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Abstract: Near-infrared (NIR) spectroscopy is a powerful non-invasive technique for assessing the
optical properties of human tissues, capturing spectral signatures that reflect their biochemical and
structural characteristics. In this study, we investigated the use of NIR reflectance spectroscopy
combined with chemometric analysis to distinguish between patients with Essential Tremor (ET) and
healthy individuals. ET is a common movement disorder characterized by involuntary tremors, often
making it difficult to clinically differentiate from other neurological conditions. We hypothesized that
NIR spectroscopy could reveal unique optical fingerprints that differentiate ET patients from healthy
controls, potentially providing an additional diagnostic tool for ET. We collected NIR reflectance
spectra from both extracranial (biceps and triceps) and cranial (cerebral cortex and brainstem) sites
in ET patients and healthy subjects. Using Partial Least Squares Discriminant Analysis (PLS-DA)
and Partial Least Squares (PLS) regression models, we analyzed the optical properties of the tissues
and identified significant wavelength peaks associated with spectral differences between the two
groups. The chemometric analysis successfully classified subjects based on their spectral profiles,
revealing distinct differences in optical properties between cranial and extracranial sites in ET patients
compared to healthy controls. Our results suggest that NIR spectroscopy, combined with machine
learning algorithms, offers a promising non-invasive method for the in vivo characterization and
differentiation of tissues in ET patients.

Keywords: near-infrared spectroscopy (NIRS); essential tremor (ET); reflectance spectra; chemometric
analysis; in vivo analysis
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1. Introduction

Near-infrared (NIR) spectroscopy has proven useful for the non-invasive assessment of
the optical properties of living tissues in humans [1]. In addition to non-invasively detecting
tissue oxygenation, NIR spectroscopy provides spectral signatures (optical fingerprints)
that represent specific, accurate, and reproducible measurements of the overall biological
condition of the examined samples. These spectral signals, once subjected to statistical
techniques (chemometric analysis), provide the chance to comprehend the sample’s optical
characteristics and categorize it without the requirement for chemical knowledge [2].

Key to this “diagnostic” application is the ability of NIR light to penetrate a tissue,
interrogate the tissue components, then escape the tissue for detection [3]. Due to the
low absorption within the wavelength range of 600–1000 nm, NIR light can propagate for
several centimeters, enabling the extraction of non-invasive information from within the
depths of the organism [4]. Reflectance and scattering within organs stem from macro-
scopic variations in tissue refractive properties and microscopic heterogeneities in refractive
indices among extracellular, cellular, and subcellular tissue components. Alterations in ab-
sorption and/or reflection and/or scattering reflect biochemical and/or structural features,
which in turn can be indicative of the anatomy, physiology, or pathology of the examined
samples.

Reflectance spectra obtained in vivo by NIR photon sampling allowed us to categorize
living muscles according to the anatomy (biceps vs. triceps) and the anthropometric vari-
ables (age, sex, body mass index) in normal subjects [5], and to the neurological condition
(normal vs. affected by upper motor neuron syndrome) and the effect of botulinum toxin
treatment (before and after injection) in post-stroke patients [6]. Therefore, NIR reflectance
spectroscopy and chemometric analysis provide the opportunity to see whether specific
optical fingerprints collected from body districts in patients may be associated with specific
neurological conditions.

Essential tremor (ET) is a chronic progressive neurological disorder characterized
by rhythmic and involuntary shaking of distinct parts of the body, typically the hands,
head, or voice. It is one of the most common movement disorders, affecting millions of
people worldwide. It often begins in middle age or later, but it can occur at any age [7].
Clinically patients affected by ET manifest tremor, other motor features (i.e., gait ataxia),
and non-motor features (cognitive, psychiatric, and sensory changes) [8]. Tremor associated
with ET is often symmetrical and kinetic, i.e., it mainly occurs during voluntary movements
or when maintaining a particular posture. The exact cause of ET is unknown; both genetic
and environmental factors likely contribute to disease etiology. Diagnosis is typically based
on clinical symptoms and a thorough medical history. There is no specific diagnostic test
for essential tremor; however, neuroimaging [9] and other tests may be conducted to rule
out other potential causes.

Distinguishing ET from other tremor disorders can be challenging in certain situations
due to clinical similarity (tremors associated with Parkinson’s disease or dystonia may
sometimes resemble those seen in ET), the overlap of symptoms (ET can coexist with
other neurological conditions, complicating the diagnostic process), the variability in ET
presentation among individuals, and the absence of specific diagnostic tests. In some cases,
notwithstanding neurological expertise, reaching an accurate diagnosis is not guaranteed.

Several objective diagnostic tools have been developed for ET. Machine learning
has been used to identify biomarkers like APOE, SENP6, and ZNF148, with significant
diagnostic value [10]. Neurophysiological [11] and neuroimaging techniques [12–14] assist
in differentiating ET from other disorders, while electrophysiological assessments provide
objective data on tremor characteristics [15]. Clinical scales such as the Fahn–Tolosa– Marín
scale [16] are used for severity evaluation, and genetic testing helps confirm diagnoses
in familial cases. Biomarker research [17], wearable technology [18], and quantitative
EEG offer further avenues for assessing ET [19], with combination approaches enhancing
diagnostic accuracy.
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Therefore, investigating additional tools for diagnosing ET could be beneficial for
increasing accuracy and objectivity, for favoring early detection and intervention, and
for monitoring disease progression. In this study, we propose NIR reflectance spectra
as a further advanced diagnostic tool for identifying patients with ET. Integration of
innovative non-invasive tools and artificial intelligence derived techniques has already
proved valuable for more precise and efficient diagnosis of patients with ET [14]. We
aimed to explore differences between normal subjects and ET patients in NIRS reflectance
spectra, collected from extracranial (biceps and triceps) and cranial (cerebral, brainstem)
sites, to improve the knowledge on the optical properties of distinct body areas in essential
tremor. In addition, we investigated whether a powerful machine learning algorithm using
chemometrics could help discriminate between normal subjects and patients based on the
spectral data.

2. Materials and Methods
2.1. Participants

Participants were Caucasian southern European individuals enrolled at two Academic
Neurology Units: Policlinico Umberto I in Rome and Alfredo Fiorini Hospital in Terracina
(Latina), Italy. Healthy subjects (n = 16, age 21–74 years; 6 women) were chosen from
among hospital staff and patients’ relatives.

All patients with a confirmed diagnosis of ET were recruited from the movement
disorders outpatient clinic (n = 16, age 21–89 years; 7 women). Patients were included in
the study if tremor was their primary symptom.

