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A B S T R A C T   

Iran has an annual average of 2.8–5.4 kW h/m2d of radiation and has a high capacity for extracting electricity 
from its solar resources. Tehran, the capital of Iran, is one of the most polluted cities in the world in terms of 
atmospheric aerosols. Due to the rising air pollution in Tehran, the existing research is outdated. An analysis of 
the loss of electricity generation due to particulates can significantly affect the feasibility of a photovoltaic power 
plant in Tehran. Several factors affect the electricity generation of photovoltaic systems. The most critical is solar 
radiation. The amount of solar radiation transmitted and, ultimately, the amount of electricity generated depends 
on several atmospheric factors. One of the most important factors is the concentration of suspended particles of 
different sizes. In the present work, linear models based on observed suspended particle concentrations, 
including PM10 and PM2.5, have been proposed for Tehran from 2014 to 2020 to anticipate the aerosol 
attenuation index due to aerosols. Based on the correlation coefficient values (R), in the first and last months of 
the year, November, December, and January, the models performed better to predict the aerosol attenuation 
index based on PM2.5. The R values were, in order, 0.1553, 0.2926, and 0.1341. As remote measurements, the 
NASA CERES syn 1-deg product parameters and, as ground observations, Surface Solar Radiation (SSR) and 
PM10 and PM2.5 concentrations were used to estimate the impacts of aerosols on radiation. With the help of the 
CERES syn 1-deg product, it is declared that, on average, 8.30% of the total radiation received was wasted due to 
the presence of aerosols. Considering observed SSR, CERES syn 1-deg product performance was validated, with 
RMSE and MBD values of 14.09% and 10.89%, respectively.   

1. Introduction 

1.1. Background on the importance of solar energy for renewable energy 
systems 

The demand for energy is increasing due to population growth, 
technological advancements, and industry, highlighting the need for 
renewable energy sources (Khan et al., 2018). By 2050, energy con-
sumption is projected to grow by nearly 50% (Kahan, 2019). Solar 
photovoltaic technology is a common choice for large-scale electricity 
generation (Maleki et al., 2021). Atmospheric factors can affect solar 
radiation transmission (Jiang et al., 2023a). From the mid-20th century 
to the 1980s, there was a gradual decrease in radiation known as “global 
dimming.” This was caused by factors such as low cloud coverage, air 
quality, and atmospheric composition (Jiang et al., 2023b). 

1.2. Need for particle-based models in predicting solar energy attenuation 

Tehran, the capital of Iran, faces severe air pollution issues (Hana-
fizadeh et al., 2016). It is ranked as one of the most polluted cities in the 
world (Heger, 2018). Tehran has a high potential for solar energy gen-
eration, receiving much more solar energy than cities like Berlin, a 
sustainable city (Di Matteo et al., 2017). Tehran receives 5.267 kW 
h/m2d of solar energy, almost twice as much as Berlin (Global Solar 
Atlas). The transition to a solar city is crucial given the energy demand 
and air pollution concerns (Assareh et al., 2023). Short-term forecasts 
(Kanase-Patil et al., 2020)—primarily, particle-based radiation mod-
els—are essential for stable energy supply and assessing the feasibility of 
photovoltaic power plants (Dehghani-Sanij et al., 2023). 

* Corresponding author. 
E-mail addresses: hoseinzadeh.siamak@gmail.com, siamak.hosseinzadeh@uniroma1.it (S. Hoseinzadeh).  

Contents lists available at ScienceDirect 

Journal of Cleaner Production 

journal homepage: www.elsevier.com/locate/jclepro 

https://doi.org/10.1016/j.jclepro.2023.139690 
Received 18 September 2023; Received in revised form 28 October 2023; Accepted 7 November 2023   

mailto:hoseinzadeh.siamak@gmail.com
mailto:siamak.hosseinzadeh@uniroma1.it
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2023.139690
https://doi.org/10.1016/j.jclepro.2023.139690
https://doi.org/10.1016/j.jclepro.2023.139690
http://creativecommons.org/licenses/by/4.0/


Journal of Cleaner Production 434 (2024) 139690

2

1.3. Literature review 

1.3.1. Review of the importance and different applications of solar energy 
In 2018, Sansaniwal et al. recognized that solar energy is a 

dependable, cost-effective, and sustainable alternative to address 
climate change and the rapidly decreasing fossil fuels that contribute to 
global warming. Its incorporation into a range of applications—includ-
ing power generation, air conditioning, and solar drying—offers prac-
tical suggestions for the efficacy and energy efficiency of 
thermodynamics-based processes (Sansaniwal et al., 2018). 

In 2018, Shahsavari and Akbari conducted research on how using 
solar energy, particularly solar photovoltaic (PV), can lower greenhouse 
gas emissions and air pollution in developing countries. They declared 
that by 2030, CO2, NOx, and SOx emissions can be decreased by using 
PV systems in place of kerosene and firewood. Solar energy provides a 
renewable response to energy poverty and environmental issues, despite 
obstacles (Shahsavari et al., 2018). 

In 2021, Sengupta et al. conducted research on the dependability of 
solar resources, which is crucial for numerous solar energy applications, 
including photovoltaics, solar thermal and cooling, and concentrated 
solar power. In order to integrate solar energy sources, ensure grid 
stability, and guarantee the dependability of the solar resource and its 
possible applications, accurate financial analysis and distributed 
photovoltaic integration are crucial (Sengupta et al., 2021). 

1.3.2. Review of previous studies on solar radiation prediction models 
In 2014, Voyant et al. created a 2-D time series of solar radiation 

using Heliosat-2 model and ANN, with scaled persistence forecasting the 
best results in winter and spring, simple persistence in autumn (95.3%), 
and ANN in summer (99.8%) (Voyant et al., 2014). 

In 2014, Bojanowski et al. proposed using the ERA-Interim reanalysis 
data to compare LSA-SAF and CM-SAF solar radiation datasets for 
Europe, finding an average root mean square (RMS) difference of 2 MJ/ 
m2 and a mean difference of 0.37 MJ/m2 (Bojanowski et al., 2014). 

In 2020, Li et al. developed a hybrid algorithm using PCA, wavelet 
transform analysis, and ANN to forecast daily surface solar radiation for 
Reunion Island in 2020, with an acceptable RMSE of 30.98 W/m2 (Li 
et al., 2019). 

In 2020, Yang and Bright evaluated the performance of eight models 
and databases, with Solcast model having the highest performance in 
evaluating RMSE (Yang et al., 2020). 

In 2021, All-Hajj et al. conducted a comparison of several stacking- 
based ensembles of data-driven machine learning predictors to deter-
mine the optimal clustering techniques for combining predictors of solar 
radiation. The majority of the tested models were shown to be able to 
estimate solar radiation, but those that included merging heterogeneous 
models with neural meta-models performed better (Al-Hajj et al., 2021). 

In 2022, Cao et al. validated data from radiation databases in China, 
finding that CERES-SYN1deg and SARAH-E performed better than ERA5 
and MERRA-2 in anticipating GHI, with an RMSE of 19.32% and 

Nomenclature 

GHI Global horizontal irradiance (W/m2) 
DNI Direct normal irradiance (W/m2) 
DHI Diffuse horizontal irradiance (W/m2) 
SSR Surface Solar Radiation (W/m2) 
SH Sunshine Hours (hour) 
AQI Air Quality Index (Dimensionless) 
AQCC Tehran Air Quality Control Company 
WHO World Health Organization 
MERC Materials and Energy Research Center 
PM10 Coarse particulate matter, which is 10 μm or less in 

diameter. (ug/m3) 
PM2.5 Fine particulate matter which, is 2.5 μm or less in diameter. 

