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Abstract— This paper explores sampled-data tech-
niques to achieve asymptotic string stability in a
platoon of autonomous vehicles. This is done making
use of both microscopic and macroscopic data that
are, however, often available at distinct time instants.
The proposed mesoscopic controller is demonstrated
to operate effectively, regardless of the involved sam-
pling periods. The theoretical findings are validated
through simulations.

Index Terms— Traffic control, autonomous vehicles,
sampled-data control, String Stability, platoon con-
trol, mesoscopic modeling, macroscopic information.

I. Introduction

Due to the increasing demand for improved trans-
portation efficiency and enhanced safety, advanced con-
trol methods dedicated to Intelligent Transportation Sys-
tems (ITS) are needed to address their complex and
dynamic nature, where multiple agents interact with
each other and the environment. In this framework,
current research literature is focusing on how to ensure
String Stability (SS) [1], [2]. This property is of foremost
importance for developing efficient and safe Cooperative
Adaptive Cruise Controllers (CACC) [3].

Historically, distinct cases of information exchange
have been considered for each leader-follower vehicles’
interaction with the common feature of always sharing
some microscopic variables among the whole platoon;
e.g., the acceleration of the platoon’s leading vehicle (see
[1]) or its desired speed profile (see [4]). Recently, few re-
sults are considering the possibility to guarantee desired
properties via the use of macroscopic information with
the aim of avoiding to share the microscopic information
of the leading vehicle and, hence, reducing the amount of
information that is exchanged [5]–[7]. More in detail, in
[5] the authors proved the possibility to obtain SS when
using only aggregate (macroscopic) information and mea-
suring local microscopic information, thus obtaining a
mesoscopic control law. In particular, the microscopic
information available for each vehicle consists of the state
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of its predecessor only. In [6], those results were extended
to the case of disturbances acting on the vehicles and
on the information that is shared along the platoon.
In [7], a link between the possibility to ensure SS and
the way the traffic Fundamental Diagram is impacted
was proposed. Other studies aim at mesoscopic traffic
modeling for control, e.g., [8]–[11]. However, no formal
SS analysis is performed [10], [11]; if any, such analysis
is based on the linear tangent model only [8], [9].

The theoretical results in [5], [6], as well as most of
the available literature on this topic, concern continuous-
time systems only; i.e., when measurements and the
information on the traffic flow are available continuously
in time and the control input arbitrarily varies at all
times. This framework is far from being realistic as it
does not take into account the discrete-time influence of
digital devices, which are unavoidable for control imple-
mentation and information exchange within the platoon.
This limitation highlights the necessity for sampled-data
approaches in CACC.

The objective of this paper is to establish a first set of
new results to endow a more realistic scenario, in which
we let measures be available at sporadic discrete-time in-
stants only and the control inputs be piecewise constant
over the sampling period, that cannot be arbitrarily fixed
[12]. In this scenario, only few results are available and
usually referring to the so-called emulation-based control;
i.e., the controller is designed by completely neglecting
the effect of sampling and then implemented in practice
via sample-and-hold devices (see, among many, [13], [14]
for a general overview, and [15], [16] for applications to a
similar context as ours). As the intuition suggests, those
kind of control laws preserve the same performances
enforced by the continuous-time (nominal) design only
when the involved sampling periods are very small.

Making reference to a discrete-time problem formu-
lation, we design a new simple controller that is ca-
pable of enforcing string stability over the traffic flow,
despite the effect of sampling (i.e., independently on the
length of the involved sampling periods). Furthermore,
we contemplate scenarios where the sampling instants for
microscopic and macroscopic data are non-simultaneous,
as macroscopic information is available intermittently
with respect to the microscopic one.

The rest of the paper is organized as follows. In Section
II we settle the problem over a suitably defined discrete-
time equivalent model of the traffic flow embedding



sampled-data micro- and macro-scopic information and
piecewise constant control action. The main result is
proved in Section III with a illustrative simulations
reported in Section IV. Section V concludes the paper
providing perspectives.

