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Abstract: Bisphenol A (BPA) is a ubiquitous, synthetic chemical proven to induce reproductive
disorders in both men and women. The available studies investigated the effects of BPA on male
and female steroidogenesis following long-term exposure to the compound at relatively high envi-
ronmental concentrations. However, the impact of short-term exposure to BPA on reproduction is
poorly studied. We evaluated if 8 and 24 h exposure to 1 nM and 1 µM BPA perturbs luteinizing
hormone/choriogonadotropin (LH/hCG)-mediated signalling in two steroidogenic cell models, i.e.,
the mouse tumour Leydig cell line mLTC1, and human primary granulosa lutein cells (hGLC). Cell
signalling studies were performed using a homogeneous time-resolved fluorescence (HTRF) assay
and Western blotting, while gene expression analysis was carried out using real-time PCR. Immunos-
tainings and an immunoassay were used for intracellular protein expression and steroidogenesis
analyses, respectively. The presence of BPA leads to no significant changes in gonadotropin-induced
cAMP accumulation, alongside phosphorylation of downstream molecules, such as ERK1/2, CREB
and p38 MAPK, in both the cell models. BPA did not impact STARD1, CYP11A1 and CYP19A1 gene
expression in hGLC, nor Stard1 and Cyp17a1 expression in mLTC1 treated with LH/hCG. Addition-
ally, the StAR protein expression was unchanged upon exposure to BPA. Progesterone and oestradiol
levels in the culture medium, measured by hGLC, as well as the testosterone and progesterone levels
in the culture medium, measured by mLTC1, did not change in the presence of BPA combined with
LH/hCG. These data suggest that short-term exposure to environmental concentrations of BPA does
not compromise the LH/hCG-induced steroidogenic potential of either human granulosa or mouse
Leydig cells.

Keywords: Bisphenol A (BPA); LH; hCG; steroidogenesis; testis; ovary

1. Introduction

Bisphenol A (BPA) is an endocrine disruptor affecting various physiological functions,
including reproduction, in both men and women [1]. It is extensively used in the manufac-
ture of polycarbonate plastics, epoxy resins, and in polyester-styrene resins, and used in the
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food-packaging industry in interior liners for food cans, milk containers, and baby bottles,
and in dentistry as a sealant [2,3]. BPA can leach into food and water from its packaging,
under various conditions such as pH changes, sterilisation, or increased temperature [4–6].
This endocrine disruptor has a half-life of less than 6 h after oral administration [7]; it may
be accumulated in human tissues and has been detected in blood, urine, fat, mammary tis-
sue, and in the placenta [8–12]. About 4.4–8.8 µM BPA has also been found in the aspirated
antral fluid of women undergoing in vitro fertilisation treatment [11].

In females, BPA interferes with ovarian follicle development and ovarian steroidoge-
nesis [1,13,14]. BPA is known to mimic, enhance or inhibit estrogenic signals by binding
through oestrogen receptors, ERα and ERβ [15]. However, it inhibited follicle growth
and induced atresia in cultured mouse antral follicles through a genomic estrogenic in-
dependent pathway [16]. Granulosa cells play a crucial role in ovarian follicle growth,
steroidogenesis, and oocyte survival and nourishment. Previous studies have reported
that steroid hormone synthesis by granulosa cells has been impaired following BPA ex-
posure [16–19], possibly via the targeting of Cyp11a1 [14]. Evidence suggests that BPA
exerts profound effects even in males, damaging spermatogenesis and steroidogenesis, and
Leydig cells were extensively used to study the effects of BPA. Previous reports showed
that the effect of BPA on Leydig cells varies according to the dose selected. In pubertal
Wistar/ST rats, high-dose exposure to BPA decreased cell Leydig number and expression
of steroidogenic enzymes [20], and these results were also independently confirmed in
Leydig cells isolated from adult males and exposed to a low dose of BPA [21]. Other
in vitro studies in human, mouse, and rat foetal testes have reported the association of
BPA with decreased testosterone levels [22]. These issues are due, at least in part, to the
deleterious effect exerted by BPA on luteinizing hormone (LH)/choriogonadotropin (hCG)
receptor (LHCGR) mRNA levels [23], and second messenger activation [24]. LH and hCG
bind to their receptor, activating Gαs protein which in turn triggers the cyclic adenosine
monophosphate (cAMP)/protein kinase A (PKA) pathway, leading to the phosphorylation
of extracellular-regulated kinase 1/2 (pERK1/2) and cAMP response element-binding pro-
tein (CREB), thereby mediating progesterone and testosterone production and gonadal cell
proliferation [25]. Thus, both in vitro and in vivo studies have suggested that BPA exposure
alters male steroidogenesis through the perturbation of gonadotropin receptor-mediated
intracellular signalling.