(ug/m3) 
RMSE Root Mean Square Error or Root Mean Square Deviation 
RRMSE Relative Root Mean Square Error 

NRMSE Normalized Root Mean Square Error 
R Correlation Coefficient 
MBD Mean Bias Deviation 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
SD Standard Deviation 

Subscripts 
Rs Initial Surface Shortwave Down Flux (Wh/m2d) 
Rs, as Initial Surface Shortwave Down Flux (all-sky condition, 

daily means) or ini_sfc_sw_down_all (Wh/m2d) 
Rs, na Initial Surface Shortwave Down Flux (no aerosol condition, 

daily means) or ini_sfc_sw_down_naer (Wh/m2d) 
Kaa Aerosol Attenuation index (Dimensionless) 
Kaá Cumulative Aerosol Attenuation index (Dimensionless) 
KPM10 PM10 index (Dimensionless) 
KPM2.5 PM2.5 index (Dimensionless)  

Table 1 
Summary of existing particle-based models used in other fields  

Authors Model type Data type Model elements Step size Period Area 

Préndez et al. (1995) ( 
Préndez et al., 1995) 

Linear Locally observed DHI, GHI, Total Suspended Particles (TSP), Air Temperature Monthly 
average 

1978–1988 Chile 

Yang et al. (2016) (Yang 
et al., 2016a) 

Linear Locally observed, 
satellite-based 

AOD, DNI, PM2.5, Visibility, Relative Humidity (RH), cloud 
coverage, Maximum surface ground temperature (SGT) 

Daily 
average 

2004–2014 and 
1993–2003 

China 

Yang et al. (2016) (Yang 
et al., 2016b) 

Linear Locally observed Wind Speed, GHI, PM2.5, visibility Hourly 
average 

2014 China 

Luo et al. (2019) (Luo 
et al., 2019) 

Linear Locally observed visibility, AQI, PM10, PM2.5, GHI, DNI, DHI Daily 
average 

2016–2017 China 

Zhao et al. (2019) (Zhao 
et al., 2019) 

Non-linear, 
Linear 

Locally observed AQI, Clearness Index (Kt) Daily 
average 

2013–2017 China 

Zhang et al. (2020) ( 
Zhang et al., 2020) 

Linear Locally observed Clearness Index Attenuation (Kd), AQI Daily 
average 

2014–2016 China 

Yang et al. (2022) (Yang 
et al., 2022) 

Linear Locally observed DHI, GHI, Clearness Index (Kt), AQI Daily 
average 

2014–2020 China 

Gómez et al. (2023) ( 
Gómez et al., 2023) 

– Locally observed NOx, SO2, PM2.5, PM10, GHI, Wind Speed, Wind Direction Monthly 
average 

2010–2020 Spain  

M. Mardani et al.                                                                                                                                                                                                                               



Journal of Cleaner Production 434 (2024) 139690

3

16.72%, respectively (Cao et al., 2022). 
In 2022, Sun et al. investigated the impact of gridded data on clear- 

sky radiation models in Singapore, finding that DNIcs are more respon-
sive to AOD550 fluctuation than GHIcs (Sun et al., 2022). 

1.3.3. Review of previous studies on predicting solar energy attenuation 
using remote sensing data 

In 2019, Montesinos et al. presented a novel approach for the esti-
mation of ground-level direct normal irradiance (DNI) in concentrated 
solar power (CSP) plants, considering the effects of atmospheric 
extinction. Comparison results indicated a normalized root-mean-square 
error (nRMSE) of less than 6% and strong correlation coefficients (R) 
above 0.94 (Alonso-Montesinos et al., 2019). 

In 2021, Kay and Prasad developed a satellite model for solar energy 
forecasting in 2021, utilizing remote sensing data to estimate solar en-
ergy attenuation, achieving superior performance in over 50% of situ-
ations (Prasad et al., 2021). 

In 2021, Dumka et al. conducted a study on atmospheric aerosols and 
clouds in Nainital, which revealed that atmospheric aerosols had sig-
nificant impacts on solar radiation, reducing both global and beam 
horizontal irradiance (Dumka et al., 2021). 

In 2022, Cheng et al. improved the modeling of solar radiation and 
attenuation effects of aerosol using the WRF-Solar model with the help 
of AOD data in northern China. Results showed that the direct appli-
cation of satellite-based AOD data is effective in improving solar radi-
ation modeling and investigating the attenuation effect of aerosol 
(Cheng et al., 2022). 

In 2022, Jia et al. evaluated three machine learning models for 
predicting GHI and DHI under different weather conditions and air 
pollution. The SVM model was more reliable, with the maximum 
amount of error occurring in the most polluted and cleanest atmospheric 
conditions (Jia et al., 2022). 

1.3.4. Review of existing particle-based models used in other fields (see 
Table 1) 

In 1995, Prendez et al. studied the correlation between solar radia-
tion, air temperature, and total suspended particulate matter (TSP) in 
Santiago, Chile. Results showed an agreement between TSP values and 
solar radiation and temperature for urban locations, with a calculated R2 

of 0.7 (Préndez et al., 1995). 
In 2016, Yang et al. found that aerosol pollution (AOD provided by 

Modis and MISR sources) significantly affects solar radiation, with the 

highest amount of loss reported in Zhengzhou, and showing the ab-
sorption of radiation by aerosol is higher in the central parts of China 
(Yang et al., 2016a). 

In 2019, Luo et al. studied the relationship between air pollution, 
visibility, AQI, PM2.5, and radiation changes in Nanjing, China. Results 
showed that PM2.5 had the most significant impact on changes in 
scattered radiation, with a correlation coefficient of − 0.92 (Luo et al., 
2019). 

In 2016, Yang et al. investigated the effects of winds in heavy aerosol 
pollution conditions on solar radiation, and found that there are direct 
agreements between solar radiation and VIS, as well as between surface 
winds and aerosols (Yang et al., 2016b). 

In 2019, Zhao et al. investigated the effects of fog and haze on solar 
radiation using principal component analysis (PCA) and global solar 
radiation weakening models (GSRW models). Results showed that in 
Tianjin, China, the average value of the weakening degree was 18.66%, 
26.37%, 37.32%, and 45.58%. The GSRW models were validated in six 
other regions with different conditions of fog and haze, and their values 
of R-value, RMSE, and MAPE were 0.730, 0.059, and 9.430, respectively 
(Zhao et al., 2019). 

In 2020, Zhang et al. investigated the relationship between air 
pollution and radiation in China, finding that the monthly clearness 
index attenuation showed higher values in winter than in summer. 
Tianjin had the highest radiation attenuation ratio at 6.56 % (Zhang 
et al., 2020). 

In 2022, Yang et al. studied the effects of air pollution on GHI and 
DHI in six cities in China from 2014 to 2020. The results showed that the 
highest attenuation ratio was observed in spring, autumn, winter, 
summer, autumn, and winter, respectively. Also, the relative attenuation 
caused by air pollution in Beijing from 2014 to 2020 was the highest, 
6.03% (Yang et al., 2022). 

In 2023, Gómez et al. studied the correlation between solar radia-
tion, air pollutants (NOx, SO2, PM2.5, and PM10) and wind fields in 
coastal region of Spain. Results showed high agreement between solar 
radiation and NOx in annual cycles (Gómez et al., 2023). 

