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1.  Introduction

Best estimate of unpaid claims is probably the most important liability 
for non-life insurance companies. Earnings reports, financial statements 
and management decisions are affected by this evaluation. Traditionally, 
the evaluation of claims reserve focused on deterministic methodology 
(see [9]). Over the last twenty years, stochastic methodologies allowed to 
include percentiles and confidence regions at accident, development or 
calendar years levels. In particular, rather than trying to provide a specific 
estimate, the unpaid claim analysis process has focused on understanding 
the variability around the estimate by identifying a range of reasonable 
estimates using different methods and assumptions. 

The validation of the models on actual data and the comparison 
of these models’ appropriateness is nowadays a crucial question. 
Comparison and selection of optimal models have been recently explored 
in the literature. An investigation about bootstrap models has been 
developed in [20]. A case study is performed in [35] in order to analyze 
the accounting year effects in the triangles. [29] and [28] provide other 
comparisons based on QQ-plots and PP-plots. A specific focus has been 
devoted to the validation of methods in [16]. Three methods, the double 
chain ladder, the Bornhuetter-Ferguson and the incurred double chain 
ladder methods are compared through two real data sets from property 
and casualty insurers. Supported by real-life claims data, the authors in 
[30] compare three models with different residual adjustments using the 
Dawid–Sebastiani scoring rule. Alternative stochastic claims reserving 
methods are compared in [17] by means of a wide range of goodness-of-fit 
measures. 

In this paper, we focus on different Bornhuetter-Ferguson models 
provided in the literature and we backtest their behavior on the database 
published in [22]. The aim is to test both the ability of different models 
to well predict future losses as well as to evaluate the effects of different 
priors on the results. The performances of these models are then compared 
with the classical bootstrap over-dispersed Poisson model.

Additionally, we test the uncertainty of the predictions by comparing 
the coefficient of variation of different models. The paper is structured 
as follows. In Section 2, we describe the methodological aspects of the 
Bayesian Bornhuetter-Ferguson model. In particular, we focus on the 
alternative priors that can be introduced and will be tested in the numerical 
section. In Section 3 we describe the dataset and we provide a detailed 
description of the data selection process applied to assure consistency 
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in the model comparisons. Additionally, a synthetic description of the 
compared models is provided. In Section 4, we summarize the alternative 
metrics used to analyze models’ performance and determine an order of 
appropriateness. Additionally, main results are reported with a related 
discussion. Conclusions follow.

2.  Bayesian Bornhuetter-Ferguson model

We mainly describe in this section the Bayesian Bornhuetter-Ferguson 
(BBF) model provided in [8] that will be tested in Section 4. 

We consider a run-off triangle with rows = 0,...,i n  and columns 
= 0, ...,j n  representing accident and development years, respectively. 

This structure is peculiar in the actuarial context and is used in order 
to project elements to their ultimate value, according to a past observed 
pattern, opportunely weighted. This run-off triangle can be divided in 
two parts, the upper one, representing observed elements, and the lower 
one, representing what has to be estimated by the model. In practice, 
claims reserving approach are usually based on this structure, and try 
to estimate future realizations by means of the set of past observations. 
We denote the upper triangle of incremental payments ,i jP  using the set 

,= { : }.n i jD P i j n+ ≤

We start by reporting main assumptions of the BBF model: 
(1)	� There exists 0 0, ..., , , ,n nµ µ γ γ φ  independent random variables with 

joint density ( )u ⋅  
(2)	� Parameters iµ  are Γ -distributed, with mean > 0im  and shape 

parameter > 0 :ia  

, i
i i

i

a
a

m
µ

 
Γ   



(3)	� Parameters jγ  are Γ -distributed, with mean > 0jc  and shape 
parameter > 0 :b  

,j
j
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c

γ
 

Γ  
 



(4)	 Parameter > 0φ  is a constant 
(5)	� Conditionally given 0 0= ( , ..., , , , ),n nµ µ γ γ φΘ  the incremental 

payments ,i jP  are independent random variables with: 
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The posterior density of Bayesian over-dispersed Poisson (ODP) 
model can then be expressed, given ,nD  as:
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Since the model is embedded in a Bayesian framework, one of the 
most important point consists in the choice of the amount of information 
contained in the priors. Given the assumption of gamma distributions for 

iµ  and ,jγ  the informativity can be expressed by the shape parameters ia  
and b, or analogously by the coefficient of variations (CV) 1/ ia  and 1/ .b  
Using the coefficient of variation of the prior distribution, it is possible to 
divide the priors in [32]: 

= 0 strong prior
(0,1) informative prior

( )
[1, ) vague prior

= non - informative prior

uCV


∈⋅ 
∈ ∞
 ∞

It is worth pointing out two extreme situations: the strong prior case, 
where the distribution is degenerate on its mean and the non-informative 
prior case, where the distribution is spread with same probability on its 
whole domain. 