Currently available studies are mostly based on the effect of BPA on male and female
steroidogenesis following long-term exposure (e.g., for 48 h [26]), to the compound at mi-
cromolar concentrations that are higher than the concentrations found in the environment.
Very few data are available on the short-term effect of BPA on male and female reproduction
in the presence of gonadotropins [24]. Hence, in the current study, we evaluated the impact
of short-term exposure to BPA on LH/hCG-mediated signalling in two steroidogenic cell
models, i.e., the mouse tumour Leydig cell line mLTC1, and the human primary granulosa
lutein cells (hGLC).

2. Materials and Methods
2.1. Human Samples and Patients’ Selection

Human primary granulosa lutein cells (hGLC) were isolated from the follicular fluid
aspirate of about forty women undergoing oocyte retrieval for assisted reproduction at
the Santa Maria Nuova Hospital (Reggio Emilia, Italy). Patients matching the following
criteria were included in this study: absence of any endocrine abnormalities, severe viral or
bacterial infections, and age between 25 and 45 years. The study was approved by the local
ethics committee (documents ‘Protocollo n. 2017/0015890 del 26/06/2017′, ‘Protocollo
n2018/0080377 del 16/07/2018′, ‘Protocollo n. 2018/0080389 del 16/07/2018′, ‘Protocollo
n. 2019/0009846 del 24/01/2019′ and ‘Protocollo n. 2019/0048906 del 23/04/2019′), and
written consent was obtained from each patient.
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2.2. Isolation and Culture of Human Granulosa Lutein Cells

hGLC was isolated from the follicular fluid, using methods previously described [27–29].
Briefly, hGLCs were purified using a 50% Percoll gradient (GE Healthcare, Little Chalfont,
UK) to separate them from other cellular components following centrifugation. Haemolysis
buffer was added to remove any red blood cell contamination, and this reaction was blocked
by adding medium containing DMEM/F12 (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA), 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 IU/mL penicillin, 0.1 mg/mL
streptomycin (all from Thermo Fisher Scientific, Waltham, MA, USA) and 250 ng/mL
Fungizone (Merck KGaA, Darmstadt, Germany). Blood red cell debris was excluded by
centrifugation, and hGLC was washed in Dulbecco’s phosphate-buffered saline (DPBS;
Merck KGaA). Finally, the cells were resuspended and cultured in the medium for 6 days
to allow them to recover the expression of gonadotropin receptors [30]. After 6 days of
culturing, cells were serum-starved overnight and used for analyses.

2.3. mLTC1 Cell Line

Mouse Leydig tumour cells (mLTC1) are a commonly used and validated model for
studying Leydig cell steroidogenesis [16,31–34]. mLTC-1 cells (ATCC CRL-2065, LCG
Standards, Molsheim, France) were available in-house [34,35] and grown in RPMI 1640
medium supplemented with 10% FBS, 100 IU/mL penicillin, 0.1 mg/mL streptomycin,
2 mM glutamine, and 1 mM HEPES, at 37 ◦C and 5% CO2.

2.4. Dose-Finding Experiments for BPA Concentration

We performed a cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) to select the best BPA concentrations to be used for the in vitro
study. The concentrations used ranged between 1 fM and 1 mM, and we found that 1 mM
BPA is toxic to cells (Figure S1). Hence, we chose non-toxic 1 nM and 1 µM BPA concentra-
tions, which are biologically relevant, having been reported present in the environment [36]
and even in follicular fluid [11].

2.5. cAMP Production

hGLC and mLTC1 cells were seeded in 96-well plates (2 × 104 cells/well). After
24 h, cells were treated for 20 min with the phosphodiesterase inhibitor 3-isobutyl-1-
methylxanthine (IBMX) (Sigma-Aldrich, St. Louis, MO, USA). This was followed by
3 h exposure of hGLC to BPA, and 1 h exposure of mLTC1 to BPA, in the presence or
absence of the three times (3×) the 50% effective concentration (EC50) of LH (1500 pM)
and hCG (300 pM) [27,33,37]. The reactions were then stopped by removing the media
and rapidly freezing the cells at −80 ◦C. The next day, samples were collected in 30 µL of
the phosphate-buffered saline (PBS), and the total cAMP produced was measured using a
cAMP-Gs Dynamic kit for homogeneous time-resolved fluorescence (HTRF), following the
manufacturer’s instruction (Cisbio, Codolet, France).

