
Artificial Intelligence 323 (2023) 103976
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

The notion of Abstraction in Ontology-based Data

Management ✩

Gianluca Cima ∗, Antonella Poggi, Maurizio Lenzerini

Sapienza University of Rome, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 December 2021
Received in revised form 15 January 2023
Accepted 13 July 2023
Available online 20 July 2023

Keywords:
Abstraction
Ontology-based Data Management
Computational Complexity

We study a novel reasoning task in Ontology-based Data Management (OBDM), called
Abstraction, which aims at associating formal semantic descriptions to data services. In
OBDM a domain ontology is used to provide a semantic layer mapped to the data sources
of an organization. The basic idea of the work presented in this paper is to explain the
semantics of a data service in terms of a query over the ontology. We illustrate a formal
framework for this problem, based on three different notions of abstraction, called sound,
complete, and perfect, respectively. We present a thorough complexity analysis of two
computational problems, namely verification (checking whether a query is an abstraction of
a given data service), and computation (computing an abstraction of a given data service).

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In the last years the interest in using Artificial Intelligence (AI) for Data Management has grown considerably. One
obvious area where AI is greatly effective is data analytics, which is the process of identifying, modeling, and communicating
meaningful patterns of data. In particular, machine learning is being used in a plethora of ways for discovering insights,
finding new patterns, and detecting novel relationships in the data. But data analytics is not the only area where AI can
be of great value for Data Management: data modeling can also substantially benefit from AI. As all data scientists know,
the quality of data analytics and data-driven decision-making heavily depends on the quality of the data that are input
to the discovery process, and this in turn depends on the process used for gathering, structuring and making sense of
available data. During such modeling process, data at the relevant sources must be collected, classified, interpreted, and
their semantics must be characterized, so as to integrate them with data coming from other sources, cleansed, formatted,
and categorized using a precise specification language.

Ontology-based Data Management (OBDM) [2] is a paradigm introduced with the goal of coping with the above issues.
The key idea of OBDM is to apply suitable techniques from the area of Knowledge Representation and Reasoning for a
new way to carry out Data Management and Data Governance, based on the principle of managing heterogeneous data
through the lens of an ontology. OBDM resorts to a three-level architecture, constituted by the ontology, the data layer, and
the mapping between the two. The data layer is constituted by the existing data sources that are relevant for the domain
of interest. The ontology is a declarative and explicit representation of such domain, given in terms of formal and high-
level assertions which describe the domain in terms of classes of objects, called concepts, and relationships among objects,

✩ This article is an expanded version of our IJCAI-19 conference publication [1].

* Corresponding author.
E-mail addresses: cima@diag.uniroma1.it (G. Cima), poggi@diag.uniroma1.it (A. Poggi), lenzerini@diag.uniroma1.it (M. Lenzerini).
https://doi.org/10.1016/j.artint.2023.103976
0004-3702/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.artint.2023.103976
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2023.103976&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:cima@diag.uniroma1.it
mailto:poggi@diag.uniroma1.it
mailto:lenzerini@diag.uniroma1.it
https://doi.org/10.1016/j.artint.2023.103976
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
called roles. The mapping is a set of declarative assertions specifying how the available sources in the data layer relate to
the concepts and the roles in the ontology. One of the distinguishing features of the whole approach is that users of the
information system will be freed from all the details of how to use the data at the sources, as they will express their needs,
such as queries, quality checks or other governance tasks, in terms of the concepts and the roles described in the domain
model. The system will reason about the ontology and the mappings, and will reformulate the needs in terms of appropriate
calls to services provided for accessing the data sources.

In order to translate the users’ needs expressed over the ontology into correct and efficient computations over the data
sources, techniques typical of the two areas of Knowledge Representation and Automated Reasoning are crucial. Indeed,
most of the literature about managing data sources through an ontology [3–5,2,6,7] deals with user queries expressed over
the ontology, and studies the problem of answering such queries, by finding a so-called ontology-to-source rewriting, i.e., a
query over the source schema that, once executed over the data, provides the certain answers to the original query, i.e., those
answers that are entailed from the logical specification of the OBDM system. Hence, Automated Reasoning techniques have
played a prominent role in such investigation.

However, translating queries from the ontology level to the data layer is not the only relevant task in the context of
OBDM. In this paper we argue that another important reasoning task in the governance of Information Systems is what
we call Abstraction, whose goal is to capture and express the semantics of a data service in terms of the ontology. The
architecture of many modern Information Systems is in fact based on data services [8], i.e., services deployed on top of
data sources, other services, and/or applications to encapsulate a wide range of data-centered operations. Such architecture
is crucial for the Data-As-A-Service [9] paradigm. However, in order to realize such paradigm, in particular to foster the
adoption and the reuse of data services, it is of vital importance to well document and clearly specify their semantics,
bringing them into compliance with the FAIR guiding principles [10], i.e., make them Findable, Accessible, Interoperable,
and Reusable (FAIR). While most current techniques manually associate APIs (Application Programming Interface) to data
services, and describe their intended meaning with ad-hoc methods, often using natural language or complex metadata [11],
we propose a new approach, whose goal is to automatically associate formal semantic descriptions to data services. Since
we base our proposal on OBDM, we envision a method by which the semantics of data services is expressed using the
elements of the domain ontology, which is assumed to be familiar to the consumers of data services. But how can we
automatically produce a semantic characterization of a data service, having an OBDM specification available? The idea is to
exploit Abstraction, a new reasoning task that works as follows: we express the data service in terms of a query over the
sources, and we aim at automatically deriving the query over the ontology that best describes the data service, given the
mapping. The following example illustrates this idea.

Example 1.1. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = { ∃TeachesTo � Professor, Student � ¬Professor, Student � ∃HasGuarantor, ∃RegisteredTo � Student }
• S = { s1, s2, s3, s4, s5 }
• M = { m1, m2, m3, m4, m5 }, where:

m1: s1(x, y) → TeachesTo(x, y)

m2: s2(x) → Professor(x)

m3: s3(x) → RegisteredTo(x,Sapienza)

m4: s3(x) ∧ s4(x) → HasGuarantor(x, x)

m5 : ∃y.s4(x) ∧ s5(y, x) → ∃z.HasGuarantor(z, x)

where x, y, z are variables, and Sapienza is a constant.

Let the data service be expressed as the union of conjunctive query (UCQ) qS = {(x) | s2(x)} ∪ {(x) | ∃y.s1(x, y)} over the
source schema S . Conceivably, by inspecting the mapping assertions in M and the ontology assertions in O, one can argue
that the query qO over the ontology O that characterizes the data service qS at best w.r.t. the OBDM specification J is
qO = {(x) | Professor(x)}.

Note that the problem of Abstraction is somehow reversed with respect to query answering: while in the latter we start
with a query qO over the ontology and we aim at a query over the sources computing the certain answers to qO , here we
start with a source query qS and we aim at deriving its abstraction, i.e., a corresponding query over the ontology, the one
providing the semantics of qS in terms of the ontology O. Thus, Abstraction is a sort of reverse engineering problem, which
is a novel aspect in the research on OBDM.

Motivations Besides for semantically characterizing data services, the notions introduced in this paper are relevant in a
plethora of other application scenarios, among which we mention:

• Open data publishing: Current practices for publishing open data focus essentially on providing extensional information
(often in very simple forms, such as CSV files), and carry out the task of documenting data mostly by using metadata
2

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
expressed in natural languages, or in terms of record structures. As a consequence, the semantics of nowadays most
available datasets is not formally expressed in a machine-readable form. However, following the ideas in [12], the
notion of Abstraction can be used to automatically provide the semantics of open datasets and open APIs published by
public or private organizations, which is a key aspect for unchaining all the potentials of open data [13]. Indeed, we
encountered the need of Abstraction during a joint project on OBDM with a public statistical research institute [14]. The
institute’s departments must publish subsets of the data they gather in the form of semantically described linked open
data. To compute the content of the datasets the departments execute suitable queries over the data sources mapped to
a shared ontology. Notably, when the dataset is published, it must be documented through a SPARQL query expressed
in terms of the ontology. This task is currently done manually. The notion of Abstraction perfectly captures this scenario
and provides the formal tool for automating the process: given the query over the sources computing the content of
the dataset, the abstraction of such query with respect to the mapping and the ontology is exactly the SPARQL query
to be associated to the open dataset. In order to illustrate this scenario, consider the OBDM specification J introduced
in Example 1.1 and assume it belongs to an organization that aims at publishing the dataset obtained by evaluating qS
over the current state of the S-database D . Suppose also that O is shared among the organization stakeholders. The
dataset can then be annotated with the abstraction of qS , which explicits that the dataset contains all professors, where
the concept “Professor” is described in O. Note that this is compliant with the FAIR principles according to which the
dataset has to be Interoperable and Reusable, since the abstraction provides the semantics of the dataset content in
terms of a shared vocabulary, i.e., the ontology.

• Checking the quality of mappings: In [15], the concept of realization of source queries, similar to one of the notions studied
here, is used for checking whether the mapping provides the right coverage for expressing the relevant data services
at the ontology level. Thus, Abstraction can be used as a tool to help decide whether or not the existing data sources
and/or the ontology need to be updated [16]. Looking at Example 1.1 and assuming that qS expresses a data service
particularly relevant for the organization to whom J belongs to, it is crucial that the mapping M provides the right
coverage for expressing qS using O. Then, the fact that an abstraction exists for qS provides the guarantee that the
mapping is adequate, as far as it concerns qS .

• Source profiling: Our notions are useful for a semantic-based approach to source profiling [17,18], in particular for
describing the structure and the content of a data source in terms of the business vocabulary. Consider again the OBDM
specification of Example 1.1 and assume that, with the aim of equipping data with an adequate documentation (e.g.,
before a system migration), the data owner wishes to describe the content of the source s1 in terms of the business
domain, i.e., of the ontology O. He/she can achieve this by computing the abstraction of the query {(x) | ∃y.s1(x, y)},
which, in fact, leads to claim that s1 contains professors who teach.

• Explaining classifiers: Abstraction can also be used in the Explainable Artificial Intelligence field. Indeed, suppose to
acquire the outcome of a binary classifier over tuples of data sources in the information system; then, it is possible
to semantically describe the choices taken by such a classifier by deriving an ontology-mediated query whose answers
include all the tuples classified positively, and none of the tuples classified negatively [19,20].

• Synthetizing suitable specifications of processes in a microservice architecture: Finally, if the databases that are local to
microservices are mapped to an ontology, Abstraction can be used to provide a semantic description of processes or-
chestrating several data-driven microservices, thus obtaining a virtual, unified characterization of a set of distributed,
autonomous computations [21].

Contributions The contributions provided by this paper can be summarized as follows.

• We propose a formal framework for the problem of semantically characterizing a data service through an ontology.
We introduce the notions of perfect, sound, and complete abstraction, and we define two basic reasoning tasks, namely
verification and computation. The former checks whether a given query is an abstraction of a data service, whereas the
latter computes one such abstraction. We show that, although the ideal notion is the one of perfect abstraction, there
are cases where, with the given mapping, no query over the ontology can precisely characterize the data service at hand.
Thus, we also introduce maximally sound and minimally complete abstractions, which intuitively aim at approximating a
perfect abstraction of a data service at best, with the goal of either precision (maximally sound abstraction), or recall
(minimally complete abstraction).

• We study both the verification, and the computation problem for complete, sound, and perfect abstractions in one of
the most popular OBDM setting considered in the literature, namely where the ontology language is DL-LiteR [22], the
mapping language follows the Global-and-Local-as-Views (GLAV) approach, i.e., each mapping assertion maps a conjunc-
tive query (CQ) over the source to a CQ over the ontology [23,24], and when both the data service and the abstraction
are expressed as unions of CQs. In particular, for perfect and complete abstractions we present algorithms for verifica-
tion and computation, and characterize the complexity of both tasks. For the case of sound abstractions, we do the same
for verification, and then we precisely determine the cases where a maximally sound abstraction is not guaranteed to
exist.

• We single out a restricted scenario that is still meaningful from the point of view of expressive power, and guarantees
the existence of maximally sound abstractions. The restricted scenario is obtained from the general one by (i) intro-
ducing a specific setting for OBDM specifications by limiting the ontology language to DL-LiteRDFS [25,26] as well as
3

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
limiting the mapping assertions to Pure Global-as-View (i.e., GAV mapping without constants and repeated variables in
the head, which is how GAV was originally defined in the data integration literature [23]), and (ii) limiting the data
service to be expressed as a union of CQs with join-free existential variables (UCQJFEs). In such restricted scenario, we
provide algorithms and complexity results for verification and computation of maximally sound abstractions.

Related work This paper reports and extends the results previously presented in [27,12,1]. More specifically, with respect
to [12,1], besides providing a comprehensive overview of the relevance of the Abstraction reasoning task (see the current In-
troduction section), the present work further generalizes the source query language for specifying data services, by allowing
constants and repeated variables to appear in the target list, and provides all the complete proofs as well as several addi-
tional examples. Apart from [12,1,27], to the best of our knowledge, Abstraction has been (partially) addressed only in [15],
under the name of realization. In particular, [15] focuses on both DL-LiteR and the EL family [28] of ontology languages,
and studies only the case of perfect abstractions and only with GAV mapping assertions, under a slightly different semantics
with respect to the one proposed here (cf. discussion at the beginning of Section 3). Importantly, due to the differences in
the semantics, results of [15] on perfect abstractions over OBDM specifications with a DL-LiteR ontology and GAV mapping
assertions, implicitly hold only for consistent OBDM specifications.

Related to the problem studied here are also the work dealing with the problem of computing (source-to-ontology)
rewritings over OBDM specifications with a DL-LiteR ontology and (GLAV) mapping assertions [29]. In particular, we will
show in Section 3, that given an OBDM specification J , a query qO over the ontology, and a query qS over the sources, qO
is a complete abstraction of qS with respect to J if and only if qS is a sound rewriting of qO with respect to J . Hence,
these works are strongly related to just one of the problems studied here, namely the verification problem for complete
abstractions.

Finally, our investigation is related to view-based query rewriting [30,31]. In particular, given an OBDM specification with
an empty ontology and a set of pure GAV mapping assertions, qO is a sound abstraction of qS with respect to J if and
only if qO is a rewriting of qS over a set of disjunctive views including one view for each element of the ontology specified
in the head of a mapping, where the definition of the view coincides with the body of the mapping. For more details on
this relation between Abstraction and view-based query rewriting, we refer the interested reader to [32]. Interestingly, there
are only few works [33,34] tackling view-based query rewriting in the presence of disjunctive views. None of these works,
however, focuses on the problem of computing rewritings expressed as unions of CQs.

Plan of the paper The paper is organized as follows. After presenting in Section 2 notions preliminary to our investigation,
in Section 3 we present our formal framework for Abstraction. Then, in Section 4, 5, and 6, we study verification and com-
putation of complete, sound, and perfect abstractions, respectively. Section 7 first focuses on verification and computation of
sound abstractions in a restricted scenario, and then mention the key results for a further restricted scenario. Finally, Sec-
tion 8 concludes the paper, while Appendix A provides more proofs and Appendix B tackles the further restricted scenario
mentioned at the end of Section 7.

2. Preliminaries

We assume basic knowledge about databases [35] and Description Logics (DLs) [36,37]. In what follows, we use σ(x) to
denote the size of object x.

Database and queries A relational database schema (or simply schema) S is a finite set of predicate symbols, each with a
specific arity n ≥ 1. Given a schema S , an S-database D is a finite set of facts of the form s(�c), where s is an n-ary predicate
symbol of S , and �c = (c1, . . . , cn) is an n-tuple of terms, where each term in a fact is a constant taken from a denumerable
infinite set of symbols Const. Note that, when convenient, we treat tuples of terms as sets, in which cases we implicitly
refer to the set composed by all the terms occurring in the tuple.

We sometime refer to a finite set of atoms s(t1, . . . , tn) over S , often denoted as K, where s is an n-ary predicate symbol
of S , and, for each i = 1, . . . , n, the term ti is either a constant in Const or a variable (such variables represent unknown
values [38]). Each variable is taken from a denumerable infinite set of symbols denoted by Var, where Const ∩ Var = ∅. We
denote by dom(K) the set of all terms (i.e., constants and variables) occurring in K.

In its general form, a query q over a schema S is a function that can be evaluated over an S-database D to return a set of
answers qD , each answer being a tuple of constants. All such tuples have the same arity, which is the arity of q, denoted by
ar(q). When ar(q) = 0, the query is called boolean. We assume to deal with databases supporting at least a particular class
of queries, named conjunctive queries (CQs) and unions thereof, which we express adopting the standard relational calculus
notation. Specifically, the syntax of a CQ q of arity n ≥ 0 over a schema S can be either false/n, or an expression of the
form q = {�t | ∃�y.φ(�x, �y)}, also denoted q(�t), where (i) �t , called the target list of q, is an n-tuple of terms; (ii) �x is the tuple
of variables occurring in �t , called the distinguished variables of q; (iii) �y is a tuple of variables, called the existential variables
of q; and (iv) φ(�x, �y), called the body of q, is a finite conjunction of atoms, each one of the form s(t′

1, . . . , t′
k) where s is

an k-ary predicate symbol of S , and for each j = 1, . . . , k the term t′
j is either a constant or a variable occurring in �x or �y.

As usual, we impose that each distinguished variable and each existential variable appears in some atom of φ(�x, �y). Given
4

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
a CQ q = {�t | ∃�y.φ(�x, �y)} over a schema S , we call freezing of q, denoted by Dq , an S-database associated to q, i.e., a set of
facts over S obtained from φ by replacing each variable z with a different fresh constant denoted by cz .

Example 2.1. Let q = {(x) | ∃y.s1(x, y) ∧ s2(x) ∧ s3(y) ∧ s4(y)}. Then a freezing of q is the following database Dq =
{s1(cx, c y), s2(cx), s3(c y), s4(c y)}, where cx and c y are distinct constants.

Given a CQ q = {�t | ∃�y.φ(�x, �y)}, we say that an existential variable y ∈ �y is a join existential variable if it occurs more
than once in the atoms of φ(�x, �y). In what follows, we also consider the subclass of CQs without join existential variables,
namely conjunctive queries with join-free existential variables (CQJFEs). Obviously, a CQ q is also a CQJFE if there is no join
existential variable occurring in q. Observe that CQJFEs subsumes the class of full conjunctive queries (full CQs) since it allows
for non-join existential variables occurring in their bodies. Full CQs form a well-known class of queries studied in relational
database theory (see, e.g., [39–41]), corresponding to the Select-Join fragment of Relational Algebra [42], i.e., the fragment
of CQs without the projection operator. Finally, a UCQ (respectively, UCQJFE) is a union of a finite set of CQs (respectively,
CQJFEs) with same arity, called its disjuncts.1

Example 2.2. The query qS = {(x) | s2(x)} ∪{(x) | ∃y.s1(x, y)} is a UCQJFE since it is the union of two CQs, the former being a
full CQ and the latter a CQJFE. Note, in particular, that the latter CQ contains an existentially quantified variable y occurring
only once within the atoms of the disjunct. On the contrary, the query obtained by replacing the second disjunct of qS
with the CQ {(x) | ∃y.s1(x, y) ∧ s3(y)} is a UCQ that is not a UCQJFE because its second disjunct contains an existentially
quantified variable y that occurs twice within the atoms of the disjunct.