Considering the claims development parameter ,jγ  it is possible to 
assume a non-informative prior and obtain a closed form (see [8] for the 
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proof) of the maximum a-posteriori (MAP) predictor for the strong and 
non-informative iµ  priors. As regard to the strong prior case, it is possible 
to obtain in a closed form the estimate of claims reserve according to the 
minimum mean squared error (MMSE) predictor, which corresponds to 
the reserve provided in [15] with raw claims development parameters.

Except for the cases mentioned above, the structure of the model 
does not permit to arrive at a closed solution, but requires the application 
of a Markov-Chain Monte Carlo (MCMC) approach (see, e.g., [19] [12]) 
for estimating the posterior distribution of the parameters and the 
(predictive posterior distribution of) claims reserve. Since each row 
and column parameter is distributed (conditionally) as an independent 
Gamma distribution with specific parameters, it is possible to apply he 
Gibbs sampler procedure to estimate the posterior distribution of each 
parameter. 

Hence from the empirical sample ( )
>( )s

s SΘ  obtained by the Gibbs 
sampler, we can simulate the incremental payments of the lower triangle: 

( ) ( ) ( )
, (1)
s s s

i j i jP
Poi

µ γ

φ φ

 ⋅
   



From this result, it is then possible to estimate all the elements we 
are interested in the run-off triangle. In particular, we can easily derive 
the sample of claims reserve for all the accident year ( )

>( ) ,s
i s SR  where each 

element is computed by means of: 

( ) ( )
,

= 1
= (2)

n
s s

i i j
j n i

R P
− +
∑

This sample provides the empirical posterior distribution of ,iR  from 
which we can obtain the mean and MSEP of claims reserve.

3.  Preliminaries

3.1 Objective of the analysis

The empirical analysis has the objective of studying the application 
of the model described in previous section on a real dataset of insurance 
companies and to compare the results with a classical Bootstrap Over-
dispersed Poisson (ODP) methodology (see [7] and [6]).

In the first part of the analysis we study the predictive capacity of the 
model, by comparing a series of predictive statistics computed as function 
of the model outcomes and considering the observed payments.
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Then we study the variability of the estimation, by analyzing the 
pattern of coefficient of variation of estimated claims reserve for companies 
with different sizes.

3.2 Data description

The analysis described in the following section is based on the 
information coming from a dataset containing different companies’ relevant 
information. This dataset is provided in [20] and is based on Schedule P 
of American companies published by National Association of Insurance 
Commissioners (NAIC), the U.S. standard-setting and regulatory support 
organization created and governed by the chief insurance regulators from 
the 50 states, the District of Columbia and five U.S. territories.

More specifically we have six separate datasets, one for each line of 
business (LoB), with data for the companies operating in that business. 
These lines correspond to homogeneous segments of insurance portfolios 
based on coverage types, whose definitions can be found in [24], and are 
typically characterized by different run-off behaviors, payment patterns 
and claims reserve volatility. In particular, they are Commercial auto and 
truck liability and medical, Medical malpractice, Private passenger auto liability 
and medical, Product liability, Workers’ compensation and Other liability.

Table 1 summarizes the information reported in the dataset of a given 
LoB.

Table 1
Dataset description 

  Variable name  Description
1. GRCODE NAIC Company code, including both single companies 

and groups 
2. GRNAME NAIC Company name, including both single companies 

and groups 
3. AccidentYear Accident year, ranging from 1988 to 1987 
4. DevelopmentYear Development year, ranging from 19988 to 1987
5. DevelopmentLag Development lag, ranging from 0 to 9
6. IncurrLoss Incurred losses and allocated expenses reported at 

year end 
7. CumPaidLoss Cumulative paid losses and allocated expenses at 

year end 
Contd...
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8. BulkLoss Bulk and IBNR reserves on net losses 
9. PostedReserve97 Posted reserves 
10. EarnedPremDIR Premiums earned at incurral year - direct and 

assumed 
11. EarnedPremCeded Premiums earned at incurral year - ceded 
12. EarnedPremNet Premiums earned at incurral year - net 
13. Single Entity indicator, 1 for single entity and 0 for group 

insurer 

We have at disposal the fundamental information needed in order 
to apply claims reserving methods. In particular we can determine 
approximately the size of the company and its development over time by 
means of EarnedPrem variables. From the variables CumPaidLoss and 
IncurrLoss we can build the upper triangles used for applying the specific 
reserving methods and backtest the results by means of the same data, 
built using the information on the whole development.