C, R and N denote the set of complex, real and natural
numbers including 0 respectively. R+ denotes the set of
positive real numbers. I and 0 denote respectively the
identity and zero matrices of suitable dimensions. Given
a matrix A ∈ Rn×n, σ{A} ⊂ C is its spectrum. A is said
to be Schur if its spectrum is included in the open unit
circle of the complex plane (i.e., all its eigenvalues are
with norm strictly less than 1 and none is at the origin).
| · | ∈ R denotes, depending on the argument, either the
cardinality of a set S, the absolute value of a complex
number λ ∈ C or the norm of a matrix.

II. Modeling and Problem formulation
A. Microscopic modeling

We consider N + 1 vehicles implementing CACC that
are described by the corresponding longitudinal position,
pi ∈ R+, and speed, 0 ≤ vi ≤ vmax, vmax ∈ R+, ∀ i ∈
I0
N := {0, 1, . . . , N}. Then, we define the state of the
i−th vehicle as

xi = [ pi vi ]⊤. (1)
Without loss of generality, the low level dynamics de-
scribing the power-train can be considered to have been
feedback linearised (see [1], [17], [4]), thus allowing for
a simplification in considering only the longitudinal dy-
namics for describing heterogeneous platoons [18], i.e.,
platoons composed by non identical vehicles. Ignoring
both reaction and communication time delays, similarly
to [1], [17], [19], [20], the corresponding dynamical system
is given by

ẋi =
[
ṗi
v̇i

]
=

[
vi
ui

]
, i ∈ I0

N , (2)

where |ui| ≤ umax, umax ∈ R+, is the control input
of the i−th vehicle, corresponding to the acceleration.
For describing inter-vehicular interactions, we adopt the
leader-follower model (see [21]), with respect to which we
deduce a global description of the platoon. For including
the vehicle i = 0, we consider the presence of a virtual
leader, indexed by i = −1, that precedes the entire
platoon, described by

ẋ−1 =
[
ṗ−1
v̇−1

]
=

[
v−1
u−1

]
. (3)

Then, the state of each car-following situation between
vehicle i− 1 and i is defined by the variable

χi = xi−xi−1 =
[

∆pi
∆vi

]
=

[
pi − pi−1
vi − vi−1

]
, i ∈ I0

N . (4)

The resulting microscopic dynamical model of the i−th
car-following pair of vehicles implementing CACC is

χ̇i = Aχi +B (ui − ui−1) , i ∈ I0
N (5)

with
A =

[
0 1
0 0

]
, B =

[
0
1

]
. (6)

At this point, the following assumptions are set.
Assumption 1: The input ui of each vehicle i ∈ I0

N is
a piecewise constant signal over the sampling period of
length Tm ≥ 0, that is ui(t) = ui(tk), t ∈ [tk, tk+1) and
tk = kTm.

Assumption 2: Each vehicle i ∈ I0
N measures its cor-

responding microscopic quantities (i.e., the state xi, the
state xi−1 and the input ui−1 of its predecessor i − 1 ∈
I0
N ) at the sampling instants only, defined as tk = kTm

with k ∈ N.
Under the assumptions above, the dynamics of each

vehicle (5) at all sampling instants tk = kTm and k ∈
N can be described by the corresponding sampled-data
equivalent model that is given by
χi(tk+1) = ATm

χi(tk) +BTm

(
ui(tk) − ui−1(tk)

)
(7)

with

ATm
= eATm =

[
1 Tm
0 1

]
, BTm

=
∫ Tm

0
eAℓdℓB =

[
T 2

m

2
Tm

]
.

In the following, we will refer to (7) as the microscopic
sampled-data equivalent model of (5).