2.6. Western Blotting

hGLC and mLTC1 cells were seeded in 24-well plates (1 × 105 cells/well) and serum-
starved 12 h before treatments. The cells were treated with 1 nM and 1 µM BPA, in
the presence or absence of 3xEC50 LH and hCG. Cells treated for 15 min with phorbol
12-myristate 13-acetate (PMA) served as a positive control. Untreated cells were added
as negative controls. The reactions were stopped by removing the media and immedi-
ately lysing cells in RIPA Laemmli buffer containing protease and phosphatase inhibitors.
Phospho-p38 MAPK, phospho-ERK1/2, phospho-CREB and total ERK1/2 were evalu-
ated via Western blotting using validated specific antibodies and protocols, as previously
described [27,37,38]. The signal was developed using a chemiluminescent detection solu-
tion (Cyanagen, Bologna, Italy) and acquired using an image analysis system (VersaDoc
Imaging System and QuantityOne software 4.6; Bio-Rad Laboratories, Inc., Hercules, CA,
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USA). Signals were semi-quantified using ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

2.7. Gene Expression

5 × 104 cells/well of hGLC and mLTC1 cells were seeded in a 24-well plate and
serum-starved overnight. Cells were treated for 8 and 24 h with BPA at 1 nM and 1 µM
concentrations, in the presence or in the absence of 3xEC50 LH and hCG. Treatments were
stopped by removing the media and immediately freezing the cells at –80 ◦C. The total
RNA was extracted using the phenol–chloroform method using RNA Extracol (EURx
Sp. z o.o., Gdańsk, Poland). The extracted RNA was reverse-transcribed using Multi-
scribe reverse transcriptase (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA,
USA), and the gene expression was evaluated via real-time PCR. The following genes
were evaluated in hGLC: STARD1 (fw 5′-AAGAGGGCTGGAAGAAGGAG-3′; rev 5′-
TCTCCTTGACATTGGGGTTC-3′), CYP17A1 (fw 5′-AGCCGCACACCAACTATCAG-3′;
rev 5′-GCAAACTCACCGATGCTGGA-3′) and CYP19A1 (fw 5′-TACATTATAACATCACC-
AGCATCG-3′; rev 5′-TCATAATTCCACACCAAGAGAA-3′). The genes evaluated in mLTC1
were Stard1 (fw 5′-ACAGACTCTATGAAGAACTT-3′; rev 5′-GACCTTGATCTCCTTGAC-3′)
and Cyp17a1 (fw 5′-CGAACACCGTCTTTCAATGACC-3′; rev 5′-TGGCAAACTCTCCAA-
TGCTG-3′). The real time data were normalized to the endogenous control: RPS7 (fw 5′-
AATCTTTGTTCCCGTTCCTCA-3′; rev 5′-CGAGTTGGCTTAGGCAGAA-3′) for hGLC [39],
and Hprt (fw 5′-GCGTCGTGATTAGCGATGATG-3′; rev 5′-TCTCGAGCAAGTCTTTCAGTCC-
3′) for mLTC1 cells [37], using the 2−∆∆Ct method [40].

2.8. Immunofluorescence

Some 3.5 × 104 cells/well were seeded onto 3-chamber slides, and serum-starved
for 12 h before treatment. The cells were treated with 1 µM BPA, in the presence or
absence of LH/hCG. For hGLCs, the treatment was carried out in the presence of 1 µM
androstendione in all the conditions. After 24 h of treatment, the media were removed
and cells were washed in PBS, fixed for 10 min with 4% paraformaldehyde (PFA) (Electron
Microscopy Sciences, Hatfield, PA, USA) at 4 ◦C, washed twice with PBS, and incubated
for 10 min with 0.5% TritonX-100 (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany)
at room temperature (RT). The reduction of nonspecific background signal was achieved
by incubating cells with 1 M glycine (Sigma-Aldrich), and subsequently, with 5% normal
donkey serum (Jackson Laboratories Immuno Research, Ely, UK) at room temperature for
30 min. Cells were incubated for 2 h with mouse anti-StAR antibody (1:100, sc-166821,
Santa Cruz Biotechnology, Santa Cruz, CA, USA) at room temperature, and then for 1 h
with the secondary antibody Alexa Fluor® 488 AffiniPure Donkey Anti-Mouse IgG (H
+ L) (1:200, #715-545-150 Jackson Immuno Research) at room temperature. Following
extensive washes in PBS, cells were counterstained with DAPI (Invitrogen, Thermo Fischer
Scientific, Waltham, MA, USA) and mounted with Vectashield mounting medium (Vector
Laboratories, Newark, CA, USA). Digital pictures were acquired using a Zeiss Airyscan 2
confocal microscope.