To define the evaluation of CQs and UCQs over S-databases, we resort to the notion of homomorphism. Given two
(possibly infinite) sets of atoms K and K′ , a homomorphism from K to K′ is a function h : dom(K) → dom(K′) for which:

• h(c) = c for each c ∈ Const; and
• h(K) ⊆K′ ,

where h(K) is the image of K under h, i.e., h(K) = {h(α) | α ∈ K}, where, for each atom α = s(t1, . . . , tn), h(α) =
s(h(t1), . . . , h(tn)).

Given a CQ q of arity n, the evaluation of q over a (possibly infinite) set of atoms K, denoted qK , is ∅ if q is false/n,
otherwise, if q is of the form {�t | ∃�y.φ(�x, �y)}, qK is the set of n-tuples of terms �c such that there exists a function h from
dom(φ) ∪ �c�t to dom(K) ∪ �c�t , where �c�t denotes the set of constants occurring in the target list �t , for which (i) h(c) = c for
each c ∈ �c�t , (ii) the restriction of h to dom(φ) is a homomorphism from φ to K, and (iii) h(�t) = �c. As usual, for a tuple of
terms �t = (t1, . . . , tn), h(�t) denotes (h(t1), . . . , h(tn)). In what follows, we also say that this is a homomorphism from q to
K (or also a homomorphism from φ(�x, �y) to K) with h(�t) = �c, and write h(q) (or also h(φ(�x, �y))). Finally, the evaluation
of a UCQ over a set of atoms K is simply the union of the evaluation of its disjuncts over K. As an usual convention, for
a boolean CQ q, the evaluation of q over a set of atoms K amounts to qK = {()} (also denoted by K |= q) if there is a
homomorphism from q to K, and ∅ otherwise (also denoted K �|= q).

For two queries q1 and q2 of the same arity over a schema S , we write q1 �S q2 (or simply q1 � q2 when S is clear) if
qD

1 ⊆ qD
2 for every S-database D . Furthermore, we write q1 ≡S q2 (or simply q1 ≡ q2 when S is clear) if both q1 � q2 and

q2 � q1 hold. It is well-known that, if q1 = { �t1 | ∃ �y1.φ1(�x1, �y1)} and q2 = { �t2 | ∃ �y2.φ2(�x2, �y2)} are CQs over S , then q1 � q2

if and only if �t1 ∈ qφ1
2 , i.e., if and only if there is a homomorphism h from q2 to φ1 with h(�t2) = �t1 [44], and if both q1 and

q2 are UCQs over S , then q1 � q2 if and only if for each disjunct q of q1 there is a disjunct q′ of q2 such that q � q′ [45].
The containment check between (U)CQs by means of homomorphisms can be trivially extended to deal with the special CQ
false/n, too.

Given a CQ q = {(t1, . . . , tn) | ∃�y.φ(�x, �y)} of arity n and an n-tuple of constants �c = (c1, . . . , cn), we denote by q(�c)
the special CQ false/n if there is some i ∈ [1, n] for which ti �= ci and ti is a constant, otherwise it is the boolean CQ
{() | ∃�y.φ(�x/�c, �y)}, where φ(�x/�c, �y) denotes the formula obtained from φ(�x, �y) by replacing every occurrence of the term ti
with the constant ci , for each i ∈ [1, n].

Given a UCQ q = q1 ∪ . . .∪qm of arity n and an n-tuple of constants �c = (c1, . . . , cn), we denote by q(�c) = q1(�c) ∪ . . .∪qm(�c)
the boolean UCQ obtained from q by replacing the disjunct qi with qi(�c), for each i ∈ [1, m].

Ontologies A DL ontology O is simply a TBox expressed in a specific DL. Sometimes we also need to view O as a schema, in
which cases we implicitly refer to the finite set of unary and binary predicates corresponding to atomic concepts and atomic
roles, respectively, which constitute the alphabet of O. We assume that every ontology O comprises the atomic concepts
� and ⊥, called universal concept and bottom concept, respectively. Formally, a DL ontology O consists in a finite set of
assertions over its alphabet built according to the syntax rules of the specific DL. In particular, we are interested in DL

1 Observe that we allow for different target lists in the disjuncts of a UCQ. This class of queries is called disjunction of CQs (DCQs) in [43].
5

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
ontologies expressed in DL-LiteR , a member of the DL-Lite family [22] of DLs which underpins OWL2QL [46], i.e., the OWL2
profile especially designed for the OBDM scenarios. In DL-LiteR , assertions have the following forms:

B1 � B2 R1 � R2 (concept/role inclusion assertion)

B1 � ¬B2 R1 � ¬R2 (concept/role disjointness assertion)

where B1, B2 are basic concepts, i.e., expressions of the form A, ∃P , or ∃P−, with A and P denoting atomic concepts, and
R1, R2 are basic roles, i.e., expressions of the form P , or P− . We assume that ⊥ never occurs in the right-hand side of
inclusion assertions. This is without loss of generality, since each inclusion assertion of the form B � ⊥ is equivalent to
B � ¬B . Furthermore, we implicitly assume that each DL-LiteR ontology O contains the inclusion assertion B � �, for each
basic concept B built from the alphabet of O.

We will also consider one sublanguage of DL-LiteR , namely DL-LiteRDFS [25,26] (i.e., the DL-like part of RDFS [47]),
where both disjointness assertions, and concepts of the forms ∃P or ∃P− in the right-hand side of inclusion assertions, are
ruled out.

The semantics of DL ontologies is specified through the notion of interpretation: an interpretation I for an ontology O is
a pair I = 〈�I , ·I〉, where the interpretation domain �I is a non-empty, possibly infinite set of objects, and the interpretation
function ·I assigns to each atomic concept A a set of domain objects AI ⊆ �I (with �I = �I and ⊥I = ∅) and to each
atomic role P a set of pairs of domain objects PI ⊆ �I × �I . For the constructs of DL-LiteR , the interpretation function
extends to basic concepts and roles as follows: (i) (∃P)I = {o | ∃o′. (o, o′) ∈ PI}, (ii) (∃P−)I = {o | ∃o′. (o′, o) ∈ PI}, and (iii)
(P−)I = {(o, o′) | (o′, o) ∈ PI}.

An interpretation I satisfies (i) a concept inclusion assertion B1 � B2 (respectively, role inclusion assertion R1 � R2) if
BI

1 ⊆ BI
2 (respectively, RI

1 ⊆ RI
2), and (ii) a concept disjointness assertion B1 � ¬B2 (respectively, role disjointness assertion

R1 � ¬R2) if BI
1 ∩ BI

2 = ∅ (respectively, RI
1 ∩ RI

2 = ∅). Also, an interpretation I satisfies a DL-LiteR ontology O, or, equiva-
lently, I is a model of O, denoted by I |= O, if I satisfies every assertion in O. Finally, an ontology O logically implies a
concept/role inclusion/disjointness assertion α if I |= α, for every model I of O.

Note that, when convenient, we treat interpretations I for O as the (possibly infinite) set of facts of the form A(c) or
P (c1, c2) that are true according to I , i.e., are such that c ∈ AI or, respectively, (c1, c2) ∈ PI , where c, c1, c2 ∈ �I and A and
P denote an atomic concept and a atomic role of O. Thus, we immediately obtain the notion of evaluation of a UCQ q over
an interpretation I: qI is the evaluation of q over the set of facts in I .

OBDM specification An Ontology-based Data Management (OBDM) specification [3,48] is a triple J = 〈O, S, M〉, where:

• O is a DL ontology;
• S is a relational database schema, also called source schema;
• M is a mapping, i.e., a finite set of mapping assertions relating S to O, where each mapping assertion is a statement

of the form ∀�x.(∃�y.φS (�x, �y) → ∃�z.ψO(�x, �z)), with φS (�x, �y) and ψO(�x, �z) finite conjunctions of atoms over S and O,
respectively [23,24]. We further assume that in every mapping assertion of the above form, the atomic concept ⊥ does
not occur in ψO(�x, �z).2

Mapping assertions of the above general form are also called GLAV (Global-and-Local-as-View) mapping assertions. Special
cases of GLAV mapping assertions are GAV (Global-as-View) and LAV (Local-as-Views) mapping assertions. A GAV mapping
assertion is a GLAV mapping assertion in which the right-hand side of the implication is simply an atom without existential
variables. Furthermore, a GAV mapping assertion is called pure if the atom ψO(�x) does not have constants nor variables
that are repeated more than once. A LAV mapping assertion is a GLAV mapping assertion in which the left-hand side of the
implication is simply an atom without repeated variables, and all universally quantified variables appear in the right-hand
side of the implication, i.e., it is an assertion of the form ∀�x.(s(x1, . . . , xn) → ∃�z.ψO(�x, �z)), where s is an n-ary predicate
symbol of S and x1, . . . , xn are pairwise different variables. Finally, we say that a mapping M is a GLAV (respectively,
LAV, GAV, pure GAV) mapping if it consists of a finite set of GLAV (respectively, LAV, GAV, pure GAV) mapping assertions.
For readability purposes, from now on we will drop the universal quantifiers in front of mapping assertions. The following
example illustrates the definitions above.

Example 2.3. Consider again the OBDM specification J = 〈O, S, M〉 of Example 1.1. The mapping M is GLAV. In particular,
it contains four mapping assertions, m1, m2, m3, and m4 that are GAV, of which two, m1 and m2 are also pure GAV, and
three, m1, m2, and m3, are also LAV.

We will make use of the notion of chase of a set of atoms with respect to a mapping. The chase is a fixpoint algorithm
typically used to reason about data dependencies [49,50].3 Formally, given a set of atoms K over a schema S and a mapping

2 We could easily extend our work to the case where such assumption does not hold, but we would be forced to introduce some technicalities which are
not interesting with respect to the goal of the paper.

3 Here we implicitly refer to the oblivious chase [51] (also known as the naive chase [52]) rather than to the standard chase [53].
6

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
M relating S to an ontology O, the chase of K with respect to M, denoted by M(K), is a set of atoms over O computed
as follows: (i) M(K) is initially set to the empty set, then (ii) for every GLAV assertion ∃�y.φS (�x, �y) → ∃�z.ϕO(�x, �z) in M and
for every homomorphism h from φS (�x, �y) to K, we add to M(K) the image of the set of all atoms occurring in ϕO(�x, �z)
under h′ , i.e., we set M(K) := M(K) ∪ h′(ϕO(�x, �z)), where h′ extends h by assigning to each variable z ∈ �z a different
fresh variable in Var not present in M(K). With a slight abuse of notation, given a CQ q = {�t | ∃�y.φ(�x, �y)} over a schema S
and a mapping M relating S to an ontology O, we denote by M(q) the conjunction of all the atoms obtained by chasing
the set of atoms occurring in the body of q with respect to M.

Example 2.4. Let J = 〈O, S, M〉 be the OBDM specification introduced in Example 1.1 and q = {(x) | ∃y.s1(x, y) ∧ s2(x) ∧
s3(y) ∧ s4(y)} be the query already discussed in Example 2.1. Then M(q) is the following conjunction of atoms:
TeachesTo(x, y) ∧ Professor(x) ∧ RegisteredTo(y, Sapienza) ∧ HasGuarantor(y, y).

Semantics of OBDM The semantics of an OBDM specification J = 〈O, S, M〉 is given w.r.t. an S-database D . Specifically,
an interpretation I = 〈�I , ·I〉 for 〈 J , D〉 is an interpretation for O whose interpretation domain �I is equal to Const, and
whose interpretation function ·I further assigns to each constant c ∈ Const itself.4

Given an OBDM specification J = 〈O, S, M〉, an S-database D , and an interpretation I for 〈 J , D〉, we say that the
pair 〈D, I〉 satisfies a mapping assertion m = ∃�y.φS (�x, �y) → ∃�z.ψO(�x, �z) occurring in M, denoted by 〈D, I〉 |= m, if {�x |
φS (�x, �y)}D ⊆ {�x | φO(�x, �y)}I . Furthermore, we say that 〈D, I〉 satisfies M, denoted by 〈D, I〉 |= M, if 〈D, I〉 |= m for each
m ∈M.

We are now ready to formalize the notion of model of an OBDM specification J = 〈O, S, M〉 w.r.t. an S-database D . An
interpretation I for 〈 J , D〉 is a model for J relative to D if (i) I |=O, and (ii) 〈D, I〉 |=M. The set of models for J relative to
D is denoted by ModD(J), and D is said to be consistent with J if ModD(J) �= ∅, inconsistent with J otherwise.

Example 2.5. Let us consider again the OBDM specification J = 〈O, S, M〉 of Example 1.1, and let D be the following S-
database: D = {s1(John, Max), s2(Julie), s3(Alfred), s3(Jim), s4(Gilda), s4(Diane), s4(Alfred), s5(Paris, Gilda)}. It is easy to verify
that the following interpretation M (seen as a set of facts over O) is a model for J relative to D:

M = {TeachesTo(John, Max),Professor(John),Professor(Julie),RegisteredTo(Alfred, Sapienza),

RegisteredTo(Jim, Sapienza),HasGuarantor(Alfred, Alfred),HasGuarantor(Steve, Gilda),

Student(Alfred),Student(Jim)}
where Steve is a constant in Const not occurring in D . Thus, since M ∈ ModD(J), we have ModD(J) �= ∅, and therefore D is
consistent with J .

Certain answers In OBDM one of the main service of interest is query answering, i.e., computing the certain answers to
queries posed over the ontology. Given an OBDM specification J = 〈O, S, M〉, an S-database D , and a query qO over O
of arity n, we denote by certD

qO, J the set of certain answers of qO with respect to J and D , i.e., the set of n-tuples of
constants (c1, . . . , cn) occurring in D , in M, or in qO such that (cI1 , . . . , cIn) ∈ qIO , for each I ∈ ModD(J). Observe that, if D
is inconsistent with J (i.e., ModD(J) = ∅), then the set of certain answers of any query qO (over O) with respect to J and
D is trivially the set of all possible n-tuples of constants occurring in D , in M, or in qO (ex falso quodlibet).

Given two queries q1
O, q2

O over O, we write certq1
O, J � certq2

O, J if certD
q1
O, J

⊆ certD
q2
O, J

for every S-database D , and we

write certq1
O, J � certq2

O, J if (i) certq1
O, J � certq2

O, J , and in addition (ii) certD
q1
O, J

⊂ certD
q2
O, J

for at least one S-database D .

Then, q1
O and q2

O are equivalent with respect to J , denoted by certq1
O, J ≡ certq2

O, J , if both certq1
O, J � certq2

O, J and certq2
O, J �

certq1
O, J hold.

Also, given an OBDM specification J = 〈O, S, M〉 and a query qO over O, a query qS over S is a sound J -rewriting of qO ,
if for every S-database D , qD

S ⊆ certD
qO, J , while it is a perfect J -rewriting of qO , if for every S-database D , qD

S = certD
qO, J [54].

Till the end of the section, we focus on OBDM specifications whose ontology is expressed in DL-LiteR . Also, to simplify
the presentation and without loss of generality, we assume that neither mappings nor queries over the ontology mention
constants. Finally, to correctly take into account the possible presence of atoms with predicate symbol � in the body of
CQs, we assume that for each predicate symbol s ∈ S of arity n and for each i = 1, . . . , n, M contains the mapping assertion
∃y1, . . . yi−1, x, yi+1, . . . , yn.s(y1, . . . , yi−1, x, yi+1, . . . , yn) → �(x).5 Importantly, under these assumptions and based on re-
sults of [55,29], if J is such that O = ∅ and M is a GLAV mapping, then by splitting the GLAV mapping M into a GAV

4 Thus, we adopt the standard name assumption and therefore the unique name assumption. Note, however, that all our results can be easily reformulated
in a setting where those assumptions do not hold, as usual in OBDM [3].

5 It is easy to verify that all such mapping assertions are pure GAV. Moreover, for each OBDM specification J = 〈O, S, M〉 and S-database D , one can
build an OBDM specification J ′ = 〈O, S, M′〉 such that ModD (J) = ModD (J ′), where M′ is obtained from M by adding such mapping assertions.
7

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
mapping followed by a LAV mapping over an intermediate alphabet, we can rewrite qO into a UCQ over S , denoted by
REWM(qO), such that REWM(qO) ≡ certqO, J , i.e., REWM(qO)D = certD

qO, J for every S-database D .6

We are now ready to provide the last preliminary notions and notations related to certain answers in our setting.
Specifically, the canonical structure of O with respect to M and D , denoted CM(D)

O , is the (possibly infinite) set of atoms
over O obtained by first chasing D with respect to M, and then by chasing, possibly ad infinitum, the resulting set of
atoms M(D) with respect to O as described in [22, Definition 8]7 but using the alphabet Var of variables whenever a
new element is needed in the chase. By combining results of [53, Proposition 4.2] with results of [22, Theorem 29], it is
well-known that, if D is consistent with J and qO is a UCQ over O, then, for every tuple of constants �c in D , we have that

�c ∈ certD
qO, J if and only if �c ∈ q

CM(D)
O

O , i.e., if and only if CM(D)

O |= qO(�c). The following example illustrates the above recalled
notion of canonical structure.

Example 2.6. Consider the OBDM specification J = 〈O, S, M〉 introduced in Example 1.1 and the S-database D introduced
in Example 2.5. The canonical structure of O with respect to M and D , CM(D)

O , is obtained by first computing the set
M(D), which leads to the following:

M(D) = {TeachesTo(John, Max),Professor(Julie),RegisteredTo(Alfred, Sapienza),

RegisteredTo(Jim, Sapienza),HasGuarantor(Alfred, Alfred),HasGuarantor(s, Gilda)}
where s ∈ Var, and then by chasing M(D) with respect to O, thus obtaining the set of atoms CM(D)

O that is identical to the
model M of Example 2.5 except for the fact that it contains the variable s instead of the constant Steve. Also, if qO is the

query qO = {(x) | Professor(x)} introduced in Example 1.1, then certD
qO, J = q

CM(D)
O

O = {(John), (Julie)}.

Furthermore, given a UCQ qO over O, we denote by PerfRefqO,O the UCQ over O computed by executing the algo-
rithm PerfectRef described in [22] on qO and O, which, intuitively, encodes all inclusion assertions of O, so that given an
OBDM specification J = 〈O, S, M〉, certD

qO, J = certD
PerfRefqO ,O, J ′ , for every S-database D consistent with J , where J ′ is ob-

tained from J be replacing O with an empty ontology over the same alphabet. Thus, if we denote by PerfRefqO, J the UCQ
REWM(PerfRefqO,O) over S , by combining results of [22] with the definition of perfect J -rewriting, we obtain that if qS
is a perfect J -rewriting of qO , then qD

S = PerfRefD
qO, J , for every S-database D consistent with J . Note, in particular, that

the previous claim holds only for S-databases consistent with J , since PerfectRef ignores the disjointness assertions. Let us
illustrates all this by an example.

