections P , UPU∗, is defined by

Index(P,UPU∗) := dim (ker(P − UPU∗ − 1))
−dim (ker(UPU∗ − P − 1)) ∈ Z. (2.16)

We show that the Chern character coincides with the index of a pair of
projection and hence is an integer, with no ergodicity or covariance assumption
on P .

Proposition 2.13. Let P be an orthogonal projection acting on L2(R2) which
is an exponentially localized projection in the sense of Definition 2.3. Let U be
the unitary multiplication operator defined in (2.15). Then,

C(P ) = Index(P,UPU∗) (2.17)

where C(P ) is the Chern character defined in (2.11) and Index(P,UPU∗) is
the index of pair of projections defined in (2.16).

The proof is postponed to Appendix A.

3. Main Result

We can now formulate our main result.

Theorem 3.1 (Localization of GWB implies Chern triviality). Let P be an
orthogonal projection acting on L2(R2), which is an exponentially localized
projection in the sense of Definition 2.3. Let D ⊂ R

2 be a r-uniformly dis-
crete set and let s > 4. Suppose that P admits a generalized Wannier basis
{ψγ,a}γ∈D,1≤a≤m(γ) which is s-localized around D, in the sense of Defini-
tion 2.5. Then, the Chern character of P is zero.

Notice that periodicity plays no role in Theorem 3.1. In non-periodic
context, one might think that a natural generalization of Bravais lattice is
a Delone set, which is both r-uniformly discrete and R-uniformly nowhere
sparse(5). However, in the proof of the above theorem only the property of D
to be uniformly discrete is used, via the“Generalized Maclaurin–Cauchy test”
(Lemma B.1).

As we have already mentioned in the Introduction, in the periodic context
the relation between the localization of Wannier bases and the topology of
the Bloch bundle is a well-established paradigm [62]. Inspired by the latter
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result, we conjecture that the remarkable dichotomic character that pertains
to periodic systems is actually a more general phenomenon.

Conjecture 3.2 (Localization dichotomy for non-periodic gapped systems).
Let P0 be the spectral projection, acting on L2(R2), corresponding to an isolated
component σ0 of an operator satisfying the hypotheses of Proposition 2.4. Then
there exists a number s∗ ≥ 1 such that the following statements are equivalent:
(a) P0 admits a generalized Wannier basis that is exponentially localized

around a r-uniformly discrete set, for some r > 0.
(b) P0 admits a generalized Wannier basis that is s-localized, with s ≥ s∗,

around a r′-uniformly discrete set, for some r′ > 0.
(c) P0 is Chern trivial in the sense that its Chern character C(P0) exists and

is equal to zero.

Clearly, (a) implies (b) by a simple inequality. The implication from (b)
(with s∗ > 4) to (c) is the content of Theorem 3.1, which is proved in the next
section. The open problem in the conjecture is to show that (c) is implies (a).
Moreover, since for any time-reversal symmetric system the Chern character
vanishes, see Proposition 2.12, proving that (c) is implies (a) would solve a
long standing conjecture about the existence of generalized Wannier bases for
time-reversal symmetric systems [70].
Furthermore, in view of the periodic counterpart, the threshold s∗ > 4 appear-
ing in Theorem 3.1 does not seem optimal. In fact, a generalization of the local-
ization dichotomy for periodic systems proved in [62] would require s∗ = 1.

Theorem 3.1, coupled with the techniques used in [70], allows to show
that the nonexistence of a well-localized GWB is stable with respect to suitable
perturbations, as detailed in the following Corollary. A similar stability result
concerning the vanishing of the Chern character holds also true.

Corollary 3.3 (Stability of the GWB delocalization). Consider the family of
Hamiltonian operators, acting in L2(R2),

Hλ =
1
2
(−i∇ − b0A − AZ2)2 + VZ2 + λW , λ ∈ R

where VZ2 is a smooth Z
2-periodic scalar potential, AZ2 is a smooth Z

2-
periodic vector potential, b0 ∈ 2πQ and A(x) = 1

2 (−x2, x1). Assume that
W is infinitesimally relatively bounded with respect to H0 and that the spec-
trum of H0 has an isolated component σ0 ⊂ (E−, E+), E± ∈ R \ σ(H0). For
|λ| small enough, say |λ| < δ, E± belong to the resolvent set of Hλ. Denote by
Pλ the spectral projection onto the spectral island σλ := σ(Hλ) ∩ (E−, E+). It
holds true that

(i) if the Chern number of P0 is different from zero, then for |λ| < δ the
projection Pλ does not admit any GWB that is s-localized for s > 4;

(ii) if P0 admits an s-localized GWB around a certain r-uniformly discrete
set for s > 4, then C(Pλ) = 0 for |λ| < δ.