The diagnosis of ET was confirmed through a comprehensive clinical evaluation
conducted by a senior neurologist and movement disorder specialist, in accordance with
the diagnostic criteria for ET established by the Task Force on Tremor of the International
Parkinson and Movement Disorder Society [20].

A two-axis approach was employed for the classification of tremors. The first axis
was based on clinical features, with the objective of identifying a tremor syndrome. The
second axis pertained to the etiology of tremors. Patients were categorized according to a
detailed medical history, neurological examination, and the exclusion of other causes of
tremor, such as Parkinson’s disease or dystonia. In cases where the clinical diagnosis was
uncertain, additional neurophysiological assessments, such as electromyography (EMG) or
neuroimaging, were performed to support the diagnosis of ET.

Demographic data and clinical features of patients are shown in Table 1.
The Fahn–Tolosa– Marín (FTM) scale is a clinical tool used to assess tremor severity,

particularly in ET patients. It rates tremor in different body parts (e.g., head, arms, legs,
and voice) on a scale from 0 to 4, with 0 indicating no tremor and 4 representing severe
tremor that interferes with function. The scale also evaluates motor tasks like handwriting,
drawing, and pouring, as well as daily activities such as eating, dressing, and personal
hygiene. Scores are summed to provide an overall severity rating, which helps clinicians
monitor tremor progression and treatment effectiveness.

The Quality of Life in Essential Tremor Questionnaire (QUEST) is a tool used to assess
the impact of ET on a patient’s daily life. It includes 30 items divided into several domains,
such as physical, psychosocial, and communication. Each item is rated on a scale from 0 to
4, with 0 representing no impact and 4 indicating a severe impact on quality of life. The
total score reflects the extent to which tremor affects daily activities, social interactions,
emotional well-being, and overall life satisfaction. The QUEST helps clinicians evaluate
how ET interferes with a patient’s daily functioning and guides treatment decisions.

All participants provided written informed consent before being included in the study,
which was approved by the local ethics committee (Comitato Etico Lazio 2, protocol number
0167183/2018). All procedures were carried out in accordance with the relevant guidelines
and regulations.
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Table 1. Demographic and anthropometric variables of the studied subjects.

ID Condition Age
[yrs] Sex Weight

[kg]
Height

[cm] BMI FMT QUEST

B01 ET 86 0 98 170 34 54 52

B02 ET 81 1 51 160 20 32 11

B03 ET 21 1 58 167 21 23 0

B04 ET 86 0 80 177 26 54 36

B05 ET 77 1 56 160 22 24 6

B06 ET 74 1 53 155 22 21 183

B07 ET 76 0 57 160 22 15 28

B08 ET 81 0 81 179 25 12 6

B09 ET 68 0 73 173 24 2 0

B10 ET 86 0 78 175 25 9 0

B11 ET 72 0 75 177 24 18 14

B12 ET 89 1 72 163 27 25 69

B13 ET 54 1 62 164 23 5 106

B14 ET 80 0 70 171 24 17 30

B15 ET 76 0 89 173 30 14 3

B16 ET 74 1 78 152 34 30 172

NT01 Normal 74 1 58 157 24 - -

NT02 Normal 74 0 70 175 23 - -

NT03 Normal 55 1 58 168 21 - -

NT04 Normal 27 1 54 160 21 - -

NT05 Normal 24 1 58 167 21 - -

NT06 Normal 24 1 47 165 17 - -

NT07 Normal 36 0 75 174 25 - -

NT08 Normal 21 0 90 185 26 - -

NT09 Normal 59 0 102 178 32 - -

NT10 Normal 66 0 74 168 26 - -

NT11 Normal 53 1 75 156 31 - -

NT12 Normal 50 0 68 170 24 - -

NT13 Normal 58 0 83 173 28 - -

NT14 Normal 26 0 72 178 23 - -

NT15 Normal 27 0 80 177 26 - -

NT16 Normal 33 0 57 160 22 - -

Sex: 0 represents male and 1 represents female; FTM: Scores of the Fahn–Tolosa–Marín tremor rating scale [16];
QUEST: Scores of the Quality of Life in Essential Tremor Questionnaire [21].

2.2. Spectra Collection and Analysis

The detailed explanation of the portable spectroradiometer system, instrument cal-
ibration, in vivo spectra acquisition, spectral data management, and analysis have been
previously outlined [5]. In summary, we utilized an ASD FieldSpec 4 Standard-Res spec-
troradiometer (ASD Inc., Boulder, Colorado, United States) capable of operating within
the 350–2500 nm spectral range [22]. The device features distinct holographic diffraction
gratings along with three individual detectors, i.e., a VIS detector (350–1000 nm), a SWIR1
detector (1001–1800 nm), and a SWIR2 detector (1801–2500 nm). The contact probe is
equipped with a halogen bulb serving as the light source, featuring a 12◦ light source angle,
a 35◦ measurement angle, and a 10 mm spot size.
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For device calibration and data acquisition, the native software for the ASD instrument,
called RS3, was adopted. The calibration procedure included dark acquisition, referencing the
dark current calibration file, and measurement of white reference material (Spectralon white
reference standard from LabSphere™). Acquired spectral data files (.asd) were imported into
MATLAB (MATLAB R2022a, ver. 9.12.; The Mathworks, Inc., Natick, Massachusetts, United
States) using an ad hoc script. Imported data files were analyzed using the PLS_toolbox (ver.
9.0; Eigenvector Research, Inc., Wenatchee, Washington, United States) and Statistics and
Machine Learning Toolbox (Ver 12.3.; The Mathworks, Inc., Natick, Massachusetts, United
States). Data were then stored in dataset objects, and classes were set.

After thorough cleaning of the probe and skin-contact regions using disposable skin-
cleansing wipes, VIS-SWIR reflectance spectra were sampled from cranial and extracranial
sites. To acquire spectra, the instrument’s contact probe was placed onto the subject’s skin,
while the spectroradiometer was remotely controlled by a laptop. Patients were encouraged
to immediately report any discomfort felt during the procedure.

Cranial sites were located on the scalp (cerebral site) and the temple region (brainstem
site) contralateral to the most trembling limb, from which the extracranial spectra were
acquired. For the cerebral site, the contact probe was positioned at the location correspond-
ing to the electrode placement site FC3 of the International 10–20 system EEG montage.
The selection of the scalp area over the primary motor cortex for NIR reflectance spectra
in patients with ET is motivated by two key factors: accessibility and relevance. The
scalp represents an accessible, non-invasive site for NIR light penetration, allowing for the
measurement of cortical activity, particularly in the motor cortex, which plays a fundamen-
tal role in motor control. This region is responsible for the generation and regulation of
voluntary movements, and it is important in modulating the rhythmic firing patterns that
are frequently disrupted in ET. Abnormalities in cortical excitability and communication
within motor-related areas may contribute to the generation of tremor, which manifests as
the characteristic rhythmic shaking observed in patients.

