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ABSTRACT

The EMBL-EBI Complex Portal is a knowledgebase
of macromolecular complexes providing persistent
stable identifiers. Entries are linked to literature ev-
idence and provide details of complex membership,
function, structure and complex-specific Gene Ontol-
ogy annotations. Data are freely available and down-
loadable in HUPO-PSI community standards and
missing entries can be requested for curation. In col-
laboration with Saccharomyces Genome Database
and UniProt, the yeast complexome, a compendium
of all known heteromeric assemblies from the model
organism Saccharomyces cerevisiae, was curated.
This expansion of knowledge and scope has led to a
50% increase in curated complexes compared to the
previously published dataset, CYC2008. The yeast
complexome is used as a reference resource for the
analysis of complexes from large-scale experiments.
Our analysis showed that genes coding for proteins
in complexes tend to have more genetic interactions,
are co-expressed with more genes, are more multi-
functional, localize more often in the nucleus, and are
more often involved in nucleic acid-related metabolic
processes and processes where large machineries
are the predominant functional drivers. A compari-
son to genetic interactions showed that about 40% of
expanded co-complex pairs also have genetic inter-
actions, suggesting strong functional links between
complex members.

INTRODUCTION

Many proteins exist as part of stable, macromolecular com-
plexes that act as functional units in the cell. Identify-

ing such complexes is crucial for a systems level under-
standing of biological processes. The EMBL-EBI Com-
plex Portal (www.ebi.ac.uk/complexportal, (1,2) is a man-
ually curated, encyclopaedic resource of macromolecular
complexes from a number of key model organisms, includ-
ing Saccharomyces cerevisiae. Entries describe assemblies of
two or more macromolecules (proteins, nucleic acids, small
molecules) for which there is evidence (experimental or in-
ferred) that these molecules stably interact with each other
and have a demonstrated molecular function. Judgment of
what constitutes a stable complex is based on available sci-
entific literature, experimental evidence and a consensus de-
cision made by two curators. Homomultimers are only cu-
rated if it has been demonstrated experimentally that mul-
timerization is required for their function or in cases where
a heterodimeric complex exists and at least one of the two
participants forms an orthologous homodimeric complex.
Polymers are excluded and large, multi-complex machiner-
ies are reduced to their functional subcomplexes because
the final assemblies are often dynamic, rather than a sin-
gle instance of a functional unit existing at any moment of
time. The subcomplexes of large assemblies are annotated
with GO terms relating to the larger machineries, for ex-
ample, all spliceosome sub-complexes are annotated with
the GO term GO:0005681 (spliceosomal complex) to facili-
tate searching. Unlike other compendia of complexes, such
as CORUM (3), the Complex Portal not only lists the pro-
tein composition of each complex but also includes nonpro-
tein components, stoichiometry (when known) and topol-
ogy (including intra-complex binary interactions) and pro-
vides both a free-text and structured description of complex
function and properties (Figure 1). Each entry is linked to
a range of related resources such as complex-centric Gene
Ontology (GO) annotations (4,5), structure determinations
deposited in the wwPDB (6) or the role of the complex in a
pathway in Reactome (human-only) (7). Links to these and
other resources are provided both via cross-referencing and
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Figure 1. The nuclear cohesin complex is curated as one entry in CYC2008 (A) but represented by two, process-specific complexes in Complex Portal (B),
one involved in mitosis and one involved in meiosis. The two complexes differ by one subunit. (C) Screenshots of the Details page of these complexes in
Complex Portal.

the integration of widgets on the website to display Reac-
tome pathways diagrams, structures via the PDBe LiteMol
App (8) and gene expression data via the Expression Atlas
widget (9). Versioning of the stable accession numbers in-
dicates when a complex has been significantly updated, for
example, by the addition or removal of a protein subunit
from the list of participants. The data are freely available
and downloadable in the HUPO-PSI community standard
PSI-MI XML3.0 (10), MI-JSON and tab-delimited Com-
plexTab formats (1).

Saccharomyces cerevisiae (henceforth referred to as
‘yeast’) is an important model organism for our understand-
ing of the biology of all eukaryotic organisms and signifi-
cant effort has gone into identifying all its stable complexes.
However, until recently, information about such complexes
was scattered across many publications and in different
databases. An early effort to concatenate these data was