To define the equilibrium point of the platoon, we con-
sider that the virtual leader i = −1 moves at a constant
speed (see [21], [22]) with no disturbance acting over.
Thus, the virtual vehicle’s speed v−1 can be considered
as the reference speed of i = 0 (see [4]–[6]). Assuming
that ∆p̄ > 0 is the desired inter-vehicular distance at
steady-state and that

∆p0(tk) = −∆p̄ ∀ tk, (8)
then the equilibrium point for the i−th system of dy-
namics (5) corresponds to the case where all the vehicles
have the same speed and are at the same distance, i.e.,

χe,i = χ̄ = [−∆p̄ 0]⊤, ∀ i ∈ I0
N . (9)

Since the state vector (4) is defined with respect to
the follower vehicle, then the distance ∆pi and the
relative speed ∆vi have opposite sign. For this reason,
the equilibrium distance in (9) is −∆p̄ < 0. From the
platoon point of view, we define the lumped state and
the lumped equilibrium for u−1 = 0 respectively as
χ = [χ⊤

0 χ⊤
1 ... χ⊤

N ]⊤, χe = [χ̄⊤ χ̄⊤ ... χ̄⊤]⊤. (10)

B. Macroscopic information modeling
In general, each vehicle receives partial information on

the platoon state beyond the ones on the corresponding
state and of its own predecessor. For all vehicles i ∈ I0

N ,
such information is referred to as macroscopic informa-
tion and is endowed within a function

ψi−1(χ0, . . . , χi−1) : R2 × · · · × R2 → R2 (11)

with, by definition for i = 0, ψi−1 =
[
0 0

]⊤. In the
following, we let this quantity be spread over the network
only at sporadic time instants that are, in general,
distinct than the ones the microscopic information is
perceived (Assumption 2).



Assumption 3: Each vehicle i ∈ I0
N measures the

macroscopic information function (11) at all t ∈ tkM
=

kMTM with kM ∈ N and sampling period verifying
TM = MTm with M ∈ N\{0}.

In the following, we will refer to tk = kTm, tkM
=

kMTM = kMMTm as the microscopic and macroscopic
sampling instants respectively. Similarly, Tm and TM are
referred to as microscopic and macroscopic sampling pe-
riods. Each vehicle defines a sampled-data asynchronous
dynamics with the macroscopic and microscopic infor-
mation available at different sampling instants.

The relationship among macroscopic and microscopic
quantities are well-known in the literature. For example,
we can consider traffic density as the inverse of inter-
vehicular mean distance [23, ch. 2, p. 26], or the speed-
density diagram [24, ch. 4] describing the interconnection
between local and global quantities. Therefore, several
macroscopic quantities can be considered for the pur-
poses of obtaining the desired mesoscopic controller. In
the sequel, without loss of generality we leverage the
existing relationship between the macroscopic density
with the microscopic variance that is described in [24]
and modeled in continuous-time in [5], [6]. Then, for
each i ∈ I0

N , µl,i−1 and σ2
l,i−1 denote the inter-vehicular

distance (l = ∆p) and speed error (l = ∆v) mean and
variance, respectively, computed from vehicle 0 to vehicle
i− 1; i.e., for l ∈ {∆p,∆v} they are defined as

µl,i−1 = 1
i

i−1∑
j=0

lj , σ
2
l,i−1 = 1

i

i−1∑
j=0

(lj − µl,i−1)2. (12)

To provide the i-th vehicle with the macroscopic in-
formation embedded in µl,i−1 and σ2

l,i−1, i ∈ I0
N , the

macroscopic functions are defined as
ψli−1 = sign(µl,i−1 − χ̄l)

√
σ2
l,i−1, l ∈ {∆p,∆v}, (13)

with χ̄∆p = −∆p̄ and χ̄∆v = 0. Then, (11) specifies as

ψi−1 =
[
ψ∆p
i−1 ψ∆v

i−1

]⊤
. (14)

Similarly to [5, Theorem 1], we require the conditions
than the interconnection terms ψi−1(tkM

) are bounded
with respect to the microscopic dynamics, with the
bound |ψi−1| ≤

∑i−1
j=0 kij |χ̃j |, kij ∈ R+, ∀ i ∈ I0

N .