Example 2.7. Consider the ontology O of the OBDM specification J introduced in Example 1.1 and the query qO =
{(x) | Professor(x)}. By applying the algorithm PerfectRef to qO and O we obtain the following UCQ: PerfRefqO,O = {(x) |
Professor(x)} ∪ {(x) | ∃y.TeachesTo(x, y)}, and then PerfRefqO, J = REWM(PerfRefqO,O) = {(x) | s2(x)} ∪ {(x) | ∃y.s1(x, y)}.

Note, however, that PerfRefqO, J is not a perfect J -rewriting of qO , since, clearly, for every S-database D inconsistent
with J , PerfRefD

qO, J �= certD
qO, J . Let us consider, for example, the S-database D ′ = {s2(Julie), s3(Julie), s3(Jim)}. It is easy to

verify that D ′ is inconsistent with J . Thus, certD ′
qO, J = {(c) | c occurs in D ′, in M, or in qO} = {(Julie), (Jim), (Sapienza)}.

On the other hand, we have that PerfRefD ′
qO, J = {(Julie)}.

The previous example highlights the impact of dealing with inconsistent S-databases when using PerfectRef to compute
certain answers. To face such an issue, one can resort to the notion of violation query. Specifically, the O-violation query,
denoted by VO , is the boolean UCQ constituted by the disjunct {() | ∃y.⊥(y)} and a set v of disjuncts defined as follows.
The set v contains one disjunct of the form {() | ∃y.A1(y) ∧ A2(y)} (respectively, {() | ∃y1, y2.A1(y1) ∧ R(y1, y2)}, {() |
∃y1, y2, y3.R1(y1, y2) ∧ R2(y1, y3)}, and {() | ∃y1, y2.R1(y1, y2) ∧ R2(y1, y2)}) for each disjointness assertion A1 � ¬A2
(respectively, A1 � ¬∃R or ∃R � ¬A1, ∃R1 � ¬∃R2, and R1 � ¬R2), where an atom of the form R(y, y′) stands for either
P (y, y′) if R denotes an atomic role P , or P (y′, y) if R denotes the inverse of an atomic role, i.e., R = P− . From results
of [3] easily follows that, given an OBDM specification J = 〈O, S, M〉 and an S-database D , D is consistent with J if and
only if PerfRefD

VO , J = ∅.

Example 2.8. Consider the OBDM specification J = 〈O, S, M〉 introduced in Example 1.1. Since O contains only one dis-
jointness assertion Student � ¬Professor, the O-violation query is the following:

VO = {() | ∃y.⊥(y)} ∪ {() | ∃y.Student(y) ∧ Professor(y)}

6 Observe that, if qO is a CQ over O of arity n having an atom with predicate symbol ⊥ in its body, then REWM(qO) is false/n for every GLAV
mapping M.

7 In fact, [22, Definition 8] defines how to construct a canonical interpretation of a DL-LiteR knowledge base. Once one treats an interpretation as the
(possibly infinite) set of facts that are satisfied by the interpretation, it is immediate to apply such construction in our setting.
8

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
and PerfRefVO , J = {() | ∃y.s3(y) ∧ s2(y)} ∪ {() | ∃y, z.s3(y) ∧ s1(y, z)}.

Now, consider again the database D ′ introduced in Example 2.7. One can easily verify that PerfRefD ′
VO , J = {()}, thus

confirming that D ′ is inconsistent with J .

With all these notions and results in place, it is straightforward to show the following.

Proposition 2.1. Let J = 〈O, S, M〉 be an OBDM specification, where O is a DL-LiteR ontology and M is a GLAV mapping. If qO is
a UCQ over O of arity n, then the UCQ (PerfRefqO, J ∪ PerfRefVn

O, J) over S is a perfect J -rewriting of qO , where Vn
O denotes the UCQ

over O of arity n containing a disjunct {(x1, . . . , xn) | ∃�y.φ(�y) ∧�(x1) . . .∧�(xn)} for each disjunct in VO of the form {() | ∃�y.φ(�y)}.

Example 2.9. Consider the OBDM specification J = 〈O, S, M〉 of Example 1.1. Also, recall the queries PerfRefqO, J and
PerfRefVO , J computed in Examples 2.7 and 2.8, respectively. According to the above proposition, a perfect J -rewriting of
qO is the query q′ = (PerfRefqO, J ∪ PerfRefV1

O, J).

Thus, for every S-database D , certD
qO, J can be computed by evaluating q′ over D . Now, consider the query qS of Exam-

ple 1.1. The fact that qS coincides with PerfRefqO, J confirms the intuition that qO is the query over O that best characterizes
qS with respect to J .

3. Framework

In the rest of this paper, we implicitly use J = 〈O, S, M〉 to denote an OBDM specification, qS to denote a query over
the schema S , and qO to denote a query over the ontology O.

In the context of abstraction, given qS , we aim at finding the query over O that precisely characterizes qS w.r.t. the
OBDM specification J = 〈O, S, M〉. Since the evaluation of queries over O is based on certain answers, this means that we
aim at finding a query over O whose certain answers w.r.t. J and D exactly capture the answers of qS over D , for every
S-database D . Therefore, we are naturally led to the notion of perfect abstraction.

Definition 3.1. qO is a perfect J -abstraction of qS if for every S-database D , ModD(J) �= ∅ implies certD
qO, J = qD

S . If in addition
qO ∈LO for a query language LO , then we say that qO is an LO-perfect J -abstraction of qS .

The following proposition states that perfect abstractions are always unique, up to equivalence w.r.t. the underlying
OBDM specification J .

Proposition 3.1. If q1 and q2 are perfect J -abstractions of qS , then they are equivalent w.r.t. J .

Proof. Following Definition 3.1, since q1 and q2 are perfect J -abstractions of qS , we have that certD
q1, J = qD

S = certD
q2, J for all

S-databases D consistent with J . For all the S-databases D that are not consistent with J , however, by definition of certain
answers, we have that certD

q1, J = certD
q2, J as well. So, certD

q1, J = certD
q2, J for all S-databases D , i.e., certq1, J ≡ certq2, J . �

The above notion is similar, but not equivalent, to the notion of realization in [15]. Indeed, while the latter sanctions that
qD
S = certD

qO, J for all S-databases D , in Definition 3.1 the condition is limited only to the S-databases D that are consistent
with J . Obviously, every query that is a realization of a source query qS is also an abstraction of qS . However, the converse
is not necessarily true, as shown in the following example.

Example 3.1. Consider the OBDM specification J = 〈O, S, M〉, and queries qS = {(x) | s2(x)} ∪ {(x) | ∃y.s1(x, y)} and qO =
{(x) | Professor(x)} of Example 1.1.

Recall the S-database D ′ = {s2(Julie), s3(Julie), s3(Jim)} considered in Example 2.7. We have that qD ′
S = {(Julie)} while

certD ′
qO, J = {(Julie), (Jim), (Sapienza)} because D ′ is inconsistent with J . It follows that, according to the semantics proposed

in [15] (which ranges over all S-databases), qO is not a realization of qS in J , whereas, according to Definition 3.1, since
qD
S = certD

qO, J holds for every S-database D consistent with J , by definition qO is a CQ-perfect J -abstraction of qS .

Notice, however, that in the above example, the algorithm proposed in [15] for computing the realization of qS in J
returns exactly qO , and is therefore incorrect. More generally, it can be shown that such algorithm provides an incorrect
result whenever the underline OBDM specification may give rise to an inconsistent OBDM system. Indeed, we observe that,
contrarily to the results reported in the present paper, the results in [15] apply only to DLs where inconsistencies cannot
arise.

As implicitly noted in [12,15,1] and illustrated more formally in the next example, perfect abstractions may not exist,
even in trivial cases.
9

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Example 3.2. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = { ∃WorksFor � Worker, MathStudent � Student }
• S = { s1, s2, s3, s4, s5 }
• M = { m1, m2, m3, m4, m5, m6 }, where:

m1: s1(x) → Worker(x)

m2: s1(x) → Student(x)

m3: s2(x1, x2) → WorksFor(x1, x2)

m4: s3(x) → MathStudent(x)

m5: s1(x) ∧ s4(x) → Engineer(x)

m6: s1(x1) ∧ s5(x1, x2) → PlaysSport(x1, x2)

Consider query qS = {(x) | s1(x)} over the source schema S . By inspecting the mapping M and the ontology O one
can see that, since the certain answers of q1

O = {(x) | Worker(x)} include also the values stored in the projection on the
first component of s2, and since the certain answers of q2

O = {(x) | Student(x)} include also the values stored in s3, both
queries are too general for exactly characterizing qS . On the other hand, queries q3

O = {(x) | Engineer(x)} and q4
O = {(x) |

PlaysSport(x, y)} are too specific, and therefore a perfect J -abstraction of qS does not exist. To formally prove this latter
statement, consider the S-databases D1 = {s1(a), s2(a, b), s3(a)} and D2 = {s2(a, b), s3(a)}. One can verify that, while qD1

S =
{(a)} and qD2

S = ∅, we have that ModD1 (J) = ModD2 (J) implying that each query qO over O must be such that certD1
qO, J =

certD2
qO, J , and so, since ModD1 (J) = ModD2 (J) �= ∅, a perfect J -abstraction of qS cannot exist.

In order to cope with the situations illustrated in the above example, we introduce the notions of sound and complete
abstractions, which, intuitively, provide sound and complete approximations of perfect abstractions, respectively.

Definition 3.2. qO is a sound (respectively, complete) J -abstraction of qS if for every S-database D , ModD(J) �= ∅ implies
certD

qO, J ⊆ qD
S (respectively, qD

S ⊆ certD
qO, J).

Example 3.3. Refer to Example 3.2. Note that q1
O and q2

O are complete J -abstractions of qS , whereas q3
O and q4

O are sound
J -abstractions of qS .

Obviously, qO is a perfect J -abstraction of qS if and only if qO is both a sound, and a complete J -abstraction of qS . The
following theorem discusses relevant relationships between the notions of J -abstractions introduced here and the notions
of rewritings studied in OBDM.

Proposition 3.2. The following holds:

1. qO is a complete J -abstraction of qS if and only if qS is a sound J -rewriting of qO .
2. If qS is a perfect J -rewriting of qO , then qO is a perfect J -abstraction of qS . The converse does not necessarily hold.

Proof. As for 1, by definition qS is a sound J -rewriting of qO if and only if qD
S ⊆ certD

qO, J for every S-database D . Since
in the case of D inconsistent with J the above inclusion trivially holds, this is equivalent to the condition qD

S ⊆ certD
qO, J for

every S-database D consistent with J , which is exactly the definition of qO being a complete J -abstraction of qS .
As for the sufficient condition of 2, by definition qS is a perfect J -rewriting of qO if and only if qD

S = certD
qO, J for

every S-database D , which obviously implies that qO is a perfect J -abstraction of qS . To show that the converse does not
necessarily hold, consider J , qS , and qO as described in Example 1.1, and notice that, while qO is a perfect J -abstraction
of qS , qS is not a perfect J -rewriting of qO . �

Notice, however, that the converse statement of point 2 of the above proposition becomes in fact true in the case of
OBDM specifications based on ontology languages not able to express inconsistencies, such as the DL DL-LiteRDFS and the
DLs EL and ELHI [28] considered in [15].

It is easy to see that different sound or complete abstractions of qS may exist, and therefore it is reasonable to look for
the “best” approximations of qS , at least relative to a certain class of queries.

Definition 3.3. qO ∈ L is an L-maximally sound (respectively, L-minimally complete) J -abstraction of qS if qO is a sound
(respectively, complete) J -abstraction of qS and there exists no q′ ∈L such that (i) q′ is a sound (respectively, complete) J -
10

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
abstraction of qS , (ii) certqO, J � certq′, J (respectively, certq′, J � certqO, J), and (iii) certD
qO, J ⊂ certD

q′, J (respectively, certD
q′, J ⊂

certD
qO, J) for an S-database D .

Example 3.4. We refer again to Example 3.2. Observe that neither q1
O nor q2

O are CQ-minimally complete J -abstractions of
qS . Indeed, one can verify that the CQ q5

O = {(x) | Worker(x) ∧ Student(x)} is a UCQ-minimally complete J -abstraction of qS .
As for q3

O and q4
O , it is easy to see that they are both CQ-maximally sound J -abstractions of qS , but neither of them is a

UCQ-maximally sound J -abstraction of qS . Indeed, one can verify that the UCQ q6
O = q3

O ∪ q4
O is a UCQ-maximally sound

J -abstraction of qS .

As we will see in a next proposition, there are types of OBDM specifications and query languages LO for which it is
always the case that if there exists an LO-maximally sound (respectively, LO-minimally complete) J -abstraction of a query
qS , then it is unique, up to equivalence w.r.t. J . In these cases, it is reasonable to talk about the LO-maximally sound
(respectively, LO-minimally complete) J -abstraction of qS .

Definition 3.4. qO ∈ L is the L-maximally sound (respectively, L-minimally complete) J -abstraction of qS if (i) qO is
a sound (respectively, complete) J -abstraction of qS , and (ii) every q′ ∈ L that is a sound (respectively, complete) J -
abstraction of qS is such that certq′, J � certqO, J (respectively, certqO, J � certq′, J).

Example 3.5. Refer again to Example 3.2, and consider also the queries q5
O and q6

O defined in Example 3.4. It can be
shown that q5

O (respectively, q6
O) is the UCQ-minimally complete (respectively, UCQ-maximally sound) J -abstraction of qS .

Furthermore, observe that: (i) since q5
O is a CQ, it is also the CQ-minimally complete J -abstraction of qS , and (ii) since

both q3
O and q4

O are CQ-maximally sound J -abstractions of qS and they are not equivalent w.r.t. J , we conclude that the
CQ-maximally sound J -abstraction of qS does not exist.

Given the general framework presented so far, it is natural to consider the following two basic computational problems,
for classes LS and LO of queries over the source schema S and over the ontology O, respectively:

• Verification: given J = 〈O, S, M〉, qS ∈ LS over S , and qO ∈ LO over O of the same arity of qS , verify whether qO is
a perfect (respectively, sound, complete) J -abstraction of qS .

• Computation: given J = 〈O, S, M〉, and qS ∈ LS over S , compute any LO-perfect (respectively, LO-maximally sound,
LO-minimally complete) J -abstraction of qS , if it exists.

In what follows, if not otherwise stated, we silently assume to deal with the following scenario:

• O is expressed in DL-LiteR ,
• M is a GLAV mapping,
• both LO and LS denote the class of UCQs.

Furthermore, to ease the presentation, from now on whenever we refer to a UCQ qS of arity n over a schema S , we
implicitly assume that all the disjuncts of qS are different from the special CQ false/n. Clearly, all the results can be
generalized in a straightforward manner to include also false/n as possible disjuncts occurring in input UCQs over source
schemas.

Interestingly, in this scenario, we have the following result.

Proposition 3.3. If q1 and q2 are UCQ-maximally sound (respectively, UCQ-minimally complete) J -abstractions of qS , then they are
equivalent w.r.t. J .

Proof. We first address the case of UCQ-maximally sound, and then the case of UCQ-minimally complete.
Assume that q1 and q2 are UCQ-maximally sound J -abstractions of qS and suppose, for the sake of contradiction, that

they are not equivalent w.r.t. J . This implies the existence of an S-database D and a tuple of constants �c such that either
�c /∈ certD

q1, J and �c ∈ certD
q2, J , or �c ∈ certD

q1, J and �c /∈ certD
q2, J . Let us assume, w.l.o.g., that �c /∈ certD

q1, J and �c ∈ certD
q2, J . But then,

it can be readily seen that the UCQ Q = q1 ∪ q2 is such that (i) since both q1 and q2 are sound J -abstractions of qS , Q is a
sound J -abstraction of qS as well, (ii) certq1, J � certQ , J , and (iii) the S-database D is such that certD

q1, J ⊂ certD
Q , J . Obviously,

this contradicts the fact that q1 is a UCQ-maximally sound J -abstractions of qS .
Assume now that q1 and q2 are UCQ-minimally complete J -abstractions of qS and suppose, for the sake of contradiction,

that they are not equivalent w.r.t. J . Following the same line of reasoning as above, we can assume there exists an S-
database D and a tuple of constants �c such that �c ∈ certD

q1, J and �c /∈ certD
q2, J . But then, consider the query Q such that

certD ′ = certD ′ ⋂
certD ′

for every S-database D ′ and OBDM specification J . Obviously, since q1 and q2 are UCQs, Q
Q , J q1, J q2, J

11

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
always exists and can be expressed as the UCQ
⋃

q′∈q1,q′′∈q2
q′ ∧ q′′ . It can be readily seen that (i) since q1 and q2 are

complete J -abstractions of qS , Q is a complete J -abstraction of qS as well, (ii) certQ , J � certq1, J , and (iii) the S-database
D is such that certD

Q , J ⊂ certD
q1, J . Obviously, this contradicts the fact that q1 is a UCQ-minimally complete J -abstractions of

qS . �
4. Complete abstractions

In this section, we study both the verification and the computation problem for complete abstractions.

4.1. Verification

Suppose we want to check whether qO is a complete J -abstraction of qS . Obviously, if qS is contained in PerfRefqO, J ,
then for every S-database D consistent with J , we have that qD

S ⊆ certD
qO, J and therefore the answer is positive. If qS is not

contained in PerfRefqO, J , however, it might be the case that qO is still a complete J -abstraction of qS , in particular in the
case where the non-emptiness of the answers of qS over D reveals the presence of inconsistencies. From this observation,
we derive the following characterization.

Lemma 4.1. qO is a complete J -abstraction of qS if and only if qS � (PerfRefqO, J ∪ PerfRefVn
O, J), where n = ar(qO) = ar(qS).

Proof. The thesis immediately follows from Proposition 2.1, which sanctions that certqO, J ≡ (PerfRefqO, J ∪ PerfRefVn
O , J),

and from the definition of complete J -abstractions. �
The following theorem characterizes the computational complexity of the verification problem for complete abstractions.

Theorem 4.1. The verification problem for complete abstractions is NP-complete.

Proof. As for the upper bound, by virtue of Lemma 4.1, it is sufficient to show how to check the containment qS �
(PerfRefqO, J ∪ PerfRefVn

O , J) in NP, where n = ar(qO). Given a disjunct q of qS , we guess (i) a disjunct qO in qO or in
Vn
O , (ii) a query q′ over O with the same arity as qO and size at most the maximum between σ(qO) and σ(Vn

O), (iii) a
sequence ρO of ontology assertions in O, (iv) a set ρM of σ(q′) pairs 〈mi, χi〉, where mi = ∃�y.φS (�x, �y) → ∃�z.ψO(�x, �z) is
a mapping assertion in M, and χi is a function from the variables of φS to the variables of q. Note in particular that by
guessing ρO , we guess the sequence of ontology assertions that are used to rewrite qO by running PerfectRef on qO and
O. Hence, since, by construction, at each rewriting step, PerfectRef uses one ontology assertion to generate a query whose
size is less or equal to that of qO and that comprises terms using only the variables and constants occurring in qO plus the
symbol _, and since PerfectRef terminates when no new query can be generated [22], ρO comprises at most σ(O) × σ(qO)

ontology assertions. Then, we check in polynomial time (i) whether q′ is obtained by rewriting qO using the sequence ρO ,
(ii) whether each χi is a homomorphism, and (iii) whether q′ is also obtained by initializing γ to the empty set, and then
adding to γ the atoms ψO(�ci, �z) for every pair 〈mi, χi〉, where �ci is the projection to �x of the image of χi . It is not difficult
to see that the containment holds if and only if for every disjunct q of qS , for the above mentioned guess, all such check
returns true.