the, now deprecated, MIPS yeast complex database (11).
Domain-specific resources such as structural data in ww-
PDB, functional statements and Gene Ontology anno-
tations on the protein pages of UniProt (12) and gene
pages of the Saccharomyces Genome Database (SGD; www.
yeastgenome.org) (13) provide highly detailed, component-
specific information only. It was very difficult to derive a pic-
ture of the complete yeast complexome without systemati-
cally integrating information from these and other sources.
Additionally, molecular interaction databases such as those
maintained by members of the IMEx Consortium (14,15)
provide experimentally derived interaction data without
combining evidence from multiple sources for a whole com-
plex. Several studies in the early 2000s predicted yeast com-
plexes based on high-throughput yeast two-hybrid (16,17)
or affinity-purification methods (18–20) but only few stud-
ies included systematic validation by way of small-scale
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experiments and manual curation (21). In 2009, Pu et al.
published a comprehensive analysis of 400 highly inter-
connected assemblies derived from high-throughput exper-
iments (Yeast High ThroughPut, YHTP2008) and also
a compendium of 408 literature-derived, manually cu-
rated complexes based on small-scale experiments (Curated
Yeast Complexes, CYC2008) (22). While both datasets con-
tained approximately 400 entries, <20% of these were iden-
tical to each other. However, in the 12 years since this set
was first published, significant advances have been made in
the field of interaction biology and considerably more high-
quality datasets are now available to contribute to our un-
derstanding of this field. This has allowed a re-evaluation of
the data and in 2018 the first version of an updated and en-
hanced dataset of known yeast complexes, the ‘yeast com-
plexome’, was released in the Complex Portal. Additional
complexes are being added to the dataset on an ongoing
basis, if and when they are experimentally verified.

In this paper, we explore the yeast complexome and
compare the extent and depth of data available through
the Complex Portal to other resources that contain data
on yeast complexes, namely to the curated and predicted
complexes from Pu et al. and complexes predicted based
on all experimental protein–protein interactions in the In-
tAct molecular interaction database (23). Compared to
CYC2008, the Complex Portal dataset contains almost 50%
more entries (589 versus 408), covers 5% more of the yeast
proteome (32% versus 27%) and includes additional detail
about the complexes as described above. Finally, we com-
pare and contrast protein complex co-membership with the
global genetic interaction network (24) and found that both
datasets significantly overlap.

MATERIALS AND METHODS

Source data for the Yeast Complexome

The data for the yeast complexome were derived from de-
tailed literature searches and collated in collaboration with
curators based at UniProt and SGD. A draft list of putative
complexes was created based on the following sources: the
CYC2008 dataset, UniProtKB SUBUNIT comment lines
search with keywords ‘found in a complex with’ and a close
collaboration with SGD who provided a list of identified
complexes and by directed literature searches. A complex is
only included in the Complex Portal dataset if there is liter-
ature evidence for its existence and functional role in vivo.
Complexes that were identified based only on either high-
or low-throughput analyses without the presence of further
verification experiments or functional assays were not in-
cluded. Thirteen homomers have been curated, to date, be-
cause the protein was also present in a related heteromeric
complex. It should be noted that homomers have largely
been omitted from manually curated datasets, because it
is often challenging to demonstrate experimentally if their
function requires oligomerization and their generic func-
tions are already described in the UniProtKB database. Lit-
erature searches and the collaboration with SGD are ongo-
ing and new complexes are being added to the dataset when
they are experimentally identified.

The datasets

The protein complex datasets analysed were the following:

• Complex Portal––589 complexes (release 228, 16 Novem-
ber 2019)

• CYC2008––408 manually curated complexes (22)
• YHTP2008––400 predicted complexes (22)
• IntAct-LT––332 predicted complexes derived from low-

throughput experiments in IntAct (release 228, 16
November 2019)

• IntAct-HT––689 predicted complexes derived from high-
throughput experiments in IntAct (release 228, Novem-
ber 2019)

To enable direct comparison of protein complex compo-
nents represented in the Complex Portal and IntAct, gene
locus IDs in CYC2008 and YHTP2008 were mapped to
UniProt ACs using the UniProt Mapping service web ap-
plication (UniProt Release November 2019). Ambiguous
mappings, where a locus could be mapped to more than one
UniProt entry with the same sequence, were expanded to in-
clude all potential mapping pairs.

Complex Portal data were exported in ComplexTab for-
mat. Where complexes are part of larger assemblies (sub-
complexes) these were expanded to provide a list of unique
UniProtKB identifiers. Sets of paralogous ribosomal pro-
teins were expanded to a full list, therefore all potential
UniProtKB identifiers were included in the analyses. The
expansion of paralogous proteins leads to an over-inflation
of the subunit count per complex for the two ribosomal
subunits but is the only way to include all proteins in the
comparative analysis. As stoichiometry information is only
available in a limited number of Complex Portal and IntAct
entries and often missing due to a lack of available evidence,
it was ignored and comparisons were based on unique pro-
tein identifiers only. Nonprotein complex members such as
nucleic acids and small molecules were not included as these
are not provided in full by any resource other than the Com-
plex Portal.