Proof. Let us prove statement (i). We first consider λ = 0. Suppose by con-
tradiction that P0 admits a s-localized GWB, with s > 4. Then, in view
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of Theorem 3.1, the Chern character of P0 vanishes. This leads to a con-
tradiction since, as P0 commutes with a unitary representation of Z

2, one
has C(P0) = c1(P0) 
= 0. Consider now λ 
= 0. Since W is infinitesimally
small with respect to H0, Hλ defines an entire family of type A; hence, for |λ|
small enough E± belongs to the resolvent set of Hλ and σλ is a well-defined
isolated component of the spectrum [41, Remark VII.2.3, p. 379], such that
‖Pλ − P‖ ≤ C|λ| < 1. Assume now by contradiction that Pλ admits a GWB
that is s-localized for s > 4. Therefore, following the idea in [70], it is possi-
ble to unitarily transport the GWB back to the original system by using the
Kato–Nagy unitary operator U that intertwines P0 and Pλ. Moreover, since
Hλ satisfies the assumptions of Proposition 2.4, we can apply the result of
[22, Lemma C.1], which implies that U − 1 is an integral operator with an
exponentially localized kernel, that is a kernel satisfying (2.2). Hence, via a
Schur–Hölmgren estimate we get that

sup
a∈R2

‖〈· − a〉sU〈· − a〉−s‖ < +∞

which implies that U preserves the localization properties of the GWB. There-
fore, P0 admits a GWB that is s-localized. Then, Theorem 3.1 implies that
the C(P0) = 0, which is a contradiction.

The proof of statement (ii) follows a similar argument. �

4. Proofs

4.1. Well-Posedness of the Chern Character

The main result of this section is the proof that the operator χΛL
CP χΛL

with
P an exponentially localized projection, see (2.12), is trace class, and that its
trace is O(L2).

As anticipated in Sect. 2.2, the topological properties of the system are
encoded in the commutator

[
X̃1, X̃2

]
, and the Chern character is proportional

to

τ (CP ) = τ
(
i
[
X̃1, X̃2

])
= lim

L→+∞
1

4L2
Tr
(
χΛL

i
[
X̃1, X̃2

]
χΛL

)
. (4.1)

Now, we prove that for all L > 1, each summand of the commutator
χΛL

[X̃1, X̃2]χΛL
, and the terms involved in the direct computation (2.13) are

trace class.

Proposition 4.1. Let P be an exponentially localized projection acting on
L2(R2), let Xi, for i ∈ {1, 2}, denote the components of the position oper-
ator, and let χΛL

be the characteristic function of the set ΛL := [−L,L]2.
Then

(i) for every m,n,m′, n′ ∈ N = {0, 1, . . .} the operator

χΛL
P (Xi)m(Xj)m′

P (Xj)n(Xi)n′

is a trace class operator.
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(ii) Moreover, there exists C > 0 such that

|Tr(χΛL
P [[X1, P ] , [X2, P ]]χΛL

)| ≤ CL2 ∀L ≥ 1.

Proof. (i). Consider β as in inequality (2.2). Let η < β/3 and consider the
multiplication operators e−η‖X‖ and eη‖X‖. One has

χΛL
P (Xi)m(Xj)m′

P (Xj)n(Xi)n′

= χΛL
e4η‖X‖ e−4η‖X‖ P e2η‖X‖ (Xi)m(Xj)m′

e−2η‖X‖ P (Xj)n(Xi)n′
.

From estimate (2.2) and the triangle inequality it follows that
∣∣∣
(
e−4η‖X‖ P e2η‖X‖ (Xi)m(Xj)m′)

(x,y)
∣∣∣ ≤ Ce−η‖x‖e−(β−3η)‖x−y‖ ,

∣∣∣
(
e−2η‖X‖ P (Xj)n(Xi)n′)

(x,y)
∣∣∣ ≤ C ′e−(β−η)‖x−y‖e−η‖x‖ .

Thus, the two operators appearing on the l.h.s above have both integral kernels
in L2(R2 × R

2) and hence are Hilbert–Schmidt operators. Since the product
of two Hilbert–Schmidt operators is in the trace class ideal, and χΛL

e4η‖X‖ is
a bounded operator, the first part of the proposition is proved. In particular,
choosing m = 0 = m′ and n = 0 = n′, one concludes that χΛL

P 2 = χΛL
P is

trace class.
(ii). We have that

|Tr(χΛL
CP χΛL

)| = |Tr(χΛL
CP PχΛL

)| ≤ ‖χΛL
CP PχΛL

‖1

≤ ‖χΛL
CP P‖2‖PχΛL

‖2.

By writing explicitly the integral kernel of CP and exploiting that the kernel
of P is jointly continuous and satisfies (2.2), we obtain that there exist two
positive constants α and C such that

| (χΛL
CP P ) (x,y)| ≤ CχL(x)e−α‖x−y‖.

Hence, we can easily estimate the Hilbert–Schmidt norm of χΛL
CP P and PχΛL

by explicit integration and conclude the proof of the proposition. �

4.2. The Proof in a Nutshell

Let P be an exponentially localized projection that admits a GWB localized
around a r-uniformly discrete set D, with localization function G (see Defini-
tion 2.5). In general, one cannot expect the operators X̃i to be diagonal in the
GWB representation, as the expectation value of the position operators in the
GWB, namely 〈ψγ,a,Xiψη,b〉 , has nonvanishing off-diagonal elements. How-
ever, in order to understand the main idea behind our proof, let us suppose
for the moment that P admits a GWB made of generalized Wannier functions
localized on a r-uniformly discrete set D and with compact and mutually dis-
joint supports. In this setting, we have

〈ψγ,a,Xiψη,b〉 = 〈ψγ,a, X̃iψη,b〉 =: δγ,ηδa,bfi(γ, a), i ∈ {1, 2} , (4.2)

in view of the mutually disjoint support property of the GWFs. Then, the
operators X̃1 and X̃2 are diagonal operators in the generalized Wannier basis,
which implies that [X̃1, X̃2] = 0. Therefore, we can easily see from (4.1) that
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in such oversimplified setting the Chern character vanishes and Theorem 3.1
holds true.