As for the lower bound, the proof of NP-hardness is by a LogSpace reduction from the 3-colourability problem, which
is NP-complete [56]. 3-colourability is the problem of deciding, given an undirected graph G = (V , E) with no self-loops,
whether G is 3-colourable, i.e., whether there exists a function f : V → {R, G, B} such that f (yi) �= f (y j) for each (yi, y j) ∈
E . Given G = (V , E) with V = (y1, y2, . . . , yn), we define:

• the OBDM specification J = 〈O, S, M〉 as follows: the ontology O comprises the atomic role P and the atomic concepts
R , G , B , and has no assertions, the schema S contains a binary predicate E and three unary predicates sR , sG , and sB ,
and the mapping M is composed by the mapping assertions E(x1, x2) → P (x1, x2), sR(x) → R(x), sG(x) → G(x), and
sB(x) → B(x).

• the boolean CQ qO over O as follows:

qO = {(xR , xG , xB) | ∃y1, . . . , yn.R(xR) ∧ G(xG) ∧ B(xB) ∧
∧

(yi ,y j)∈E

(P (yi, y j) ∧ P (y j, yi))}.

• the boolean CQJFE qS over S as follows: qS = {(xR , xG , xB) | sR(xR) ∧ sG(xG) ∧ sB(xB) ∧ E(xR , xG) ∧ E(xG , xR) ∧ E(xR , xB) ∧
E(xB , xR) ∧ E(xB , xG) ∧ E(xG , xB)}.

Observe that, while J = 〈O, S, M〉 and qS do not depend on the input of the 3-colourability problem (i.e., G = (V , E)),
qO can be constructed in LogSpace from it. We now show that G is 3-colourable if and only if qO is a complete J -
abstraction of qS . To begin observe that VO = {() | ∃y.⊥(y)}, and hence, for each S-database D , we have that certD

qO, J =
PerfRefD , where PerfRefqO, J is the following CQ over S:
qO, J

12

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Algorithm MinimallyComplete.

Input: OBDM specification J = 〈O, S, M〉; UCQ qS = q1
S ∪ . . . ∪ qn

S over S , where qi
S = {�ti | ∃ �yi .φi(�xi , �yi)} for each i ∈ [1, n]

Output: UCQ qO over O
1: qO := { �t1 | ∃ �Y1 .M(q1

S)) ∧ �(�x1)} ∪ . . . ∪ { �tn | ∃ �Yn .M(qn
S) ∧ �(�xn)}, where �Y i includes the set of existential variables of qi

S occurring in M(qS) plus
the fresh existential variables introduced by M(qS), for each i ∈ [1, n]

2: return qO

{(xR , xG , xB) | ∃y1, . . . , yn.sR(xR) ∧ sG(xG) ∧ sB(xB) ∧
∧

(yi ,y j)∈E

(E(yi, y j) ∧ E(y j, yi))}.

“Only-if part:” Suppose G is 3-colourable, that is, there exists a function f : V → {R, G, B} such that f (yi) �= f (y j)

for each (yi, y j) ∈ E . But then, consider the function h from the variables of PerfRefqO, J to the variables of qS such that
h(xR) = xR , h(xG) = xG , h(xB) = xB , and, for each i = 1, . . . , n:

h(yi) =

⎧⎪⎨
⎪⎩

xR , if f (yi) = R,

xG , if f (yi) = G,

xB , if f (yi) = B.

It can be readily seen that h is a homomorphism from PerfRefqO, J to qS . It follows that qS � PerfRefqO, J which, due to
Lemma 4.1, implies that qO is a complete J -abstraction of qS , as required.

“If part:” Suppose G is not 3-colourable, i.e., every function f : V → {R, G, B} is such that f (yi) = f (y j) for some
(yi, y j) ∈ E . This implies that every function from the variables of PerfRefqO, J to the variables of qS is such that for at
least one pair yi, y j such that P (yi, y j) we have that h(yi) = h(y j) = xR , or h(yi) = h(y j) = xG , or h(yi) = h(y j) = xB , and
therefore is not a homomorphism from PerfRefqO, J to qS . It follows that qS �� (PerfRefqO, J ∪ PerfRefV3

O , J) which, due to
Lemma 4.1, implies that qO is not a complete J -abstraction of qS , as required. �

Note that the use of (xR , xG , xB) as target list of qS in the above proof aims at showing that the result holds even
when qS has no join on existential variables. More precisely, it follows from the proof that NP-hardness already holds when
J = 〈O, S, M〉 is fixed (i.e., it does not depend on the input of the reduction) with O containing no assertions and M
being both a pure GAV mapping and a LAV mapping, qS is a fixed CQJFE, and qO is a CQ. Moroever, from the above proof,
we can derive the following corollary, which will be useful in the following.

Corollary 4.1. If q1 is a CQJFE and q2 is a CQ, then the problem of checking whether q1 � q2 is NP-complete.

4.2. Computation

We now present the algorithm MinimallyComplete for computing UCQ-minimally complete abstractions. In the algorithm,
for a tuple �x = (x1, . . . , xm) of variables, �(�x) denotes a shortcut for �(x1) ∧ . . . ∧ �(xm).

Informally, for each disjunct qi
S of qS , the algorithm obtains a CQ by simply chasing the set of atoms qi

S with respect to
M, using � to bind those distinguished variables that do not occur in M(qi

S). Then, it obtains the output query qO as the
union of all the CQs obtained in such a way.

Example 4.1. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = ∅
• S = { s1, s2, s3 }
• M = { m1, m2, m3, m4 }, where:

m1: s1(x) → ∃z.P1(x, z) ∧ A1(z),

m2: ∃y.s2(x1, y) ∧ s2(y, x2) → P2(x1, x2),

m3: ∃y.s1(c1) ∧ s3(x, y) → P3(x, c2),

m4: ∃y.s3(x1, x2) ∧ s2(x2, y) → P4(x1, x2),

and qS be the UCQ {(x1, x2) | ∃y1, y2.s1(x1) ∧ s2(x1, y1) ∧ s2(y2, x2)} ∪ {(x1, c3) | ∃y1, y2.s1(c1) ∧ s3(x1, y1) ∧ s2(y1, y2)},
where c1, c2, c3 are constants.

One can verify that MinimallyComplete(J , qS) returns the UCQ qO = {(x1, x2) | ∃y3.P1(x1, y3) ∧ A1(y3)} ∪ {(x1, c3) |
∃y1, y3.P1(c1, y3) ∧ A1(y3) ∧ P3(x1, c2) ∧ P4(x1, y1)}, which corresponds to the UCQ-minimally complete J -abstraction of
qS .

The following theorem establishes termination and correctness of the MinimallyComplete algorithm.
13

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Theorem 4.2. MinimallyComplete(J , qS) terminates and returns the UCQ-minimally complete J -abstraction of qS .

Proof. Termination of the algorithm easily follows from the termination of the chase of a set of atoms with respect to a
GLAV mapping, or, equivalently, with respect to a set of source-to-target tuple-generating dependencies [53].

As for correctness of the algorithm, we first show that the computed qO = q1
O ∪ . . . ∪ qn

O is a complete J -abstraction
of qS . Since for every i ∈ [1, n], qi

O = {�ti | ∃ �Y i .M(qi
S) ∧ �(�xi)}, by construction we have that the CQ qi

S is contained in
a disjunct of REWM(qi

O). Thus, qi
S � PerfRefqi

O, J holds for every i ∈ [1, n]. It follows that qS � PerfRefqO, J which, due to
Lemma 4.1, implies that qO is a complete J -abstraction of qS .

We now show that every UCQ q′
O that is a complete J -abstraction of qS is such that certqO, J � certq′

O, J , thus showing
that qO is actually the UCQ-minimally complete J -abstraction of qS (cf. Definition 3.4). We do so by contradiction, i.e., by
proving that every UCQ q′

O such that certqO, J �� certq′
O, J is not a complete J -abstraction of qS .

Let q′
O be a UCQ such that certqO, J �� certq′

O, J , that is, there exists an S-database D consistent with J such that
certD

qO, J � certD
q′
O, J

. It follows that there is a tuple of constant �c = (c1, . . . , cm) such that �c /∈ certD
q′
O, J

and �c ∈ certD
qO, J ,

i.e., �c ∈ certD
qi
O, J

for at least one i ∈ [1, n]. Consider now the freezing Dqi
S

of qi
S = {�ti | ∃yi .φi(�xi, �yi)}, here called simply Di ,

and let �ci be the freezed tuple of constants �ci = (ci
1, . . . , c

i
m) where, for each j ∈ [1, m], ci

j = t j if t j is a constant, and ci
j = cx

if t j = x. Obviously, �ci ∈ qi
S

Di trivially holds. We now prove that �ci /∈ certDi
q′
O, J

, thus showing that q′
O is not a complete

J -abstraction of qS .
Consider CM(D)

O , i.e., the canonical structure of O with respect to M and D . Since �c ∈ certD
qi
O, J

and D is consistent

with J , we have that �c ∈ qi
O

CM(D)
O , implying that there exists a homomorphism h from qi

O to CM(D)

O for which h(�ti) = �ci .
Furthermore, due to the facts that M is a GLAV mapping and O is a DL-LiteR ontology, and considering the construction
of qi

O and Di , it is easy to see that there exists a function f from CM(Di)

O to CM(D)

O for which (i) f (c) = h(c) = c for each
constant c occurring in qi

O , (ii) f (cv) = h(v) for each variable v ∈ �xi ∪ �yi of qi
S occurring in M(qi

S), and (iii) f (CM(Di)

O) ⊆
CM(D)

O , where f (CM(Di)

O) is the image of CM(Di)

O under f . Observe that f (�ci) = �c, and, since D is consistent with J , Di is
consistent with J as well. Due to the existence of this function f and the assumption that �c /∈ certD

q′
O, J

, we derive that there

is no disjunct q′ = {�t′ | ∃y′.φ′(�x′, �y′)} of q′
O for which there is a homomorphism h′ from q′ to CM(Di)

O such that h′(�t′) = �ci ,
otherwise the function f ◦ h′ would result in a homomorphism from q′ to CM(D)

O such that f (h′(�t′)) = �c, and therefore
the assumption �c /∈ certD

q′
O, J

would be contradicted. Thus, �ci /∈ certDi
q′
O, J

as well. To conclude the proof, observe that Di is

an S-database consistent with J for which �ci ∈ qi
S

Di (and so �ci ∈ qDi
S) and �ci /∈ certDi

q′
O, J

, thus implying that q′
O is not a

complete J -abstraction of qS . �
The following result is an immediate consequence of the above theorem.

Corollary 4.2. The UCQ-minimally complete J -abstraction of qS always exists. Furthermore, if qS is a CQ, then it can be expressed as
a CQ as well.

Regarding the cost of the MinimallyComplete algorithm, we observe that, essentially, it applies the chase to each disjunct
of qS with respect to M. This result into a running time that does not depend on O and S , is exponential in σ(M),
and polynomial in σ(qS). Notice, however, that if M is a LAV mapping, then the application of the chase can be done in
polynomial time in σ(M) (indeed, in this case there is no conjunction of atoms to evaluate when applying the chase), and
therefore the running time of the algorithm becomes polynomial in the size of the whole input.

Conversely, even in the case of pure GAV mappings, we next show that a polynomial time algorithm for computing
UCQ-minimally complete abstractions already of CQJFEs would imply a polynomial time algorithm for checking whether
q1 � q2, where q1 is a CQJFE and q2 is a CQ. Since we also show that this latter problem is NP-hard, it turns out that, unless
PTime = NP, the computation problem for complete abstractions cannot be solved in polynomial time, even in the case of
pure GAV mappings M and CQJFEs qS .

Proposition 4.1. There exists an OBDM specification J = 〈O, S, M〉 with O not comprising any assertion and M being a pure GAV
mapping, and a CQJFE qS such that, assuming PTime ⊂ NP, the UCQ-minimally complete J -abstraction of qS cannot be computed in
polynomial time.

Proof. From a boolean CQJFE q1 = {() | ∃ �y1.ψ(�y1)} and a CQ q2 = {() | ∃ �y2.φ(�y2)}, we define the OBDM specification J =
〈O, S, M〉 as follows: the ontology O contains the atomic concept A and no assertions, the schema S is constituted by all
predicates involved in ψ(�y1) and in φ(�y2), plus an additional fresh unary predicate s, and the mapping M comprises the
following pure GAV mapping assertion:
14

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
∃ �y2.s(x) ∧ φ(�y2) → A(x).

We also define the boolean CQJFE over S: qS = {() | ∃ �y1.∃y.s(y) ∧ ψ(�y1)}, where y denotes a fresh existential variable
occurring neither in �y1 nor in �y2. It is easy to see that the UCQ-minimally complete J -abstraction of qS is either the query
{() | ∃y.A(y)} (in particular, if it is a complete J -abstraction of qS), or the query {() | ∃y.�(y)}.

Specifically, we now prove that qO = {() | ∃y.A(y)} is the UCQ-minimally complete J -abstraction if and only if q1 � q2.
Due to Lemma 4.1, qO is a complete J -abstraction of qS if and only if qS � PerfRefqO, J ∪ PerfRefVO , J . Since VO = {() |
∃y.⊥(y)}, in this case we have that qO is a complete J -abstraction of qS if and only if qS � PerfRefqO, J . Notice, however,
that PerfRefqO, J = {() | ∃ �y2.∃y.s(y) ∧ φ(�y2)}, and this implies that qS � PerfRefqO, J if and only if q1 � q2.

We reduced the problem of checking whether q1 � q2 for a boolean CQJFE q1 and a boolean CQ q2 to the problem of
computing the UCQ-minimally complete J -abstraction of a CQJFE qS , where both J = 〈O, S, M〉 and qS can be constructed
in LogSpace from q1 and q2.

So, a polynomial time algorithm for computing UCQ-minimally complete abstractions of CQJFEs qS would imply a poly-
nomial time algorithm for checking q1 � q2, where q1 is a CQJFE and q2 is a CQ. Since by Corollary 4.1 we know that this
latter containment problem is NP-hard, it follows that, unless PTime = NP, the computation problem for complete abstrac-
tions cannot be solved in polynomial time. �
5. Sound abstractions

We now turn our attention to study both the verification, and the computation problem for sound abstractions.

5.1. Verification

We recall that, for an S-database D consistent with J , PerfRefD
qO, J computes exactly certD

qO, J . So, checking whether qO is
a sound J -abstraction of qS means checking whether for all S-databases D , either ModD(J) = ∅ or PerfRefD

qO, J ⊆ qD
S . From

this observation, we derive the following characterization.

Lemma 5.1. qO is a sound J -abstraction of qS if and only if PerfRefqO, J � (qS ∪ PerfRefVn
O , J), where n = ar(qO) = ar(qS).

Proof. “Only-if part:” Suppose qO is a sound J -abstraction of qS . By definition, we have that for every S-database D either
D is not consistent with J , or certD

qO, J ⊆ qD
S . In the former case, we have PerfRefD

VO , J = {()}, which obviously implies that
PerfRefD

qO, J ⊆ PerfRefD
Vn

O , J . In the latter case, since D is consistent with J , we have that certD
qO, J = PerfRefD

qO, J . Therefore, we

have that PerfRefD
qO, J ⊆ (qS ∪ PerfRefVn

O , J)
D for every S-database D , as required.

“If part:” Suppose qO is not a sound J -abstraction of qS , i.e., there is an S-database D consistent with J such that
certD

qO, J � qD
S . Since D is consistent with J , we have (i) PerfRefD

VO , J = ∅, which implies (i) PerfRefD
Vn

O, J = ∅ and (ii) certD
qO, J =

PerfRefD
qO, J . So, for the S-database D , we have that PerfRefD

qO, J � (qS ∪ PerfRefVn
O , J)

D . Thus, PerfRefqO, J �� qS ∪ PerfRefVn
O , J ,

as required. �
The following theorem characterizes the computational complexity of the verification problem for sound abstractions.

Theorem 5.1. The verification problem for sound abstractions is �p
2 -complete.

Proof. As for the upper bound, by virtue of Lemma 5.1, it is sufficient to show how to check the containment PerfRefqO, J �
(qS ∪ PerfRefVn

O, J) in �p
2 , where n = ar(qO). In particular, checking whether PerfRefqO, J �� (qS ∪ PerfRefVn

O , J) can be
done in �p

2 as follows: (i) we guess a CQ q1 over S with the same arity as qO and size at most σ(M) · σ(qO), and (ii)
with an NP-oracle, similarly to what described in Theorem 4.1, we first check whether q1 � PerfRefqO, J , and then whether
q1 �� (qS ∪ PerfRefVn

O , J), again using the method mentioned in Theorem 4.1.

As for the lower bound, the proof of �p
2 -hardness is by a LogSpace reduction from the ∀∃3-CNF problem, which is �p

2 -
complete [57]. Let F = c1 ∧ . . .∧ cp be a ∀∃3-CNF formula on two disjoint sets of variables X and Y , where Y = {y1, . . . , ym}
(respectively, X = {x1, . . . , xn}) are universally (respectively, existentially) quantified. ∀∃-CNF is the problem of deciding,
given F , whether F is satisfiable, i.e., whether for each truth assignment αY to the variables in Y , there exists a truth
assignment αX to the variables in X such that αY ∪αX satisfies F . Moreover, each clause ci is a disjunction of three literals,
where each literal is either a variable in Y ∪ X or its negated.

We next show how to construct from F an OBDM specification J = 〈O, S, M〉 and two queries qS and qO , such
that F is satisfiable if and only if qO is a sound J -abstraction of qS , or equivalently, due to Lemma 5.1, PerfRefqO, J �
(qS ∪ PerfRefVn

O , J). First of all, we define O as empty, so that VO = {() | ∃y.⊥(y)}. Thus, we will have to show that F is
satisfiable if and only if PerfRefqO, J � qS . Intuitively, qS , J , and qO are defined so as to enforce that each homomorphism
from qS to a CQ in PerfRefqO, J defines a satisfying truth assignment for the variables of F , for a specific assignment to
the universally quantified variables of F . In particular, this is achieved (i) by encoding through qS which variables occur,
15

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
positive or negated, in which position in every clause ci and (ii) by defining qO and O so that PerfRefqO, J is a UCQ such that
for each possible truth assignment to the universally quantified variables of F , PerfRefqO, J comprises a disjunct encoding all
possible satisfying truth assignments to the variables occurring in ci , for every clause ci .