IntAct complexes were derived from all yeast–yeast inter-
actions in IntAct release 228. Interactions were exported in
MI-TAB2.7 format and split into those derived from papers
with 100 or less interactions/paper and those with >100
interactions/paper. Complexes were predicted using the Cy-
toscape App ClusterONE (25) using default parameter set-
tings, MI-score values as weights and a minimum cluster
size of n = 3.

Functional analyses

For the selection of genetic interactions, we used the global
yeast genetic interaction network, the first comprehensive
genetic interaction map in any organism (24). The network
was constructed by evaluating the growth defects associated
with the majority of the ∼18 million possible gene pairs in
yeast, and includes ∼350 000 positive and ∼550 000 nega-
tive genetic interactions. Nonessential genes were queried
by deletion alleles and essential genes by temperature-
sensitive and DAmP alleles. However, we disregarded the
DAmP data because few DAmP alleles had an effect on cel-
lular fitness. For pairs of genes screened more than once (for
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instance, pairs involving genes queried using different alle-
les), a consensus approach was implemented in which we
considered a given pair to have a genetic interaction if that
was the result in at least half of the screens.

Interacting protein pairs in a complex (i.e. co-complex
pairs) were inferred by matrix expansion of all complexes.
UniProt identifiers were mapped to ORFs in order to com-
pare inferred physical interactions and genetic interactions
as the latter are provided as ORFs. Background pairs (i.e.
‘no co-complex pairs’) were defined as those pairs of pro-
teins present only in different complexes. The fractions of
co-complex and background pairs with positive and neg-
ative interactions were calculated, considering only pairs
of proteins whose genes were present in the genetic in-
teraction network (52%, 51%, 55%, 58% and 64% of co-
complex pairs in CP, CYC, YHTP, IntAct-LT and IntAct-
HT, respectively). Statistical significance was calculated by
Fisher’s exact tests.

In addition to genetic interactions, we evaluated the over-
lap of co-complex relationships with the co-expression, co-
localization and co-annotation functional standards. In all
cases, only protein pairs for which functional data were
available were considered. The co-expression standard was
derived from the MEFIT co-expression network, which
integrates data from multiple microarray datasets (26).
Pairs with a MEFIT score >1.0 were considered to be co-
expressed. The co-localization standard was based on a pre-
vious high-throughput study (27). Protein pairs localized
in one or more shared cellular compartments were con-
sidered to be co-localized. The co-annotation standard is
based on GO biological process annotations and disregards
very frequently annotated GO terms as described in a pre-
vious work (24).

To obtain a comprehensive view of the differences be-
tween those proteins participating in complexes and those
that do not, the following characteristics were compared:
genetic interaction degree calculated on array genes and
averaging estimates across the different alleles of a gene
(24), co-expression degree calculated as the number of co-
expression relationships per gene (see above), gene conser-
vation in other species (28), expression variation (29), fit-
ness of non-essential gene deletion alleles (24), PPI degree
(from IntAct yeast-yeast interaction, release 234 (09 July
2020), restricted to high-throughput dataset with >100 in-
teractions per publication as it reduces the bias from confir-
matory small-scale experiments), multifunctionality of pro-
teins based on the number of biological process annotations
in GOSlim (downloaded from SGD, July 2020), fraction of
disordered residues downloaded from d2p2.pro (30), being
essential (31), being a gene duplicate defined as having a
paralog in YeastMine (32), being a membrane protein (33)
as well as subcellular localization (27) and broad functional
classes (34). For each numerical feature, values were z-score
normalized using the median and the standard deviation of
the values for the background proteins. The median z-score
value of the proteins in complexes was used for the graph-
ical representation of the result. Statistical significance was
evaluated using two-sided Mann–Whitney U tests. For each
binary feature, fold enrichment was calculated as the ratio
of complex members with that feature divided by the ratio

of noncomplex members with that feature. Statistical signif-
icance was calculated by two-sided Fisher’s exact tests.

The relative difference in transcript counts, expression
variance, protein abundance and protein half life was cal-
culated for co-complex and background pairs. For every
pair and measure, we calculated the maximum (MAX) and
minimum (MIN) value within the pair. The relative differ-
ence was then calculated as (MAX-MIN)/MAX. The larger
this score is, the larger the difference between the pair of
proteins/genes. Statistical significance was calculated using
two-sided Mann–Whitney U tests.

Direct and indirect contacts were selected from a set of
Complex Portal complexes of size 3 or larger that con-
tained information for both types of contacts. Self inter-
actions were ignored. Protein pairs belonging to different
complexes of the selected set were defined as background.
Genetic interaction profile similarity values were down-
loaded from http://thecellmap.org (35), considering both es-
sential and nonessential genes, and averaging similarity val-
ues across alleles of the same gene.