Identification of gaps in the literature and the need for a new 
particle-based model for solar energy attenuation prediction. 

One of the first researches that investigated the effect of air pollution 
on the generation capacity of photovoltaic panels in Tehran dates back 
to 1999–2000. The research result indicated that air pollution led to a 
60% decrease in electricity generation capacity in Tehran. The amount 
of power degradation was obtained from comparing the generated 

Fig. 1. The location of 21 stations of Tehran Air Quality Control Company (Tehran’s Air Quality Control Company). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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electricity on December 17, 1999, and December 22, 1999 (Asl-Solei-
mani et al., 2001). On the other hand, Tehran is known as one of the 
most polluted cities in the world, especially in terms of PM2.5 pollution. 
In addition, Tehran has a high potential for converting electricity from 
solar radiation with an average received radiation of 4.5–5.2 kW h/m2d 
(Ahmad, 2018). So, investigating the drop in available solar irradiation due 
to aerosols/particles can improve the positioning of PV power plants 
(Gutiérrez et al., 2018). 

In the present article, considering PM2.5 and PM10 concentration 
values and the NASA CERES SYN 1-deg product parameters (Cao et al., 
2022), precise climate data for research and modeling, from 2014 to 
2020, monthly linear correlations between PM2.5 and PM10 and atmo-
spheric aerosol attenuation have been proposed for Tehran to anticipate 
the attenuation of solar energy due to aerosols with the help of local-
ly-observed suspended particle concentrations (Ballestrín et al., 2020). In 
particular, the consequences can be seen on the plane of PV panels. 
Hence, the feasibility study of PV power plant installation can be studied 
and improved by using historical time series and predicted solar radia-
tion data simultaneously (Lopes et al., 2021). 

2. Data and methods 

Methods and data will be described in this section. 

2.1. Observation site and datasets 

Observation site and datasets will be described in this section. 

2.1.1. Observation site 
Tehran is the capital of Iran, with 12.5 million people and 17 million 

car trips planned daily. It is one of the most polluted cities in the world, 
ranking 12th among 26 metropolitan areas in PM10 levels (Heger, 
2018). The Materials and Energy Research Center (35.748769, 
50.957442) was adopted to collect GHI data from March 2014 to 
December 2020. No reliable data was recorded between January and 
June 2015 due to technical problems. Regular maintenance services 
were performed, and the measurement site was 25 km from the nearest 
air quality control station, District 21 (see Fig. 1) (Table 6). 

The GHI radiation measurement sensor model CMP-22, produced by 
Kipp & Zonen company, was used to measure SSR. The features are 
presented in Table 2. Also, the sunshine duration sensor CSD3 produced 
by Kipp & Zonen company was used to detect days with clear sky. 

Table 2 
The description of the GHI measurement equipment used in the research (Kippb).  

Observation 
instrument 

Directional response (up to 80◦ with 
1000 W/m2 beam) 

Operating 
temperature (C) 

Spectral range 
(nm) 

Spectral 
sensitivity 

Response 
time 

Long-term 
stability 

Sensitivity (uV/ 
W/m2) 

Kipp & Zonen 
CMP-22 

<5 W/m2 − 40 to +80 200–3600 <1% <5 s <5% 7 to 14  

Table 3 
CERES-SYN 1-deg product summary (Li et al., 2021).  

Product Spatial 
resolution 

Coverage Main input Method 

CERES 
SYN 1- 
deg 

1◦ (~100 
km) 

2000–present CERES, MODIS, 
GEOS-4/5, etc. 

Radiative 
Transfer Code  

Table 4 
CERES SYN 1-deg Ed4A Shortwave Down Flux product parameters and related supplementary information (Rutan et al., 2015)  

Parameters Abbreviations (in CERES SYN 1-deg ED4A 
dataset) 

Abbreviations (in this 
article) 

Effective Atmospheric Factors 

Clouds Aerosols Molecular scattering and 
absorption 

Initial Surface Shortwave Down Flux (all-sky 
condition, hourly means) 

ini_sfc_sw_down_all_1 h Rs, as yes yes yes 

Initial Surface Shortwave Down Flux (clear-sky 
condition, hourly means) 

ini_sfc_sw_down_clr_1 h – no yes yes 

Initial Surface Shortwave Down Flux (no aerosol 
condition, hourly means) 

ini_sfc_sw_down_naer_1 h Rs, na yes no yes 

Initial Surface Shortwave Down Flux (pristine 
condition, hourly means) 

ini_sfc_sw_down_pri_1 h – no no yes  

Table 5 
The PM2.5 and PM10 measurement instrument used in AQCC company in Tehran.  

Observation instrument Operating temperature (C) Measurement range (ug/m3) Resolution (ug/m3) Accuracy Main flow rate (l/min) Bypass flow rate (l/min) 

TEOM-1405 − 40 to +60 0–1 0.1 ±75% 3 13.67  

Table 6 
The air quality monitoring stations of Tehran AQCC (Latitude/Longitude Dis-
tance Calculator).  

Index Stations Lat Lon Distance (km) 

1 Aqdasiyeh 35.798863 51.484551 48 
2 Darrous 35.769915 51.454108 45 
3 District 2 35.776633 51.367817 37 
4 District 4 35.742304 51.489826 48 
5 District 10 35.699104 51.362052 37 
6 District 11 35.673486 51.389766 40 
7 District 16 35.643377 51.398158 41 
8 District 19 35.634885 51.361983 39 
9 District 21 35.696084 51.238896 25 
10 District 22 35.723064 51.242733 26 
11 Golbarg 35.730363 51.506106 50 
12 Masoudieh 35.629859 51.499584 51 
13 Piroozi 35.696169 51.49345 49 
14 Punak 35.761631 51.332063 34 
15 Ray 35.603958 51.425465 45 
16 Rose Park 35.629859 51.499584 51 
17 Sadr 35.77633 51.428433 43 
18 Setad bohran 35.727051 51.430811 43 
19 ShadAbad 35.668927 51.297697 32 
20 Sharif University 35.703137 51.347887 36 
21 Tarbiat Modares University 35.721304 51.382942 39  
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Further information is in (Kippa). 

2.1.2. Datasets 
Datasets will be described in this section.  

• Shortwave Down Flux/modeled GHI 

In the present research, Shortwave Down Flux parameter data from 
NASA’s CERES SYN 1-deg product was used from 2014 to 2020. The SYN 
1-deg Ed4A product presents the Shortwave Down Flux parameters of 
solar radiation as monthly, daily, three-hourly, and hourly averages in 
four different scenarios. The effect of aerosol attenuation in the atmo-
sphere can be calculated by considering the difference between all-sky 
and no-aerosol scenarios (Li et al., 2020). The daily cumulative data 
of NASA’s CERES-SYN 1-deg product were used in all sections of this 
article; in other words, the hourly data of one day were added together 
and used in daily form in all the sections of the present work. Additional 
details about the SYN 1-deg Ed4A product from NASA CERES are pro-
vided in Table 3 and Table 4. Additionally, the used source code is 
accessible through GitHub (Mardani, 2022). 

It is believed that to define SSR, the Shortwave Down Flux parameter 
is the same as GHI. In several papers, this parameter has been validated 
and used as GHI (Cao et al., 2022; Li et al., 2021; Rutan et al., 2015; Su 
et al., 2005, 2007). The accuracy evaluation process of CERES SYN 1-deg 
ED4A product and its parameters have been applied in several papers 
(Bannon, 2015; Bannon et al., 2017, 2018; Kato et al., 2020). Certainly, 
in section 3.2.3 of this article, the validation of one of the parameters of 
this product - ini_sfc_sw_down_all or Rs, as - has been discussed. 