Based on the intuition above, from a ∀∃3-CNF formula F , the OBDM specification J and the queries qS and qO are
defined as follows.

• J is the tuple 〈O, S, M〉, where:
– the alphabet of O consists of the roles Ri,1, Ri,2, and Ri,3, for every i ∈ [1, p], and the roles H j and the concepts W j ,

for every j ∈ [1, m], and O does not contain any assertion;
– S consists of three binary predicates, si,1, si,2, and si,3, for every i ∈ [1, p], and of the unary predicates zero, one, and

e j , for every j ∈ [1, m];
– M contains the following mapping assertions si,1(x1, x2) → Ri,1(x1, x2), si,2(x1, x2) → Ri,2(x1, x2), si,3(x1, x2) →

Ri,3(x1, x2), e j(x) → W j(x), zero(x) → H j(x, 0) and one(x) → H j(x, 1), for every i ∈ [1, p] and j ∈ [1, m];
• qS is a boolean CQ, whose body contains (i) for each clause ci , the atoms si,1(zi, ωi,1), si,2(zi, ωi,2), si,3(zi, ωi,3) where

zi is a fresh existential variable, ωi,k is the variable occurring (either positive or negated) as k-th literal in ci , for
k ∈ [1, 2, 3], and (ii) for each universally quantified variable y j in Y , the atom e j(y j);

• qO is a boolean CQ, whose body is the conjunction of atoms γ1 and γ2, such that (i) γ1 contains, for every h ∈ [1, . . . , 7],
the atoms Ri,1(Ai,h, vh,1), Ri,2(Ai,h, vh,2), and Ri,3(Ai,h, vh,3), where Ai,h is a constant, and for every k ∈ [1, 2, 3], vh,k
is either the constant 1 or the constant 0 such that the assignment (vh,1, vh,2, vh,3) to (ωi,1, ωi,2, ωi,3) satisfies ci ,
where ωi,k denotes the variable occurring (either positive or negated) as k-th literal in ci ; and (ii) γ2 contains, for every
universally quantified variable y j in Y , the atoms W j(y j) and H j(u j, y j), where u j is a fresh variable.

To provide a better intuition of the encoding, consider the following example. Let F be the formula (x1 ∨x2 ∨ y1)
∧

(¬x1 ∨
¬x2 ∨ ¬y2). In this case, the reduction would produce the mapping M composed of the following mapping assertions:

s1,1(x1, x2) → R1,1(x1, x2), e1(x) → W1(x),

s1,2(x1, x2) → R1,2(x1, x2), e2(x) → W2(x),

s1,3(x1, x2) → R1,3(x1, x2), zero(x) → H1(x,0),

s2,1(x1, x2) → R2,1(x1, x2) zero(x) → H2(x,0),

s2,2(x1, x2) → R2,2(x1, x2) one(x) → H1(x,1),

s2,3(x1, x2) → R2,3(x1, x2) one(x) → H2(x,1),

and the CQs qS and qO , such that:

• qS = {() | ∃z1, z2, x1, x2, y1, y2.s1,1(z1, x1) ∧ s1,2(z1, x2) ∧ s1,3(z1, y1) ∧ s2,1(z2, x1) ∧ s2,2(z2, x2) ∧ s2,3(z2, y2) ∧ e1(y1) ∧
e2(y2) };

• qO = {() | ∃u1, u2, y1, y2.γ1 ∧ γ2}, where γ2 = W1(y1) ∧ H1(u1, y1) ∧ W2(y2) ∧ H2(u2, y2) and γ1 is the following
conjunction of atoms:

R1,1(A1,1,0) ∧ R1,2(A1,1,0) ∧ R1,3(A1,1,1) ∧ R1,1(A1,2,0) ∧ R1,2(A1,2,1) ∧ R1,3(A1,2,0)∧
R1,1(A1,3,0) ∧ R1,2(A1,3,1) ∧ R1,3(A1,3,1) ∧ R1,1(A1,4,1) ∧ R1,2(A1,4,0) ∧ R1,3(A1,4,0)∧
R1,1(A1,5,1) ∧ R1,2(A1,5,0) ∧ R1,3(A1,5,1) ∧ R1,1(A1,6,1) ∧ R1,2(A1,6,1) ∧ R1,3(A1,6,0)∧
R1,1(A1,7,1) ∧ R1,2(A1,7,1) ∧ R1,3(A1,7,1) ∧ R2,1(A2,1,0) ∧ R2,2(A2,1,0) ∧ R2,3(A2,1,0)∧
R2,1(A2,2,0) ∧ R2,2(A2,2,0) ∧ R2,3(A2,2,1) ∧ R2,1(A2,3,0) ∧ R2,2(A2,3,1) ∧ R2,3(A2,3,0)∧
R2,1(A2,4,0) ∧ R2,2(A2,4,1) ∧ R2,3(A2,4,1) ∧ R2,1(A2,5,1) ∧ R2,2(A2,5,0) ∧ R2,3(A2,5,0)∧
R2,1(A2,6,1) ∧ R2,2(A2,6,0) ∧ R2,3(A2,6,1) ∧ R2,1(A2,7,1) ∧ R2,2(A2,7,1) ∧ R2,3(A2,7,0)

Then, PerfRefqO, J is obtained by unfolding (i) the atoms of γ1 into atoms encoding all possible satisfying assignments for
the variables occurring in every clause, and (ii) the atoms of γ2 either into the atoms e j(0) ∧ zero(u j) by setting y j = 0, or
into the atoms e j(1) ∧ one(u j) by setting y j = 1, for every j ∈ [1, 2]. For example, the disjunct q′ of PerfRefqO, J obtained by
unfolding the atoms of γ2 by setting y1 = 0 and y2 = 1, is the following:

q′ = {() | ∃u1, u2.s1,1(A1,1,0) ∧ s1,2(A1,1,0) ∧ s1,3(A1,1,1) ∧ s1,1(A1,2,0) ∧ s1,2(A1,2,1) ∧ s1,3(A1,2,0)∧
s1,1(A1,3,0) ∧ s1,2(A1,3,1) ∧ s1,3(A1,3,1) ∧ s1,1(A1,4,1) ∧ s1,2(A1,4,0) ∧ s1,3(A1,4,0)∧
s1,1(A1,5,1) ∧ s1,2(A1,5,0) ∧ s1,3(A1,5,1) ∧ s1,1(A1,6,1) ∧ s1,2(A1,6,1) ∧ s1,3(A1,6,0)∧
16

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
s1,1(A1,7,1) ∧ s1,2(A1,7,1) ∧ s1,3(A1,7,1) ∧ s2,1(A2,1,0) ∧ s2,2(A2,1,0) ∧ s2,3(A2,1,0)∧
s2,1(A2,2,0) ∧ s2,2(A2,2,0) ∧ s2,3(A2,2,1) ∧ s2,1(A2,3,0) ∧ s2,2(A2,3,1) ∧ s2,3(A2,3,0)∧
s2,1(A2,4,0) ∧ s2,2(A2,4,1) ∧ s2,3(A2,4,1) ∧ s2,1(A2,5,1) ∧ s2,2(A2,5,0) ∧ s2,3(A2,5,0)∧
s2,1(A2,6,1) ∧ s2,2(A2,6,0) ∧ s2,3(A2,6,1) ∧ s2,1(A2,7,1) ∧ s2,2(A2,7,1) ∧ s2,3(A2,7,0)∧
e1(0) ∧ zero(u1) ∧ e2(1) ∧ one(u2) }

One can easily verify that the function h such that: h(y1) = 0, h(y2) = 1, h(z1) = A1,2, h(z2) = A2,4, h(x1) = 0, h(x2) = 1 is
a homomorphism from qS to q′ , and that the restriction of h to Y ∪ X defines an assignment αX that makes F true for the
assignment αY such that αY (y1) = 0 and αY (y2) = 1.

In fact, this example illustrates a crucial property of our construction. Specifically, one can verify that, by construction,
there is a one-to-one correspondence between disjuncts of PerfRefqO, J (totally, 2m) and truth assignments to the variables
in Y . Indeed, the choice done for unfolding the atoms H1(u1, y1), . . . , Hm(um, ym), forces each y j to be equal to 0 or to 1.
More precisely, for every j ∈ [1, m], if H j(u j, y j) is unfolded with the atom zero(u j), then y j = 0, otherwise, if it is unfolded
with the atom one(u j), then y j = 1. Note in particular that this implies that in each disjunct of PerfRefqO, J appears either
the atom e j(0) (if y j = 0) or the atom e j(1) (if y j = 1), for every j ∈ [1, m].

We are now ready to prove that F is satisfiable if and only if PerfRefqO, J � qS , i.e., there exists a homomorphism from
qS to every disjunct of PerfRefqO, J .

“Only-if part:” Suppose that F is true, that is, for every truth assignment αY to the variables in Y , there exists a truth
assignment αX to the variables in X that satisfies F . It is easy to see that the function h obtained by combining a given
αY and a given αX can be extended to every zi , for i ∈ [1, . . . , p], so as to obtain a homomorphism from qS to the disjunct
in PerfRefqO, J corresponding to αY . Based on the observation above, this implies that if F is satisfiable, then there exists a
homomorphism from qS to every disjunct of PerfRefqO, J .

“If part:” Suppose that there exists a homomorphism between qS to every disjunct in PerfRefqO, J . Let q′ be any disjunct
in PerfRefqO, J and h be a homomorphism from qS to q′ . It is easy to see that the restriction of h to X defines a truth
assignment αX that makes F true for the assignment αY corresponding to q′ . Hence, by the observation above, we can
conclude that for every αY , there exists αX that satisfies F . �

Note that the above result already holds when the mapping is both GAV and LAV. Furthermore, with a slight modification
of the above reduction, it can be shown that the �p

2 -hardness holds also when the mapping is pure GAV (but not LAV). It
remains an interesting open problem the computational complexity of the verification problem for sound abstractions when
the mapping is both pure GAV and LAV.

5.2. Computation

We now address the problem of computing UCQ-maximally sound abstractions. Our main result is that there are many
cases where UCQ-maximally sound abstractions are not guaranteed to exist. In order to illustrate the result, starting from
the general scenario described at the end of Section 3, we introduce a restricted scenario, where

• the setting for OBDM specifications is obtained from the general one by both limiting the DL ontology language to
DL-LiteRDFS rather than DL-LiteR , and limiting the mapping language to follow the pure GAV approach rather than the
GLAV approach;

• the source query language LS is UCQJFEs.

We now show that, surprisingly, as soon as we try to depart from the restricted scenario, either by extending the query
language LS to CQs, or by extending the setting for OBDM specifications, we lose the guarantee of the existence of UCQ-
maximally sound abstractions of queries over S .

Theorem 5.2. UCQ-maximally sound abstractions of a query qS may not exist if we extend the restricted scenario with one of the
following features:

1. qS expressed in a fragment of CQs allowing joining existential variables, thus going beyond UCQJFEs.
2. disjointness assertions in the ontology;
3. inclusion assertions of the form B � ∃R in the ontology, where B is a basic concept and R is a basic role;
4. LAV mapping assertions in the mapping, even without joins involving existential variables in the right-hand side;
5. non-pure GAV mapping assertions in the mapping.

Proof. We next consider the cases 1 and 2, and then refer to Appendix A for cases 3 to 5, since they rely on a similar line
of reasoning.
17

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Case 1. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = ∅
• S = { s1, s2, s3, s4, s5 }
• M = { m1, m2, m3, m4 }, where:

m1: s1(x) → A1(x),

m2: s2(x1) ∧ s3(x1, x2) → P (x1, x2),

m3: s1(x2) ∧ s5(x1, x2) → P (x1, x2),

m4: s2(x) ∧ s4(x) → A2(x).

Moreover, let qS be the following boolean CQ over S: qS = {() | ∃y.s1(y) ∧ s2(y)}, which has a join existential variable, and
therefore goes beyond UCQJFEs.

First we show that there exists an infinite number of CQs over O that are sound J -abstractions of qS . Then, based on
this, we show that no UCQ-maximally sound J -abstraction of qS exists.

Specifically, for every n ≥ 1, let qn
O be defined as follows:

• if n = 1, then q1
O = {() | ∃y1.A1(y1) ∧ A2(y1)};

• if n > 1, then qn
O = {() | ∃y1, . . . , yn.A1(y1) ∧

(∧n−1
j=1 P (y j, y j+1)

) ∧ A2(yn)}.

We show, by induction on n, that qn
O is a sound J -abstraction of qS , for every n ≥ 1. As for the base step (n = 1), one

can easily see that q1
O = {() | ∃y1.A1(y1) ∧ A2(y1)} is a sound J -abstraction of qS , since PerfRefq1

O, J = {() | ∃y1.s1(y1) ∧
s2(y1) ∧ s4(y1)} � qS .

As for the inductive step (n > 1), suppose that qn
O is a sound J -abstraction of qS . Now, let us substitute the atom

A2(yn) in qn
O with the conjunction P (yn, yn+1) ∧ A2(yn+1), thus obtaining the query qn+1

O . Note that every disjunct of
PerfRefqn+1

O , J can be obtained from some disjunct of PerfRefqn
O, J by substituting the conjunction s2(yn) ∧ s4(yn) either with

the conjunction s2(yn) ∧ s3(yn, yn+1) ∧ s2(yn+1) ∧ s4(yn+1) or with s1(yn+1) ∧ s5(yn, yn+1) ∧ s2(yn+1) ∧ s4(yn+1). But then,
since qn

O is a sound J -abstraction of qS , we know that every disjunct in PerfRefqn
O, J contains the conjunction of atoms

s1(yi) ∧ s2(yi) for some i ∈ [1, n]. Thus, let us denote by qi any disjunct in PerfRefqn
O, J that contains the conjunction s1(yi) ∧

s2(yi). Either i ∈ [1, n − 1], in which case, for sure, also the disjuncts of PerfRefqn+1
O , J that are obtained from qi contain

s1(yi) ∧ s2(yi) and are therefore contained in qS , or i = n, in which case the two disjuncts obtained from qi contain either
the conjunction s1(yn) ∧ s2(yn) or the conjunction s1(yn+1) ∧ s2(yn+1), and hence, are also contained in qS . This proves
that PerfRefqn+1

O , J � qS , and hence that qn+1
O is a sound J -abstraction of qS .

Now, let Q̄O be a UCQ-maximally sound J -abstraction of qS and let k be the maximum number of atoms occurring
in the body of the disjuncts of Q̄O . Also, consider the query qk

O (which contains k + 1 atoms) and consider the disjunct
q of PerfRefqk

O, J obtained by rewriting (i) A1(y1) with m1, (ii) P (yi, yi+1) with m2, for all i ∈ [1, n − 1], and (iii) A2(yn)

with m4. Obviously, () ∈ cert
Dq

qk
O, J

. Hence, since qk
O is a sound J -abstraction of qS , we have that () ∈ q

Dq

S . Also, () ∈ cert
Dq

Q̄O, J

(otherwise QO = Q̄O ∪ qk
O would be a sound J -abstraction of qS such that certQ̄O , J � certQO , J , thus contradicting the

fact that Q̄O is a UCQ-maximally sound J -abstraction of qS). Now, consider M(Dq). Since the ontology is empty, we have
that () ∈ Q̄

M(Dq)

O , where, by construction, M(Dq) comprises k + 1 facts, i.e., the facts that can be obtained by substituting
with fresh constants the variables occurring in the atoms of the body of qk

O . But then, since the body of the disjuncts
of Q̄O comprises at most k atoms, this implies that a subset M ′ of M(Dq), consisting of k atoms, is sufficient to make
() ∈ Q̄ M′

O , or, equivalently, Q̄O true in M ′ . In particular, let us consider one such subset M ′: it is obtained by removing from
M(Dq) either A1(c y1), A2(c yk), or P (c yi , c yi+1), for some i ∈ [1, k − 1]. Suppose it is obtained by removing A1(c y1). Also,
let us consider the database D ′ = Dq′ , such that q′ is obtained from q by unfolding every atom P (yi, yi+1), for i ∈ [1, k − 1],
with s2(yi) ∧ s3(yi, yi+1) (i.e., with m2), and the remaining atom A2(yk) with s2(yk) ∧ s4(yk) (i.e., with m4). One can
easily verify that D ′ is such that M(D ′) = M ′ , and hence () ∈ certD ′

Q̄O, J
. On the other hand, () /∈ qD ′

S since for every s2(c yi),
i ∈ [1, k − 1], s1(c yi) /∈ D ′ . Hence, we get a contradiction to the fact that Q̄O is a sound J -abstraction of qS . Similarly, we
get a contradiction if we suppose that M ′ is obtained by removing either A2(c yk), or P (c yi , c yi+1), for some i ∈ [1, k − 1].
This proves that no UCQ-maximally sound J -abstraction of qS can exist, and completes the proof.

Case 2. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = { A � ¬A }
• S = { s1, s2, s3, s4 }
18

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
• M = { m1, m2, m3, m4, m5, m6 }, where:

m1: s1(x1, x2) → P1(x1, x2),

m2: s2(x1, x2) → P1(x1, x2),

m3: s2(x1, x2) → P2(x1, x2),

m4: s3(x1, x2) → P2(x1, x2),

m5: s3(x1, x2) ∧ s4(x2) → P3(x1, x2),

m6: ∃y1, y2.s2(y1, x) ∧ s3(x, y2) → A(x).

Moreover, let qS be the following full CQ over S: qS = {(x1, x2) | s1(x1, x2)}.
Since O contains the disjointness assertion A � ¬A, the violation query for O is VO = {() | ∃y.A(y)}, and therefore

V2
O = {(x1, x2) | ∃y.A(y) ∧ �(x1) ∧ �(x2)}. The proof is similar to that of case 1. In particular, we show that there exists

an infinite number of CQs qi
O over O that are sound J -abstractions of qS and show that, based on this, assuming that a

UCQ-maximally sound J -abstraction of qS exists, leads to a contradiction. For every n ≥ 1, let qn
O be defined as follows:

• if n = 1, then q1
O = {(x1, x2) | ∃y1.P1(x1, x2) ∧ P3(x2, y1)};

• if n > 1, then qn
O = {(x1, x2) | ∃y1, . . . , yn.P1(x1, x2) ∧ P2(x2, y1) ∧

(∧ j=n−2
j=1 P2(y j, y j+1)

) ∧ P3(yn−1, yn)}.

In fact, we show, by induction on n, that qn
O is a sound J -abstraction of qS . To this aim we recall that, by Lemma 5.1,

qn
O is a sound J -abstraction of qS if PerfRefqn

O, J � (qS ∪ PerfRefV2
O, J).