For the brainstem site, the contact probe was positioned in the temporal acoustic
window for transcranial doppler, a cranial area that leverages the relatively thin bone.
Anatomically, the temporal window is situated above the zygomatic arch, anteriorly to the
tragus. The contact probe was held parallel to the zygomatic arch. Twenty spectra were
acquired from each cranial site (40 spectra/patient), and the time required for performing
spectra collection was 40 s per subject. Measuring NIR spectra from a cranial site over the
brainstem is especially important, as this area plays a key role in essential tremor. The
brainstem, which includes important structures such as the cerebellar peduncles and the
olivary nucleus, plays a key role in maintaining posture, regulating movement coordination,
and transmitting signals between the cerebellum and the motor cortex. Dysfunction in
brainstem–cerebellar circuits can impair smooth motor control, thereby contributing to
the generation of tremor. Abnormal oscillatory activity, particularly in the inferior olive
and its connections to the cerebellum, is believed to be a core mechanism in ET, disrupting
the fine-tuning of motor commands and thereby leading to the manifestation of tremor
symptoms.

The extracranial sites were on the dorsal and ventral aspects of the arm, standardized
based on the motor point locations of biceps and triceps. The motor point of a muscle rep-
resents the position where the motor branch of a nerve enters the muscle belly. The muscle
was maintained relaxed throughout the acquisition, with the segment fully supported, and
the limb held in a fixed posture (elbow angle at 90◦). Fifty spectra were acquired from each
extracranial site (100 spectra/patient), and the time required was 100 s per subject.

Chemometric analysis was carried out on both the primary dataset and the dataset
with repeated measures within the spectral range of 450–2500 nm. The process began with
a specific combination of preprocessing steps aimed at eliminating physical phenomena
and enhancing multivariate analysis [23]. These steps included extended multiplicative
scatter correction (EMSC), generalized least square weighting (GLS-W) applied to classes
(with α = 0.002 for an enhanced filtering effect), and mean center (MC) algorithms.
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The reflectance spectra data underwent principal component analysis (PCA), a math-
ematical technique focused on decomposing datasets into orthogonal components using
linear combinations that closely represent the original data to a desired level of preci-
sion [24]. Selection of principal components (PCs) involved examining the eigenvalues plot,
while outliers were identified and removed by analyzing Hotelling’s T2 versus Q residual
plots.

Four PCAs were performed on the main dataset according to the following pairs of
classes:

• ET biceps (n = 800) vs. Normal biceps (n = 800);
• ET triceps (n = 800) vs. Normal triceps (n = 800);
• ET brainstem (n = 320) vs. Normal brainstem (n = 320);
• ET cortical (n = 320) vs. Normal cortical (n = 320).

We used the Partial Least Squares Discriminant Analysis (PLS-DA) classification
method to categorize and predict ET or healthy subject by examining the spectra collected
from cranial and extracranial sites. This method explores predictive relationships between
input and output variables. The calibration and validation sets were established using the
Kennard–Stone (K-S) algorithm [25]. The Venetian Blinds (VBs) algorithm was adopted
for performing model cross-validation and choosing the right number of Latent Variables
(LVs). To evaluate the classifiers’ performance, parameters derived from the confusion
matrix were used, including sensitivity, specificity, error rate, precision, and accuracy [26].

Four classification models were established for recognizing:

• ET biceps (n = 800) vs. Normal biceps (n = 800);
• ET triceps (n = 800) vs. Normal triceps (n = 800);
• ET brainstem (n = 320) vs. Normal brainstem (n = 320);
• ET cortical (n = 320) vs. Normal cortical (n = 320).

Variable Importance in Projection (VIP) scores were calculated for each classification
model to assess the contributions of individual variables to the classification. VIP scores
provide a means of evaluating the importance of each variable within the model’s projec-
tion [27]. Variables with VIP scores close to or greater than 1 are considered significant.
VIP scores were compared across all modeled classes, with particular attention to variables
scoring > 1. Peaks in VIP scores, especially those exceeding 2, were identified as critical in
pinpointing significant variable ranges.

Additionally, we developed Partial Least Squares (PLS) regression models to assess
the correlation between reflectance spectra and anthropometric variables such as age and
Body Mass Index (BMI). PLS is a chemometric method commonly used when predicting a
set of dependent variables from a large set of independent variables [28]. In more detail,
the PLS regression models set up are as follows:

• ET biceps (n = 800) vs. Normal biceps (n = 800) for age;
• ET biceps (n = 800) vs. Normal biceps (n = 800) for BMI;
• ET triceps (n = 800) vs. Normal triceps (n = 800) for age;
• ET triceps (n = 800) vs. Normal triceps (n = 800) for BMI;
• ET brainstem (n = 320) vs. Normal brainstem (n = 320) for age;
• ET brainstem (n = 320) vs. Normal brainstem (n = 320) for BMI;
• ET cortical (n = 320) vs. Normal cortical (n = 320) for age;
• ET cortical (n = 320) vs. Normal cortical (n = 320) for BMI.

The PLS regression models were calibrated and cross-validated using the VBs cross-
validation method to determine the optimal number of latent variables (LVs). Two key
parameters were used to evaluate model performance: the Root Mean Square Error (RMSE),
which measures the difference between predicted and observed values, and the coefficient
of determination (R2), which assesses the model’s goodness of fit. Special attention was
also given to the VIP scores from each model, indicating the contribution of each variable
to the explanation of variability in the dependent variable.
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3. Results

Spectra were collected at extracranial and cranial sites without discomfort. For each
participant, 140 acquisitions were collected (100 from extracranial and 40 from cranial sites)
for a total of 3240 spectra composing the main dataset (1600 from extracranial sites, 640
from cranial sites).