3.3 Data selection, pre-processing and simulation setting

The dataset presented above also includes several companies showing 
an uncommon behavior, because of closure, merging, change of business 
or other events. It shall be noted that we do not have at disposal the 
specific information about the actual situation for each company, but we 
had to infer from the Schedule P data only. Therefore, in order to present 
an empirical analysis as much consistent as possible, we chose to select 
only a subset of the whole dataset, based on quality and consistency of the 
company data available.

We decided to follow the logic of Data selection process proposed in [20] 
and excluded from the analysis the companies showing an inconsistent 
dynamic over time. For instance, we removed companies with earned 
premiums equal to 0 or negative.

The number of companies before and after the data selection process 
are reported in Table 2; while the main statistics of the selected companies 
are reported in Table 3. Given the high volatility of the data for Medical 
malpractice and Products Liability, we preferred to focus only on the 
other four LoBs. We notice in Table 3 how the Private Passenger LoB is 
characterized by important differences in terms of companies’ size, while 
the ultimate loss ratio distribution shows the lowest relative volatility.
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Table 2
 Lines of business and number of companies 

Line of Business N available 
companies 

N selected 
companies 

Commercial auto/truck liability/medical 158 50 
Private passenger auto liability/medical 146 50 
Workers’ compensation 132 45 
Other liability 239 45 

Table 3
Main statistics on selected companies. For each LoB, we report the average 

premium and the average ultimate Loss Ratio observed. Between brackets, we 
display the coefficient of variation of premium and loss ratio distributions, 

respectively 

Line of Business Average premium 
(CV) 

Average ultimate 
LR (CV)

Commercial auto/truck liability/
medical 

185,117.3  (289.46%) 66.84%  (24.71%)

Private passenger auto liability/
medical 

3,029, 476  (552.29%)  75.10% (13.62%)

Workers’ compensation 293,505  (188.16%)  62.56% (17.18%)

Other liability 115, 430.7  (328.73%)  52.14%  (41.39%)

In order to perform the empirical analysis of the claims reserving 
models on the selected dataset we need to define a precise simulation 
setting. We choose to have = 100,000S  samples from simulations for 
each model. We have specified 100,000  samples instead of simulations, 
because for the BBF models, being based on a MCMC approach, we have 
applied a burn-in of the first = 10,000b  simulations, in order to minimize 
the effect of the starting parameters. This b parameter has been chosen big 
enough to ensure this scope, without a specific calibration. In addition, we 
did not apply any thinning of the chain since, from a preliminary analysis 
on some sample companies, it seems that the autocorrelation was not 
relevant, and in addition it would have required a much larger number of 
simulations in order to achieve the same sample size.

An important point regarding the application of these models on the 
dataset is about the cases where run-off triangles showed incremental 
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payments lower than 0 in the upper part. This circumstance can be 
problematic for both Bootstrap and BBF models. In particular, this is 
related with the framework described in Section 2 for BBF models, and 
similar for Bootstrap, which assumes that incremental payments are ODP 
distributed. This practical issue has been solved as described in Section 4 
of [27].

3.4 Models description

In the empirical analysis we compare ODP Bootstrap with 5 BBF 
models, each one based on a different calibration of its priors. In particular, 
the characteristics of these models are reported below. We briefly list the 
characteristics of the model applied to the dataset described in Section 3.3

1. ODP Bootstrap 

The application of the ODP Bootstrap is based on the theoretical 
framework described in [7] and [6]. 

2. BBF1 

The first version of the BBF model is based on the theoretical 
framework described in Section 2, assuming that the prior information for 
the ultimate losses is based on the estimate obtained from the application 
of Mack BF model [14].

It means that the mean of the prior parameter iµ  is obtained as: 
 * *ˆ( ) = = (3)ii i i iB LR B r mµ ⋅ ⋅ ⋅

where the term iB  represents the amount of earned premiums and  iLR  
the estimate ultimate loss ratio, obtained by the product of *

ir  and *ˆ .m  
These two last elements represent the loss ratio index and the selected 
individual loss ratio. For the details on the procedure refer to [14].

Regarding the uncertainty in this prior, we choose a strong informative 
prior such that ( ) = 0.iCV µ

For the settlement speed we choose a non-informative prior, with 
mean given by the estimation obtained by the ODP calibration. 

3. BBF2 

This version of BBF model is based on the same framework of BBF1, 
but assuming not-informative priors for both iµ  and .jγ  From [8] we 
already know that the estimation of claims reserve from this model will 
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be close to the ODP Bootstrap one. In fact, using non-informative priors 
the estimate of claims reserve will be mainly dependent on the underlying 
ODP model assumption for incremental payments, as in ODP Bootstrap.