For the base step, notice that

PerfRefq1
O, J = {(x1, x2) | ∃y1.s1(x1, x2) ∧ s3(x2, y1) ∧ s4(y1)} ∪ {(x1, x2) | ∃y1.s2(x1, x2) ∧ s3(x2, y1) ∧ s4(y1)}

Clearly, the first disjunct of PerfRefq1
O, J is contained in qS , whereas the second is contained in PerfRefV2

O, J . Hence, q1
O is a

sound J -abstraction of qS .
As for the inductive step, suppose that qn

O is a sound J -abstraction of qS . Now, let us substitute the atom P3(yn−1, yn)

in qn
O with the conjunction P2(yn−1, yn) ∧ P3(yn, yn+1). It is easy to see that we get the query qn+1

O . Moreover, every
disjunct of PerfRefqn+1

O , J can be obtained from some disjunct of PerfRefqn
O, J by substituting the conjunction s3(z, yn) ∧ s4(yn),

where z is either x2 or yn−1, either with the conjunction s2(z, yn) ∧ s3(yn, yn+1) ∧ s4(yn+1) if P2(yn−1, yn) is unfolded with
m3, or with the conjunction s3(z, yn) ∧ s3(yn, yn+1) ∧ s4(yn+1) if P2(yn−1, yn) is unfolded with m4. But then, since qn

O is a
sound J -abstraction of qS , we know that every disjunct in PerfRefqn

O, J contains either an atom s1(x1, x2) or a conjunction of
the form s2(z1, z2) ∧ s3(z2, z3) for some variables zi, i ∈ [1, 2, 3]. Hence, for every disjunct q′ of PerfRefqn+1

O , J , we have three
possible cases:

• q′ is obtained from a disjunct of PerfRefqn
O, J that contains s1(x1, x2); it thus contains s1(x1, x2), too, and, hence, q′ � qS ;

• q′ is obtained from a disjunct of PerfRefqn
O, J that contains a conjunction of the form s2(z1, z2) ∧ s3(z2, yi) for some

variables z1, z2 and yi , for i ∈ [1, n − 2]; clearly, such a conjunction is also contained in q′ and hence q′ � PerfRefV2
O , J ;

or,
• q′ is obtained from a disjunct of PerfRefqn

O, J that contains a conjunction of the form s2(z1, z2) ∧ s3(z2, yn) for some
variables z1, z2; in this case, s3(z2, yn) has been replaced (together with s4(yn)) either with the conjunction s2(z2, yn) ∧
s3(yn, yn+1) ∧ s4(yn+1) or with the conjunction s3(z2, yn) ∧ s3(yn, yn+1) ∧ s4(yn+1); then, in both cases, q′ � PerfRefV2

O , J

(in the former case because of the presence of the conjunction s2(z2, yn) ∧ s3(yn, yn+1), whereas in the latter because
of the presence of the conjunction s2(z1, z2) ∧ s3(z2, yn)).

Hence, for every such disjunct q′ , we have that q′ � (qS ∪ PerfRefV2
O, J), which proves that qn+1

O is a sound J -abstraction of
qS .

Now, let Q̄O be a UCQ-maximally sound J -abstraction of qS and let k be the maximum number of atoms occur-
ring in the body of the disjuncts of Q̄O . Also, consider the query qk

O (which contains k + 1 atoms) and consider the
disjunct q of PerfRefqk

O, J obtained from qk
O by rewriting: (i) P (x1, x2) into s1(x1, x2) (i.e., with m1), (ii) P2(z, yi) into

s3(z, yi) (i.e., with m4), for every i ∈ [1, n − 1], and (iii) P3(yn−1, yn) into s3(yn−1, yn), s4(yn) (i.e., with m5). Then,
Dq = {s1(cx1 , cx2), s3(cz, c y1), . . . , s3(cz, c yn−1), s3(c yn−1 , c yn), s4(c yn)}. Dq is consistent with J since s2 is empty. Also, obvi-

ously, (cx1 , cx2) ∈ cert
Dq

qk
O, J

. But then, since qk
O is a sound J -abstraction of qS , (cx1 , cx2) ∈ q

Dq

S , and hence (cx1 , cx2) ∈ cert
Dq

Q̄O, J

(otherwise QO = Q̄O ∪qk
O would be a sound J -abstraction of qS such that certQ̄O , J � certQO, J , thus contradicting the fact

that Q̄O is a UCQ-maximally sound J -abstraction of qS). Now, consider M(Dq). Since the ontology contains only a dis-

jointness assertion, we have that (cx1 , cx2) ∈ Q̄
M(Dq)

, where M(Dq) comprises at least the k + 1 facts that can be obtained
O

19

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
by substituting with fresh constants the variables occurring in the atoms of the body of qk
O . But then, since the body of the

disjuncts of Q̄O comprise at most k atoms, this means that there exists a subset M ′ of M(Dq), consisting of k atoms, that
is sufficient to make (cx1 , cx2) belong to Q̄ M′

O . In particular, let us consider one such subset M ′ . We have the following:

• M ′ must contain the fact P1(cx1 , cx2); indeed, suppose it does not contain it, and consider the database D ′ obtained
from Dq by removing s1(cx1 , cx2). Clearly, D ′ is consistent with J since it does not contain any atom s2. Moreover, D ′
is such that M(D ′) = M ′ , and hence (cx1 , cx2) ∈ certD ′

Q̄O, J
, while (cx1 , cx2) /∈ qD ′

S . Clearly, this would contradict that Q̄O
is a sound J -abstraction of qS .

• M ′ must contain the atom P2(cx2 , c y1); indeed, suppose it does not contain it and consider the database D ′ obtained
from Dq by removing s3(cx2 , c y1) and substituting s1(cx1 , cx2) with s2(cx1 , cx2). It is easy to see that D ′ is consistent
with J and that it is such that M(D ′) = M ′ , and hence (cx1 , cx2) ∈ certD ′

Q̄O , J
, while (cx1 , cx2) /∈ qD ′

S . Again, this would
contradict that Q̄O is a sound J -abstraction of qS .

• for every i ∈ [1, k − 2], M ′ must contain the fact P2(c yi , c yi+1); indeed, suppose it does not contain it and consider the
database D ′ obtained from Dq by removing s3(c yi , c yi+1) and substituting s1(cx1 , cx2) with s2(cx1 , cx2), and s3(z, c y j)

with s2(z, c y j) for every z and every j ∈ [1, i]. Similarly to the previous cases, this would lead to a contradiction.
• M ′ must contain the atom P3(c yn−1 , c yn); indeed, similarly to the case above, if we assume that it does not contain it,

then we get a contradiction.

Hence, M ′ must contain at least k + 1 facts, which contradicts the fact that M ′ comprises only k atoms, and shows that no
UCQ-maximally sound J -abstraction of qS can exist. �

We end this section by pointing out that it can be shown that, if we disallow constants in UCQs, then UCQ-maximally
sound abstractions are still not guaranteed to exist if we extend the restricted scenario with one of the features 1, 2, 3 or
4 mentioned in Theorem 5.2. On the contrary, we conjecture that non-pure GAV mappings would preserve the existence of
UCQ-maximally sound abstractions if constants were not allowed in UCQs.

6. Perfect abstractions

With the results of previous chapters at hand, we now study both the verification and the computation problem for
perfect abstractions.

6.1. Verification

We remind the reader that, by definition, qO is a perfect J -abstraction of qS if and only if it is both a sound and a
complete J -abstraction of qS . Thus, by combining Lemma 5.1 and Lemma 4.1, we immediately get the following.

Corollary 6.1. qO is a perfect J -abstraction of qS if and only if both PerfRefqO, J � (qS ∪ PerfRefVn
O , J) and qS � (PerfRefqO, J ∪

PerfRefVn
O , J) hold, where n = ar(qO) = ar(qS).

The following theorem characterizes the computational complexity of the verification problem for perfect abstractions.

Theorem 6.1. The verification problem for perfect abstractions is �p
2 -complete.

Proof. Let us discuss the lower bound first. As already observed in Section 3, for OBDM specifications where inconsistencies
cannot arise, the notion of perfect abstraction coincides with the notion of realization considered in [15]. Since the problem
of checking whether qO is a realization of qS in J is in general �p

2 -hard even when O contains no assertions (i.e., O = ∅),
M is a pure GAV mapping, and both qS and qO are boolean CQs [15, Theorem 11], and since in those cases the two notions
are equivalent, such lower bound applies also to our notion.

As for the upper bound, by virtue of Corollary 6.1, it is sufficient to show how to check the following two containments
in �p

2 , where n = ar(qO) = ar(qS): (i) PerfRefqO, J � (qS ∪ PerfRefVn
O, J), which holds if and only if qO is a sound J -

abstraction of qS ; and (ii) qS � (PerfRefqO, J ∪ PerfRefVn
O , J), which holds if and only if qO is a complete J -abstraction of

qS . By Theorem 5.1, the former can be verified in �p
2 , and, by Theorem 4.1, the latter can be verified even in NP. �

We leave as an interesting open problem the question of whether the computational complexity of the verification
problem for perfect abstractions decreases or not when M is a LAV mapping.

6.2. Computation

As for computation, consider any OBDM specification J = 〈O, S, M〉 and UCQ qS over S . We have that (i) the UCQ-
minimally complete J -abstraction of qS always exists and can be computed by means of the MinimallyComplete algorithm
20

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Algorithm Perfect.
Input: OBDM specification J = 〈O, S, M〉; UCQ qS over S of arity n
Output: either a UCQ qO over O, or report that “no UCQ-perfect J -abstraction of qS exists”

1: qO := MinimallyComplete(J , qS)

2: if PerfRefqO , J � (qS ∪ PerfRefVn
O , J) then

3: return qO
4: else
5: return “no UCQ-perfect J -abstraction of qS exists”
6: end if

(cf. Theorem 4.2); and (ii) by construction (see Definition 3.4), either this latter is also a sound, and therefore a perfect,
J -abstraction of qS , or no UCQ-perfect J -abstraction of qS exists. With these observations at hand, we can easily derive the
algorithm Perfect together with its termination and correctness.

Essentially, the algorithm computes the UCQ-minimally complete J -abstraction of qS using the MinimallyComplete al-
gorithm (cf. Section 4), and then checks whether this latter is also a sound (see Lemma 5.1), and therefore a perfect,
J -abstraction of qS . Notice that this last step is always deterministically feasible in exponential time (cf. Theorem 5.1).
Finally, observe that the overall running time of the algorithm is exponential in the size of the input.

Example 6.1. Recall the OBDM specification J and the UCQ qS illustrated in Example 1.1. One can verify that Perfect(J , qS)

returns the UCQ qO = {(x) | Professor(x)} ∪ {(x) | ∃y.TeachesTo(x, y)} (that is J -equivalent to {(x) | Professor(x)}), which
corresponds to the UCQ-perfect J -abstraction of qS .

Example 6.2. Recall the OBDM specification J and the UCQ qS illustrated in Example 3.2 (resp., Example 4.1). One can verify
that Perfect(J , qS) reports that “no UCQ-perfect J -abstraction of qS exists”.

Theorem 6.2. Perfect(J , qS) terminates and returns the perfect J -abstraction of qS if it exists and can be expressed as a UCQ, otherwise
it reports that no UCQ-perfect J -abstraction of qS exists.

Furthermore, as a straightforward consequence of Corollary 4.2, we also get the following interesting result.

Corollary 6.2. The UCQ-perfect J -abstraction of a CQ qS either does not exists, or it can be expressed as a CQ as well.

Finally, we briefly discuss the case of perfect abstractions under the semantics used in [15], that imposes the condition
qD
S = certD

qO, J for all S-databases D . From the results presented in the previous sections, we easily get the following.

Proposition 6.1. qO is a perfect J -abstraction of qS under the semantics of [15] (i.e., qO is a realization of qS in J) if and only if
qS ≡ (PerfRefqO, J ∪ PerfRefVn

O , J), where n = ar(qO) = ar(qS).

Note that the above proposition allows us to easily derive algorithms for both verification and computation as well as an
upper-bound for verification, under the semantics of [15], too.

7. Sound abstractions in the restricted scenario

We now deal with the restricted scenario mentioned in Section 5. In particular, we start by providing results on con-
tainment for UCQJFEs, which will be useful to tackle verification and computation in the following subsections. Then, we
conclude the section by briefly analyzing a special case of the restricted scenario, namely when source queries are CQJFEs.

Before proceeding, we observe that, despite its limitations, the expressive power of the restricted scenario is enough for
various meaningful applications. Indeed, several popular ontologies are expressible in the DL DL-LiteRDFS , e.g., SKOS8 [58,59]
and Dublin Core9 [60], and the form of pure GAV mapping is exactly the one originally defined in the literature of data
integration [23]. Furthermore, the class of (U)CQJFEs captures data services expressible in the famous (U)SPJ (Union, Select,
Project, Join) fragment of Relational Algebra [42], with the only limitation that joining variables must appear in the final
projection of the USPJ Relational Algebra query, i.e., they appear in the target list of the equivalent UCQ. Notice, moreover,
that such fragment is precisely the one needed for all tasks related to source profiling [17,18]. Finally, as an example, we
point out that the OBDM specification J = 〈O, S, M〉 and the query qS illustrated in Example 3.2 fall in the restricted
scenario.

8 Simple Knowledge Organization System: https://www.w3 .org /2004 /02 /skos/.
9 http://dublincore .org/.
21

https://www.w3.org/2004/02/skos/
http://dublincore.org/

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
7.1. Containment of UCQJFEs

We now study containment for UCQJFEs. To this aim, we start by introducing some crucial notions and results related to
UCQJFEs.

Definition 7.1. Let q = {�t | ∃�y.φ(�x, �y)} be a CQ over a schema S , and let α1 = s(t1,1, . . . , t1,n) and α2 = s(t2,1, . . . , t2,n) be
two atoms over S , where α2 ∈ φ(�x, �y). We say that α1 instantiates α2, if the following holds for each i ∈ [1, n]: if t2,i is a
distinguished variable or a constant, then t2,i = t1,i .

Example 7.1. Consider the following CQs q1 = {(x) | s1(c, x, x) ∧ s2(c, x)} and q2 = {(x) | ∃y.s1(c, x, y) ∧ s2(x, x)} over a schema
S . Let α1 = s1(c, x, x), α2 = s2(c, x), α3 = s1(c, x, y), and α4 = s2(x, x). We have that α1 instantiates α3, whereas α2 does
not instantiate α4.

Clearly, given atoms α1 and α2 occurring in the bodies of CQs q1 and q2, respectively, checking whether α1 instantiates
α2 can be done in polynomial time. Based on this observation, the following lemmata show that checking whether a UCQ
q1 is contained in a UCQJFE q2 can be done in polynomial time as well.

Lemma 7.1. Let q1 and q2 be a CQ and a CQJFE, respectively, over a schema S with the same target list. We have that q1 � q2 if and
only if for each atom α2 of q2 there exists an atom α1 of q1 such that α1 instantiates α2 .

Proof. “Only-if part:” Suppose that q1 � q2, that is, there exists a homomorphism from q2 to q1. But then, since q1 and q2
have the same target list, and since q2 is a CQJFE, by construction it can be readily seen that for each atom α2 of q2 there
is at least an atom α1 of q1 such that α1 instantiates α2.

“If part:” Suppose that for each atom α2 of q2 there exists an atom α1 of q1 such that α1 instantiates α2. Let h be the
function from the terms of q2 to the terms of q1 such that (i) h(c) = c, for each constant c appearing in q2, (ii) h(x) = x, for
every distinguished variable x, and finally (iii) h(y) = t for every existential variable y occurring in q2, where if y occurs as
k-th argument of atom α2 (since q2 is a CQJFE, only one occurrence of y exists), then t is the k-th argument of the atom
α1 that instantiates α2 (which exists by assumption). Since q2 is a CQJFE, and since q2 and q1 have the same target list, we
derive that h consists in a homomorphism from q2 to q1. It follows that q1 � q2. �

We are now ready to tackle the containment problem for UCQJFEs, which is: given a UCQ q′ and a UCQJFE q over the
same schema S , check whether q′ � q.

Lemma 7.2. The containment problem for UCQJFEs is in PTime.

Proof. To begin, observe that for each pair of UCQs q1, q2 we have q1 � q2 if and only if for each disjunct q′ of q1 there
exists a disjunct q of q2 such that q′ � q [45]. It is therefore sufficient to show that, given a CQ q′ = {�t′ | ∃ �y′.φ′(�x′, �y′)} and
a CQJFE q = {�t | ∃�y.φ(�x, �y)} not necessarily with the same target lists, checking whether q′ � q can be done in polynomial
time.

If q′ and q do not have the same target list, i.e., �t′ = (t′
1, . . . , t

′
n) �= �t = (t1, . . . , tn), then consider the function f from the

set of terms in the target list of q to the set of terms in the target list of q′ with f (ti) = t′
i , for each i ∈ [1, n]. Formally,

since repetitions of terms in target lists is allowed, f might give rise to a multivalued function.10 In this case, as well as in
the case that f (a) = b with a �= b for two constants a ∈�t and b ∈ �t′ , it is straightforward to verify that q′ �� q trivially holds.
Indeed, in those cases there can be no homomorphism from q to q′ by construction.

Consider the query q′′ obtained in polynomial time from q by replacing every occurrence of term ti in q (even in the
target list) with term f (ti) = t′

i , for each i ∈ [1, n]. Observe that now q′′ is a CQJFE with target list �t′ , i.e., the same target
list of q′ . By virtue of Lemma 7.1, we can now check in polynomial time whether q′ � q′′ , where, if the answer is yes, then
q′ � q; otherwise, it can be readily seen that Dq′ (i.e., the freezing of q′) is a database witnessing that q′ �� q.

From the above considerations, it is immediate to derive a polynomial time algorithm for checking whether a UCQ q1 is
contained in a UCQJFE q2. �

In what follows, unless otherwise stated, we assume that OBDM specifications are expressed in the restricted setting for
OBDM specifications mentioned in Section 5, i.e., the DL ontology language is DL-LiteRDFS and the mapping language follows
the pure GAV approach.

10 In mathematics, a multivalued function (also known as multiple-valued function [61]) f : A → B is similar to a function, but it may associate more than
one possible element y ∈ B to each element x ∈ A.
22

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
7.2. Verification

We now address the verification problem for sound abstractions in the restricted scenario. The following theorem char-
acterizes the computational complexity of the verification problem for sound abstractions in such scenario.

Theorem 7.1. In the restricted scenario, the verification problem for sound abstractions is coNP-complete.

Proof. As for the upper bound, since DL-LiteRDFS does not allow for disjointness assertions, it is sufficient to show how to
check the containment PerfRefqO, J � qS in coNP. In particular, checking PerfRefqO, J �� qS can be done in NP in the following
way: we guess (i) a disjunct qO in qO , (ii) a query q′ over O with the same arity as qO and size at most σ(qO), (iii) a
sequence ρO of at most σ(O) ·σ(qO) ontology assertions in O, (iv) a query q′′ over S with the same arity as qO and size at
most σ(M) · σ(q′) (v) a sequence ρM of at most σ(q′) pure GAV mapping assertions in M. Then, we check in polynomial
time (i) whether q′ is obtained by rewriting qO using the sequence ρO (i.e., whether q′ ∈ PerfRefqO,O), (ii) whether q′′ is
obtained by rewriting q′ using the sequence ρM (i.e., whether q′′ ∈ REWM(q′) and hence q′′ ∈ PerfRefqO, J), and finally (iii)
whether q′′ �� qS , which, since qS is a UCQJFE, by virtue of Lemma 7.2, it can be done in polynomial time.