Visual inspection of the spectra grand averages revealed that they differed between
groups and sites. The main differences in the spectra were observed at wavelengths around
1100 nm, 1300–1400 nm, 1700 nm, and around 2200 nm. Figure 1 shows the average
reflectance spectra of the analyzed sites.
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The PCA carried out on the dataset relating to the pairs of the investigated sites
showed that the scores were grouped based on the class pairs “ET biceps/Normal biceps”,
“ET triceps/Normal triceps”, “ET cortical/Normal cortical”, and “ET brainstem/Normal
brainstem”. In all cases, PC1 resolved most of the variance among all analyzed classes.
PCA score plots showed that the explained variance (EV) for PC1, in the distinct pairs of
extracranial sites was 18.83% for the extracranial biceps site (Figure 2a), 17.82% for the
extracranial triceps site (Figure 3a), 19.62% for the cranial cerebral site (Figure 4a), and
29.71% for the brainstem site (Figure 5a).
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Partial Least Squares Discriminant Analysis (PLS-DA) was performed to explore the
predictive relationships between input and output variables, enabling efficient classification
of spectra from extracranial and cranial sites. The Kennard–Stone (K-S) method was used to
select samples that best represent the dataset’s variability and to determine the calibration
set for PLS-DA analysis. The dataset was split, with 70% allocated for training and 30% for
testing the PLS-DA model.
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All four models (“ET biceps/Normal biceps,” “ET triceps/Normal triceps,” “ET
cortical/Normal cortical,” and “ET brainstem/Normal brainstem”) demonstrated perfect
classification performance (Table 2), with sensitivity, specificity, precision, and accuracy all
equal to 1, and an error rate of 0 in calibration (C), cross-validation (CV), and prediction (P).
VIP scores exceeding 2 were fundamental in identifying the most important variable ranges
for distinguishing between tissues. VIP score plots for “ET biceps/Normal biceps” and
“ET triceps/Normal triceps” are shown in Figure 6, while those for “ET cortical/Normal
cortical” and “ET brainstem/Normal brainstem” are shown in Figure 7.

Table 2. Statistical parameters obtained from PLS-DA for extracranial sites (biceps and triceps)
and cranial sites (cortex and brainstem). Model phases: calibration (C), cross-validation (CV), and
prediction (P).

Model Model Phase Class Sensitivity Specificity Number of
Spectra Error Rate Precision Accuracy

ET biceps/
Normal
biceps

C
ET biceps 1 1 534 0 1 1

Normal
biceps 1 1 586 0 1 1

CV
ET biceps 1 1 534 0 1 1

Normal
biceps 1 1 586 0 1 1

P
ET biceps 1 1 266 0 1 1

Normal
biceps 1 1 214 0 1 1

ET triceps/
Normal
triceps

C
ET Triceps 1 1 544 0 1 1

Normal
triceps 1 1 576 0 1 1

CV
ET Triceps 1 1 544 0 1 1

Normal
triceps 1 1 576 0 1 1

P
ET Triceps 1 1 256 0 1 1

Normal
triceps 1 1 224 0 1 1

ET cortical/
Normal
cortical

C
ET cortical 1 1 224 0 1 1

Normal
cortical 1 1 224 0 1 1

CV
ET cortical 1 1 224 0 1 1

Normal
cortical 1 1 224 0 1 1

P
ET cortical 1 1 96 0 1 1

Normal
cortical 1 1 96 0 1 1

ET
brainstem/

Normal
brainstem

C
ET brainstem 1 1 205 0 1 1

Normal
brainstem 1 1 243 0 1 1

C
ET brainstem 1 1 205 0 1 1

Normal
brainstem 1 1 243 0 1 1

P
ET brainstem 1 1 115 0 1 1

Normal
brainstem 1 1 77 0 1 1
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Figure 6. VIP scores plot for “ET biceps/Normal biceps” (a) and “ET triceps/Normal triceps” (b).
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Figure 7. Panel (a) VIP scores plot for “ET cortical/Normal cortical”; panel (b) “ET brainstem/Normal
brainstem”.

PLS regression models based on patient age demonstrate strong predictive accuracy,
with high R2 values (Table 3). For the ”ET biceps/Normal biceps” model, the R2 is 0.959 for
calibration (Cal) and 0.958 for cross-validation (CV), with RMSEC and RMSECV both equal
to 5. The ”ET triceps/Normal triceps” model shows R2 values of 0.971 in calibration and
0.967 in cross-validation (RMSEC = 4, RMSECV = 4). Similarly, for the ”ET cortical/Normal
cortical” model, the R2 is 0.970 in calibration and 0.966 in cross-validation (RMSEC = 4,
RMSECV = 4). The ”ET brainstem/Normal brainstem” model yields an R2 of 0.964 in
calibration and 0.955 in cross-validation (RMSEC = 4, RMSECV = 5).
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Table 3. Performance of age- and BMI-based PLS models for extracranial (biceps, triceps) and cranial
(cortical, brainstem) sites.

Dataset PLS LV RMSEC RMSECV C Bias CV Bias R2
C R2

CV

ET biceps/Normal
biceps

Age 4 5 5 0 0.006 0.959 0.958

BMI 4 1.62 1.65 0 −0.001 0.827 0.821

ET triceps/Normal
triceps

Age 5 4 4 0 −0.001 0.971 0.967

BMI 6 1.51 1.59 0 0.013 0.851 0.833

ET cortical/Normal
cortical

Age 4 4 4 0 0.027 0.97 0.966

BMI 5 0.841 0.914 0 −0.001 0.954 0.954

ET brainstem
/Normal brainstem

Age 5 4 5 0 −0.002 0.964 0.955

BMI 6 1.172 1.385 0 −0.002 0.91 0.875

LV: Latent Variable; RMSEC: Root Mean Square Error in calibration; RMSECV: Root Mean Square Error in cross-
validation; C Bias: calibration Bias; CV Bias: cross-validation bias; R2

C: coefficient of determination in calibration;
R2

CV: coefficient of determination in cross-validation.

PLS models based on patient BMI also show significant R2 values. For ”ET bi-
ceps/Normal biceps,“ the R2 is 0.827 in calibration and 0.821 in cross-validation (RMSEC
and RMSECV both equal to 2). The ”ET triceps/Normal triceps” model reports R2 values
of 0.851 for calibration and 0.833 for cross-validation (RMSEC = 2, RMSECV = 2). The
”ET cortical/Normal cortical” model achieves an R2 of 0.954 in calibration and 0.945 in
cross-validation (RMSEC = 1, RMSECV = 1), while the ”ET brainstem/Normal brainstem”
model shows R2 values of 0.910 in calibration and 0.875 in cross-validation (RMSEC = 1,
RMSECV = 1).

Figures 8–11 show the regression plots and corresponding VIP scores for the PLS
models based on age and BMI for the following comparisons: ”ET biceps/Normal bi-
ceps” (Figure 8), ”ET triceps/Normal triceps” (Figure 9), ”ET cortical/Normal cortical”
(Figure 10), and ”ET brainstem/Normal brainstem” (Figure 11).