2.9. Analysis of Steroidogenesis

hGLC and mLTC1 were seeded in 48-well plates at a concentration of 3 × 104 cells/well,
and serum-starved 12 h before treatment. Cells were treated with BPA in the presence or
absence of LH and hCG, for 8 and 24 h. For hGLCs, the treatment was carried out in the
presence of 1 µM androstenedione as a substrate for oestrogen production [41]. The media
were collected and analyzed for progesterone and oestradiol concentrations in hGLCs,
and for progesterone and testosterone in mLTC1. The analysis was carried out using an
Architect Immunoassay Analyzer (Abbott Laboratories, Abbott Park, IL, USA).
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2.10. Statistical Analysis

Statistic analyses were performed using GraphPad Prism 9 (GraPhPad Software Inc.,
San Diego, CA, USA). The results were analysed using the Kruskal–Wallis test, after testing
for normality with D’Agostino and Pearson tests. Values of p < 0.05 were considered
significant.

3. Results
3.1. Cell Signalling Analysis

In hGLC and mLTC1 cells, we evaluated the effect of BPA on cAMP production me-
diated by LH and hCG. While the treatment with gonadotropins induced an intracellular
cAMP increase (Figure 1; Kruskal–Wallis test, p < 0.05), no different effects between go-
nadotropin administered alone or in combination with 1 nM and 1 µM BPA were found
(p ≥ 0.05). Similar results were obtained in a control experiment (p ≥ 0.05), where hGLC
and mLTC1 cells were treated with the adenylyl cyclase activator forskolin, or with the Gαs
protein activator cholera toxin, in the presence of BPA (Figure S2). These data suggest that
early LH/hCG-induced effectors could not be hindered by BPA in granulosa and Leydig
cells.
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Figure 1. Effect of BPA on cAMP production in vitro: (A) in human granulosa cells (hGLC); (B) in
mouse Leydig cells (mLTC1). cAMP was measured using an HTRF assay. Forskolin and cholera
toxin served as the positive control in hGLC and mLTC1 cells, respectively. Data are represented as
mean ± SEM. CTX = cholera toxin. *, Significantly different vs. “no gonadotropin” alone; # vs. “no
gonadotropin” + BPA 1 nM; $ vs. “no gonadotropin” + BPA 1 µM; N, not significantly different vs.
LH/hCG treatment in the absence of BPA (Kruskal–Wallis test, p ≥ 0.05).

The effect of BPA on the gonadotropin-induced phosphorylation of molecules down-
stream of cAMP, such as ERK1/2, CREB and p38MAPK, was evaluated in both hGLC and
mLTC1 cells. PMA-treated cells served as a positive control. Western blot analysis revealed
that LH/hCG alone and together with BPA induced similar phosphorylation patterns in
ERK1/2, CREB and p38 MAPK in both the models in vitro (Figure 2; Kruskal–Wallis test,
p ≥ 0.05). Indeed, both the hormones, as well as PMA, induced phospho-protein activation.
However, the presence of 1 nM and 1 µM BPA did not impact the results both in hGLC and
mLTC1 cells.
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Figure 2. Effect of BPA on activation of pERK, pCREB and p38MAPK: Western blotting analyses
in hGLC (A) and in mLTC1 (B) after exposure to BPA without or with hCG or LH. Relative semi-
quantification of the activation of pERK (C,D), pCREB (E,F) and p38MAPK (G,H) in hGLC and
mLTC1 cells, respectively. Data are represented as mean ± SEM. *, Significantly different vs. “no
gonadotropin” alone; # vs. “no gonadotropin” + BPA 1 nM; $ vs. “no gonadotropin” + BPA 1 µM;
N, not significantly different vs. LH/hCG treatment in the absence of BPA (Kruskal–Wallis test,
p ≥ 0.05).
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3.2. Gene Expression Analysis