As for the lower bound, the proof of coNP-hardness is by a LogSpace reduction from the validity problem, which is
coNP-complete (see, e.g., [62]). validity is the problem of deciding, given a 3-DNF formula F = c1 ∨ . . . ∨ cm on a set of
variables X = {x1, . . . , xn}, whether F is valid, i.e., whether F is satisfied by every possible truth assignment to the variables
in X . Each clause ci is a conjunction of three literals, where each literal is either a variable xi ∈ X or its negated.

We define an OBDM specification J = 〈O, S, M〉 with O empty, and S and M as follows: for each variable xi ∈ X ,
schema S comprises two unary relations siT and siF , and a further unary relation s′

i . Finally, for each variable xi ∈ X , the
mapping M includes the following three mapping assertions:

• siT (x) → Ai(x),
• siF (x) → Ai(x),
• s′

i(x) → Bi(x),

where each Ai and Bi are fresh atomic concepts, for each i ∈ [1, n].
Intuitively, while each s′

i is simply mirrored to Bi , the possible unfoldings of an atom Ai(xi) (which are siT (xi) and siF (xi),
respectively) correspond to the possible truth values (true and false, respectively) for the variable xi .

We define the UCQJFE over S as qS = q1 ∪ . . . ∪ qm , where, for each i ∈ [1, m], the target list of qi is �x = (x1, . . . , xn) and
the body of qi has the conjunction of atoms s′

1(x1) ∧ . . . ∧ s′
n(xn) in conjunction to the conjunction of atoms associated to

the clause ci of F , where a positive literal xi is replaced with the atom siT (xi), whereas a negative literal ¬xi is replaced
with the atom siF (xi).

Finally, we define the CQJFE over O as qO = {�x | B1(x1) ∧ . . . ∧ Bn(xn) ∧ A1(x1) ∧ . . . ∧ An(xn)}.
Observe that J = 〈O, S, M〉, qS , and qO can be constructed in LogSpace from F , where O = ∅ and M is both a pure

GAV and a LAV mapping.
We now prove that formula F is valid if and only if qO is a sound J -abstraction of qS .
“Only-if part:” Suppose that formula F is valid, that is, F is satisfied by every possible truth assignment to the variables

in X . It follows that, for any possible choice for unfolding the atoms Ai(xi) for i = 1, . . . , n (which can be equivalently seen
as an assignment V = (v1, . . . , vn) to the variables X = (x1, . . . , xn)), the query over S obtained is such that all the atoms
also appear in a disjunct q j of qS for some j ∈ [1, m] (equivalently, at least one clause c j for some j ∈ [1, m] is satisfied
under the truth assignment V). It follows that PerfRefqO, J � qS which, since DL-LiteRDFS does not allow for disjointness
assertions, implies that qO is a sound J -abstraction of qS .

“If part:” Suppose that formula F is not valid, that is, there exists a truth assignment V = (v1, . . . , vn) to the variables
in X = (x1, . . . , xn) that does not satisfy F . Consider now the disjunct q of PerfRefqO, J obtained by unfolding atom Ai(xi) of
qO with atom siT (xi) if vi = 1, and with atom siF (xi) otherwise (i.e., vi = 0), for each i ∈ [1, n]. As a result, for each disjunct
q′ of qS , there is at least one atom of q′ not occurring in q. In proof, if there exists some disjunct q j of qS such that every
atom of q j appears also in q, then the clause c j corresponding to disjunct q j is satisfied under the truth assignment V ,
which would contradict the fact that F is not satisfied under such truth assignment. This implies that, for each disjunct
q j of qS , there is no homomorphism from q j to q. It follows that PerfRefqO, J �� qS which implies that qO is not a sound
J -abstraction of qS . �

Note that (i) the coNP upper bound holds even when ontologies O are expressed in a fragment of DL-LiteR that does
not admit disjointness assertions (thus, a more expressive language of DL-LiteRDFS) and mappings M are GLAV mappings
(rather than pure GAV mappings), and (ii) the coNP lower bound already holds when qO is a CQJFE, both qS and qO do
not have existential variables, and J = 〈O, S, M〉 is such that O is empty, and M is both a pure GAV mapping and a
LAV mapping. In the following section, we will see that the computational complexity of the verification problem further
decreases when qS is restricted to be a CQJFE.
23

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
7.3. Computation

We now address the computation problem by providing an algorithm to compute UCQ-maximally sound abstractions,
thus proving that UCQ-maximally sound abstractions are guaranteed to exist in the restricted scenario.

We start by introducing some useful notation. Given an OBDM specification J = 〈O, S, M〉 of the restricted setting and
an atom β over O, we denote by ρ(β, J) the disjunction of conjunctions obtained by first unfolding β with respect to O,
and then by unfolding the resulting formula with respect to M. The unfolding of an atom β with respect to a DL-LiteRDFS

ontology O, denoted λ(β, O), is the disjunction of atoms defined as in [63] (there called AtomRewr):

λ(A(t),O) =
∨

A′: O|=A′�A

A′(t) ∨
∨

P : O|=∃P�A

(∃y.P (t, y)) ∨
∨

P : O|=∃P−�A

(∃y.P (y, t)),

λ(P (t1, t2),O) =
∨

E: O|=E�P

E(t1, t2) ∨
∨

E: O|=E−�P

E(t2, t1),

where y denotes a fresh existential variable, A and A′ denote atomic concepts, and P and E denote atomic roles. Then, as
for the unfolding of λ(β, O) with respect to M, it is obtained by replacing each atom β ′ occurring in λ(β, O) with the
logical disjunction of all the conjunctions of atoms over S corresponding to the left-hand sides of mapping assertions in M
having the predicate name β ′ in the right-hand side (being careful to use unique variables in place of those variables that
appear in the left-hand side of the mapping assertions but not in the right-hand side of those).

Example 7.2. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = { ∃P2 � A }
• S = { s1, s2, s3 }
• M = { m1, m2, m3, m4 }, where:

m1: s1(x1, x2) → P1(x1, x2),

m2: ∃y.s1(x1, y) ∧ s2(y, x2) → P1(x1, x2),

m3: ∃y.s2(c, x) ∧ s3(x, y) → A(x),

m4: s3(x1, x2) → P2(x1, x2).

Consider the atoms β1 = P1(y, x) and β2 = A(x) over O. We have λ(β1, O) = β1 and λ(β2, O) = β2 ∨ (∃y2.P2(x, y2)).
Thus, ρ(β1, J) = (s1(y, x)) ∨ (∃y1.s1(y, y1) ∧ s2(y1, x)), whereas ρ(β2, J) = (∃y3.s2(c, x) ∧ s3(x, y3)) ∨ (∃y2.s3(x, y2)).

Finally, since DL-LiteRDFS ontologies O contain no assertions with ∃R occurring in the right-hand side for a basic role
R , and since pure GAV mappings do not allow for repetitions of variables or constants in the right-hand side of mapping
assertions, given an OBDM specification J = 〈O, S, M〉 of the restricted setting and a CQ qO = {�t | ∃�y.φ(�x, �y)} over O, it
can be readily seen that PerfRefqO, J is equivalent to turning the following logical query into an equivalent UCQ over S:

{�t | ∃�y.
∧

β∈φ(�x,�y)

ρ(β, J)}

Example 7.3. Let J = 〈O, S, M〉 be the OBDM specification illustrated in Example 7.2. Consider the CQ qO = {(x) |
∃y.P1(y, x) ∧ A(x)} over O, and let β1 = P1(y, x) and β2 = A(x). Then, PerfRefqO, J can be obtained by turning the log-
ical query {(x) | ∃y.ρ(β1, J) ∧ ρ(β2, J)} = {(x) | ∃y.((s1(y, x)) ∨ (∃y1.s1(y, y1) ∧ s2(y1, x))) ∧ ((∃y3.s2(c, x) ∧ s3(x, y3)) ∨
(∃y2.s3(x, y2)))} into an equivalent UCQ over schema S , thus obtaining PerfRefqO, J = q1

S ∪ q2
S ∪ q3

S ∪ q4
S , where:

• q1
S = {(x) | ∃y, y3.s1(y, x) ∧ s2(c, x) ∧ s3(x, y3)};

• q2
S = {(x) | ∃y, y2.s1(y, x) ∧ s3(x, y2)};

• q3
S = {(x) | ∃y, y1, y3.s1(y, y1) ∧ s2(y1, x) ∧ s2(c, x) ∧ s3(x, y3)};

• q4
S = {(x) | ∃y, y2.s1(y, y1) ∧ s2(y1, x) ∧ s3(x, y2)}.

Now, for a mapping M, we denote by γ (M) the number of mapping assertions occurring in M. For a UCQ qS , we
denote by η(qS) the sum of the number of atoms occurring in the body of the various disjuncts of qS . Then, for a mapping
M and a UCQ qS , we define bound(M, qS) as:

bound(M,qS) =
η(qS)∑

γ (M)i
i=0

24

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
The next crucial lemma shows that, given any OBDM specification J = 〈O, S, M〉 and any UCQJFE qS over S , we can
always limit our attention to CQs over O having at most bound(M, qS) atoms occurring in their bodies when seeking for
CQ-maximally sound J -abstractions of qS .

Lemma 7.3. Let J = 〈O, S, M〉 be an OBDM specification, and let qS be a UCQJFE over S . If a CQ qO over O is a sound J -abstraction
of qS , then there exists a CQ q′

O over O with same target list of qO such that (i) the body of q′
O is the conjunction of at most

bound(M, qS) atoms occurring in the body of qO (and therefore, certqO, J � certq′
O, J), and (ii) q′

O is a sound J -abstraction of qS as
well.

Proof. Let n denote the arity of qO and qS , and let the target list of qO be �t = (t1, . . . , tn). Without loss of generality, we
can assume that �t does not contain any constant nor repeated variable. Also, since M is composed of pure GAV mapping
assertions, the target list of each disjunct in PerfRefqO, J is the same as that of qO . On the other hand, since qO is a sound
J -abstraction of qS and that DL-LiteRDFS does not allow for disjointness assertions, we have that PerfRefqO, J � qS , that is,
each disjunct of PerfRefqO, J is contained in some disjunct of qS . As a matter of fact, without loss of generality, we can
assume that: (i) each disjunct q of qS is such that there is some disjunct r of PerfRefqO, J for which r � q (indeed, the other
disjuncts of qS that do not satisfy the above condition can simply be discarded, and the resulting qS will remain such that
PerfRefqO, J � qS); and (ii) the target list of each disjunct q of qS is the same as that of qO (indeed, it does not contain any
constant or repeated variable neither, and thus, its variables can be safely renamed).

We now show by induction on η(qS) (i.e., the sum of the number of atoms occurring in the body of the various disjuncts
of qS) that if qO is a sound J -abstraction of qS , then there exists m ≤ bound(M, qS) atoms β1, . . . , βm occurring in the
body of qO for which the CQ q′

O = {�t | ∃�y.β1 ∧ . . . ∧ βm} is a sound J -abstraction of qS , thus proving the claim. We do this
by exploiting Lemma 7.1. Specifically, consider each CQ r that is a disjunct of PerfRefqO, J . We know that there is a CQJFE q
that is a disjunct of qS for which r � q, and, moreover, since r and q have the same target list, by Lemma 7.1 we know that
for each atom α2 of q there exists an atom α1 of r such that α1 instantiates α2.

Base step (η(qS) = 1): In this case, qS is a single CQJFE whose body consists of only one atom α. So, there must exist at
least one atom β in the body of qO for which every possible disjunct of ρ(β, J) contains at least one atom that instantiates
α. Indeed, if this is not the case, then the disjunct r of PerfRefqO, J obtained by unfolding each atom β ′ of qO with a disjunct
of ρ(β ′, J) which contains no atom that instantiates α would be such that r �� qS , implying that PerfRefqO, J �� qS , which
would contradict that qO is a sound J -abstraction of qS . Thus, such atom β in the body of qO must exist. But then, by
exploiting Lemma 7.1, it is trivial to see that the CQ q′

O = {�t | ∃�y.β} is a sound J -abstraction of qS , as required.
Inductive step: Following the same line of reasoning of the base step, one can show that there must be (at least) one

atom β in the body of qO such that in every disjunct of ρ(β, J) there is at least one atom that instantiates some atom
occurring in the various disjuncts of qS . In particular, consider ρ(β, J) for such atom β . For each disjunct θi of ρ(β, J), let
qθi
S be the UCQJFE obtained from qS by removing all the atoms α such that an atom of θi instantiates α. Notice that, since

each disjunct θi of ρ(β, J) instantiates some atom of qS , each UCQJFE qθi
S is such that (i) η(qθi

S) ≤ η(qS) − 1 (i.e., there is at
least an atom of qS not occurring anymore in qθi

S), and (ii) qO is a sound J -abstraction of qθi
S , due to the facts that qS � qθi

S
clearly holds and the initial assumption that qO is a sound J -abstraction of qS . Hence, by inductive hypothesis, for each
disjunct θi of ρ(β, J), there are atoms βθi

1 , βθi
2 , . . . , βθi

pi
for which qθi

O = {�t | ∃ �yθi .β
θi
1 ∧ β

θi
2 ∧ . . . ∧ β

θi
pi

} is a sound J -abstraction
of qθi

S , where pi ≤ bound(M, qθi
S), i.e., pi ≤ 1 + λ(M)1 + λ(M)2 + . . . + λ(M)η(qS)−1. But then, consider the following CQ

q′
O:

{�t | ∃�y.β
∧

β
θ1
1 ∧ β

θ1
2 ∧ . . . ∧ β

θ1
p1

∧
β

θ2
1 ∧ β

θ2
2 ∧ . . . ∧ β

θ2
p2

∧
. . .

∧
β

θk
1 ∧ β

θk
2 ∧ . . . ∧ β

θk
pk

}
It is not hard to ascertain that q′

O is a sound J -abstraction of qS , where k is the number of disjuncts in ρ(β, J), and
pi ≤ 1 + λ(M)1 + λ(M)2 + . . . + λ(M)η(qS)−1 for each i ∈ [1, k]. In proof, consider each disjunct θi of ρ(β, J) for i ∈ [1, k].
Since the CQ qθi

O is a sound J -abstraction of qθi
S , by Lemma 7.1, we derive that for each possible disjunct rθi obtained by

turning in disjunctive normal form the formula ρ(β
θi
1 , J) ∧ ρ(β

θi
2 , J) ∧ . . . ∧ ρ(β

θi
pi

, J) there is a disjunct qθi of qθi
S for which

for each atom α of qθi there is an atom of rθi that instantiates α. This, together with the fact that all the atoms α occurring
in qS and not occurring in qθi

S are such that there is an atom of θi that instantiates α, allows us to derive that each disjunct
rθi∧ in the formula θi ∧ρ(β

θi
1 , J) ∧ρ(β

θi
2 , J) ∧ . . .∧ρ(β

θi
pi

, J) turned in disjunctive normal form is such that there is a disjunct
q of qS for which for each atom α of q there is an atom of rθi∧ that instantiates α. Since this is true for each disjunct θi

of ρ(β, J), and since for each i ∈ [1, k] the conjunction of atoms βθi
1 ∧ β

θi
2 ∧ . . . ∧ β

θi
pi

occurs in the body of the CQ q′
O , we

easily derive that for each possible disjunct r′ of q′
O there is a disjunct q of qS for which for each atom α of q there is an

atom of r′ that instantiates α. Thus, by Lemma 7.1, it follows that q′
O is a sound J -abstraction of qS , as required.

To conclude the proof, observe that the number of disjuncts in ρ(β, J) is at most k ≤ λ(M), and therefore, since pi ≤
1 + λ(M)1 + λ(M)2 + . . . + λ(M)η(qS)−1 for each i ∈ [1, k], we derive that the number of atoms occurring in the body of
the CQ q′ is at most 1 + λ(M)1 + λ(M)2 + . . . + λ(M)η(qS) , as required. �
O

25

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Algorithm MaximallySoundForUCQJFEs.
Input: OBDM specification J = 〈O, S, M〉; UCQJFE over qS over S of arity n
Output: UCQ qO over O
1: qO := {(x1, . . . , xn) | ⊥(x1) ∧ . . . ∧ ⊥(xn)}
2: for each CQ q over O having at most bound(M, qS) atoms in its body and possibly involving constants occurring in qS or in M as terms do
3: if PerfRefq, J � qS then
4: qO := qO ∪ q
5: end if
6: end for
7: return qO

By relying on the above lemma, we immediately derive the following enumerative algorithm MaximallySoundForUCQJFEs

for computing UCQ-maximally sound abstractions in the restricted scenario.
Informally, the algorithm simply enumerates all the possible CQs over O with at most bound(M, qS) atoms occurring in

their bodies and possibly involving constants occurring in qS or in M as terms. Then, it returns the union of all and only
the ones that are sound J -abstractions of qS .

Example 7.4. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = ∅
• S = { s1, s2, s3, s4, s5 }
• M = { m1, m2, m3, m4, m5, m6, m7, m8 }, where:

m1: s1(x1, x2) → P1(x1, x2),

m2: s3(x1, x2) → P1(x1, x2),

m3: ∃y.s2(x, y) → A1(x),

m4: s4(x, c3) → A1(x),

m5: s1(x1, x2) ∧ s3(x1, x2) → P2(x1, x2),

m6: ∃y.s5(x1, x2) ∧ s2(x2, y) ∧ s4(x2, y) → P2(x1, x2),

m7: s1(x, x) ∧ s2(x, c2) → A2(x),

m8: s3(x1, c1) ∧ s4(c1, x2) → P3(x1, x2).

For the UCQJFE qS = {(x1, x2) | ∃y.s1(x1, x2) ∧ s2(x2, y)} ∪ {(x1, x2) | ∃y.s3(x1, x2) ∧ s4(x2, y)}, the UCQ-maximally sound
J -abstraction of qS is the query qO = {(x1, x2) | P1(x1, x2) ∧ A1(x2) ∧ P2(x1, x2)} ∪ {(x, x) | A2(x)} ∪ {(x, c1) | ∃y.P3(x, y)}.
Indeed one can verify that, on the one hand, each disjunct of qO is a sound J -abstraction of qS , and, on the other hand,
each possible CQ q′ over O being a sound J -abstraction of qS is such that certq′, J � certq, J for some disjunct q of qO .

Furthermore, one can easily check that MaximallySoundForUCQJFEs(J , qS) returns a UCQ which is equivalent (w.r.t. J) to
qO , in fact it contains all the disjuncts of qO .

The following theorem establishes termination and correctness of the MaximallySoundForUCQJFEs algorithm.

Theorem 7.2. In the restricted scenario, MaximallySoundForUCQJFEs (J , qS) terminates and returns the UCQ-maximally sound J -
abstraction of qS .

Proof. Termination of the algorithm follows from the fact that it just enumerates all possible CQs over O with a certain
bound on the number of atoms occurring in their bodies, and involving only constants occurring in qS or in M.