A list of 12 high level GO terms (Table 2) was manually
selected to best represent processes and functions related to
nucleic acids as well as the component term ‘nucleus’. These
terms were used to build a bespoke SLIM and all annota-
tions to yeast proteins using these terms and their children
were exported on 9 October 2020. This list of GO terms
was used to filter all Complex Portal complexes that were
also annotated to any of these terms. This analysis was only
performed on the Complex Portal dataset as there are no
complex-specific GO annotations for the other datasets.

Analysis tools

Data manipulation and visualizations were performed in R
(data.table, splitstackshape, reticulate, rio, ggplot2, scales),
Python and Excel. Unique versus shared sets of complexes
were identified using Venny (https://bioinfogp.cnb.csic.es/
tools/venny/).

RESULTS AND DISCUSSION

The yeast complexome in the Complex Portal

Saccharomyces cerevisiae complexes were captured in the
Complex Portal leading to yeast being the first completed
species complexome. It is the largest manually curated com-
pendium of yeast macromolecular complexes, comprising
589 complexes, 1930 proteins and 15 863 co-complex rela-
tionships. In order to identify all known yeast complexes we
gathered information from a number of sources (CYC2008
complexes, UniProt, SGD, literature publications). Some
complexes that are included in these sources have not been
included in the Complex Portal because they have since
been identified as part of a bigger complex or they lack clear
experimental evidence for their existence and their func-
tional role in vivo. These putative complexes are kept in a
separate list and are periodically revisited to see if more ev-
idence has been published. Collaborations with SGD are
ongoing and we update existing entries and add new ones
when new evidence comes to light.

Compared to other resources, the Complex Portal pro-
vides added value through its greater scope of annotation.

http://thecellmap.org
https://bioinfogp.cnb.csic.es/tools/venny/
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Table 1. Basic statistics about the five complex datasets

Total no.
proteins

Total no.
complexes

Max no.
of

proteins/
complex

Mean no. of
proteins/
complexb

Median no.
of proteins/

complexb Homomers Dimers
No. co-

complexes
Incl nonprotein

componentsc
Stoichio-
metryc

Manually
curated
fieldsc

Complex Portal 1930 589 80 (73a) 6.93 4 Yes Yes 15 863 Yes Yes (if known) Yes
CYC2008 1624 408 81 (44a) 6.67 4 No Yes 11 238 No No Partial
YHTP2008 1911 400 181 8.03 4 No Yes 28 146 No No No
IntAct-LT 1918 332 40 6.71 5 No No 9808 Yes Optional No
IntAct-HT 3147 689 99 7.31 5 No No 30 493 Yes Optional no

a max size without ribosomal subunits.
b for complexes size 3 or greater.
c in original database, e.g. IntAct PPIs.

Figure 2. Distribution of number of unique proteins per complex. Homomers are found in the small rectangle and heterodimers in the large rectangle.
Total number of complexes per dataset: CP = 589, CYC = 408, YHTP = 400, IntAct-LT = 332, IntAct-HT = 689

Each complex entry has a manually annotated description
of their function and physical properties and includes stoi-
chiometry and topological information when available. The
Evidence and Conclusion Ontology (ECO) (36) is used to
indicate the type of evidence we have for each entry and
where interaction evidence is available in an IMEx mem-
ber database, the wwPDB or EMDB (37) cross-references
are provided. Each complex is annotated to GO terms spe-
cific for the complex and a selection of supporting literature
references are provided. Versioning allows easy tracking of
changes in complex composition. Additionally, the data are
downloadable in three different community standard for-
mats and as a live resource it gets updated every two months.

Dataset comparisons

The yeast complex dataset published in the Complex Por-
tal is the first manually annotated yeast complex dataset
since the publication of CYC2008 by Pu et al. in 2009.
We compare these two manually curated datasets with each
other and with corresponding experimentally derived pre-
dicted complexes from YHTP2008 and IntAct release 228
(16 November 2019). The IntAct data were split into low-
and high-throughput publications setting a cut-off at 100
interactions per publication. See Table 1 for a summary of
the five datasets and Figure 2 for the distribution of unique
proteins per complex.

The two manually curated datasets share 1543 proteins
(80% and 95%, respectively): 387 proteins are unique to the
Complex Portal and 81 unique to CYC2008 (Table 1, Fig-
ure 3A); overall, Complex Portal and CYC2008 complexes
cover 32% and 27% of the yeast proteome, respectively. The
reason for the relatively low proteome coverage may be mul-
tifaceted: both datasets have concentrated on stable, macro-
molecular machines whereas many proteins may be found in
more transient interactions, such as signaling assemblies or
enzyme–substrate interactions. The identification of protein
complexes may also be limited by technological constraints
and some complexes simply cannot be purified by existing
methods, for example insoluble membrane components.