One problem that arises in the practical application is related with 
the autocorrelation of MCMC samples, which is particularly relevant 
under this model assumptions. The classical solution we adopted in this 
case is to apply a thinning of the samples, by selecting only a sample of the 
chain every n (where this value depends on the degree of autocorrelation).

4. BBF3 

This version of the BBF model is based on the theoretical framework 
described in Section 2, assuming that the prior information for the ultimate 
losses is based on the product between earned premiums and market 
ultimate loss ratio.

In practice, the mean of prior parameter iµ  is obtained as: 
( ) = (4)i i iB LRµ ⋅

where iLR  is the expected ultimate loss ratio of the company.
In this case we know the amount of earned premium for each accident 

year from the dataset (see Table 1), however we do not know the target loss 
ratio of the company. For this reason we need a proxy to use in place of the 
company’s loss ratio, since we do not have this information. In this case 
we use the market loss ratio of the US companies for the same LoB. This 
LR represents the ratio between incurred losses and earned premiums at 
market level, as reported in NAIC report [23]. Hence, in Formula (4) we 
substitute iLR  with ,mLR  which is the loss ratio at market level, fixed for 
each accident year.

For the variability of the prior ultimate cost, we choose a strong 
informativity ( ) = 0,iCV µ  while for the jγ  prior we use the same 
assumptions as BBF1.

5. BBF4 

In this version we choose a market-based approach for both priors of 
BBF model.

For the ultimate cost prior iµ  we use the same mean and variance 
as in BBF3. For the settlement speed prior we set the mean at market 
level, computed as the ratio of cumulative payments over incurred losses, 
calculated on the last diagonal, for the aggregate of companies in the 
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market. More specifically, for a generic development year j, the formula 
for computing the settlement speed is: 

,

,

= (5)
c
j n jc C

j c
j n jc C

P
s

I
−∈

−∈

∑
∑

where C is the number of companies we have at disposal for that LoB.
Regarding the uncertainty in the jγ  prior we choose a strong 

informativity, with ( ) = 0.jCV γ

6. BBF5 

This last alternative is based on the same calibration of BB4, but 
setting the uncertainty of both the priors as informative, rather than strong 
informative, with ( ) = ( ) = 0.5.i jCV CVµ γ  

We summarize in Table 4 the assumptions of the different BBF models 
we applied. As reported in the Table the aim is to test the effects on the 
prediction and on the volatility of the claims reserve of different approaches 
for the calibrations of the priors iµ  and jγ  providing alternative solutions 
for the informativity of the priors.

4.  Analysis

4.1 Performance metrics

In the claims reserving context we are interested in predicting the 
future development in a way such that our estimate is close to the actual 
(ex-post) realization. Therefore, in the analysis of predictive performance 
we compare the estimate of claims reserve obtained from each method 

Table 4
Summary of BBF models prior parameters 

 mi gj

Model  Mean  CoV  Mean  CoV
 BBF1  Mack BF  0  ODP estimate  ∞  
BBF2  Mack BF ∞   ODP estimate  ∞  
BBF3  Market LR  0  ODP estimate  ∞  
BBF4  Market LR  0  Market data  0 
BBF5  Market LR  0.5  Market data  0.5 
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with the real outcome. In particular we are interested in measuring the 
predictive capability of Bayesian Bornhuetter-Ferguson models using as 
reference benchmark a classic approach, represented by ODP Bootstrap.

In order to perform this task we define some metrics that we use for 
evaluating the performance of the methods. Having at disposal synthetic 
indicators, we can perform the analysis using all the simulation, but also 
looking separately at the performance in each LoB. 

In particular, we choose the Mean Error (ME) and Mean Absolute 
Error (MAE). ME is defined as: 

,

=1 =1

ˆ1 1ME = (6)
c s cN S

c
c s

R R
N S R

  −
    

∑ ∑

where ,ˆ c sR  is the estimated claims reserve of the model for company c and 
simulation s and cR  the actual claims reserve realized ex post for the same 
company in the dataset. 

For a fixed LoB, the formula is a simple average of the normalized 
error (with respect to the actual outcome) over the set of N companies in 
the dataset and over the set of S simulations for each company.

MAE is instead defined as: 
,

=1 =1

ˆ1 1MAE = (7)
c s cN S

c
c s

R R
N S R

 −
 
 

∑ ∑

where in this case each error is calculated by means of an absolute value 
in order to avoid the compensation of positive and negative errors for 
different simulations and companies.