C. Problem statement
Denoting the constant inter-vehicular distance (8) by

∆p̄ the following spacing policy is adopted

∆pri (tk) = −∆p̄, tk = kTm, k ∈ N (15)

Under Assumptions 1, 2 and 3, the objective of the pa-
per is to deduce a piecewise constant dynamic controller
asymptotically tracking the desired distance (8) based on
asynchronous micro and macroscopic information. More
in detail, for all tk ∈ [tkM

, tkM +1), we propose a dynamic
sampled-data mesoscopic controller of the form

ui(tk) = ui−1(tk) + Feχ̃i(tk) + Fψψi−1(tkM
) (16)

where tk = kTm, tkM
= kMMTm (with k, kM ∈ N),

χ̃i = χi − χe,i, for some matrix Fe and Fψ of suitable
dimensions to be defined later on. The problem we
address is then formalized as follows.

Problem 1: Consider a platoon of vehicles described by
(5) under Assumptions 1, 2 and 3. Let the corresponding
sampled-data microscopic model be described by (7).
Design a feedback law of the form (16) so that the
equilibrium χe in (10) of the closed-loop platoon is
Asymptotically String Stable (ASS); namely, χe,i verifies
the following properties.
(i) String Stability (SS): for all ε > 0, there exists δ > 0

such that, for all N ∈ N and tk = kTm (k ∈ N),

max
i∈I0

N

|χi(0) − χe,i| < δ ⇒ max
i∈I0

N

|χi(tk) − χe,i| < ε;

(17)
(ii) Attractiveness: for all N ∈ N and i ∈ I0

N

lim
tk→∞

|χi(tk) − χe,i| = 0. (18)
III. Main result

To design the feedback controller, let us consider the
coordinate transformation

χi 7→ χ̃i = χi − χe,i
with the corresponding closed-loop dynamics given by

χ̃i(tk+1) =Ãχ̃i(tk) + B̃ψi−1(tkM
) (19)

for tk ∈ [tkM
, tkM +1) and

Ã = ATm +BTmFe, B̃ = BTmFψ.

At this point, the main result can be enhanced.
Theorem 1: Problem 1 is solved by the controller (16)

with ψi−1 ∈ R2, Fe and Fψ such that the conditions hold:
1) the matrix ATm +BTmFe is Schur stable;
2) there exists c ∈ R+ such that the macroscopic

function (11) verifies, for all i, j ∈ I0
N

|ψi−1(χ0, . . . , χi−1)| ≤
i−1∑
j=0

c|χj − χe,j |;

3) for M ∈ N\{0} and α :=
− 1
Tm

log{maxλ∈σ{Ã}{|λ|}} the parameter

γ̃ = cβ|B̃|
1 − e−αTmM

(20)

verifies γ̃ ∈ (0, 1) with β = |Ã|eαTmM .
Proof: We first prove item (i) in Problem 1. To this

end, we have to show that, for all i ∈ I0
N, the overall

closed-loop dynamics (19) is asymptotically stable when
1) holds. This follows from item 1) as Ã is Schur (that is,
with all eigenvalues inside the open unit circle). To see
this, we introduce the transformation

χi = T χ̃i, T =
[
I −CQ
0 I

]
so that the closed-loop systems gets the form

χi(tk+1) =Aχi(tk) +Bψi−1(tkM
)



A =
[
ATm

+BTm
Fe 0

Ge Λ +GeCQ

]
, B =

[
BTm

Fψ
Gψ

]
.

From the structure of A above, one gets that if 1) holds
then Ã is Schur (that is, with all eigenvalues inside the
open unit circle). With this in mind, considering the
original coordinates, for all i ∈ I0

N the closed-loop system
is in the form of a cascade, that is
χ̃0(tk+1) =Ãχ̃0(tk) (21a)
χ̃1(tk+1) =Ãχ̃1(tk) + B̃ψ0(χ̃0(tkM

)) (21b)
...

χ̃i(tk+1) =Ãχ̃i(tk) + B̃ψi−1(χ̃0(tkM
), . . . , χ̃i−1(tkM

))
(21c)

By construction in 1) and because the interconnecting
components ψi−1(·) verify 2) the platoon is exponentially
stable [25, Proposition 3.1].