The Complex Portal contains 589 yeast complexes com-
pared to 408 in the CYC2008 dataset, a 44% increase (Table
1). They share 286 identical complexes that responds to 49%
of Complex Portal complexes and 70% of CYC2008 com-
plexes (Jaccard Index = 1.0) (Figure 4A). When reducing
protein identity matching to a minimum of 50% (Jaccard
Index = 0.5) the overlap is over 80% for both datasets (Fig-
ure 4C). There are many more complexes in the Complex
Portal than in CYC2008 because a large amount of knowl-
edge has accumulated in the intervening 12 years and be-
cause complexes including parologous alternative proteins
have often been created as a single entry in CYC2008 but
split into separate, alternative entries in the Complex Por-
tal to reflect their functional composition (Figure 1). On the
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other hand, approximately 30 CYC2008 complexes were not
re-curated into the Complex Portal because the available in-
teraction evidence does not meet current curation criteria
(2) or because they are now believed to be part of larger
complexes. These complexes remain on a watch list and will
be added if sufficient evidence becomes available. Complex
Portal complexes also contain 94% of CYC2008 co-complex
pairs while CYC2008 complexes only contain 66% of Com-
plex Portal co-complex pairs (Figure 3C).

The IntAct yeast interactome contains a total of 124 918
yeast–yeast binary interactions containing 5850 unique pro-
teins or 97% of the yeast proteome (proteome = 6049 pro-
teins) and 18 interactions between a yeast protein and a
yeast complex. A topological clustering analysis of the In-
tAct yeast interactome was performed using the Cytoscape
App ClusterONE, restricting accepted clusters to those
with three or more proteins. The resulting clusters encom-
passed only just over half the proteome (3280 proteins, 54%)
and predicted 332 complexes from low-throughput publi-
cations (IntAct-LT) and 689 complexes from high through-
put publications (IntAct-HT) (Table 1). Only a third of the
proteome was present in the 400 YHTP2008 predicted com-
plexes based on high-throughput data (1911 proteins, 32%).

Complex sizes (Figure 2) are difficult to compare as the
minimum sizes are determined by the curation strategies
(see Table 1 for a reference of which datasets contain homo-
mers and dimers) and the maximum sizes determined by the
handling of paralogous proteins. Where possible, Complex
Portal curates separate complexes for each paralogous pro-
tein but in the case of the ribosomal subunits it creates sets
for each paralogous pair. Similarly, CYC2008 often includes
each paralogous gene locus in the same complex. The inclu-
sion of paralogous proteins or loci in a complex artificially
inflates its maximum (and with that the mean and median)
size. Likewise, clustering algorithms tend to group paralo-
gous proteins together. Therefore, the largest complexes are
found in the predicted datasets of YHTP2008 and IntAct-
HT. Excluding the ribosomal subunits that contain multiple
paralogous pairs of proteins or loci, the maximum size of a
complex in the Complex Portal is 73 and in CYC2008 is 44.

However, despite the issues with minimum and maximum
complex sizes, the overall complex size distributions are
very similar. The majority of complexes contain 10 or fewer
unique proteins with a rapidly reducing tail. This is dataset-
independent and demonstrates that most proteins function
within a relatively small group of partners. There are a few
larger complexes in the Complex Portal than in CYC2008.
ClusterOne predicts no complexes >40 proteins/complex
for the IntAct-LT dataset resulting in the smallest complex
size distribution of all datasets. In comparison, IntAct-HT
has the highest predicted complex size distribution of all
datasets when ignoring the expanded ribosomal complexes.
The IntAct-HT dataset includes many affinity purification
experiments, which can identify large associations of co-
purifying proteins which in turn result in more centralized
and heavily connected areas of the underlying interactome.
Such heavily connected areas in the interactome result in
many overlapping clusters that have a tendency to get com-
bined into superclusters by the ClusterOne algorithm.

We also compared the manually curated complexes with
those predicted from experimental protein–protein interac-

tion (PPI) evidence. The overlap between any curated and
predicted dataset never exceeded 20% in any comparison
with a Jaccard Index of 1.0 (Figure 3B). The IntAct-HT
complexes contain an even smaller overlap with either of
the curated complex datasets (7–8%) than the IntAct-LT or
YHTP2008 complexes (13–17%). At the protein level, only
42–72% of proteins from an experimental dataset could also
be found in a curated complex dataset while 68–81% of pro-
teins in the curated datasets are also found in the experimen-
tal datasets (Figure 3A).