2.1.3. Ground-level PM2.5 & PM10 
Particulate matter includes microscopic substances suspended in air 

or water. The airborne particles are called aerosols. The aerosols with a 
diameter of less than 10 and 2.5 are called PM10 and PM2.5, respec-
tively (Attia et al., 2022). The Air Quality Control Company (AQCC) 
provided average hourly and daily data of PM2.5 and PM10 concen-
trations in Tehran - freely available - between 2014 and 2020 (Tehran’s 
Air Quality Control Company). Particulate matter data is collected by 
the Tapered Element Oscillating Microbalance (TEOM) instrument (see 
Table 5). However, there are other cheaper instruments to gather data 
(deSouza et al., 2020). All the urban stations of the mentioned company 
are located in Tehran (see Fig. 1) (Nabavi et al., 2019). Due to using 24-h 
average data in the overall and seasonal analysis stages, outlier data was 
not omitted. But in the phase of investigating the relationship between 

Fig. 2. Monthly variation in PM2.5 concentrations (2014–2020) at Tehran’s district 21 station.  

Table 7 
Investigating the daily average concentrations of PM2.5 at the district 21 Station 
in Tehran, rearranged monthly for 2014–2020.  

Period Seasons Sample 
size 

Monthly Average of Daily Average PM2.5 
Concentration 

Min. 
(ug/ 
m3) 

Max. 
(ug/ 
m3) 

Mean 
(ug/ 
m3) 

SD 
(ug/ 
m3) 

2014–2020 January 168 13 94 45.38 17.02 
February 141 12 143 39.22 20.02 
March 150 6 78 27.75 13.07 
April 139 6 90 23.61 9.03 
May 152 13 67 26.88 8.29 
June 126 12 60 29.57 9.06 
July 154 14 68 32.01 9.07 
August 155 14 81 31.88 8.78 
September 149 12 52 31.13 8.13 
October 163 8 64 32.10 9.51 
November 172 7 104 42.95 17.53 
December 172 12 123 53.02 23.68  

Table 8 
Investigating the daily average concentrations of PM10 at the District 21 Station 
in Tehran, rearranged monthly for the entire period of 2014–2020.  

Period Months Sample 
size 

Monthly Average of Daily Average PM10 
Concentration 

Min. 
(ug/ 
m3) 

Max. 
(ug/ 
m3) 

Mean 
(ug/m3) 

SD 
(ug/ 
m3) 

2014–2020 January 168 33 221 98.10 33.95 
February 141 37 364 97.59 45.73 
March 150 13 282 76.86 42.76 
April 140 19 172 67.22 28.40 
May 151 36 231 90.58 34.68 
June 126 52 245 103.24 31.97 
July 153 58 254 111.16 33.91 
August 154 57 274 102.64 28.05 
September 151 47 335 112.91 40.35 
October 185 41 191 100.19 28.68 
November 164 24 269 94.68 41.18 
December 173 24 220 105.69 38.63  
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PM2.5 and PM10 changes and radiation loss, the outlier data were 
removed to improve the model’s prediction accuracy. According to the 
AQCC’s report, pollutant data is verified at air quality control stations 
daily at 11 a.m. and, if valid, is presented on the site and on city display 
boards/monitors (Tehran’s Air Quality Control Company). Similar to 
articles (Nabavi et al., 2019) and (Liu et al., 2007), the daily average 
data for particulate matter were used because they had a higher 
agreement with the AOD. Due to the lack of PM10 and PM2.5 data 
measurement by five AQCC stations in Tehran in desired period, only the 
data of 21 stations were accessible from 2014 to 2020 (see Fig. 1). The 
list of stations, as well as their distances to the observation site in MERC, 
was presented in Table 6. 

2.2. Methods 

Methods will be described in this section. 

2.2.1. Seasonal data classification method 
For seasonal data classification, an astronomical start was used for 

each season instead of a meteorological start (Neshat et al., 2023). 

2.2.2. Aerosol attenuation effect method 
In this part, we discussed the drop resulting from aerosol with the 

help of parameters ini_sfc_sw_down_naer or abbreviated Rs, na, and 
ini_sfc_sw_down_all or abbreviated Rs, as. According to Table 4, these two 
parameters provide daily cumulative radiation data, including the cloud 
effect, and the only difference is the aerosol effect. The parameter Rs, aa 
was expressed as the difference between the daily cumulative radiation 
on the earth’s surface in the absence of aerosols and the daily cumulative 
radiation on the earth’s surface in a normal state. Additionally, Kaa can 
be defined as the difference in daily cumulative radiation on the earth’s 
surface, considering the absence of aerosols on the daily cumulative 
radiation on the earth’s surface in normal conditions. Kaa’ is conceptu-
ally very similar to Kaa, with the difference that it indicates the ratio of 
total Rs, aa in the period to the annual total. 

From now on, we will use Rs, aa, Rs, na, and Rs, as parameters in the 
text instead of the abbreviations introduced in Table 4. 

Rs,as =Rs,na − Rs,as Equation 1  

Kaa =
Rs,na − Rs,as

Rs,as
=

Rs,aa

Rs,as
Equation 2 

Rs, aa = Solar Radiation Attenuation by Aerosol (Wh/m2d). 

Fig. 3. Monthly variation in PM10 concentrations (2014–2020) at Tehran’s district 21 station.  

Table 9 
Summary of the daily average concentrations of PM2.5 and PM10 in the District 21 station with the daily average concentrations of PM2.5 and PM10 in the West Area 
of Tehran, and the daily average concentrations of PM2.5 and PM10 in all the stations rearranged monthly in the entire period of 2014–2020.  

Period Months Monthly Average of Daily Average PM2.5 Concentration Monthly Average of Daily Average PM10 Concentration 

District 21 (ug/ 
m3) 

Western Stations (ug/ 
m3) 

All the Stations (ug/ 
m3) 

District 21 (ug/ 
m3) 

Western Stations (ug/ 
m3) 

All the Stations (ug/ 
m3) 

2014–2020 January 45.38 44.35 36.92 98.10 94.09 76.83 
February 39.22 36.44 32.27 97.59 89.74 74.49 
March 27.75 27.30 24.05 76.86 74.18 58.86 
April 23.61 23.58 21.66 67.22 69.98 55.15 
May 26.88 26.36 25.002 90.58 85.30 66.95 
June 29.57 30.29 29.78 103.24 98.47 81.59 
July 32.01 33.61 30.17 111.16 108.70 86.88 
August 31.88 29.51 28.22 102.64 100.22 85.39 
September 31.13 30.07 27.81 112.91 106.12 88.07 
October 32.10 32.33 28.59 100.19 95.84 80.25 
November 42.95 42.77 35.21 94.68 93.30 76.09 
December 53.02 53.29 44.36 105.69 111.42 87.26  
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Rs, na = ini_sfc_sw_down_naer (Wh/m2d). 
Rs, as=ini_sfc_sw_down_all (Wh/m2d). 
Kaa = Aerosol Attenuation index (Dimensionless). 

2.2.3. p.m.2.5 and PM10 indexing 
To ease fitting linear correlations on particulate matter concentra-

tion data and aerosol attenuation, two new parameters were defined as 

Fig. 4. Monthly comparison of PM2.5 concentrations (2014–2020) in tehran stations.  

Fig. 5. Monthly comparison of PM10 concentrations (2014–2020) in tehran stations.  