Tables 4 and 5 summarize the VIP score peaks for both the PLS-DA models and the
PLS regression models (which incorporate BMI and age as variables). As shown in Table 4,
the wavelengths identified as most relevant from the VIP score peaks in the PLS-DA models
for extracranial sites (biceps/triceps) do not overlap with those in the VIP scores of the PLS
regression models.

For the biceps site, the PLS-DA model identifies relevant peaks at 2200–2250 nm (linked
to combinations of N-H and O-H groups) and at 2500 nm (associated with overtones and
combinations of C-H, N-H, and O-H bonds). In contrast, the PLS regression models reveal
significant peaks at 1150–1200 nm, 1350 nm, 1900 nm, and 2500 nm. The 1150–1200 nm
region corresponds to the second overtone of C-H bonds, typically related to lipids and
fatty acids. The peak at 1350 nm suggests molecular absorption due to C-H stretching
vibrations, which may also indicate lipid content. The 1900 nm peak is indicative of water
content, potentially influenced by amide and carbonyl groups (C=O).

For the triceps site, the PLS-DA model highlights peaks at 1350–1400 nm (C-H stretch-
ing vibrations), 1800 nm (first overtone of C-H stretching), and 2500 nm. The corresponding
PLS regression models show peaks around 1150 nm, 1350–1400 nm, and 1900 nm. The
main overlapping region between the VIP score peaks of the PLS-DA model and the PLS
regression model (age) for the extracranial triceps site is found around 1350–1400 nm.

Table 5 summarizes the wavelengths from the VIP scores of PLS-DA and PLS regres-
sion models applied to cranial sites, specifically the cerebral cortex and mid-brain, for ET
patients and healthy controls. In the cerebral cortex, significant peaks related to age predic-
tions are observed between 1800 and 1850 nm and around 2200–2250 nm, corresponding to
molecular absorptions of O-H, N-H, and C-H bonds. Similarly, in the mid-brain, important
peaks for BMI predictions are noted between 1000 and 1100 nm, particularly around 1050
nm, which are associated with second-overtone vibrations of C-H bonds linked to lipids
and proteins.
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Figure 8. Regression models for “ET biceps/Normal biceps” data based on age panel (a) and BMI 
panel (c), along with the corresponding VIP score plots for the age-based model panel (b) and the 
BMI-based model panel (d). Biceps (B) = ET biceps; Biceps (N) = Normal biceps. 

Figure 8. Regression models for “ET biceps/Normal biceps” data based on age panel (a) and BMI
panel (c), along with the corresponding VIP score plots for the age-based model panel (b) and the
BMI-based model panel (d). Biceps (B) = ET biceps; Biceps (N) = Normal biceps.
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Figure 9. Regression models for “ET triceps/Normal triceps” data based on age panel (a) and BMI 
panel (c) , including the VIP score plots for the age-based model panel (b) and the BMI-based model 
panel (d). Triceps (B) = ET triceps; Triceps (N) = Normal triceps. 
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Figure 9. Regression models for “ET triceps/Normal triceps” data based on age panel (a) and BMI
panel (c), including the VIP score plots for the age-based model panel (b) and the BMI-based model
panel (d). Triceps (B) = ET triceps; Triceps (N) = Normal triceps.
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Figure 10. Regression models for “ET cortical/Normal cortical” data based on age panel (a) and BMI 
panel (c), along with VIP score plots for the age-based model panel (b) and the BMI-based model 
panel (d). Cerebral cortex (B) = ET cortical; Cerebral cortex (N) = Normal cortical. 
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Figure 10. Regression models for “ET cortical/Normal cortical” data based on age panel (a) and BMI
panel (c), along with VIP score plots for the age-based model panel (b) and the BMI-based model
panel (d). Cerebral cortex (B) = ET cortical; Cerebral cortex (N) = Normal cortical.
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Figure 10. Regression models for “ET cortical/Normal cortical” data based on age panel (a) and BMI 
panel (c), along with VIP score plots for the age-based model panel (b) and the BMI-based model 
panel (d). Cerebral cortex (B) = ET cortical; Cerebral cortex (N) = Normal cortical. 
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Figure 11. Regression models for “ET brainstem/Normal brainstem” data based on age panel (a) and
BMI panel (c), featuring the VIP score plots for the age-based model panel (b) and the BMI-based
model panel (d). Mid-brain (B) = ET brainstem; Mid-brain (N) = Normal brainstem.
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Table 4. Wavelengths evaluated from the VIP scores of the PLS-DA and PLS models for extracranial sites.

Biceps Triceps
Wavelengths

(nm) PLS-DA PLS
(Age)

PLS
(BMI) PLS-DA PLS

(Age)
PLS

(BMI)

1000–1100 1000

1100–1200 1100;
1150–1200 1150 1150 1150–1200

1200–1300 1200 1200

1300–1400 1350 1350–1400 1350–1400

1400–1500 1450–1500 1450–1500

1500–1600

1600–1700

1700–1800

1800–1900 1800

1900–2000 1900 1900

2000–2100

2100–2200

2200–2300 2200–
2250

2300–2400

2400–2500 2500 2500 2500 2500

Table 5. Wavelengths evaluated from the VIP scores of the PLS-DA and PLS models for cranial sites.

Cerebral Cortex Mid-Brain
Wavelengths

(nm) PLS-DA PLS
(Age)

PLS
(BMI) PLS-DA PLS

(Age)
PLS

(BMI)

1000–1100 1000 1000 1000; 1050 1000;
1050–1100 1000

1100–1200 1150 1150–1200

1200–1300

1300–1400

1400–1500

1500–1600

1600–1700 1650

1700–1800 1700

1800–1900 1800–
1850

1800;
1850–1900 1850–1900

1900–2000

2000–2100

2100–2200

2200–2300 2200–
2250

2300–2400 2300

2400–2500 2500 2500
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Peaks around 1850–1900 nm in both the cortex and mid-brain models suggest molec-
ular absorptions related to water and amide groups. Additionally, the peak at 2500 nm,
observed in the BMI-related models for both the cerebral cortex and mid-brain, may indicate
broader molecular combinations and complex biochemical structures.

4. Discussion

This study shows that non-invasive in vivo NIR reflectance spectroscopy in humans
discriminates the clinical condition of the subjects sampled, thereby identifying ET patients.
This has been made possible by the distinct optical properties of the analyzed body volumes
at extracranial and cranial sites.