Hence, we find convenient to introduce the operators Γi, for i ∈ {1, 2},
by setting

Γi :=
∑

γ∈D

∑

1≤a≤m(γ)

γi |ψγ,a〉 〈ψγ,a| , (4.3)

acting on the maximal domain D(Γi) :=
{

ϕ ∈ L2(R2) | ∑γ,a |γi|2|〈ψγ,a, ϕ〉|2
< +∞}.

The orthonormality of the GWB implies that

ΓiP = Γi = PΓi , ΓiΓj = ΓjΓi ,

and, obviously, one has τ([Γi,Γj ]) = 0. The strategy of the proof of Theo-
rem 3.1 is to control “how far” the commutator between the reduced position
operators is from the commutator between the operators Γi, when they are
localized on the compact region ΛL. In particular, we show that

∣∣∣Tr
(
χΛL

([
X̃1, X̃2

]
− [Γi,Γj ]

))∣∣∣ = O(L), (4.4)

which implies that

τ
([

X̃1, X̃2

])
= τ

([
X̃1, X̃2

]
− [Γi,Γj ]

)
= 0.

The proof consists in splitting the contribution of the difference of com-
mutators appearing in (4.4) in several terms and to show that each of these
terms separately goes at most linearly in L as L → ∞. The main ingredients
of our analysis are the estimates contained in the Proposition 4.2 which are of
two types:

• Estimates (4.6) and (4.5) show that the L2 norm contribution in ΛL

(resp. in Λc
L ) coming from the GWFs that have a center outside ΛL

(resp. inside ΛL) is at most of order L. Loosely speaking, when we look
at the norm of GWFs in a certain region of the plane, the error we make
by considering only the ones with the center in such region grows only
like the boundary of the region.

• The estimates (4.8-4.11) are used to analyze the contribution to the trace
in (4.4) coming from the fact that the reduced position operators X̃i are
not diagonal in the generalized Wannier basis, namely (4.2) does not hold
true in general. From the proof of (4.11), we have that such error is again
of order L as L → ∞.

4.3. Proof of Theorem 3.1

To make the proof as clear as possible, we first recollect in the next technical
proposition all the important estimates on the GWB that we need for the
proof. Notice that in order to estimate the values of certain series over the
r-uniformly discrete set D we make use of a generalized Cauchy–Maclaurin
test, see Lemma B.1, to obtain an upper bound using Lebesgue integrals over
the plane.
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Proposition 4.2. Let the hypotheses of Theorem 3.1 be satisfied. Then, there
exist two positive constants Imo, Imi such that, for every L ≥ 1, one has

∑

ξ∈ΛL, c

∥∥χΛc
L
ψξ,c

∥∥ ≤ Imo L , (4.5)

∑

ξ/∈ΛL ,c

‖χΛL
ψξ,c‖ ≤ Imi L . (4.6)

Moreover, there exists a function F : [0,+∞) → [0,+∞) such that

m(γ)∑

a=1

m(η)∑

b=1

|〈ψγ,a, (Xi − γi)ψη,b〉| ≤ F (‖γ − η‖) ∀ i ∈ {1, 2} , (4.7)

and the following integrability conditions are satisfied:
∫

R2
dxF (‖x‖) =: I1 < ∞ , (4.8)

∫

R2
dxF (‖x‖)2 =: I2 < ∞ , (4.9)

∫

R2
dxF (‖x‖) ‖x‖ =: I3 < ∞ . (4.10)

lim
L→+∞

1
L2

∫

ΛL

dx
∫

R2\ΛL

dy F 2(‖x − y‖) = 0 . (4.11)

The proof of Proposition 4.2, postponed to Appendix B.3, shows that one
can choose F in the form F (‖x‖) := ks〈x〉−(s−2−ε), for an arbitrary 0 < ε < 1.
However, we prefer to state the Proposition in the form above, to single out
the properties of F that will be used in the proof of Theorem 3.1. Indeed,
we now prove the statement of Theorem 3.1 using only the estimates (4.5)–
(4.11). For the sake of better readability, in the following the generic series∑

γ∈D∩ΛL

∑
1≤a≤m(γ) A(γ, a) and

∑
γ∈D

∑
1≤a≤m(γ) A(γ, a) will be written

shortly as
∑

γ∈ΛL,a A(γ, a) and
∑

γ,a A(γ, a), respectively.
Let us start by noticing that by a simple algebraic manipulation one has

χΛL

([
X̃1, X̃2

]
− [Γ1, Γ2]

)
= χΛL

[(
X̃1 − Γ1

)
,
(
X̃2 − Γ2

)]

+ χΛL

[(
X̃1 − Γ1

)
, Γ2

]
+ χΛL

[
Γ1,
(
X̃2 − Γ2

)]

=: T1 + T2 + T3 .