The sign of ME shows if the model tends to produce an underestimation 
or overestimation respect to the actual outcome. However, it shall be noted 
that the ME is subject to possible compensations of positive and negative 
errors, which could result in a lower aggregate value, still in presence of 
high errors in opposite directions for different companies. MAE solves this 
drawback, by means of the absolute value; however it loses the information 
on the sign of error. Hence, we can have a complete view only considering 
both indicators.

In addition to the average measures of distances between estimate 
and outcome, we also assess which model was better able to provide 
the closest estimate of claims reserve at the valuation date, with respect 
to the actual (ex post) realization. For this scope, Formula (6) has been 
also applied separately for each company. Hence, for each company, we 
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rank the models and we count how many times a model showed the best 
performance.

For insurance companies, in addition to the estimation of claims 
reserving, it is fundamental to correctly predict also the next year 
payments. In fact, from an asset-liability management point-of-view it 
represents the amount that has to be available next year for the payments 
of the incurred claims.

Actually, insurance companies are interested in computing the 
expected outflows for each calendar year, and not only the following one. 
This task is related with the accounting frameworks defined by IFRS and 
Solvency II, which require the discounting of future expected payments 
according to the year in which the cash-flow arises. 

For this reason we compute the same statistics described above in 
Formula (6)-(7) for each diagonal of the run-off triangle. However, the 
latest diagonals are composed of just few elements, which would lead to a 
high instability of the errors, being based on just one observation. For this 
reason we split the analysis in just two parts: next year payments and other 
payments (after next year). In practice, the mean error of next diagonal 
and other diagonals are computed according to the following formulas: 

( ),
, 1 , 1=1

ND
=1 =1

, 1=1

ˆ1 1ME = (8)
n c s cN S

i n i i n ii
n cc s

i n ii

P P
N S P

− + − +

− +

  −
  
    

∑
∑ ∑

∑

( ),
, 1 , 1> 1

O
=1 =1

, 1> 1

ˆ1 1ME = (9)
c s c

N S i n i i n ii j n

cc s
i n ii j n

P P

N S P

− + − ++ +

− ++ +

  −
  
  

  

∑
∑ ∑

∑

The mean absolute error statistic is obtained by means of the same 
formulas, replacing the differences in brackets with their absolute values.

Finally, we focus on the uncertainty provided by each model. To this 
aim, we compute the coefficient of variation (CV) of the results of a LoB 
(see formula (10)) considering only companies with amount of earned 
premiums cB  between defined lower and upper boundaries (l and u). 

,
,

,

ˆ( |( < <= ))ˆ( |( < <= )) = (10)ˆ( |( < <= ))

c s c
c s c

c s c

R l B uCV R l B u
E R l B u
σ

For the choice of lower and upper bound it is possible to use different 
approaches. The general logic is to split companies in groups whose 
behavior can be considered homogeneous for their size. In practice, a 
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simple way is to divide between small, medium and large size companies. 
However, the difficult point is to establish the boundaries for which a 
companies can be considered in one of this groups. 

The other problem is that we could come up with groups having 
unbalanced number of companies. For this reason we chose to divide in 
groups of the same size, based on the amount of earned premiums. More 
specifically, we have computed the quartiles of the earned premium and 
have divided the companies in four groups based on the quartile they 
belong to.

4.2 Predictive analysis

Accident year

In this section we perform a predictive analysis of claims reserving 
models, separately for each line of business. We start considering the 
commercial auto LoB. In Table 5 we report the summary of the metrics 
described in the previous section for each of the six models that have been 
tested.

Looking at the ME we can observe that all the models tend to produce 
on aggregate an overestimation of claims reserve respect to the actual 
outcome. In particular, Bootstrap produces the lowest error, followed by 
BBF5; while, according to the MAE statistic, BBF5 shows the lowest error.

In the table we have also reported 4 quantiles representing respectively 
10%, 25%, 75% and 90% of the ME distribution. They are particularly useful 
for assessing the spread of the error distribution, with also information of 
the tendency to under/over estimation, for each model.

Regarding the values of this 4 quantiles of error distribution, BBF4 
has the closest values to 0 for the down side, while Bootstrap and BBF5 
for the upper side. In general, we can observe that all the models tend 
to have 0.1q  and 0.25q  closest to 0 respect to 0.75q  and 0.9 .q  This result is 
in line with the findings that the models for this LoB produce a general 
overestimation. Finally, we can observe that BBF5 produced the highest 
number of closest prediction with respect to the observed outcome.

This result shows that, for this dataset, BBF models with priors based 
on market data are able to produce an improvement in the estimation of 
claims reserve with respect to other priors’ setting and the ODP Bootstrap. 
In addition, the use of mid-informative priors produces a better result 
respect to high/non informative ones, since this setting takes better into 
account both exogenous and endogenous information.
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Table 5
Commercial Auto: predictive performance (values in percentage). 