The low level of overlap between manually-curated and
predicted complexes may be the result of a combination of
factors: First, experimentally derived interactomes contain
a lot more proteins than the complex datasets but incor-
porate fewer validated evidence than the often thoroughly
and even functionally validated interaction evidence used
to define curated complexes. Secondly, the need for a reduc-
tionist representation of the interactome, where multipro-
tein associations are reduced to binary pairs via spoke ex-
pansion methods introduces a bias in the internal topology
of PPI evidence networks, potentially generating spurious
associations. Finally, prediction algorithms are restricted to
predicting heteromers and ClusterOne restricts clusters to
size 3 and larger; therefore, any heterodimeric complexes
are not included in the predicted datasets and were removed
from the above comparisons for the overlap of complexes
between the five datasets.

Features of protein complexes, their proteins and genes that
code for them

The properties of protein complex members were character-
ized using a panel of numerical and binary features (Sup-
plementary Figure S1). Genes coding for proteins in com-
plexes tended to have more genetic interactions and to be
co-expressed with more genes. They were also more likely
to be multifunctional, conserved across species and present
more stable expression patterns. Additionally, they often
coded for proteins with a higher percentage of disorder,
higher PPI degree and were enriched for essential genes and
nonessential genes with larger fitness defects. On the other
hand, these genes were depleted for duplicates and were
less likely to code for membrane proteins. Localization pat-
terns changed slightly across datasets. Proteins in complexes
tended to localize more often in the nucleus and the nucle-
olus than other proteins, while they were less likely to be
found in the vacuole. To further explore this finding, com-
plexes in the Complex Portal dataset were analyzed for an-
notations to nuclear and nucleic acid-related processes and
functions (Table 2) taking advantage of the complex-specific
GO annotations available for this dataset. More than half
of complexes (304/589, 52%) are annotated to at least one
of these 12 selected terms or their children (Supplemen-
tary Table S2). 65% of these complexes (197/304) are an-
notated to ‘GO:0005634 nucleus’ or a child term and 52%
(159/304) to ‘GO:0006139 nucleobase-containing com-
pound metabolic process’ or a child term. In all datasets,
proteins found in complexes were also significantly over-
represented in processes where large machineries are the
predominant functional drivers such as replication, tran-
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BA
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Figure 3. Fraction of (A) proteins (CP = 1930, CYC = 1624, YHTP = 1911, IntAct-LT = 1918, IntAct-HT = 3147), (B) complexes, based on Jaccard
Index = 1.0 for complexes with a minimum of three protein participants (CP = 345, CYC = 236, YHTP = 208, IntAct-LT = 332, IntAct-HT = 689) and
(C) co-complex pairs shared between two any datasets (CP = 15863, CYC = 11238, YHTP = 28146, IntAct-LT = 9808, IntAct-HT = 30493). Each row
compares the overlap of both datasets to the total number of entities in the dataset given on the left.

A B C

Figure 4. Overlap of complexes by protein identities and decreasing stringencies for complex membership between Complex Portal (n = 589, left inter-
cepting circle) and CYC (n = 408, right intercepting circle). (A) JI = 1.0, (B) JI = 0.75, (C) JI = 0.5. JI = Jaccard Index. NB: Total numbers per dataset
for JI = 0.75 and JI = 0.5 are higher than the absolute number of complexes per dataset as one complex can be broken down into more than one partial
complex that matches a complex in the other dataset.

Table 2. Number of Complex Portal complexes annotated to nuclear and nucleic acid related GO terms

GO term ID GO term name GO class Complexes

GO:0006139 Nucleobase-containing compound metabolic process Biological process 159
GO:0010467 Gene expression Biological process 101
GO:0051276 Chromosome organization Biological process 73
GO:0006974 Cellular response to DNA damage stimulus Biological process 38
GO:0071826 Ribonucleoprotein complex subunit organization Biological process 14
GO:0006997 Nucleus organization Biological process 2
GO:0005634 Nucleus Cellular component 197
GO:0003676 Nucleic acid binding Molecular function 121
GO:0140098 Catalytic activity, acting on RNA Molecular function 37
GO:0140110 Transcription regulator activity Molecular function 16
GO:0140097 Catalytic activity, acting on DNA Molecular function 15
GO:0045182 Translation regulator activity Molecular function 12
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scription, translation, and ER to Golgi and trans-Golgi
transports. This reflects how such processes require a variety
of tightly regulated multimolecular machineries whose di-
versity has been thoroughly explored in the literature. How-
ever, proteins found in complexes were underrepresented
in many signaling, transportation and localization pro-
cesses that are more often driven by single proteins. Impor-
tantly, most results were consistent across all five complex
datasets.