In the following, we show that each of the traces Tr(Ti), i ∈ {1, 2, 3}, goes at
most linearly in L as L → ∞.

First of all, note that all the terms in the commutators appearing in
χΛL

Tj , j ∈ {1, 2, 3} are trace class due to Proposition B.4. Let us start by
analyzing the trace of χΛL

T2. By substituting χΛL
= 1 − χΛc

L
and by exploit-

ing the fact that P is an orthogonal projection and that the GWB is an
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orthonormal basis of Ran(P ), we obtain
∣∣∣∣∣∣

∑

ξ,c

∑

γ,a

〈ψξ,c, χΛL
ψγ,a〉 〈ψγ,a, (X1 − γ1)ψξ,c〉 (ξ2 − γ2)

∣∣∣∣∣∣

≤
∑

ξ∈ΛL, c

∑

γ,a

δγ,ξδa,c| 〈ψγ,a, (X1 − γ1)ψξ,c〉 (ξ2 − γ2) |

+
∑

ξ∈ΛL, c

∑

γ,a

∣∣〈χΛc
L
ψξ,c, ψγ,a

〉 〈ψγ,a, (X1 − γ1)ψξ,c〉 (ξ2 − γ2)
∣∣

+
∑

ξ/∈ΛL ,c

∑

γ,a

|〈χΛL
ψξ,c, ψγ,a〉 〈ψγ,a, (X1 − γ1)ψξ,c〉 (ξ2 − γ2)|

=: T21 + T22 + T23 .

The first series, namely T21, is zero after the summation in γ. The series
T22 reads

∑

ξ∈ΛL, c

∑

γ,a

∣∣〈χΛc
L
ψξ,c, ψγ,a

〉 〈ψγ,a, (X1 − γ1)ψξ,c〉 (ξ2 − γ2)
∣∣

≤
∑

ξ∈ΛL, c

‖χΛc
L
ψξ,c‖

∑

γ∈D

F (‖γ − ξ‖)‖γ − ξ‖ ≤ KrI3Imo L ,
(4.12)

where we have used (4.5), (4.7) and (4.7), together with Lemma B.1 to estimate
the series with the integral. Analogously, by using (4.7), Lemma B.1, (4.6) and
(4.10), we get that |T23| ≤ KrI3Imi L.

Therefore, we have obtained an upper bound for the trace of χΛL
T2, that

is |Tr(χΛL
T2)| ≤ CL as L → ∞. An upper bound on the trace of χΛL

T3 is
obtained by a similar computation: it goes also at most linearly in L as L → ∞.
Hence, both these terms do not contribute to the thermodynamic limit (4.1).

It remains to estimate the trace of χΛL
T1. By similar computations as the

ones above, we can write χΛL
T1 =: R1 +R2 +R3, where Ri, i ∈ {1, 2, 3} are (a

posteriori absolutely convergent) series such that R3 contains the localization
function χΛc

L
, R2 contains the localization function χΛL

and R1 does not con-
tain neither χΛL

nor χΛc
L
. By using (4.6), (4.5) and (4.8) in a similar way as

in (4.12), one can show that R2 and R3 are absolutely convergent series that
go at most linearly in L, as L → ∞. This means that the only contribution to
the limit L → ∞ can come from R1. However, this is not the case as we now
show. Consider the series R1:

R1 :=
∑

γ,a

∑

η,b

∑

ξ∈ΛL, c

δγ,ξδa,c 〈ψγ,a, (X1 − γ1)ψη,b〉 〈ψη,b, (X2 − η2)ψξ,c〉

−
∑

γ,a

∑

η,b

∑

ξ∈ΛL, c

δγ,ξδa,c 〈ψγ,a, (X2 − γ2)ψη,b〉 〈ψη,b, (X1 − η1)ψξ,c〉 .

By using Lemma B.1 and (4.9), one easily gets that R1 is absolutely convergent
together with a non-optimal estimate (quadratic in L) for its sum. Let us now
show that also R1 goes at most linearly in L. By using the shorthand notation
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D(η, ξ, b, c) := 〈ψξ,c, (X1 − ξ1)ψη,b〉 〈ψη,b, (X2 − η2)ψξ,c〉, R1 can be written as

R1 =
∑

η,b

∑

ξ∈ΛL, c

D(η, ξ, b, c) −
∑

η∈ΛL,b

∑

ξ,c

D(η, ξ, b, c)

=
∑

η∈D\ΛL, b

∑

ξ∈ΛL, c

D(η, ξ, b, c) −
∑

η∈ΛL,b

∑

ξ∈D\ΛL, c

D(η, ξ, b, c) .

Notice that |D(η, ξ, b, c)| ≤ F 2(‖η − ξ‖) . For our purposes, we just need
to study the asymptotics of the absolute value of the series of R1, namely

|R1| ≤
∑

η∈D\ΛL, b

∑

ξ∈ΛL, c

|D(η, ξ, b, c)| +
∑

η∈ΛL,b

∑

ξ∈D\ΛL, c

|D(η, ξ, b, c)|

≤ 2
∑

η∈D\ΛL

∑

ξ∈ΛL

F 2(‖η − ξ‖).