ME and MAE represent respectively the mean error and the mean absolute 
error between the estimated claims reserve of each model and the actual 

outcome. Q10, Q25, Q75 and Q90 represents the quantiles of the respective 
order, computed on the ME distribution. N* represents the number of closest 

estimate to the actual outcome for each model. Best performance of each 
indicator is reported in bold. 

  ODP Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 
ME  17.80  58.96  65.95  63.37  42.16  26.30 
MAE  44.08  76.48  85.59  82.04  54.73  39.05 
Q10  -45.35  -32.99  -39.20  -35.91  -23.78  -24.63 
Q25  -18.93  -12.27  -12.33  -11.64  -5.55  -5.55 
Q75  35.60  92.52  106.92  96.97  73.73  41.78 
Q90  85.20  214.22  232.05  235.93  123.36  82.39 
N*  6  12  3  3  11  15 

 
Table 6 describes the result for the private auto line of business. 

Also for this LoB, the global tendency of all the models is to overestimate 
the claims reserve. BBF5 results the model with the best predictive 
performance according to both ME and MAE.

Table 6
Private Auto: predictive performance (values in percentage). 

ME and MAE represent respectively the mean error and the mean absolute 
error between the estimated claims reserve of each model and the actual 

outcome. Q10, Q25, Q75 and Q90 represents the quantiles of the respective 
order, computed on the ME distribution. N* represents the number of closest 

estimate to the actual outcome for each model. Best performance of each 
indicator is reported in bold. 

  ODP Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 
ME  21.73  59.44  63.65  67.55  15.76  20.89 
MAE  28.42  65.13  69.48  72.85  30.43  27.12 
Q10  -13.09  -10.36  -10.85  -7.38  -26.74  -12.33 
Q25  1.48  3.04  4.25  11.08  -9.04  1.60 
Q75  34.84  41.17  49.34  49.21  28.97  34.20 
Q90  58.53  233.11  233.79  238.97  74.18  61.53 
N*  5  10  1  4  24  6 
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Regarding quantiles of error distribution, there is no single model 
showing a closest range.

Finally, looking at the model with highest number of closest prediction 
we observe that BBF4 was the best one for 24 companies over 50, which is 
almost 50% of the cases. Hence, from this result we can conclude that on 
average BBF5 produced the lowest error, but BBF4 had the highest number 
of closest prediction.

This result confirms the findings commented for the commercial auto 
LoB of improvement in model’s performance by using market data in the 
priors.

Results for workers’ compensation line of business are reported in 
Table 7. In this case the best performance is obtained by the ODP Bootstrap 
in terms of both ME and MAE. Looking at the quantiles for the BBF 
models it is possible to notice that they produced a higher overestimation 
of claims reserve respect to ODP Bootstrap. In particular this is evident for 
BBF4 and BBF5, which means that market loss ratio was generally higher 
than the actual loss ratio of the companies.

However, for a peculiar line of business, like worker’s compensation, 
relying on market data can be a solution not optimal. In fact, differently 
from more traditional businesses where there is a competition between a 
high number of players which leads to similar performances, the outcome 
tends to be more company-specific.

Table 7
Workers’ compensation: predictive performance (values in percentage). 

ME and MAE represent respectively the mean error and the mean absolute 
error between the estimated claims reserve of each model and the actual 

outcome. Q10, Q25, Q75 and Q90 represents the quantiles of the respective 
order, computed on the ME distribution. N* represents the number of closest 

estimate to the actual outcome for each model. Best performance of each 
indicator is reported in bold. 

  ODP Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 
ME  19.42  28.77  28.82  42.64  74.09  29.57 
MAE  35.91  39.72  41.32  52.85  79.62  38.13 
Q10  -29.21  -22.07  -24.43  -20.27  4.76  -13.60 
Q25  -8.32  -5.31  -6.28  2.59  27.39  0.08 
Q75  38.77  44.11  44.31  67.39  101.24  45.63 
Q90  81.45  93.47  96.56  117.31  174.01  84.04 
N*  11  10  5  4  5  10 
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In Table 8 we display the results for other liabilities line of business. In 
this case, the application of ODP Bootstrap produced the lowest prediction 
error according to ME, however this result is mainly due to a compensation 
of under and overestimations observed for different companies. In fact, 
considering the absolute errors, this methodology gives one of the worse 
results. Looking at the quantiles of error distribution, BBF1 and BBF5 
shows the smallest ranges; while for the highest number of best prediction 
there is not a complete predominance from a single model.

Calendar year analysis

We focus now on the predictions in a calendar year view. Considering 
Commercial auto (see Table 9), results are in line with the accident year 
analysis, with the BBF5 model assuring the best performance.