In general, the spectral differences between patients with ET and healthy subjects
can be attributed to several specific tissue properties that influence optical characteristics.
One of the most significant factors is the density of neurons, as patients with ET have
been observed to exhibit a notable reduction in the number of Purkinje cells within the
cerebellum [29]. This alteration impacts the scattering and absorption characteristics of
the tissue, resulting in discernible NIR reflectance patterns distinct from those observed
in healthy individuals. Furthermore, cerebellar activity is a contributing factor [30], with
heightened activation during tremor episodes resulting in alterations in blood flow and
oxygenation, which subsequently impact NIR reflectance. Furthermore, chronic alterations
in neuronal activity may also modify the extracellular matrix [31], affecting tissue hydration
and NIR light reflection.

Pathological neural oscillations associated with ET [32] can influence ionic concentra-
tions and the metabolic state of neurons [33], which in turn affects the optical properties
of tissues. Additionally, alterations in myelination [34], resulting from neurodegenerative
processes, contribute to the formation of distinct NIR reflectance spectra in patients with
ET. Furthermore, cortical atrophy in specific brain regions, which is correlated with tremor
severity, affects how NIR light interacts with the tissue. Finally, dysfunctional connectivity
in the cerebello-thalamo-cortical circuit alters brain dynamics [35], which in turn affects
NIR reflectance patterns.

The following sections discuss possible specific factors influencing the optical proper-
ties of tissues explored by NIR light at cranial and extracranial sites.

4.1. Extracranial Sites

The PCA score plot (Figure 2a) visually differentiates the spectra of ET biceps from
normal biceps, showing distinct group separation along the first two principal components
(PC1 and PC2). PC1 explains 18.83% of the total variance, while PC2 accounts for 5.03%.
The loadings plot (Figure 2b) for PC1 identifies key wavelengths contributing most to
the separation. Notable peaks are observed around 1150 nm and 1800 nm, related to CH,
CH2, and CH3 overtone absorption, and a distinct peak at 1480–1500 nm, linked to NH
overtone absorption. Peaks at 1380–1400 nm suggest influences from OH and CH overtones,
with combination bands near 2150 nm (NH+OH) and 2400 nm (CH+CH, CH+CC) further
highlighting relevant spectral regions.

Similarly, the PCA score plot (Figure 3a) shows clear group separation between ET
triceps and normal triceps spectra. PC1 explains 17.82% of the variance, while PC2 accounts
for 4.72%, helping to differentiate the ET and normal groups. The loadings plot (Figure 3b)
reveals the wavelengths contributing most to this separation, with key peaks at 1150 nm
and 1800 nm (corresponding to the second and first overtones of CH, CH2, CH3), 1380–1400
nm (first overtone of OH and CH), 1480–1500 nm (first overtone of NH), and combination
bands around 2150 nm (NH+OH) and 2400 nm (CH+CH, CH+CC). These features suggest
molecular variations involving NH, OH, and CH groups help distinguish ET from normal
triceps spectra.

The wavelengths reported are associated with reflectance minima corresponding to
specific absorbing groups. In the NIR region, the absorption of molecules arises from the
absorption of overtones and the combination of stretching-flexing vibrations of atomic
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groups such as CH, OH, and NH, which include hydrogen atoms. Overtones and com-
bination bands are types of vibrations correlated with fundamental vibrations observed
in the infrared region. Combination bands are the sum of multiple fundamentals from
different vibrations, typically occurring at lower energies than overtones [36]. Therefore,
NIR reflectance spectra turn back to the intimate composition of the sample irradiated.

Specifically, the spectra collected from extracranial sites represent average values over
the volume probed by NIR photons in the arm, that includes skin, fat, vessels, muscles,
and bones, all tissues having distinct vascularization. Analysis of the spectra collected
from “biceps” and “triceps” sites differ in both patients and controls, confirming our
previous observations in different groups of normal subjects and patients with upper
motor neuron syndrome [5,6]. As extensively discussed previously, the spectral differences
emerging between the extracranial sites are mainly attributable to the underlying muscular
tissue which manifests significant peculiarities in the biceps and triceps. In these muscles,
architecture (parallel in biceps vs. bipennate in triceps) [37,38], fiber composition (fewer
fast-twitch muscle fibers in biceps) [39,40], sarcomere length and optimal fascicle length [41],
and intramuscular connective tissue [42] differ.

Even more interesting, the spectral differences which emerged from the two extracra-
nial sites also distinguish normal subjects from ET patients. In the latter, one factor contribut-
ing to the specificity of the optical properties of muscles may be related to their rhythmic
activation, that involves complex molecular and physiological processes at the neuromus-
cular junction, the muscle membrane (i.e., ion channels), calcium ion regulation, the energy
metabolism, and gene expression and adaptation. Rhythmic release of acetylcholine at the
neuromuscular junction requires an intricate molecular signaling pathway [43], and the
generation of action potentials at the sarcoplasmatic membrane that initiate each tremor
muscle contraction involves a coordinated interplay of ion channels [44], leading to the
repetitive firing of action potentials. Calcium ions that are essential for muscle contraction
need to be intermittently released from the sarcoplasmic reticulum [45], to bind other
muscle proteins leading to muscle contraction [46]. All these events require energy, and
the process of converting energy stored in adenosine triphosphate into mechanical work
contributes to sustaining rhythmic muscle contractions [47]. Prolonged or repetitive mus-
cle activation also leads to upregulation or downregulation of specific genes associated
with muscle function, adaptation, and, in some cases, hypertrophy or atrophy [48]. In ET
patients, rhythmic muscle activation depends on the supraspinal drive their motoneurons
receive [49]. When surface electromyography (EMG) is used to analyze the neural impulse
to muscles, ET patients reveal highly synchronized motor units due to strong synaptic
input to motor neurons at the tremor frequency [50]. Increased synchronization of motor
units, and thus greater tremor severity, is correlated with greater central and peripheral
muscle fatigue [51]. The morphology of the EMG signal also differs in ET patients, possibly
reflecting specific electro-mechanic coupling [52].

Rhythmic muscle activation therefore coexists with molecular changes in muscles,
and this relationship is bidirectional, as observed in patients harboring dominant mis-
sense mutations in the MYBPC1 gene (myosin binding protein C gene on chromosome
12 encoding slow myosin) [53]. The affected individuals manifest a clinical phenotype
consisting of mild myopathy and persistent kinetic, pronounced, high-frequency tremor
that is invariant with weight loading, a finding typical of tremors generated by a central
pacemaker. The authors inferred that in these patients the tremor-initiating event is located
at the level of the sarcomere, and through a central loop, it synchronizes and oscillates
muscle activity to generate tremor [53]. Therefore, the distinct optical properties collected
from the extracranial sites in ET patients may relate to the molecular changes induced or
sustained by the rhythmic muscular activation. Alternatively, previously unknown muscle
changes intrinsic to the ET neurological condition may have come to (NIR!) light.
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4.2. Cranial Sites

Cranial sites were located on the scalp (cerebral site) and the temple region (brainstem
site) contralateral to the most trembling limb from which the extracranial spectra were
acquired.