From the proof of Proposition 4.2, it is clear that F is not in �1(D×D).
As we cannot invoke Lebesgue dominated convergence theorem in order to
perform the limit L → ∞, we explicitly estimate the series with Lemma B.1,
obtaining that

lim
L→∞

1
4L2

∑

η∈D\ΛL

∑

ξ∈ΛL

F 2(‖η − ξ‖) ≤ K2
r lim

L→+∞
1

4L2

∫

ΛL

dx

·
∫

R2\ΛL

dy F 2(‖x − y‖) (4.13)

where the limit vanishes in view of (4.11). Taking into account the last esti-
mate, and all the previous ones, we get (4.4), and the proof is concluded.
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Appendix A. Proof of Proposition 2.13

Before starting with the proof of Proposition 2.13, let us recall some known
facts about the index of a pair of projections. First, let p ∈ R

2 and Up be the
multiplication operator associated with the function U(· −p), clearly U0 ≡ U .
As it is proved in [5], we have that, for every p ∈ R

Index(P,UpPU∗
p) = Index(P,UPU∗) = Tr ((P − UPU∗)3)

=
∫

R6
dxdydzP (x,y)P (y, z)P (z,x)

·
(

1 − U(x)
U(y)

)(
1 − U(y)

U(z)

)(
1 − U(z)

U(x)

)
.

(A.1)

In particular, the first equality shows that the index (2.16) is translation invari-
ant.

A second crucial ingredient of the proof of Proposition 2.13 is the Connes
area formula [18, Lemma 9.2] regarding the area of the oriented triangle
spanned by three points in the plane. For every p,x,y ∈ R

2, let sin(∠(x,p,y))
be the sinus of the angle of view ∠(x,p,y) ∈ (−π, π) from p of x relative to y
(which is the angle formed by the segment y − p and x − p). One can easily
check that
(

1 − U(x − p)
U(y − p)

)(
1 − U(y − p)

U(z − p)

)(
1 − U(z − p)

U(x − p)

)

= −2i (sin ∠(x,p,y) + sin∠(y,p, z) + sin ∠(z,p,x)) =: S(p,x,y, z).

Then, the Connes area formula gives
∫

R2
dp S(p,x,y, z) = 2πi(x − y) ∧ (y − z)

where 1
2 (x − y) ∧ (y − z) is the oriented area of the triangle formed by x,y, z.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Localization of Generalized Wannier Bases

The proof of Proposition 2.13 exploits the translation invariance of the
index, expressed by (A.1), jointly with the Connes area formula, following
essentially the same strategy used in [29] for discrete models.

Proof of Proposition 2.13. To shorten the notation, let N := Index(P,UPU∗)
and Np := Index(Pp, UpPU∗

p). Moreover, we will denote by K the irrelevant
strictly positive constants appearing in the proof. From (A.1) we have Np = N
for every p ∈ R

2; hence,

N = |ΛL|−1

∫

ΛL

dpNp

= |ΛL|−1

∫

ΛL

dp
∫

R2
dx
∫

R2
dy
∫

R2
dzP (x,y)P (y, z)P (z,x)S(p,x,y, z)

=: |ΛL|−1

∫

ΛL

dp
∫

R2
dx f(p,x).

By suitable estimates on the decay of f , we have that f is integrable in both
R

2 × ΛL and ΛL ×R
2, see (A.3). Therefore, the proof is reduced to show that

it is possible to exchange the role of the integral in p with the integral in x up
to an error of order L−1/2, which eventually goes to zero by taking the limit
L → ∞. More precisely, by adding and subtracting the same term, we get
∫

ΛL

dp
∫

R2
dxf(p,x) =

∫

R2
dp
∫

ΛL

dx f(p,x) −
∫

R2\ΛL

dp
∫

ΛL

dx f(p,x)

+
∫

ΛL

dp
∫

R2\ΛL

dxf(p,x) =:
∫

ΛL

dx
∫

R2
dp f(p,x) + R1 + R2.

By using the exponential localization of the integral kernel of P , we now prove
a decay estimate on f ; after that, exploiting such estimate, we show that the
error terms R1 and R2 are of actually of order L

√
L.

First, by using the trivial inequality |S(p,x,y, z)| ≤ 3 and the expo-
nential localization of the integral kernel of the projection, we get that f is
uniformly bounded, that is |f(p,x)| ≤ K, for all p,x ∈ R

2.
Assume now that |x − p| ≥ 1. We first consider the contribution to the

integral in case either y or z are outside the ball of radius |p − x| centered in
x, denoted by B|p−x|(x). We can bound such contribution by

3
∫

y/∈B|p−x|(x)

dy
∫

R2
dz|P (x,y)P (y, z)P (z,x)|

+ 3
∫

R2
dy
∫

z/∈B|p−x|(x)

dz|P (x,y)P (y, z)P (z,x)|

≤ K1

∫

|y−x|≥|p−x|
dy|P (x,y)| ≤ Ke− β

2 |p−x|

where we have used that P has an exponentially localized integral kernel. It
remains to control the contribution coming from the points where both y and
z are inside B|p−x|(x). By a geometric argument, one can prove that ∠(y,p,x)
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and ∠(z,p,x) must be in (−π
2 , π