It is noticeable for the private auto LoB the different prediction 
performance between next year payments and payments of the following 
years (see Table 10). Indeed, BBF4 and BBF5 models show the best 
performance in predicting the next-year payments, according respectively 
to ME and MAE. For the following years, instead, ODP Bootstrap shows 
the best behavior.

 In Table 11 is reported the calendar year analysis for the workers’ 
compensation LoB. Differently from what we observed in a accident year 

Table 8
Other liability: predictive performance (values in percentage). 

ME and MAE represent respectively the mean error and the mean absolute 
error between the estimated claims reserve of each model and the actual 

outcome. Q10, Q25, Q75 and Q90 represents the quantiles of the respective 
order, computed on the ME distribution. N* represents the number of closest 

estimate to the actual outcome for each model. Best performance of each 
indicator is reported in bold. 

  ODP Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 
ME  2.28  38.02  744.70  41.36  49.49  19.54 
MAE  114.20  57.40  768.92  63.72  71.55  44.80 
Q10  -60.36  -35.82  -46.36  -41.64  -43.83  -46.40 
Q25  -31.67  -12.41  -17.51  -16.20  -19.53  -21.75 
Q75  53.49  61.47  85.76  61.09  92.60  49.76 
Q90  127.14  137.53  187.89  148.55  157.54  93.06 
N*  9  9  3  10  5  9 
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framework, the BBF1 appears as the best model for predicting next-year 
payments. Bootstrap-ODP remains the best choice in the long run.

Considering other liability LoB, we observed in Table 12, that 4 out of 
6 models shows a prevalence of underestimation in the prediction of next 
year payments. However, this behavior is mainly due to the presence of 
some outliers in the claims development for specific companies. 

Regarding the predictive performance, also in this case ODP Bootstrap 
shows the best results according to ME, while BBF5 for MAE.

Table 9 
Commercial Auto: predictive performance - calendar year view

(values in percentage) 

  ODP Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 
MEND  37.78  44.37  54.33  51.30  63.30  40.22 
MEO  22.23  98.94  106.37  105.12  55.73  36.98 
MAEND  61.23  60.48  71.58  68.81  77.55  57.71 
MAEO  58.34  125.30  134.42  130.51  73.15  54.74 

Table 10
Private Auto: predictive performance - calendar year view

(values in percentage) 

  ODP Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 
MEND  15.45  19.64  22.68  24.72  10.95  15.12 
MEO  39.70  129.61  136.42  143.32  40.91  41.42 
MAEND  22.22  25.32  28.33  29.84  23.31  21.90 
MAEO  50.57  138.95  145.82  151.52  61.19  51.21 

Table 11
Workers’ compensation: predictive performance - calendar year view

(values in percentage) 

  ODP Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 
MEND  46.35  45.76  50.48  57.95  96.26  52.02 
MEO  32.05  58.36  58.74  75.90  118.56  55.08 
MAEND  59.65  56.01  61.76  67.20  100.78  61.88 
MAEO  54.73  75.13  76.95  90.04  125.54  66.37 
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In addition, looking at MAE, we can observe that all the models had a 
poor performance in predicting next-year payments. For instance, the BB5 
model, who has the best performance, shows an error of 92.34%, which 
means that, on average, the insurance company should be asked to pay 
around the double (or the half) of what expected from the model. This 
result shows the difficulties of using a fixed scheme, represented by the 
blind application of a model without any additional information, on a 
peculiar LoB as other liability.

4.3 Volatility analysis

In this section we analyze the effect of the size of a company on the 
variability of the estimation of claims reserve for the models analyzed. 
Since we are analyzing companies of different size we chose a relative 
measure, consisting in the coefficient of variation of claims reserve 
estimate, in order to measure the uncertainty.

The theoretical expectation is that a large company shall have a lower 
CV respect to one of small size. It means that the relative variability in the 
estimate of claims reserve decreases, increasing the size of the company. 
We are interested in assessing if this theoretical expectation is also realized 
empirically on the selected dataset.

In Figure 1 the coefficient of variation obtained from the application 
of ODP Bootstrap and BBF5 on the commercial auto dataset are compared. 
We have chosen ODP Bootstrap since it is the usual reference model for 
this analysis and BBF5 as a representative of Bayesian models since it was 
the one with the best predictive performance in most of the cases. We can 
observe that both models show a decreasing trend for the coefficient of 
variation for increasing volume. It is also noticeable how on average the 
bootstrap model leads to a higher uncertainty.