Multifunctionality

More than 70% of proteins in each dataset are only found
in a single complex (Supplementary Figure S2), and there is
no difference in this distribution between curated and pre-
dicted complexes. Only a few proteins from each dataset
are found in two to five different complexes while CYC2008
contains only a few and YHTP2008 and IntAct-LT contain
no proteins that occur in more than six complexes. Those
proteins that were found in more than one complex were
further analyzed. Most are found in complexes that carry
the same components apart from the varying subunit and
accordingly were deemed to be core subunits of these com-
plexes. A check against the GO annotation of these proteins
showed that many are catalytic core subunits of complexes
such as cyclin-dependent kinases or ubiquitin ligases. In a
recent analysis of datasets from several yeast interactome
datasets, it was demonstrated that this long right-hand tail
of a few proteins occurring in many complexes is almost al-
ways significantly different from a random distribution (38).
The random distribution estimates that proteins should be
found in a maximum of 6–9 complexes while in the real data
some proteins occur in >20 complexes, matching our obser-
vations.

There are five proteins that are found in ≥4 complexes
in the Complex Portal where the complexes are annotated
to two or more unrelated pathways or complexes and three
of these proteins are also found in more than one subcellu-
lar location when part of multiple complexes. Four of these
proteins, H4 (P02309), LTV1 (P34078), SKP1 (P52286) and
TAF14 (P35189), are regulatory subunits and one, PP12
(P32598), is a protein phosphatase (Supplementary Table
S1). These five proteins have a relatively higher number of
GO SLIM annotations compared to the rest (P < 0.0005,
Supplementary Figure S3). All other complexes that share
proteins are functionally related homologues.

Biological assessment of complexes via omics data

Genetic interactions identify combinations of genes that
yield unexpected phenotypes when simultaneously mu-
tated. Negative genetic interactions identify cases with more
severe phenotypes than expected given the individual mu-
tant phenotypes, whereas in positive genetic interactions the
resulting phenotype is healthier than expected. Both types
of genetic interactions are a powerful tool for the charac-
terization of genes and to elucidate the functional wiring of
the cell (39).

Since genetic interactions identify potentially functional
relationships between genes, we evaluated whether gene

pairs coding for proteins within the same complex were en-
riched in genetic interactions using the global genetic in-
teraction network (24). Genetic interactions have been ex-
plored for ∼52% of the co-complex pairs defined in the
Complex Portal dataset. Of these, 30% and 10% of genes
coding for co-complex pairs had negative and positive ge-
netic interactions, respectively. These represent a 4.4- and
2.4-fold increase, respectively, over what was observed in
background pairs, i.e. pairs of genes coding for proteins in
different complexes (P < 0.05, Figure 5). Negative genetic
interactions were particularly enriched between essential
gene pairs coding for proteins in the same complex, which
probably reflects the limited tolerance of the cell to sustain
multiple deleterious mutations in essential complexes. On
the other hand, positive genetic interactions were only en-
riched between nonessential genes coding for co-complex
pairs. These positive interactions may identify nonessen-
tial protein complexes in which deletion of a member ren-
ders the whole complex inactive. Therefore, additional mu-
tations on these complexes would not substantially impact
fitness. The significant overlap between genetic interactions
and co-complex relationships is in agreement with previous
studies (24,40) and was consistent across the different com-
plex datasets. However, the curated datasets and IntAct-
LT showed a higher overlap with genetic interactions. A
lower overlap of the high-throughput datasets, IntAct-HT
and YHTP2008, with genetic interactions could be due to
a larger fraction of indirect physical associations identi-
fied in weakly connected, large complexes in such stud-
ies. We found similar trends when comparing co-complex
pairs to co-expression, co-localization and co-annotation
datasets (Figure 6 and Supplementary Figure S4). In all
cases, co-complex pairs had a higher overlap with these
functional standards than background pairs and this over-
lap was particularly pertinent in the curated datasets. For
instance, ∼90% of co-complex pairs in the curated datasets
were co-expressed, whereas the overlap for the remaining
datasets ranged from 41% to 76%. Additionally, we ob-
served more similar transcript counts, expression variance,
and protein abundance and half-life for co-complex pairs
than background pairs (Figure 7 and Supplementary Figure
S5), which reflects that members of the same protein com-
plex tend to exhibit similar regulation patterns at a gene and
protein level in order to act as a single coordinated biologi-
cal unit.

Identifying the direct physical contacts within protein
complexes can reveal sub-complex modules, improve the
characterization of protein function, and help to interpret
how mutations affect the phenotype. The Complex Portal
is the only dataset that describes the internal connectivity
of complexes, with detailed information for 237 complexes
that have 3 or more participants. The functional relevance
of these data were evaluated by comparing genetic interac-
tion profiles (i.e., the set of genetic interactions of a gene)
of direct and indirect contacts within protein complexes.
These profiles are quantitative phenotypic signatures and
revealed a higher similarity for gene pairs coding for pro-
teins in direct contact (Figure 8; P < 0.01 for all pairwise
comparisons). This suggests that, in protein complexes with
unknown internal connectivity, the analysis of genetic inter-
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Figure 5. (A) Fraction of co-complex pairs from each complex dataset that overlaps with negative (dark bars) and positive (light bars) genetic interactions.
(B) Fraction of protein pairs from each complex dataset that do not occur in the same complex (= background pairs) that overlaps with negative (dark
bars) and positive (light bars genetic interactions.