In a previous study [6], we investigated radiation propagation from the probe of our
instrument on both the ventral and dorsal aspects of an arm. The fiber-optic probe geometry
(35◦ angle) and direct skin contact allowed NIR photons to penetrate several centimeters,
reaching tissues like skin, fat, vessels, muscles, and possibly bone. Monte Carlo simulations
in MATLAB modeled light propagation in a 5 cm × 5 cm × 5 cm voxel space, using optical
properties from previous studies. These simulations demonstrated that light penetrated
the muscle through varying fat layer thicknesses (0.5 cm to 1.4 cm). Full details are in the
supplementary information of our previous publication [6].

The distance between the midbrain and the scalp varies depending on individual
anatomy, but can be roughly estimated by adding the thicknesses of the layers in between:
scalp (~5.96 mm), skull (~8.26 mm), dura mater (~0.36 mm), cerebral cortex (~2–4 mm), and
white matter/subcortical structures (~20–30 mm). Arachnoid and pia mater are very thin
and often negligible. Overall, the distance from the scalp to the midbrain is approximately
35–45 mm, though this value can vary based on individual factors.

For brain oximetry, NIR methods have been used since the 1980s to monitor cerebral
oxygenation in animals [54,55] and humans [56–59], with advancements allowing mea-
surement across optical densities up to 8–9 cm. Based on our Monte Carlo study and the
existing literature, we are confident that our method enables NIR radiation to reach the
midbrain.

The scores plot (Figure 4a) shows clear separation between the ET and Normal groups,
indicating that the spectra collected at the cranial/cortical site effectively distinguish
between these two subject classes. The PC1 loadings plot (Figure 4b) highlights notable
peaks at 1280 nm and 1800 nm, which are attributed to the second overtone of CH and the
first overtone of CH, respectively. The peak at 1800 nm is also linked to the first overtone of
SH, associated with various compounds containing thiol groups. Another prominent peak
around 1950 nm is attributed to C=O (second overtone), H2O, and CONH2 groups. The
peak near 2200 nm, where band combinations occur, is associated with CONH2 groups as
well as NH+OH and CH+CH combinations. Lastly, the multiple peaks around 2400 nm are
likely due to molecular vibrations or electronic transitions in certain organic compounds.

To suppress possible biases arising from skin color/texture characteristics (especially
hair) at the scalp site, the information coming from the visible spectrum was removed in
the post-acquisition processing. At the scalp site, under the skin, there is a modest amount
of adipose, fibrous, and connective tissues, blood vessels, nerves, cranial bones, meninges,
corticospinal fluid, and brain (cortex and white matter). Since—to our knowledge—no
specific difference between normal subjects and ET patients has been reported on the
structure of extra-cerebral cranial tissues, we reasoned that the between-group spectral
differences depend on the optical properties of the underlying nervous system, i.e., the
cerebral cortex, white matter, or both.

At the structural level, most postmortem neuropathological studies have sampled
regions of the cerebellum [60]. One study performed on 24 subjects without dementia or
other movement disorder who met clinical criteria for ET and came to autopsy reported
incidental tauopathies in some patients and cortical Lewy bodies in others in addition to
cerebellar pathology [61]. Another study aiming to assess quantitatively the tau burden
in ET found that among cognitively normal elders and subjects with mild cognitive im-
pairment, ET patients had more NFT-positive neurons in the neocortex than controls [62].
Therefore, the greater pre-dementia tau burden in ET may be one contributor to the specific
optical properties of the cerebral cranial site in our patients.

In addition to cerebellar abnormalities, neuroimaging studies using voxel-based mor-
phometry and voxel-wise analysis revealed scattered areas of cerebral atrophy in ET pa-
tients [63]. In predominant intention tremor, the grey matter is found to be increased in
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the temporo-parietal regions, in the right middle occipital cortex, and in the higher order
visuospatial processing areas [64]. Neuroimaging techniques that examine axonal orga-
nization and neuronal circuitries and that provide measures of axon and myelin density
abnormality [65] have detected widespread abnormalities in the white matter of motor
and non-motor areas of the frontal and temporo-parietal cortices in ET patients [66]. In
non-demented ET patients, diffusion tensor imaging microstructural changes have been
shown in the dorsolateral and ventrolateral prefrontal cortex, posterior cingulate cortex,
precuneus, and hippocampus, as well as in the white matter of major bundles, including
the corpus callosum, the anterior thalamic radiation, the longitudinal fasciculus, and the
fronto-occipital fasciculus [67]. Combining cortical volumetric measures and a machine
learning model allowed researchers to establish that cortical atrophy in frontotemporal
regions prevails in ET patients with rest tremor compared to those with classic ET [68].
These subtle structural abnormalities outside the cerebellum revealed by neuropathological
and neuroimaging studies in ET patients may be another contributor to the specific optical
properties of the cerebral cranial site in our patients.

The scalp position where we positioned the NIR probe for the cerebral site was
overlying the sensorimotor cortices. These areas have been repeatedly reported as involved
in ET pathophysiology [69–71]. It has long been known that the primary motor cortex
belongs to the central oscillatory network that generates essential tremor [72], a notion that
has made it possible to obtain a transient reduction in tremor amplitude by modulating
the activity of this area with non-invasive brain stimulation techniques [73,74]. When
the cortical surface and thickness were studied by 3T-MRI and tremor by high-density
surface electromyography, a positive correlation was observed between tremor severity and
cortical atrophy in multiple frontal and parietal areas involved in the control of movement
sequences [75]. Increased synchronization of motor units is correlated with increased central
fatigue [51], which in turn implies prolonged increased energy demand that facilitates
neuronal damage, resulting in cortical thinning and subsequent atrophy. These structural
and functional changes in sensorimotor regions may help explain the distinct optical
properties revealed by NIR spectra collected in ET patients.

For the ”brainstem” sites, the PCA scores plot (Figure 5a) clearly shows separation
between the ET and Normal groups. The PC1 loadings plot (Figure 5b) highlights several
notable peaks. A double peak in the 1100–1200 nm range represents the second overtone
of C-H bonds. Another significant peak at 1450 nm corresponds to O-H stretching, often
linked to water content and hydrogen bonding in biological tissues. The peak near 1900
nm indicates water absorption and possibly C=O bonds, reflecting contributions from
proteins and other water-related interactions. The broad peaks between 2100 and 2300 nm
are associated with complex combinations of functional groups such as CONH2, NH+OH,
and CH+CH, typically found in proteins and amides.