2 ). Then, consider the following two estimates:
for α, β ∈ (−π

2 , π
2 )

| sin(α) + sin(β) − sin(α + β)| = | sin(α)(1 − cos(β)) + sin(β)(1 − cos(α))|
≤ | sin(α)|2| sin(β)| + | sin(β)|2| sin(α)|

and, for every y such that |y − x| < |p − x|, we obtain | sin(∠(y,p,x))| ≤
|y − x||p − x|−1. Therefore, we get

|S(p,x,y, z)| ≤ |y − x|2|x − z| + |y − x||x − z|2
|p − x|3 . (A.2)

Hence, by using (A.2) together with the exponential localization of P , we
obtain

|f(p,x)| ≤ K
1

|x − p|3
∫

R2
dy
∫

R2
dz e− β

2 |x−y|e− β
2 |z−x| ≤ K

1
|x − p|3 .

For |x − p| ≥ 1, we have 〈|x−p|〉
|x−p| ≤ 2. Therefore, putting together all the

previous estimates, we obtain

|f(p,x)| ≤ K2χ|x−p|≤1(x,p) + K3χ|x−p|>1(x,p)〈x − p〉−3 ≤ K〈x − p〉−3 .

(A.3)

By simple estimates and integration exploiting (A.3), one can show that
the error terms are of order L

√
L as L → ∞; thus, we obtain

∫

ΛL

dp
∫

R2
dx
∫

R2
dy
∫

R2
dzP (x,y)P (y, z)P (z,x)S(p,x,y, z)

=
∫

ΛL

dx
∫

R2
dp
∫

R2
dy
∫

R2
dzP (x,y)P (y, z)P (z,x)S(p,x,y, z) + O(L

√
L).

Finally, by performing first the integral with respect to p and then using
Connes area formula the proof is concluded. �

Appendix B. Technical Results

B.1. Generalized Maclaurin–Cauchy Test

The proof of Theorem 3.1 is based on the estimates of series evaluated on
points of the discrete set D. Because of that, it is useful to have an efficient
tool to estimate the value of the series we are interested in. The next lemma
concerns a generalized Maclaurin–Cauchy estimate that serves exactly this
purpose.

Lemma B.1 (Generalized Maclaurin–Cauchy test). Let D ⊂ R
2 be a r-

uniformly discrete set. Consider a continuous function

D : R2 → R ,
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such that |D(x)| ≥ |D(y)| whenever |x| ≤ |y|. Then, there exists a constant
Kr, depending on r but independent of L, such that for every L > 2r it holds
that

∑

γ∈D∩ΛL

|D(γ)| ≤ Kr

∫

ΛL

dx|D(x)| . (B.1)

Proof. The proof is based on the same argument of the well-known Maclaurin–
Cauchy integral test. First of all, by the hypothesis on D, it holds that

D ∩ Br(γ) = {γ} , ∀γ ∈ D.

Fix ρ = 2r. By hypothesis on D, the number of points of D such that |γ| < ρ
is finite, so their contribution to the series is finite, say Kρ ∈ R+. Hence, one
has

∑

γ∈D∩ΛL

|D(γ)| = Kρ +
∑

γ∈D∩ΛL,|γ|≥ρ

|D(γ)| . (B.2)

For every point γ ∈ D ∩ ΛL such that |γ| ≥ ρ, one constructs a square Ar(γ)
of area r2

2 such that one of its vertices is γ and for all x ∈ Ar(γ) it holds that
|x| ≤ |γ|. (For example, Ar(γ) might be the open square of diagonal length
equal to r constructed along the line passing through the origin and γ). It is
also true that

Ar(γ) ∩ D = {γ} , Ar(γ) ⊂ ΛL .

Therefore, we obtain that
∑

γ∈D∩ΛL,|γ|≥ρ

|D(γ)| =
2
r2

∑

γ∈D∩ΛL,|γ|≥ρ

|D(γ)|r
2

2

≤ 2
r2

∑

γ∈D∩ΛL,|γ|≥ρ

∫

Ar(γ)

dx |D(x)| ≤ 2
r2

∫

ΛL

dx|D(x)| .

Then, considering (B.2) and Λρ ⊆ ΛL, we get that

∑

γ∈D∩ΛL

|D(γ)| ≤
⎛

⎝r2Kρ

2

(∫

Λρ

dx |D(x)|
)−1

+ 1

⎞

⎠ 2
r2

∫

ΛL

dx|D(x)| .

(B.3)

This proves the claim, with the constant Kr given by the bracketed expression
exhibited in the l.h.s of (B.3). �

Remark B.2. The result of Lemma B.1, namely inequality (B.1), still holds
true if, instead of the radial monotonicity of the function D : R

2 → R, we
require only a directional monotonicity, that is |D(x)| ≥ |D(y)| whenever
|xi| ≤ |yi|, for i = 1 or i = 2. The strategy of the proof is exactly the same,
one just need to replace the square Ar(γ) with another suitable r-dependent
set such that Ar(γ) ⊂ ΛL, |Ar(γ)| = r2

2 , and |xi| ≤ |γi| for all x ∈ Ar(γ).
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B.2. Properties of the Operators Γi

In this section, we collect the properties of the operators Γi that are used in
the proof of Theorem 3.1.