Figure 6. Fold enrichment of co-complex pairs compared to background
pairs from all five datasets for co-expression, co-localization and co-
annotation. All enrichments are statistically significant (P < 0.05)

action profiles of the individual components may discrimi-
nate direct from indirect contacts.

CONCLUSIONS

Our knowledge of the biology of Saccharomyces cerevisiae
has substantially improved over the last 12 years. The Com-
plex Portal now provides almost 50% more complexes than
did the previous compendium, CYC2008 (22), and these in-
clude more protein components, details on nonprotein par-
ticipants and more complex variants. The Complex Portal
also provides a searchable website, a web service and three
download formats.

Our set of curated yeast complexes shows a large over-
lap with previous curation efforts (i.e. CYC2008). How-
ever, these show a poor overlap when compared to pre-
dicted complexes. This may be due to large-scale affinity
purification data producing clusters of apparently highly
connected proteins as well as the presence of transient in-
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Figure 7. Relative difference in transcript counts, expression variance, pro-
tein abundance, and protein half life for co-complex and background pairs
in the Complex Portal; * P < 0.05.

teractions in these datasets. This poor overlap also high-
lights that experimental protein–protein interactomes are
a limited predictor for functional complexes which high-
lights the continuing need for a manually curated complex
database.

Most proteins are found in only one complex and those
found in two or more complexes tend to have the same func-
tion in multiple complexes. Only five proteins found in four
or more complexes are linked to different processes showing
that protein function is fairly conserved when they are part
of complexes.
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Figure 8. Genetic interaction profile similarities of gene pairs coding for
proteins: in direct physical contact (top bar), in the same complex but not
in contact (middle bar), in different complexes (bottom bar). Boxes repre-
sent second and third quartiles, whiskers first and forth. Horizontal lines
in boxes represent the medians. All pairwise comparisons: P < 0.05

We highlight that there is a relative enrichment of
multimolecular machines in the nucleus and the nucleo-
lus. These complexes are often involved in nucleic acid-
related metabolic processes like replication, transcription
and translation, plus other processes where multimolecular
assemblies are the predominant functional drivers such as
ER to Golgi and trans-Golgi transports.

We found that the co-complex pairs overlap significantly
with genetic interaction, co-expression, co-localization and
co-annotation datasets, which highlights the functional rel-
evance of co-complex membership and the potential of pro-
tein complex datasets to address questions of biological in-
terest. Members of the same complex also tended to present
more similar regulation patterns that reflect the role of the
protein complex as a coordinated biological unit. Genes
coding for co-complex pairs in physical contact exhibited
more similar patterns of genetic interactions, illustrating
that the structural organization within complexes is key to
interpret the results of functional studies. Importantly, con-
tact information within complexes is only available in Com-
plex Portal and not in the other complex datasets.

To date, the Complex Portal yeast complexome has been
used to validate complexes in several large-scale studies
(38,40–43) and to define recurring patterns of complex
topology (44–47). Our stable identifiers are used as an-
notation objects and cross-references in several other cu-
rated databases, such as IMEx consortium partners, Gene
Ontology (48), Genome Properties (49), MatrixDB (50),
SGD (13), Reactome, Signor (51,52) and Wikipathways (53)
while other collaborations are under development, e.g. with
PDBe (54). As we move to complete more complexomes,
for example that of Escherichia coli, and continually im-
prove our coverage of the human and mouse complexes, it
will also be possible to improve our understanding of the
evolution of these assemblies (55), and from there how the
regulation of cellular processes has developed as organisms
evolve.

We have shown how the Complex Portal yeast complex-
ome is a key resource that significantly extends previously
available datasets. Our commitment to keep it updated and

freely accessible ensures the scientific community can count
on a stable, high-quality reference set for the study of mul-
timolecular machineries in yeast and other organisms.

We encourage our users to get in touch via the website if
they find missing complexes or have suggestions on how to
improve or extend our service.

DATA AVAILABILITY

The complete yeast complexome is available for down-
load from www.ebi.ac.uk/complexportal/download, the
CYC2008 and YHTP2008 data from http://wodaklab.org/
cyc2008/downloads and all files listing complexes and co-
complexes used as input for our analyses have been de-
posited in Zenodo (10.5281/zenodo.4160609).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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