Due to the penetration of the NIR light and the location of the NIR probe (acoustic
window in the temple region), we argue that spectra are collected from a volume including
skin/cutaneous appendages, adipose tissue, fibrous, connective tissue, and vascular com-
ponents, bone, and nervous tissue. As already discussed for the cerebral site, differences
in non-nervous tissues are unlikely to explain the distinct spectral signatures collected
in normal subjects and patients. Therefore, specific differences between groups must be
found in nervous structures interrogated by NIR radiation. In transcranial sonography, a
non-invasive imaging technique that involves the use of ultrasound waves to visualize the
substantia nigra in Parkinsonian patients [76], the ultrasound probe is located in the same
position where we have placed the NIR probe. Therefore, the NIR radiation propagates
across the brainstem, including the mesencephalon. Interestingly, transcranial sonography
has shown changes in ultrasound signal in the substantia nigra in ET patients [77], as have
the spectral data presented here. Substantia nigra hyperechogenicity is thought to reflect
neuronal vulnerability or susceptibility to neurodegeneration, as suggested by a PET study
conducted on healthy elderly subjects comparing 18F-Dopa uptake in subjects with normal-
echogenic or hyperechogenic substantia nigra [78]. Hyperechogenity in ET patients has
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been interpreted as reflecting their greater risk to develop Parkinson’s disease compared
to normal subjects [79]. A different transcranial ultrasound study [80] hypothesized that
hyperechogenicity in the mesencephalon region found in a small number of ET patients
could be due to impairment of the nearby red nucleus, an interpretation supported by PET
studies [81].

Midbrain changes outside the substantia nigra take place in ET. An increase in water
diffusion or a decrease in preferential direction of diffusion (i.e., fractional anisotropy) has
been found in the inferior, median, and superior cerebellar peduncles [82,83], the pons [84],
and red nucleus [85]. In the locus coeruleus region, the main site for noradrenaline synthesis
in the brain, ET patients have reduced levels of parvalbumin compared to controls [86].
Changes in water diffusion and parvalbumin levels, along with imbalances in various
neurotransmitters, may contribute to the chemical changes that determine the brainstem
spectral signatures in ET patients.

Parvalbumin is a marker for GABAergic interneurons in the central nervous system.
At the molecular level, ET has been linked to a generalized GABAergic dysfunction (es-
pecially in the cerebellum) that leads to neuronal hyperexcitability and more intense and
frequent signals sent to the muscles [87]. GABA also plays a crucial role in synaptic plas-
ticity, and its deficiency can therefore reduce the brain’s adaptive capacity [88]. GABA
changes may indirectly influence other neurotransmitters [89], such as acetylcholine, which
is involved in tremor generation, as shown by clinical benefit of anticholinergic drugs in
tremor. GABAergic much more than glutamatergic transmission is preferentially associated
with the expression of Synaptic Vesicle Glycoprotein 2A (SV2A) [90], a protein expressed
in virtually all brain synapses. In inhibitory neurons, SV2A coordinates vesicle traffick-
ing mediated by Synaptotagmin-I and it is therefore essential for maintaining normally
balanced neurotransmission; in case of SV2A deficiency, inhibition decreases and excitation-
inhibition balance is altered [91]. Interestingly, postmortem studies showed decreased
SV2A binding in the cerebellum of ET patients, indicating reduced synaptic density [92].

4.3. Influence of Age and BMI in Regression Models

The influence of age and BMI on essential tremor (ET) is complex, and their relationship
with disease characteristics is not straightforward. Age is a known risk factor for ET, with
older individuals having an increased likelihood of developing the condition, potentially
affecting the severity and progression of symptoms. Additionally, higher BMI may be
linked to more pronounced tremor symptoms and could influence treatment outcomes [93].

However, regression models analyzing spectra from ET patients and healthy subjects
suggest that age and BMI may not significantly alter the spectral characteristics used
to differentiate these groups. The wavelengths identified through VIP scores in models
that considered age and BMI as dependent variables do not align with those from PLS-
DA models. These findings imply that age and BMI are not crucial for spectroscopic
classification of ET. Moreover, the error margins in the regression models (4–5 years for
age and 1–2 units for BMI) highlight the challenges in using these variables as reliable
predictors. This suggests that other biological or environmental factors may play more
important roles in the manifestation and severity of ET, emphasizing the need for further
research.

5. Conclusions

The application of NIR technology in the field of movement disorders has predomi-
nantly concentrated on the utilization of functional NIR spectroscopy (fNIRS). This non-
invasive technique enables the real-time measurement of changes in blood oxygenation
and hemodynamics, thereby facilitating the monitoring of cortical activation during motor
tasks. In patients with ET, fNIRS has provided insights into cerebellar activity and altered
connectivity within the cerebello-thalamo-cortical circuit, both of which are pivotal in the
generation of tremors. The results of previous studies suggest a correlation between the
severity of tremors and cerebellar oscillatory activity. This indicates that NIR reflectance
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may serve as a potential biomarker for disease progression. Its non-invasive nature al-
lows for continuous monitoring and integration with other neurophysiological techniques,
such as electromyography (EMG) and electroencephalography (EEG), thereby enhancing
understanding of ET pathophysiology and improving diagnostic accuracy.

Furthermore, optical spectroscopy and chemometrics are widely used for qualitative
and quantitative analysis of samples, as in this study. To the best of our knowledge,
no studies have applied a methodology similar to ours in patients with ET. This study
confirms the feasibility of obtaining in vivo characterization of bodily structures non-
invasively. Spectroscopy, a non-destructive technology widely used in many fields of
science, allowed the collection of reflectance spectra in vivo from normal subjects and
ET patients by NIR photon sampling. Chemometric analysis allowed us to develop and
optimize a discriminative capability and classification of the spectral responses. These
methods revealed that the optical properties of body regions sampled at cranial and
extracranial sites differ in normal subjects and ET patients.

NIR technology holds promising clinical implications for the diagnosis and monitoring
of ET. As a non-invasive, painless method, it enhances patient compliance and offers a
quantitative approach to identifying biomarkers that could improve diagnostic accuracy
and differentiate ET from other tremor disorders like parkinsonisms and dystonias. NIR’s
potential for real-time monitoring allows for tracking disease progression and tremor
severity, while its integration with machine learning could identify complex patterns for
a more precise diagnosis. Additionally, NIR can be cost-effective compared to advanced
imaging techniques and holds potential for wearable devices, offering continuous tremor
monitoring in daily life and improving patient outcomes.
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