Lemma B.3. Let D be a r-uniformly discrete set, and {ψγ,a}γ∈D,1≤a≤m(γ) a
GWB G-localized around D. Then, the operators Γi defined by (4.3) are integral
operators. Moreover,

(i) if G(‖x‖) = e2α‖x‖ with α < β for β as in (2.2), then the integral kernel
Γi(x,y) satisfies

|Γi(x,y)| ≤ Ce−β′|x−y| + C ′|xi| e−β′|x−y|

for C,C ′ > 0 and β′ < α.
(ii) if G(‖x‖) = 〈x〉2s with s > 3

2 , then the integral kernel Γi(x,y) satisfies

|Γi(x,y)| ≤ C〈x − y〉−(s− 3
2−ε) + C ′|xi| 〈x − y〉−(s−1−ε)

for every 0 < ε < s − 3
2 .

Proof. Let us show only the proof of (ii), since the proof of (i) is similar and
simpler. The formal integral kernel of Γi is given by

Γi(x,y) =
∑

γ,a

γiψγ,a(x)ψγ,a(y) .

For every fixed x,y ∈ R
2, the sum over the indices {γ, a} is absolutely

convergent. Indeed, fix 0 < ε < s − 3
2 , since ‖x − γ‖ 〈x − γ〉−1 ≤ 1, we get

that

|Γi(x,y)| ≤
∑

γ,a

〈x − γ〉−(s−1)〈y − γ〉−s +
∑

γ,a

|xi|〈x − γ〉−s〈y − γ〉−s

≤ Cs〈x − y〉−(s− 3
2−ε)

∑

γ,a

〈y − γ〉−( 3
2+ε)〈x − γ〉−( 1

2+ε)

+ Cs|xi| 〈x − y〉−(s−1−ε)
∑

γ,a

〈y − γ〉−(1+ε)〈x − γ〉−(1+ε)

≤ C〈x − y〉−(s− 3
2−ε) + C ′|xi| 〈x − y〉−(s−1−ε) ,

(B.4)

where again in the first inequality we have used L∞ estimate on the GWF (2.6),
in the second inequality we have used the property (2.1) of the localization
function G (denoting by Cs the constant CG appearing in (2.1)) and in the
last inequality we have used Hölder’s inequality. Hence, the operators Γi admit
an integral kernel. �

As a consequence of the previous estimates on the integral kernels, the
operators Γi enjoy some trace class properties.

Proposition B.4. Let P be an exponentially localized projection and Xi, Γi, for
i ∈ {1, 2} and χΛL

as defined above. Assume that P admits a GWB, G-localized
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around a r-uniformly discrete set D, with localization function G(‖x‖) = 〈x〉2s

for some s > 7
2 . Then, for every i, j ∈ {1, 2} the operators

χΛL
PXiP Γj , χΛL

P ΓiP Xj , χΛL
P ΓiP Γj ,

are trace class in L2(R2).

Proof. The strategy of the proof is the same of Proposition 4.1. Let us show
the computations explicitly for the operator χΛL

P Γ1 P X2, the other cases
can be treated similarly.

Since Γ1 commutes with P , and P 2 = P , we have that

χΛL
P Γ1 P X2 = χΛL

P P Γ1 X2 = χΛL
P Γ1 X2

= χΛL
e2α‖X‖ e−2α‖X‖ P eα‖X‖ e−α‖X‖ Γ1 〈X〉 〈X〉−1 X2 ,

where we have chosen the constant α strictly smaller than the exponent β
appearing in (2.2). Then, by using the estimate (2.2) and triangular inequality,
we have that

∣∣∣
(
e−2α‖X‖ P eα‖X‖

)
(x,y)

∣∣∣ ≤ Ce−α‖x‖e−(β−α)‖x−y‖

for some positive constants C. Therefore,
(
e−2α‖X‖ P eα‖X‖) is a Hilbert–

Schmidt operator. Similarly, considering (B.4) instead of (2.2), we have
∣∣∣
(
e−α‖X‖ Γ1 〈X〉

)
(x,y)

∣∣∣ ≤ e−α̃‖x‖C〈x − y〉−(s− 5
2−ε) ,

where 0 < α̃ < α. Since s > 7
2 , we can choose ε small enough so that the

integral kernel of
(
e−α‖X‖ Γ1 〈X〉) is in L2(R2 × R

2) and hence the operator
is Hilbert–Schmidt. Eventually, since 〈X〉−1 X2 and χΛL

e2α‖X‖ are bounded
operators and the product of two Hilbert–Schmidt operators is trace class, the
proof is over. �

Remark B.5. Although the proofs of Proposition 4.1 and Proposition B.4
appear similar, their hypotheses have a crucial difference. Proposition 4.1
requires only the localization of the integral kernel of the projection, which
follows from the existence of a gap in the spectrum of H, while Proposi-
tion B.4 requires, beyond the gap assumption, the existence of a GWB for
the projection with a particular decay of the GWFs.