The effects of BPA on the 8 and 24 h expression of genes regulating LH/hCG-induced
steroid synthesis were evaluated in hGLC, using real-time PCR. Gonadotropins upregu-
lated the 8 h expression of STARD1 and CYP19A1 target genes (Figure 3; Kruskal–Wallis
test, p < 0.05), while CYP17A1 gene expression increased after 24 h (p < 0.05). However,
gene expression patterns were not altered in hGLC treated with LH/hCG alone, and in
combination with 1 nM and 1 µM BPA (p ≥ 0.05).
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Figure 3. Effect of BPA on steroidogenic gene expression in hGLC after 8 h (A,C,E) and 24 h (B,D,F)
of treatment. Genes: STARD1 (A,B), CYP17A1 (C,D) and CYP19A1 (E,F). Data are represented as
mean ± SEM. *, Significantly different vs. “no gonadotropin” alone; # vs. “no gonadotropin” + BPA
1 nM; $ vs. “no gonadotropin” + BPA 1 µM; N, not significantly different vs. LH/hCG treatment in
the absence of BPA (Kruskal–Wallis test, p ≥ 0.05).
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Gene expression analysis was performed in mLTC1, where the effects of BPA addition
to cell treatment with gonadotropins were investigated. Stard1 and Cyp17a1 gene expression
was evaluated using real-time PCR; this was not the case for the Cyp19a1 gene, which is
silent in the Leydig cell [42]. In mLTC1 cells, LH/hCG significantly increased both 8 and
24 h Stard1 and Cyp17a1 gene expression (Figure 4; Kruskal–Wallis test, p < 0.05). However,
gonadotropin–BPA cotreatment is not linked to any change in gene expression patterns at
both timepoints evaluated (p ≥ 0.05).
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Figure 4. Effect of BPA on steroidogenic gene expression in mLTC1 after 8 h (A,C) and 24 h (B,D).
Genes: Stard1 (A,C) and Cyp17a1 (B,D). Data are represented as mean± SEM. *, Significantly different
vs. “no gonadotropin” alone; # vs. “no gonadotropin” + BPA 1 nM; $ vs. “no gonadotropin” + BPA
1 µM; N, not significantly different vs. LH/hCG treatment in the absence of BPA (Kruskal–Wallis test,
p ≥ 0.05).

We also investigated the effect of BPA on StAR protein expression, as a key regulator of
steroidogenesis. hGLC and mLTC1 cells were treated for 24 h by LH/hCG, in the presence
or in the absence of BPA, and the StAR protein was evaluated using immunostaining. As
expected, gonadotropins treatments increased the cytoplasmic levels of StAR immunore-
activity (Figure 5A–C). However, in line with our gene expression data, no changes were
induced by BPA co-treatments (Figure 5D–F,J,L).
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3.3. BPA Did Not Alter Steroidogenesis

To further assess the effect of BPA on steroidogenesis, we also measured the production
of progesterone and oestradiol in the culture media using hGLC, and progesterone and
testosterone in the culture media using mLTC1. To this end, cells were treated for 8 and
24 h with gonadotropins, in the presence or in the absence of BPA. LH and hCG enhanced
progesterone production via hGLC at both the timepoints evaluated, while oestradiol
synthesis by hGLC required 24 h (Figure 6; Kruskal–Wallis test, p < 0.05, n = 5). However,
BPA did not significantly impact steroid production (p ≥ 0.05). These results match those
obtained from the culture media of mLTC1 cells, wherein the production of progesterone
and testosterone by mLTC1 was increased upon cell treatment with LH and hCG (Figure 7;
Kruskal–Wallis test, p < 0.05), and the addition of BPA did not change steroid levels
(p ≥ 0.05).
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4. Discussion

We found that short-term exposure to BPA at concentrations comparable to those
found in human biological fluids [11] did not produce any effect on the LH/hCG-mediated
steroidogenic pathway, both in hGLC and mLTC1 cells. In this study, we tested two
environmental BPA concentrations, i.e., 1 nM and 1 µM, and performed cell signalling,
gene expression, and steroidogenesis analyses. All the endpoints evaluated herein are
known targets of gonadotropin action, and were not affected by the presence of BPA. These
results suggest that short-term exposure to BPA does not impact the steroidogenic activity
of gonadal cells, in vitro.