Table 10 
Table of daily cumulative radiation data for Rs, as and Rs, na in the NASA CERES 
SYN 1-deg database for the entire 2014–2020 in Tehran.  

Parameters Total 
days 

Min. (Wh/ 
m2d) 

Max. (Wh/ 
m2d) 

Mean (Wh/ 
m2d) 

SD (Wh/ 
m2d) 

Rs, as 2557 444.67 9041.02 5234.39 2174.88 
Rs, na 2557 453.29 9463.92 5676.49 2368.45  

Table 11 
Table of daily cumulative radiation for observed GHI at MERC for the entire 
period of 2014–2020.  

Database Total 
days 

Min. 
(Wh/ 
m2d) 

Max. (Wh/ 
m2d) 

Mean (Wh/ 
m2d) 

SD (Wh/ 
m2d) 

Observed GHI 
in MERC 

1921 199.97 7961.02 4782.146 2013.03  
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shown below: 

KPM2.5 =
PM2.5

100
Equation 3  

KPM10 =
PM10
100

Equation 4 

KPM2.5 = PM2.5 index (Dimensionless). 
KPM10 = PM10 index (Dimensionless). 
Both relationships representing the particulate matter ratios in 

different sizes of diameters, including PM10 and PM2.5. Both parame-
ters are dimensionless. Due to the ease of calculations, as the authors did 
in (Yang et al., 2022), the KPM2.5 was defined by dividing PM2.5 b y 100 
μg/m3 (in (Yang et al., 2022), the RAQI was calculated as a represen-
tative of the Air Quality Index as mentioned). 

3. Results and discussion 

3.1. Regional distribution of fine & coarse particulate matters in tehran 
(PM2.5 & PM10) 

The purpose of this section is to offer important information into the 
spatial patterns of PM2.5 and PM10. 

3.1.1. Regional distribution of PM2.5 
Insights on PM2.5 spatial trends are sought in this section.  

• Investigating the daily average PM2.5 concentrations at the district 21 
station, rearranged monthly for 2014-2020 

According to Fig. 2 and Table 7, the maximum/highest value of the 
daily average PM2.5 concentrations at the district 21 station from 2014 
to 2020 occurred monthly in December and seasonally in the winter. On 
the other hand, the minimum/lowest value was in April. The maximum 
and minimum values were reported as 53.02 and 23.61 μg/m3, 

respectively. 

3.1.2. Regional distribution of PM10 
Insights on PM10 spatial trends are sought in this section. 

Table 12 
Statistical properties of Rs, as and SSR in MERC on clear sky days.  

Database Clear 
days 

Min. (Wh/ 
m2d) 

Max. (Wh/ 
m2d) 

Mean (Wh/ 
m2d) 

SD (Wh/ 
m2d) 

Rs, as 1037 2906.7749 9041.0249 6406.9451 1758.9481 
SSR or 

GHI 
1037 1881.514 7961.025 5709.0516 1516.94  

Fig. 6. Comparison of Rs, as and measured GHI at MERC from 2014 to 2020 on clear-sky days.  

Table 13 
Table of the daily cumulative radiation parameters of the daily solar radiation 
Shortwave Down Flux (NASA CERES syn 1-deg product) in Tehran as annual 
average values for the period of 2014–2020.  

Year Sample 
size 

Yearly Average of Daily Solar Radiation Shortwave 
Down Flux (NASA CERES syn 1-deg) 

Rs, na (Wh/ 
m2d) 

Rs, as (Wh/ 
m2d) 

Rs, aa (Wh/ 
m2d) 

Kaa 

2014 365 5721.51 5264.45 457.05 0.0835 
2015 365 5739.25 5285.43 453.82 0.0849 
2016 366 5837.58 5392.89 444.68 0.0802 
2017 365 5794.51 5357.08 437.42 0.0830 
2018 365 5491.03 5049.11 441.92 0.0853 
2019 365 5639.92 5206.57 433.35 0.0812 
2020 366 5511.61 5085.20 426.40 0.0810 
All data 

(average) 
– 5703.96 5259.25 444.70 0.0830  

Table 14 
Table of the daily cumulative radiation parameters of the daily solar radiation 
Shortwave Down Flux (NASA CERES syn 1-deg product) in Tehran as annual 
cumulative values for the period of 2014–2020.  

Years Sample 
size 

Yearly cumulative solar energy of Daily 
Solar Radiation Shortwave Down Flux 
(NASA CERES syn 1-deg)  

Rs, na (kWh/ 
m2d) 

Rs, as (kWh/ 
m2d) 

Rs, aa 

(kWh/ 
m2d) 

Kaa 

2014 365 2088.35 1921.52 166.82 0.0868 
2015 365 2094.82 1929.18 165.64 0.0859 
2016 366 2136.55 1973.80 162.75 0.0825 
2017 365 2114.99 1955.33 159.66 0.0817 
2018 365 2004.22 1842.92 161.30 0.0875 
2019 365 2058.57 1900.39 158.17 0.0832 
2020 366 2017.24 1861.18 156.06 0.0839 
All data 

(Average) 
– 2073.53 1912.04 161.48 0.0844 

All data 
(Sum) 

2557 14514.74 13384.32 1130.4 0.0844  
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Table 15 
The table describes the minimum and maximum daily parameters of the Kaa for Tehran rearranged annually from 2014 to 2020.  

Years Data (Kaa) date Daily Solar Radiation Shortwave Down Flux (NASA CERES syn 1-deg) 

Rs, na (Wh/m2d) Rs, as (Wh/m2d) Rs, aa (Wh/m2d) Kaa 

2014 Min. December 26, 2014 3424.37 3405.14 19.22 0.0056 
Max. July 02, 2014 8647.42 7310.69 1336.72 0.1828 

2015 Min. March 11, 2015 6277.59 6243.35 34.24 0.0054 
Max. April 16, 2015 4082.54 3250.92 831.62 0.2558 

2016 Min. November 25, 2016 3886.57 3858.27 28.29 0.0073 
Max. October 26, 2016 4137.67 3445.57 692.10 0.2008 

2017 Min. December 08, 2017 3238.45 3236.20 47.24 0.0146 
Max. October 27, 2017 3887.57 3191.07 696.49 0.2182 

2018 Min. December 24, 2018 2563.15 2533.10 30.05 0.0118 
Max. April 23, 2018 3367.30 2552.57 614.72 0.2233 

2019 Min. January 12, 2019 3260.17 3228.32 31.85 0.0098 
Max. October 21, 2019 4566.34 3728.77 837.57 0.2246 

2020 Min. December 27, 2020 3301.02 3272.20 28.82 0.0088 
Max. April 26, 2020 1996.80 1653.72 343.07 0.2074 

All data Min. March 11, 2015 6277.59 6243.35 34.24 0.0054 
Max. April 16, 2015 4082.54 3250.92 831.62 0.2558  

Table 16 
The table describes the monthly averages of the daily average cumulative solar radiation shortwave down flux values (NASA CERES syn 1-deg) in Tehran rearranged 
monthly for 2014–2020.  