We can now prove string stability (that is (i) in
Problem 1). To this end, we first note that, for all i ∈ I0

N ,
kM ∈ N and j ∈ {1, . . . ,M} one can rewrite k = kMM+j
and, thus

χ̃i(tk) =Ãkχ̃i(t0) +
k−1∑
ℓ=0

Ãk−ℓ−1B̃ψi−1(t⌊ ℓ
M ⌋). (22)

We proceed iteratively exploiting the cascade structure
(21). By construction in 1), the leader is exponentially
stable and, thus, for all tk = kTm and k ∈ N it verifies,
for some β > 0

|χ0(tk)| ≤ βe−αTmk|χ0(t0)|. (23)
Consider now the first vehicle (21b) and, in particular,
the form (22). Then, the triangular equality and 1) yield

|χ1(tk)| ≤ βe−αTmk|χ1(t0)| +
∣∣ k−1∑
ℓ=0

Ãk−ℓ−1B̃ψ0(χ̃0(t⌊ ℓ
M ⌋))

∣∣.
(24)

At this point, as far as the addend of the right hand side
of the inequality above is concerned, one gets∣∣ k−1∑

ℓ=0
Ãk−ℓ−1B̃ψ0(χ̃0(t⌊ ℓ

M ⌋))
∣∣ ≤βγ̃ sup

ℓ∈[t0,tMk ]

∣∣χ̃0(tℓM )
∣∣

≤βγ̃
∣∣χ̃0(t0)

∣∣
where the last inequality follows from (23). Defining now
(20) and using the bound above into (24), one gets

|χ̃1(tk)| ≤β
∣∣χ̃1(t0)

∣∣ + βγ̃
∣∣χ̃0(t0)

∣∣
≤β

(
1 + γ̃) max{

∣∣χ̃0(t0)
∣∣, ∣∣χ̃1(t0)

∣∣} (25)

with, by hypotheses in 3), γ̃ ∈ (0, 1). In addition, γ̃ exists
as Ã is Schur by construction in 1).

Similarly for i = 2, one gets
|χ̃2(tk)| ≤βe−αTmk|χ2(t0)

∣∣
+

∣∣ k−1∑
ℓ=0

Ãk−ℓ−1B̃ψ1(χ̃0(t⌊ ℓ
M ⌋), χ1(t⌊ ℓ

M ⌋))
∣∣

≤β
(
1 + γ̃ + γ̃2)

max{
∣∣χ̃0(t0)

∣∣, ∣∣χ̃1(t0)
∣∣}.
. (26)

Iterating for the ith vehicle, one gets
|χ̃i(tk)| ≤β

(
1 + γ̃ + · · · + γ̃i

)
max
i∈I0

N

{
∣∣χ̃i(t0)

∣∣} (27)

that yields, since γ̃ ∈ (0, 1),

|χ̃i(tk)| ≤ β

1 − γ̃
max
i∈I0

N

{
∣∣χ̃i(t0)

∣∣}
and thus (i) follows. Finally, (ii) in Problem 1 follows
from asymptotic stability and string stability.

IV. Simulations
The control proposed in (16) is simulated in Mat-

lab2022b©. Based on the modeling in (7), we consider
a platoon of 10 vehicles in the two situations below.
a) Both the microscopic and the macroscopic infor-

mation are synchronous with Tm = TM = 0.2s
(hence, M = 1). This choice of the sampling periods
allows for a possible comparison with respect to
the continuous-time (CT) controller in [5], [6]. The
considered value for γ̃ in (20) is 0.7841.

b) The sampling period of the microscopic information
is Tm = 0.2s, whereas the macroscopic one is TM =
2s (hence, M = 10). This choice produces γ̃ =
0.1644 in (20).