Table 12
Other liability: predictive performance - calendar year view

(values in percentage) 

  ODP Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 
MEND  -0.23  -6.48  2194.12  -10.41  29.59  -9.80 
MEO  -1.52  58.52  660.91  71.35  59.98  29.69 
MAEND  137.09  104.54  2304.10  99.39  123.42  92.34 
MAEO  139.56  83.49  690.52  99.81  90.13  60.88 
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Figure 1
Commercial Auto: pattern of coefficient of variations of claims reserve accord-

ing to volume of premiums. In black ODP Bootstrap, in blue BBF5. On the 
x-axis, we report the earned premiums of the specific company, while on the 
y-axis we have the CV of the models. The range size of earned premium is in 

thousand of USD 

In order to have detailed numerical results, we have applied Formula 
(10) for each model. In particular, we have divided the companies in four 
groups according to the amount of earned premiums as described in 
Section 4.1.

The results of this analysis are reported in Table 13 and show that 
when the size range increases the CV decreases. BBF4 model shows the 
lowest CV, since it assumes a strong informativity for both its priors 
leading to small standard deviation of estimated claims reserve.

Table 13
Commercial Auto: volatility analysis

(values in percentage) 

 Size range  ODP 
Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 

1, 432 8,866−   246.11  35.65  47.78  34.66  21.75  32.27 
8,866 24,812−   98.17  31.33  38.32  28.81  13.62  23.37 
24,812 91,889−   22.24  23.78  28.14  23.69  11.17  18.54 
91,889 3,543,796−   12.50  21.36  22.71  21.88  6.09  11.16 
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The same trend can be found also for the other lines of business, 
with few different patterns, especially in the other liability LoB, probably 
related to outliers and the small sample size.

Table 14
Private Auto: volatility analysis

(values in percentage) 

 Size range  ODP 
Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 

3,810 53,575−   19.57  24.23  27.13  23.88  11.06  17.24 
53,575 134,272−   10.32  17.59  19.33  17.28  6.55  9.73 
134,272 288,238−   8.97  31.19  32.08  30.42  5.55  8.47 
288,238 117,655,840−   7.31  17.78  18.50  17.40  4.40  6.96 

 

Table 15
Workers’ compensation: volatility analysis

(values in percentage) 

 Size range  ODP 
Bootstrap  BBF1  BBF2  BBF3  BBF4  BBF5 

2,898 38,753−   193.06  30.56  35.14  30.34  12.64  21.48 
38,753 115,901−   15.03  20.73  23.54  19.31  6.17  12.56 
115,901 310,557−   12.32  14.02  16.11  13.34  4.69  10.82 
310,557 2,905, 415−   8.98  6.94  8.95  7.62  3.58  8.03 

 

Table 16
Other liability: volatility analysis

(values in percentage) 

 Size range  ODP 
Bootstrap 

 BBF1  BBF2  BBF3  BBF4  BBF5 

486 4,043−   1867.05  27.56  80.80  27.09  20.80  31.10 
4,043 15,730−   901.33  29.46  1973.55  28.18  15.67  27.27 
15,730 44,522−   62.37  27.48  36.76  27.67  11.61  22.17 
44,522 2, 414, 413−   1452.56  17.89  31.78  18.06  7.04  16.19 
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5.  Conclusion

The importance of a correct estimation of claims reserve has become 
a central objective for insurance companies, because of the effects in their 
balance sheet and in the assessment of risk. In addition, the necessity of 
having a measure of uncertainty around this estimate lead to the proposal 
of several stochastic models. In this paper we have focused on the analysis 
of the performance of Bayesian Bornhuetter-Ferguson (BBF) model. The 
reason of this choice is that this model gives the possibility of using different 
sources of information and appropriately weight its priors in order to 
estimate the claims reserve. We see this approach as one that should be 
pursued by insurance companies, which can rely on their expertise and 
knowledge of their portfolio in order to calibrate the prior parameters and 
update them as they obtain additional external information.

We have analyzed five alternative models based on the Bayesian 
Bornhuetter-Ferguson model, using as reference benchmark the traditional 
ODP Bootstrap, on a set of American companies belonging to four different 
LoBs. According to the predictive metrics, the best performance has been 
obtained by the BBF5 for most of the indicators and LoBs analyzed. This 
specific model is based on market data for both its (informative) priors. 
Also for the calendar year analysis this model has provided in most of the 
cases the closest estimate respect to the actual realization, among the BBF-
based models. In the comparison with ODP Bootstrap the performance 
was strongly dependent on the chosen metric, with the former having the 
best performance with ME and the latter with MAE.

As in general for Bayesian models, their strength of using external 
information for the calibration of their priors can also became their 
weakness in case these information proves inaccurate. On this dataset, 
however, we have shown that just using (informative) global market data 
proves enough to obtain accurate prediction in-line with ODP Bootstrap 
and in some cases even better.
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