Period Months Sample size Monthly Average of Daily Solar Radiation Shortwave Down Flux (NASA CERES syn 1-deg)  

Rs, na (Wh/m2d) Rs, as (Wh/m2d) Rs, aa (Wh/m2d) Kaa Kaa’ 

2014–2020 January 217 3035.75 2878.56 157.19 0.0558 0.0297 
February 198 3861.53 3627.82 233.71 0.0664 0.0441 
March 217 4945.02 4592.78 352.24 0.0813 0.0665 
April 210 6167.39 5675.70 491.69 0.0930 0.0929 
May 217 7495.02 6889.42 605.60 0.0921 0.1144 
June 210 8739.42 8077.70 661.72 0.0830 0.125 
July 217 8535.79 7775.53 760.25 0.0995 0.1436 
August 217 7983.49 7356.66 626.83 0.0863 0.1184 
September 210 6712.39 6075.31 637.08 0.1061 0.1203 
October 217 4737.20 4321.35 415.84 0.0988 0.0785 
November 210 3172.31 2958.19 214.11 0.0739 0.0404 
December 217 2640.88 2502.70 138.18 0.0558 0.0261  
Sum – 68026.19 62731.72 5294.44 – 1 

In Table 16, the values of Rs, aa, Rs, na, Rs, as, and Kaa were obtained by averaging the daily cumulative values of the month for the period of 2014–2020. Kaa’ values are 
defined like Kaa, with the difference that the sum value is placed in the fraction’s denominator. In other words, this parameter expresses the ratio of the monthly drop to 
the total drop of whole period. 

Fig. 7. Comparison of monthly Kaa values in 2014–2020.  
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• Investigating the daily average PM10 concentrations at the district 21 
station, rearranged monthly for the entire period of 2014-2020 

According to Table 8 and Fig. 3, the maximum value of the daily 
average PM10 concentration at the district 21 station from 2014 to 2020 
occurred in September and generally in the summer. On the other hand, 
the minimum value was calculated in April. The maximum and mini-
mum values were reported as 112.91 and 67.22 μg/m3, respectively. 

3.1.3. Summary of the daily averages of PM10 and PM2.5 concentrations 
from 2014 to 2020 

By examining Table 9, the minimum value of the daily average of 
PM2.5 and PM10 concentrations from 2014 to 2020 occurred in April in 
Tehran, and their values were 21.66 and 55.15 μg/m3, respectively. 
These values for the western stations occurred in April. Their values 
were 23.58 and 69.98 μg/m3, respectively, and for District 21, they were 
23.61 and 67.22 μg/m3, respectively (see Figs. 4 and 5). In other words, 
in the seven years from 2014 to 2020, the daily average concentrations 
of PM2.5 and PM10 in Tehran were generally higher than 21.66 and 
55.15 μg/m3, respectively. These values were 44.4% and 22.55% higher 
than the WHO air quality guidelines (Organization, 2021). This in-
dicates that air pollution in Tehran has been steadily increasing over the 
past several years, and that the current air quality guidelines are not 
adequate to protect the people of Tehran from the health risks of air 
pollution. 

3.2. Surface solar radiation (SSR) 

Surface Solar Radiation will be calculated in this section with the 
help of various methods. 

3.2.1. Shortwave down flux (NASA CERES syn 1-deg product) 
NASA’s CERES syn 1-deg database provides various sub-parameters 

of the Shortwave Down Flux parameter in all-sky, clear-sky, and no- 
aerosol conditions. The statistical properties of the data illustrated in 
Table 4. Due to mathematical models and satellite data, the mentioned 
dataset was accessible on all days from 2014 to 2020 (see Table 10). 

3.2.2. Observed GHI in MERC 
According to the data in Table 11, to check the radiation measured in 

MERC, we had access to the data for 1921 days out of 2557 days between 
January 2014 and December 2020 (parts of the data were missed). The 
minimum daily amount of cumulative GHI radiation observed in MERC 
was 199.97 W h/m2d, as expected in the winter season. On the other 
hand, the maximum daily value in the whole seven-year period was 
7961.02 W h/m2d in the spring season. This value was about 66% higher 
than the seven-year average daily radiation received at the desired 
location. Compared to previous expectations, this amount was greater 
than the maximum radiation received in the summer season. By default, 
due to the higher radiation in the summer, the maximum received ra-
diation should be a higher value. Accordingly, the maximum average of 
cumulative GHI radiation received daily in 2014–2020 was in June and 
was 6911.38 W h/m2d. On the other hand, the minimum value was in 
December, and it was 2219.17 W h/m2d. 

3.2.3. Validation of CERES SYN 1-deg rs, as with observed SSR data in 
merc from 2014 to 2020 

In this subsection, the results of validating the radiation data ob-
tained from observed SSR with the modeled data of NASA CERES syn 1- 
deg Shortwave Down Flux all sky conditions - or Rs, as - will be discussed 
for the seven years from 2014 to 2020. To ignore the effect of clouds, the 
validation was done on days with clear-sky conditions. 

To determine whether the sky was clear or cloudy, sky condition 
evaluation data from the sunshine hours data collected at the Merc was 
used. 

Using SH, 1037 days with a clear sky condition were separated from 
the measurement interval from 2014 to 2020 at Merc (see Table 12). 
Then the shortwave down flux radiation data provided by the NASA 
CERES SYN 1-deg product in the all-sky condition was validated with the 
help of RMSE, MBD, MAE, and MAPE statistical analysis methods in 
these 1037 clear-sky days. For two reasons, the performance of Rs, as was 
validated on clear-sky days. The first reason was that the focus of this 
paper was on the effects of aerosols and not the effects of clouds. The 
second reason was that the Rs, as will be used in the calculations of the 
Kaa. 

The measured and modeled radiation values are shown in Fig. 6. 
RMSE and MBD values were reported as 14.09% and 10.89%, respec-
tively. This indicates that the model was accurate in predicting the ra-
diation values. The RMSE and MBD values are also within the acceptable 
range of 20%. This suggests that the model can be used in making pre-
dictions about solar radiation. 

3.3. Investigation of the changes in the daily average PM2.5 & PM10 
concentrations and radiation losses from aerosols considering the SYN 1- 
deg product of the NASA CERES database from 2014 to 2020 in tehran 

More than 99% of the sun’s radiation is in the range of 0.15–4 μm 
(John and Duffie, 2013). This spectrum includes ultraviolet, visible, and 
infrared, which account for 7%, 50%, and 43% of the energy of the sun’s 
radiation, respectively. Among atmospheric gas compounds, O3 gas re-
flects and reduces available radiation in the ultraviolet spectrum. Also, 
water vapor absorbs and scatters radiation in the infrared spectrum. But 
it is more complicated for aerosols. It reduces three phenomena: 
reflection, scattering, and absorption. PM2.5 and PM10 often reduce 
radiation in the near-infrared range and, to a small extent, in the visible 
light range (Opálková et al., 2019). 

3.3.1. Investigating the impacts of aerosols on received radiation using 
NASA CERES SYN 1-deg product parameters from 2014 to 2020 

With the help of Rs, aa we investigated the drop in received radiation 
due to aerosol utilizing daily cumulative radiation - introduced earlier - 
from 2014 to 2020. 

In Table 13, the annual average values of the daily cumulative ra-
diation of three parameters (Rs, aa, Rs, na, and Rs, as) from the product 

Table 17 
Description of Kaa’ in Tehran for hot and cold seasons from 2014 to 2020.  

Period Seasons Kaa’ 

2014–2020 Spring + Summer 0.7037 
Autumn + Winter 0.2963  
Sum 1  

Table 18 
The table below describes the radiation and aerosol concentration parameters in 
Tehran as a monthly average from 2014 to 2020.  