In both situations the desired distance along the platoon
is ∆pri (tk) = 20 m, and the leader starts with a speed of
10 m/s. The vehicles’ speeds are 0 ≤ vi ≤ 36 m/s, while
the accelerations are −7 ≤ ui ≤ 7 m/s2.

For providing a fair comparison with the continuous-
time approach in [5], [6], each simulation consists of the
following different phases.

• From t = 0 s to t = 25 s, for all vehicles i ∈ I0
N\{9}

start with ∆pi(0) = 20 m and ∆vi(0) = 10 m/s;
for i = 9 we fix ∆p9(0) = 20 m and ∆v9(0) = 12
m/s. The leader tracks a piece-wise constant speed
reference, with no disturbance acting over.

• From t = 25 s to t = 30 s, a constant disturbance of
1 m/s2 is introduced on the leader’s control input
(acceleration). Since the disturbance is an external
input, it is not communicated to the follower and
can possibly propagate along the platoon.

• From t = 30 s to t = 60 s, a sinusoidal disturbance
affects the control input (acceleration) of the leader,
while its speed reference is piece-wise constant.

Still for the sake of comparison, eigenvalues of the closed-
loop discrete-time system in (7) (i.e., of the matrix
ATm

+ BTm
Fe) coincide with the exact discretization

of the continuous-time (CT) ones in [5]. However, we
remark that the CT controller in [5] works in favored cir-
cumstances itself, as the information flow is continuously
and synchronously exchanged over time; the input can be
arbitrarily changed at all time instants. In addition, we
highlight that the control in [5] consists of a filter aimed
at smoothing the collected macroscopic function and
that, hence, guarantees an instrinc filtering action over
disturbances. In the current discrete time setting, the



smoothing filter is not needed so that a static controller
is enough. In the following, a color scale from dark to
light blue is used to represent the pairs of vehicles of the
platoon from the head pair (0, 1) (dark blue) to the tail
one (N −1, N) (light blue). In the Figures, we denote by
SD the sampled-data case.

Figs. 1, 2 and 3 show the distances, differences of
speeds and macroscopic variables with respect to case a).
Due to the disturbance acting over, after 25 s, the leader
can no longer keep the desired trajectory. Nonetheless, it
succeeds to properly counteract to the speed disturbance
even if a steady-state error is generated. Still, each
follower in the platoon can track the desired distance and
speed, when the disturbance is acting on the leader (after
25 s) and it is not (from 0 to 25 s). As a matter of fact and
as one might expect, we observe that only vehicles 8 and
9 do not track the desired distance and speed differences
in the first phase; i.e., when disturbances are off and
there is an initial displacement of the vehicle 8 from
the equilibrium. In the remaining of the simulation, the
error with respect to the desired values has a magnitude
smaller than 10−5. This is a clear improvement with
respect to the CT case, as Figs. 4 and 5 testify. Indeed, in
the latter case, the effect of disturbances over the leader
affect the behavior of the whole platoon (4) contrarily to
the sampled-data case (see [5] for more details).

Figs. 6, 7 and 8 show the results of simulations in
case b), where the sampling instants for microscopic and
macroscopic information are distinct. Here, the tracking
performances are similar to case a); clearly, transients
are less smooth with respect to the latter. This result
was readily apparent, since the updates on the macro-
scopic information take place less often. Nevertheless, the
controller produces good results also with respect to the
transients. The dynamics of the macroscopic information
of case a) in Fig. 3 and of the case b) in Fig. 8 are similar.
Simulations support the theoretical investigations. The
mesoscopic controller in (16) solves Problem 1 with
performances that are comparable with the ones of the
continuous-time controller proposed in [5], despite the
effect of sampling and holding devices.

V. Conclusions

In this work, we proposed a new sampled-data control
law capable of enforcing string stability over a platoon
of heterogeneous vehicles, independently on the length
of the involved sampling periods. We highlight that the
proposed approach extends, along the same lines, to the
case in which Assumption 3 is weakened to demand
TM = MTm + r with r ∈ [0, Tm). Current work is
addressing the case of asynchronous vehicles (i.e., each
with its own sampling period).
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