B.3. Proof of Proposition 4.2

Consider ΛL = [−L,L]2 ⊂ R
2 and γ ∈ D ∩ ΛL. To estimate “how much of

ψγ,a is outside ΛL,” we consider
∥∥χΛc

L
ψγ,a

∥∥ where χΛc
L

is the characteristic
function of the complementary set of ΛL. We get

∥∥χΛc
L
ψγ,a

∥∥ ≤
(

sup
x∈R2

(
χΛc

L
(x)〈x − γ〉−2s

) ∫

R2
〈x − γ〉2s|ψγ,a(x)|2dx

) 1
2

≤ M
1
2
(〈L − |γ1|〉−2s + 〈L − |γ2|〉−2s

)
.

(B.5)
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Using Remark B.2, one can see by explicit integration that, if s > 1
2 , then both

terms on the right-hand side of (B.5) are integrable in R and therefore there
exists a positive constant Imo such that

∑
ξ∈ΛL, c

∥∥χΛc
L
ψξ,c

∥∥ ≤ ImoL .

If, instead, γ is outside ΛL we have that

‖χΛL
ψγ,a‖ ≤

(
sup
x∈R2

[
χΛL

(x)〈x − γ〉−2s
] ∫

R2
〈x − γ〉2s|ψγ,a(x)|2dx

) 1
2

≤ M
1
2
(〈|γ1| − L〉−2sχA1(γ) + 〈|γ2| − L〉−2sχA2(γ)

)

+ M
1
2 〈
√

||γ1| − L|2 + ||γ2| − L|2〉−2sχA3(γ) ,

(B.6)

where A1 := ([−∞,−L]∪[L,∞])×[−L,L], A2 := [−L,L]×([−∞,−L]∪[L,∞])
and A3 := Λc

L \ (A1 ∪ A2), and χAi
, with i ∈ {1, 2, 3}, is the characteristic

function of the set Ai. As in the previous case, using Lemma B.1 and Remark
B.2, one can see by explicit integration that, if s > 1

2 , then the first two terms
on the right-hand side of (B.6) are integrable in R and, if s > 1, the last term
is integrable in R

2. Therefore, there exists a positive constant Imi such that∑
ξ/∈ΛL ,c ‖χΛL

ψξ,c‖ ≤ ImiL .
It remains to prove the second part of Proposition 4.2, concerning the

off-diagonal terms of X̃i. Considering the generic matrix element of X̃1 − Γ1,
one has

m(γ)∑

a=1

m(η)∑

b=1

| 〈ψγ,a, (X1 − γ1)ψη,b〉 |

≤ (m∗)2 max
1≤a≤m(γ)

max
1≤b≤m(η)

| 〈ψγ,a, (X1 − γ1)ψη,b〉 |

≤ (m∗)2
∫

R2
dx |ψγ,ã(x)| |x1 − γ1|

∣∣∣ψη,b̃(x)
∣∣∣ ,

where ã and b̃ are the maximizers of | 〈ψγ,a, (X1 − γ1)ψη,b〉 |. Therefore, we get
that

〈γ − η〉s−1(m∗)2
∫

R2
dx |ψγ,ã(x)| |x1 − γ1|

∣∣∣ψη,b̃(x)
∣∣∣

≤ Cs(m∗)2
∫

R2
dx 〈γ − x〉s−1 |ψγ,ã(x)| 〈x − γ〉〈x − η〉s−1

∣∣∣ψη,b̃(x)
∣∣∣

≤ Cs(m∗)2M ,

where in the last inequality we have used Cauchy–Schwarz inequality together
with property (2.5). This implies that

(m∗)2
∫

R2
dx |ψγ,a(x)| |x1 − γ1| |ψη,b(x)| ≤ ks〈γ − η〉−(s−1).

As clear from the above computation, ks depends, actually, also on
m∗,K,Cs. The same computation goes through exchanging X1 − γ1 with
X2 − γ2. Therefore, the function F defined by

F (‖x‖) := ks〈x〉−(s−1−ε) (B.7)
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satisfies (4.7). A direct computation shows that F satisfies also the require-
ments (4.8) for every s > 3, (4.9) for every s > 2, and (4.10) for every s > 4.

Finally, we show that (4.11) is satisfied for every s > 3. Indeed, let ε = s−3
100

and consider the integral
∫

ΛL

dx
∫

R2\ΛL

dy
1

(1 + ‖x − y‖2)(s−1−ε)
. (B.8)

Since the integrand is positive, the order of integration does not affect the
result. For a fixed x ∈ ΛL and α := s − 1 − ε, we have the inequality

1
(1 + ‖x − y‖2)α

≤ 1
(1 + ‖x − y‖2)

α
2

1
(1 + (dist(x, ∂ΛL))2)

α
2

. (B.9)

Since s > 3, the right-hand side in (B.9) is integrable in y, and hence we
obtain∫

ΛL

dx
∫

R2\ΛL

dy
1

(1 + ‖x − y‖2)α
≤ C

∫

ΛL

dx
1

(1 + (dist(x, ∂ΛL))2)
α
2

for some positive constant C. By an elementary estimate and explicit inte-
gration, one can see that the integral with respect to x is of order L. This
concludes the proof. �
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