Period Months AQCC (District 21) NASA CERES syn 1-deg 
Product 

PM2.5 (ug/ 
m3) 

PM10 (ug/ 
m3) 

Rs, aa (Wh/ 
m2d) 

Kaa 

2014–2020 January 45.38 98.1 157.19 0.057 
February 39.22 97.59 233.71 0.054 
March 27.75 76.86 352.24 0.077 
April 23.61 67.22 491.69 0.089 
May 26.88 90.58 605.6 0.079 
June 29.57 103.24 661.72 0.078 
July 32.01 111.16 760.25 0.109 
August 31.88 102.64 626.83 0.103 
September 31.13 112.91 637.08 0.109 
October 32.1 100.19 415.84 0.079 
November 42.95 94.68 214.11 0.074 
December 53.02 105.69 138.18 0.064  
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CERES SYN 1-deg and Kaa are presented. As it is known, in 2018, with 
the value of Kaa equal to 0.0853, the most remarkable drop in radiation 
due to aerosols occurred compared to the overall received radiation. The 
values in the “All data (average)” section of Table 13 showed that, on 
average, 8.30% of the total radiation was wasted by aerosols in 

2014–2020. The values in Table 14 also confirm that the largest radia-
tion drop due to aerosols compared to the total radiation received in the 
seven years occurred in 2018. In this table, the values of Rs, aa, Rs, na, and 
Rs, as have been calculated annually cumulatively, and at the end, Kaa has 
been calculated using annual cumulative values. The cumulative Rs, aa 

Fig. 8. The equations were fitted to the Kaa and KPM2.5 rearranged monthly from 2014 to 2020.  
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value in 2018 was 161.30 kW h/m2d, which was unexpectedly lower 
than the Rs, aa value in 2014, 2015, and 2016. The reason for that was the 
difference in Rs, as value, which is placed in the denominator of the 
fraction in Kaa. Therefore, about Rs, aa, which shows the amount of 
reduced radiation due to the effect of aerosols, in Tables 13 and 14, the 
year 2014 has the highest reduction values from aerosols. 

In Table 13, Rs, aa, Rs, na, and Rs, as are the average values between the 
entire days of the year. Also, the value of Kaa for each year has been 
calculated by averaging the daily Kaa. 

In Tables 14 and in contrast to Table 13, the Kaa has been calculated 
for each year by dividing the annual cumulative values. Table 15 shows 
the minimum and maximum values for the Kaa each year. According to 
the table, both days were from 2015. So that on April 16, 2015, 25.58% 
of radiation decreased due to aerosols, which was the maximum for the 
entire period. On the other hand, on March 11, 2015, 0.54% of the ra-
diation decreased, which was the minimum for the whole period. In 
addition, on April 16, 2015 and March 11, 2015, respectively, 831.62 
and 34.24 W h/m2d of daily Rs, as were wasted due to the presence of 
aerosols. This shows that aerosols can have a significant effect on the 
amount of energy that is wasted. Therefore, it is important to take 
measures to reduce the presence of aerosols in the atmosphere. This can 
be done by reducing air pollution and introducing more efficient 
methods of energy production (Unger, 2009).  

• Investigating the impacts of aerosols on received radiation using NASA 
CERES SYN 1-deg product parameters monthly from 2014 to 2020 

In Table 16, the values of Rs, aa, Rs, na, Rs, as, and Kaa were obtained by 
averaging the daily average values of the given month in 2014–2020. 
The highest radiation loss due to aerosols was observed in September, 
with Kaa of 10.61%. Aerosols reduced the daily cumulative radiation 
(total radiation received in one day) by 637.08 W h/m2d in September. 
In both January and December, Kaa measured 5.58%, which is the lowest 
radiation loss due to aerosols. Regarding examining the Kaa’, the highest 
radiation loss was evaluated in July, with a share of 14.36% of the total 
annual radiation loss due to aerosols. On the other hand, December was 
the least affected by aerosols, with a share of 2.61% of total radiation 
loss. 

In Fig. 7, the monthly average values of Kaa are compared for 
2014–2020. The figure shows that in February, Kaa values from 2014 
increased until 2018 and then decreased until 2020. The Kaa declined 
throughout June from 2014 to 2020, particularly in 2018, 2019, and 
2020. The trend of Kaa in July increased throughout the whole period. 
Also, in July, August, and September, the trend of Kaa was positive 
throughout the entire period. Kaa values rose dramatically in the last 
year of the period, especially in August, reaching 10.27% in 2020. In 
2014, this parameter was 8.63%. In May and April of 2018, the value of 
the Kaa increased dramatically, so the values were 11.40% and 11.25%, 

respectively. This is a considerable increase compared to the average of 
the entire period of these months, which was 9.30% and 9.21%, 
respectively.  

• Investigating the radiation loss due to aerosols, including the phenomenon 
of temperature inversions, in Tehran 

A temperature inversion is a layer in the atmosphere where the air 
temperature increases with height. An inversion occurs at the bottom of 
a cap-like layer of air. The desired cap is relatively warm air above it 
(above the inversion layer) (What is an inversion). In 2020, Khalesi and 
Danehsvar investigated temperature inversions in Tehran from 2014 to 
2018. It was stated that the most severe occurrences of this phenomenon 
happened in the winter and autumn seasons (Khalesi et al., 2020). 
During the temperature inversion phenomenon, pollutants from vehi-
cles, wood burning, and industry are trapped near the ground, which 
leads to a severe drop in air quality. Over time and with a lack of air 
movement, the concentration of PM2.5 in the atmosphere increases 
(Cichowicz et al., 2022). To evaluate the reducing effect of aerosols in 
the cold seasons of the year, considering the data in advance, Table 17 
was prepared. In this table, Kaa’ values were calculated as the sum of 
spring and summer for hot seasons and winter and autumn for cold 
seasons. The results of Table 17 showed that despite the phenomenon of 
temperature inversions and the increase in PM2.5 concentration in the 
cold seasons of the year, the cold seasons had a share of 29.63% in the 
total radiation reduced due to aerosols in the period of 2014–2020. It 
means that the radiation loss due to aerosols in the hot seasons is twice 
as much as in the cold seasons. 

The results show that maybe investing of new solutions to reduce the 
concentration of aerosols in the hot seasons in Tehran is much more 
efficient than improving the air quality in the cold seasons. Generally, in 
the hot seasons, PM10, which originates from the western countries of 
Iran (Givehchi et al., 2013), causes a decrease in radiation. Despite that, 
in the cold seasons, the temperature inversions and lack of air move-
ments cause an increase in the concentration of PM2.5. It seems that the 
higher agreement of Kaa with PM2.5 or KPM2.5 in January, October, and 
December, and conversely better agreement of Kaa with PM10 or KPM10 
in the months between February and October, was for this reason.  

• Investigating the correlation between PM2.5 & PM10, and Kaa in 2014- 
2020 

In this subsection, the correlation between PM2.5 & PM10, and Kaa in 
2014–2020 has been investigated. The monthly average values in 
Table 18 have been used. The correlation coefficients were calculated 
using the statistical parameter correlation coefficient, which agrees with 
the data for two modes (PM2.5 and Kaa) and two other modes (PM10 and 
Kaa) between the values in Table 18. The values for the first and second 

Table 19 
Statistical parameters and coefficients of the fitted linear models between Kaa and KPM2.5 (KPM2.5=P1*Kaa + P2).  