BPA is a ubiquitous environmental contaminant in Europe, America, Asia, and Aus-
tralia, with concentrations ranging from 10 to >100,000 µg/kg dry weight [36]. The com-
pound may induce adverse reproductive disorders in both men and women, although the
data available do not converge in a single direction [26]. It is a common view that in females,
BPA interferes with ovarian follicle development and steroidogenesis [13,43]. In cultured
human luteinized granulosa cells, relatively high BPA concentrations (2 and 20 µg/mL,
corresponding to about 8.7 and 87.6 µM) decreased oestradiol and progesterone production
within 48 h [44]. The molecular mechanism by which BPA can impair steroidogenesis
should involve both the mRNA and protein expression of steroidogenic enzymes, such as
cholesterol monooxygenase (CYP11A1), 3β-hydroxysteroid dehydrogenase (3β-HSD), and
aromatase, without affecting StAR expression [44]. However, the same study found oppo-
site results under lower concentrations. Acute exposure to a similar concentration range of
the compound (about 0.9–90.0 µM) did not alter the 48 h steroidogenesis in granulosa cells
in vitro, suggesting that the main impact of BPA on ovarian cells could be exerted under
conditions of chronic exposure [44]. We observed a similar effect in LH/hCG-induced
progesterone and oestradiol levels when hGLC cells were treated with 1 nM and 1 µM
BPA, which did not produce any effect on steroidogenesis and confirmed previous observa-
tions [44]. Our study indicates that the endocrine disruptor did not change cAMP levels,
phospho-protein activation, and the expression of gonadotropin target genes and steroid
synthesis. Overall, our results disagree with previous in vitro studies demonstrating the
disruptive effects of BPA in human granulosa cell steroidogenesis [45,46]. For instance,
higher BPA concentrations (40–100 µM) than those used in the present study induced
the upregulation of aromatase expression and oestrogen synthesis [45]. Another study
testing the 48 h exposure of cumulus granulosa cells to BPA revealed that the compound
increases progesterone and decreases oestradiol synthesis [45], while experiments in a
human ovarian granulosa cell-derived cell line, KGN, demonstrated that fM–pM doses
of BPA increase oestradiol production. Taken together, data provided by in vitro studies
are controversial, and do not allow us to achieve conclusions about the short-term effect
of BPA on steroidogenesis. We may hypothesize that several perturbing factors, such as
genetic background [47], polyphenol-containing plastic materials used for cell culture [48],
or the additive effect of reagents for in vitro studies [49], could modulate or even mask the
eventual perturbation of the endocrine signal exerted by BPA.

In males, BPA has been shown to disrupt steroidogenesis [50]. In vitro studies using
mouse, rat and human cultured foetal testes have demonstrated decreased testosterone
production induced by treatment with 1 fM to 10 µM BPA [22]. Interestingly, BPA affected
only the functions of humans, but not rodent Leydig cells, suggesting that the endocrine
disruption exerted by this compound is not necessarily similar among mammals. Moreover,
the action of BPA is differently exerted according to the given experimental conditions. In
cultured mLTC1 cells, exposure to pM–µM BPA concentrations inhibited hCG-induced
cAMP and progesterone production [24]. These results do not align with those described in
the present study, wherein we did not find any significant effect on LH/hCG-stimulated
cAMP and progesterone production to be linked to the presence of 1 nM and 1µM BPA. The
reason for this difference may be related to the exposure time and the concentrations that
we used. The authors exposed cells to higher concentrations of BPA for 48 h [24], while we
used BPA at lower concentrations, with exposure for 1 h for cAMP and for both 8 and 24 h
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exposure for progesterone production. Rather, our results match those of previous studies
reporting that exposure to 1 nM–1 µM BPA for 4 or 24 h did not impact testosterone levels,
regardless of the presence of hCG [51], and that even 10 µM BPA failed to inhibit hCG-
induced upregulaton of the Stard1 gene [52]. Again, these findings point out the relevance
of careful experimental settings for investigating the effects of endocrine disruptors in vitro.

5. Conclusions

Steroidogenic signalling plays a critical role in fertility. BPA, an endocrine-disrupting
compound, is known to affect steroidogenic pathways affecting male and female fertility.
In this study, we observed that short-term exposure to environmental concentrations of
BPA does not compromise the steroidogenic potential of either human granulosa or mouse
Leydig cells. Our findings add to those that report weak or no acute action of BPA in
gonadal cells. However, several papers reporting opposite results suggest that the issue
must be further investigated, using an experimental setting aiming to exclude potential
confounding factors that may affect results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12111537/s1, Figure S1: Cell viability assay using MTT in
hGLC (A) and mLTC1 (B); Figure S2: The effect of cAMP accumulation in hGLC (A) and in mLTC1
(B) through the direct activation of adenylate cyclase activity by Forskolin (50 µM) in the presence of
BPA at 1 nM and 1 µM concentrations.
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