Period Months Coefficients Size Correlation coefficients RMSE (%) MAPE (%) 

P1 P2 

2014–2020 January 0.8521 0.4104 168 0.1341 20.82 39.78 
February 0.0312 0.383 141 0.0047 17.71 8.17 
March 0.5704 0.2317 150 0.1329 21.64 23.74 
April 0.6741 0.1778 139 0.2296 9.77 26.45 
May 0.55 0.2205 151 0.1855 15.04 23.19 
June 0.8912 0.2317 126 0.1703 18.60 26.74 
July 0.6367 0.2645 154 0.1818 16.52 23.59 
August 0.2614 0.2947 154 0.0913 18.65 20.85 
September 0.3215 0.281 149 0.0920 20.25 23.68 
October 0.0576 0.3107 160 0.0173 17.92 21.34 
November 0.7024 0.3607 163 0.1553 21.33 37.29 
December 2.7738 0.3888 172 0.2926 20.40 46.29 
All data (average) – – 1827 0.1406 18.22 26.75  
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scenarios were − 0.56 and 0.22, respectively. In the following sub- 
section, this approach will be examined in detail, and twelve linear 
correlations will be proposed. 

3.3.2. Investigating the correlation between kaa values and two parameters, 
KPM2.5 and KPM10, in 2014–2020 

In this part, during the years 2014–2020, we will be looking at the 
possible correlations that exist between the levels of Kaa and the pa-
rameters KPM2.5 and KPM10. 

Fig. 9. The equations were fitted to the Kaa and KPM10 rearranged monthly from 2014 to 2020.  
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• Investigating the correlations and comparing the values of Kaa and KPM2.5 
rearranged monthly in 2014-2020 

In this sub-section, all the data were rearranged monthly, and one 
linear model was fitted to the data for each month (see Fig. 8). It should 
be mentioned that because the PM2.5 data at the district 21 station was 
unavailable for several months during the seven years or was removed as 
an outlier, the total number of examined data pairs was 1827 (less than 
2557 days of the entire period). The district 21 station was located 25 
km away from the Merc radiation measurement site and was, therefore, 
the closest station with long-term data access. 

As shown in Table 19, the slope of the fitted line - the ratio of changes 
in two parameters, Kaa and KPM2.5—in December was 2.77. It was the 
maximum value of all the months. Furthermore, in this month, the 
maximum correlation coefficient between pairs of data was calculated at 
0.2926. In this month’s data, the RMSE was also at the minimum value 
of 9.77%. 

The fitted correlations to the data are as follows. The values were 
reported in Table 19 (the graphs are available in Correlation_Plots. 
xlsx).  

• Investigating the correlations and comparing the values of Kaa and KPM10 
rearranged monthly in 2014-2020 

In this subsection, we did the same as in the last part. All the data 
were clustered monthly, and a linear model was fitted to the data for 
each month (see Fig. 9). It should be mentioned that because the PM10 
data at the district 21 station was unavailable for several months during 
the period or was removed as an outlier, the total number of examined 
data pairs was 1858 (less than 2557 days of the entire period). The 
district 21 station was located 25 km from the Merc radiation mea-
surement site and represented the closest station with long-term data 
access. As it is shown in Table 20, the slope of the fitted line - the ratio of 
changes in two parameters, Kaa and KPM2.5 - in June was 4.0039. It was 
the maximum for all months. Also, the highest value of the correlation 
coefficient between data pairs was calculated as 0.3516 in April. 

As stated in the last sub-section, the fitted models on the data will be 
shown as follows. The values were reported in Table 20 (the editable 
graphs are available in the Correlation_Plots.xlsx file). 

3.3.3. Summary of the investigation of the correlation between kaa and two 
parameters, KPM2.5 and KPM10, in 2014–2020 

In previous sub-sections the correlations between Kaa and two pa-
rameters, KPM2.5 and KPM10, in 2014–2020 were investigated, respec-
tively. The data for the seven years was clustered monthly, and analyzed 
separately for each month. It is suggested to use the model with a higher 
correlation coefficient as needed. 

As shown in Tables 19 and 20 and in the middle nine months of the 

year (February, March, April, May, June, July, August, September, and 
October) in terms of the correlation coefficient, which explains the de-
gree of correlation, the models performed better for PM10; while in the 
first and last months of the year (November, December, and January), 
the models performed better in terms of PM2.5. This could be due to the 
different weather patterns in each month, which can influence the 
concentration of PM2.5 and PM10 in the atmosphere (Liu et al., 2020). 

4. Conclusion 

The monthly average PM2.5 and PM10 concentrations in Tehran 
experienced their lowest values in March and April of each year from 
2014 to 2020, as shown in Table 9. For the month of March, the PM2.5 
and PM10 values were 24.05 and 58.86 μg/m3, respectively. Addition-
ally, the corresponding values for April were 21.66 and 55.15 μg/m3. It 
is possible to conclude that air pollution has decreased as a result of 
decreased automobile activity in Tehran and industry shutdowns during 
the official holiday (Nowruz) in March and April. 

According to Table 11, the maximum daily average value of GHI 
radiation received in MERC in the entire period was 7961.02 W h/m2d 
in the spring. This value was 66% higher than the entire period’s 
average at the desired location. 

In the data validation of the CERES syn 1-deg shortwave down flux 
all-sky condition, RMSE and MBD for validation in 2014–2020 were 
reported as 14.09% and 10.89%, respectively, as shown in Fig. 6. This 
indicates that the CERES syn 1-deg shortwave down flux all-sky condi-
tion is reliable and accurate in predicting surface solar radiation. 
Additionally, the results show that the model is stable and consistent 
over time, making it a reliable tool for climate research. 

Aerosols caused 8.30% of total radiation loss from 2014 to 2020. This 
percentage is expected to increase in the upcoming years. The results in 
Table 17 showed that, the cold seasons had a 29.63% share of the total 
radiation reduced due to aerosols from 2014 to 2020, despite temper-
ature inversions and PM2.5 concentration increases. This indicates that 
aerosols have had a more significant impact on radiation reduction in 
the warm seasons. This indicates that reducing aerosols in warm seasons 
could be an effective way to reduce the effects of climate change. 

As shown in Tables 19 and 20, data was clustered monthly and 
analyzed separately for each month, with models dependent on PM2.5 
performing better in the first and last months of the year (November, 
December, and January). This indicates that PM2.5 has a seasonal effect 
on air pollution levels. The monthly analysis also showed that PM2.5 
had a greater impact on air pollution levels than other pollutants. This 
suggests that air pollution control policies should focus on reducing 
PM2.5 emissions to mitigate air pollution 

Table 20 
Statistical parameters and coefficients of the fitted linear models between Kaa and KPM10 (KPM10 = P1*Kaa + P2).  

Period Months Coefficients Size Correlation coefficients RMSE (%) MAPE (%) 

P1 P2 

2014–2020 January 1.383 0.905 168 0.1253 17.91 32.82 
February 0.8939 0.9182 141 0.0624 13.95 37.86 
March 2.0823 0.5993 150 0.1669 15.67 69.76 
April 3.267 0.3592 140 0.4348 16.71 32.21 
May 2.9299 0.638 151 0.2626 17.16 28.92 
June 4.0039 0.7212 126 0.2545 16.01 21.05 
July 3.8131 0.7429 153 0.3516 16.19 22.50 
August 2.8691 0.7739 154 0.3372 12.17 16.78 
September 1.7021 0.9492 151 0.1188 13.96 24.96 
October 1.513 0.851 185 0.1864 18.78 24.83 
November 1.8184 0.8407 164 0.1124 16.43 45.03 
December 3.7833 0.912 175 0.0599 19.74 41.04 
All data (average) – – 1858 0.2060 16.22 33.14  
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