As for the correctness, we first point out that the computed UCQ qO is a sound J -abstraction of qS . Indeed qO is a
UCQ whose disjuncts are sound J -abstractions of qS by construction. We now show that qO is actually the UCQ-maximally
sound J -abstraction of qS , that is, each UCQ q′

O that is a sound J -abstraction of qS is such that certq′
O, J � certqO, J

(cf. Definition 3.4). We do this by way of contradiction.
Let q′

O be a UCQ such that certq′
O, J �� certqO, J , that is, there exists an S-database D consistent with J such that

certD
q′
O, J

� certD
qO, J . It follows that there is a tuple of constants �c = (c1, . . . , cn) such that �c ∈ certD

q′
O, J

but, at the same

time, �c /∈ certD
qO, J . Consider now CM(D)

O , i.e., the canonical structure of O with respect to M and D . Notice that, since M
is a GAV mapping and O is a DL-LiteRDFS ontology, we have that: (i) CM(D)

O does not introduce variables, and therefore

we can see it as a set of facts CM(D)

O = {β1, . . . , βm} over O; and (ii) certD
qO, J = q

CM(D)
O

O for each S-database D . We now

exhibit an S-database D ′ for which (i) �c /∈ qD ′
S , and (ii) CM(D)

O ⊆ CM(D ′)
O . To this aim, we exploit the boolean query qβ over

O associated to CM(D) , i.e., the following boolean CQ:
O

26

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
qβ = {() | β1 ∧ . . . ∧ βm},
and all its possible unfoldings r over S . In particular, there are two possible cases: either every disjunct r of PerfRefqβ , J is
such that �c ∈ qDr

S , or not. We recall that, for a CQ r over S , Dr denotes the S-database associated to r, i.e., the set of facts
over S occurring in the body of r in which each existential variable v is replaced by a different fresh constant cv .

In the former case, let q be the CQ over O in which the target list is initially �c = (c1, . . . , cn) and the body is the same
as qβ , i.e., q = {�c | β1 ∧ . . . ∧ βn}. Then, consider the following changes to q: for each constant c occurring in q (either in
the body or in the target list) but occurring neither in qS nor in M, replace c everywhere (even in the target list) by a
distinguished variable xc if ci = c for some i ∈ [1, n] (i.e., if c occurs in the target list of q), and by an existential variable yc

otherwise.
Obviously, by construction, we have �c ∈ qC

M(D)
O . Furthermore, due to the fact that M is a pure GAV mapping and the fact

that O contains no assertions with ∃R in the right-hand side for a basic role R , each possible disjunct rq of PerfRefq, J has a
corresponding disjunct r of PerfRefqβ , J in which the body of r is obtained from the body of rq by replacing the distinguished
variables xc (respectively, the existential variable yc) occurring in q with constant c. Notice that, by assumption, each
disjunct r of PerfRefqβ , J is such that �c ∈ qDr

S , i.e., for each disjunct r of PerfRefqβ , J there is a disjunct q′
S of qS for which

�c ∈ q′
S

Dr . Since qS is a UCQJFE, by exploiting Lemma 7.1, it is not hard to ascertain that this implies that for each disjunct
r of PerfRefqβ , J there is a disjunct q′

S of qS for which for each atom α of q′
S there is an atom of r that instantiates α. By

construction of q, however, the above property holds even if we replace qβ with q, i.e., for each disjunct rq of PerfRefq, J

there is a disjunct q′
S of qS for which for each atom α of q′

S there is an atom of rq that instantiates α. Thus, by Lemma 7.1,
we derive that q is a sound J -abstraction of qS . But then, due to Lemma 7.3, from q it is possible to derive a CQ q′ with
same target list as q but whose body is the conjunction of at most bound(M, qS) atoms occurring in q and such that q′ is a
sound J -abstraction of qS . By construction of the algorithm, however, it can be readily seen that such a CQ q′ is a disjunct
of qO . Two considerations are now in order: (i) since q′ has the same target list as q, and since its body is constituted only
by a subset of the atoms of q, the fact that �c ∈ qC

M(D)
O implies �c ∈ q′CM(D)

O as well, and (ii) since �c ∈ q′CM(D)
O and since q′ is

a disjunct of qO , we have �c ∈ qOCM(D)
O . Thus, since in this setting for OBDM specifications certD

qO, J = q
CM(D)
O

O for each UCQ
qO and S-database D , we derive that �c ∈ certD

qO, J , which is a contradiction on the initial assumption that �c /∈ certD
qO, J . It

follows that the former case just considered is not possible because it leads to a contradiction. Therefore, we consider only
the latter case.

Consider the latter case, i.e., there is a disjunct r of PerfRefqβ , J for which �c /∈ qDr
S . Consider D ′ = Dr . Since M is a pure

GAV mapping and O is a DL-LiteRDFS ontology, and thus contains no assertions with ∃R in the right-hand side for a basic
role R , and since r is a disjunct of PerfRefqβ , J (i.e., the body of r is a way for unfolding all the facts occurring in CM(D)

O),
it is easy to verify that CM(D ′)

O is such that CM(D)

O ⊆ CM(D ′)
O . Notice that �c ∈ certD

q′
O, J

holds by assumption, and therefore

�c ∈ q′
O

CM(D)
O . Furthermore, since CM(D)

O ⊆ CM(D ′)
O and qO is a UCQ, we trivially derive that �c ∈ q′

O
CM(D′)
O as well, which, in

turn, implies that �c ∈ certD ′
q′
O, J

.

To complete the proof, consider the S-database D ′ . We have that, on the one hand, �c /∈ qD ′
S , and, on the other hand,

�c ∈ certD ′
q′
O, J

. It follows that q′
O is not a sound J -abstraction of qS , as required. �

Regarding the cost of the algorithm, we observe that the overall running time is exponential in the size of the input.
Notice, moreover, that CQs over O may have an exponential number of atoms with respect to η(qS). Next we prove that
(i) unless PTime = NP, the computation problem for sound abstractions cannot be solved in polynomial time, even in the
restricted scenario; and (ii) there exist OBDM specifications J and UCQJFEs qS for which the UCQ-maximally sound J -
abstraction of qS is a CQ whose number of atoms is necessarily exponential with respect to η(qS).

Proposition 7.1. There exists an OBDM specification J in the restriced scenario and a CQJFE qS such that, assuming PTime ⊂ NP, the
UCQ-minimally sound J -abstraction of qS cannot be computed in polynomial time.

Proof. Let F be a 3-DNF formula on a set of variables X = {x1, . . . , xn}. Consider the OBDM specification J = 〈O, S, M〉, the
UCQJFE qS , and the CQ qO constructed from F as illustrated in the reduction of the lower bound proof of Theorem 7.1.

In this case, it is easy to verify that the UCQ-maximally sound J -abstraction of qS is either the CQ qO if it is a sound J -
abstraction of qS , or the CQ q′

O = {(x1, . . . , xn) | ⊥(x1) ∧ . . .∧⊥(xn)} otherwise. Specifically, as shown in that coNP-hardness
proof of Theorem 7.1, qO is a sound J -abstraction of qS if and only if formula F is valid. So, due to the above observation,
qO is the UCQ-maximally sound J -abstraction of qS if and only if formula F is valid.

We have therefore reduced the problem of checking the validity of a 3-DNF formula F to the problem of computing the
UCQ-maximally sound J -abstraction of a UCQJFE qS , where both J = 〈O, S, M〉 and qS can be constructed in LogSpace

from F .
Thus, a polynomial time algorithm for computing UCQ-maximally sound abstractions in the restricted scenario would

imply a polynomial time algorithm for checking whether a 3-DNF formula is valid. Since this latter problem is known to be
27

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
in general coNP-hard, it follows that, unless PTime = NP, the computation problem for sound abstractions cannot be solved
in polynomial time in the restricted scenario. �
Proposition 7.2. In the restricted scenario, there are OBDM specifications J and UCQJFEs qS for which the UCQ-maximally sound
J -abstraction of qS is a CQ whose number of atoms in its body is necessarily exponential with respect to η(qS).

Proof. We provide here a small example showing the main reason of why the number of atoms in the body of the UCQ-
maximally sound J -abstraction of a UCQJFE qS may be exponential with respect to η(qS).

Let J = 〈O, S, M〉 be the following OBDM specification:

• O = ∅
• S = { s1, s2, s3, s4 }
• M = { m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12 }, where:

m1: s1(x) → A1(x),

m2: s2(x) → A1(x),

m3: s1(x) → A2(x),

m4: s3(x) → A2(x),

m5: s1(x) → A3(x),

m6: s4(x) → A3(x),

m7: s2(x) → A4(x),

m8: s3(x) → A4(x),

m9: s2(x) → A5(x),

m10: s4(x) → A5(x),

m11: s3(x) → A6(x),

m12: s4(x) → A6(x).

Let qS be the following UCQJFE over S: qS = {(x) | s1(x) ∧s2(x) ∧s3(x)} ∪ {(x) | s1(x) ∧s2(x) ∧s4(x)} ∪ {(x) | s1(x) ∧s3(x) ∧
s4(x)} ∪ {(x) | s2(x) ∧ s3(x) ∧ s4(x)}. One can verify that the CQ qO = {(x) | A1(x) ∧ A2(x) ∧ A3(x) ∧ A4(x) ∧ A5(x) ∧ A6(x)}
is a sound J -abstraction of qS , and, moreover, every possible CQ q′

O whose body contains only a strict subset of the atoms
occurring in the body of qO is such that q′

O is not a sound J -abstraction of qS . Thus, it follows that qO is the UCQ-
maximally sound J -abstraction of qS (in fact, one can verify that qO is the output of MaximallySoundForUCQJFEs(J , qS)).
More precisely, one can verify that qO is the perfect J -abstraction of qS .

Let now denote by |S| the number of source predicates occurring in the source schema S , and by χ(M) the number
of times that an atomic concept Ai in the alphabet of the ontology O appears in the right-hand side of mapping assertions
in M. By generalizing the above construction, one can see that it is always possible to compose OBDM specifications
J = 〈O, S, M〉 and UCQJFEs qS for which (i) η(qS) = |S|2 − |S|, and (ii) the number of atoms occurring in the body of the
CQ corresponding to the UCQ-maximally sound J -abstraction of qS is necessarily equal to |S|!

(|S|−χ(M))! ·χ(M)! (and therefore,
an exponential number of atoms with respect to η(qS)). �
7.4. The restricted scenario for CQJFEs

We next discuss results about the verification and the computation problems for sound abstractions in a scenario that is
further restricted with respect to the one considered so far, i.e., by limiting the query language LS to CQJFEs. Interestingly,
with such a further limitation, the complexity of the verification problem goes down from coNP-complete to PTime, while
an algorithm for computation can be devised that is “smarter”, even though exponential in the worst-case. We next provide
an intuition for both these results. The interested reader can refer to Appendix B for more details.

As for verification, the complexity lowering for CQJFEs is due to the fact that in order to check whether qO is a sound
J -abstraction of qS , one needs to check whether each disjunct q′ of qO is a sound J -abstraction of qS , and if the latter is
a CQJFE, this check can be done by verifying that for each atom α of qS there exists an atom β of q′ that J -covers α, i.e.,
that is such that every disjunct in ρ(β, J) contains at least an atom α′ that instantiates α.

As for computing the UCQ-maximally sound J -abstraction, if qS is a CQJFE rather than UCQJFE, instead of enumerating
all possible CQs over O of a certain bound, the computation is “guided” by the atoms occurring in the input query qS , in a
way that is very similar to the bucket algorithm [64] used for rewriting queries using views. In particular, by exploiting the
aforementioned characterization of sound J -abstractions of qS , for each atom α of qS , the algorithm computes a set Bα

containing all the atoms β over O such that β J -cover α. Then, the UCQ-maximally sound J -abstraction of qS is computed
28

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
as the union of all queries that can be obtained by conjoining one atom from Bα , for every α in qS . Note, in particular, that
it can be shown that, differently from the case of UCQJFEs, all such queries contain at most only η(qS) atoms.

8. Conclusion

We have presented a formal framework for a new OBDM reasoning task, namely the task of automatically comput-
ing semantic characterizations of data services through ontologies, called Abstraction. In particular, we have carried out a
systematic and comprehensive analysis for the most common OBDM setting, including a restricted setting, still useful in
practice.

We believe that the notions introduced and the technical results presented in this paper are not only theoretically
interesting in themselves, but also have many possible practical applications besides making data services automatically
Findable, Accessible, Interoperable, and Reusable (FAIR), as for example in the fields mentioned in the introduction, namely
open data, source profiling, updating, and explanation of classifiers.

We point out that this work left some interesting and challenging open problems. In the following we detail the main
ones:

• a relevant problem not addressed in this paper is the Existence problem, that is: given an OBDM specification J =
〈O, S, M〉 and a query qS ∈ LS , verify whether there exists an LO-perfect (respectively, LO-minimally complete,
LO-maximally sound) J -abstraction of qS . Some results for this problem can be immediately derived from the results
provided in this paper for the general scenario considered, namely: (i) the Existence problem is trivial for the minimally
complete case because, as Corollary 4.2 states, the UCQ-minimally complete J -abstraction of a UCQ qS always exist;
(ii) from Theorem 6.2, we immediately get decidability of the Existence problem for the perfect case. However, for the
general scenario considered in this paper, we point out that the exact computational complexity for the perfect case
and even decidability for the maximally sound case are interesting open challenges;

• still for the general scenario, we aim at singling out the minimal class LO of queries that guarantees the existence of
an LO-maximally sound abstraction of a query qS . Furthermore, we will extend our analysis to OBDM settings going
beyond the one based on DL-LiteR , for example by considering DL-LiteA , the EL family, and/or other DLs as ontology
languages;

• for the case of LAV mappings, the exact computational complexity of the verification problem for perfect abstractions is
still open;

• in this paper we assume that integrity constraints are not specified over the sources; it would be interesting to extend
our investigation to the case in which they were specified.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This work has been partially supported by MUR under the PNRR project FAIR (PE0000013) and under the PRIN 2017
project HOPE (prot. 2017MMJJRE), and by the EU under the H2020-EU.2.1.1 project TAILOR (grant id. 952215). Gianluca
Cima has been fully supported by MUR under the PNRR project FAIR (PE0000013).

Appendix A. Rest of the proof of Theorem 5.2 (cases 3, 4, and 5)

Case 3. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = { A � ∃P }
• S = { s1, s2 }
• M = { m1, m2 }, where:

m1: s1(x1, x2) → P (x1, x2),

m2: s2(x) → A(x),

and qS be the following CQJFE over S: qS = {(x) | ∃y.s1(x, y)}.
29

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Now, suppose that there exists a Q that is a UCQ-maximally sound J -abstraction of qS . Also, let a, b ∈ Const be two
constants not occurring in Q (note that since Q is finite and Const is infinite, one such pair of constants always exists).
The query Q ′ = Q ∪ q′ , where q′ = {(a) | P (a, b)}, is certainly a sound J -abstraction of qS since Q is a sound J -abstraction
of qS and PerfRefq′, J = {(a) | s1(a, b)} � qS . Now, we have two possibilities: either certq′, J � certQ , J or certq′, J �� certQ , J . We
next show that in both cases we get a contradiction. Let us first assume that certq′, J �� certQ , J . Then, there exists an S-
database D such that certD

q′, J � certD
Q , J , and hence, certD

Q , J ⊂ certD
Q ′, J . But then, this contradicts that Q is a UCQ-maximally

sound J -abstraction of qS . Let us now assume that certq′, J � certQ , J . Then, PerfRefq′, J � PerfRefQ , J , which implies that there
exists a CQ q′′ in PerfRefQ , J such that there exists a homomorphism from q′′ to PerfRefq′, J = {(a) | s1(a, b)}. But then, by
definition of homomorphism and since Q , by hypothesis, does not contain a and b, this implies that q′′ is of the form
{(x) | ∃y.s1(x, y) ∧γ }, where γ is a conjunction of atoms having predicate name s1 and not mentioning y as first argument.
It has not hard to verify that, in this case, Q must contain at least a disjunct of the form {(x) | ∃y.P (x, y) ∧ γ ′}, where γ ′ is
a conjunction of atoms having predicate name P and not mentioning y as first argument. This immediately contradicts the
fact that Q is a UCQ-maximally sound J -abstraction of qS .

Case 4. The proof is based on the idea that, in certain cases, an assertion of the form A � ∃P logically implied by a DL-LiteR
ontology O can be simulated using LAV mapping assertions. In our case, consider the OBDM specification J = 〈O, S, M〉
illustrated in the proof of case 3, and let J ′ = 〈O′, S, M′〉 be the OBDM specification in which O′ = ∅ (O′ and O share the
same alphabet) and M′ = M ∪ { m3 : s2(x) → ∃y.P (x, y) }. It can be readily seen that J ′ is query-preserving with respect to
J [65,23], that is, certD

q, J = certD
q, J ′ for every query q over O (equivalently, over O′) and for every S-database D . Therefore,

a formal proof of this case can be obtained from the proof of case 3 by replacing the OBDM specification J with the OBDM
specification J ′ .
Case 5. Let � = 〈O, S, M〉 be the following OBDM specification:

• O = ∅
• S = { s1, s2 }
• M = { m1, m2 }, where:

m1: s1(x1, x2) → P (x1, x2),

m2: s2(x) → P (x, x).

Let qS be the following boolean CQJFE over S: qS = {(x1, x2) | s1(x1, x2)}.
Now, suppose that there exists a UCQ Q that is a UCQ-maximally sound J -abstraction of qS . Also, let a, b ∈ Const be two

constants not occurring in Q such that a �= b (note that since Q is finite and Const is infinite, one such pair of constants
always exists). Similarly to the case of 3, the query Q ′ = Q ∪ q′ , where q′ = {(a, b) | P (a, b)}, is a UCQ that is a sound
J -abstraction of qS and is such that assuming either that certq′, J � certQ , J or that certq′, J �� certQ , J , would both lead to a
contradiction.

Appendix B. Sound abstractions in the restricted scenario for CQJFEs

We next provide more details on the results mentioned in Subsection 7.4 about the verification and the computation
problem for sound abstractions in the restricted scenario for CQJFEs. We remind the reader that the setting for OBDM
specifications considered is obtained from the general one by (i) limiting ontologies O to be expressed in DL-LiteRDFS , and
(ii) limiting the mappings M to be expressed as a set of pure GAV mapping assertions. However, now the query language
LS is the one of CQJFEs rather than UCQJFEs.

Before going into details, we introduce the notion of covering.

Definition B.1. Let J = 〈O, S, M〉 be an OBDM specification, β be an atom over O, and α be an atom occurring in the body
of a CQ qS = {�t | ∃�y.φ(�x, �y)} over S . We say that β J -covers α, if the following holds: in each disjunct of ρ(β, J) there is at
least an atom α′ such that α′ instantiates α.

Example B.1. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = { P1 � P2 }
• S = { s1, s2 }
• M = { m1, m2 }, where:

m1: s1(x1, x2, x1) ∧ s2(x1, x2) → P1(x1, x2),

m2: s1(x1, x2, c1) ∧ s2(x2, x2) → P2(x1, x2).

Consider the query qS = {(x) | ∃y.s1(c2, x, y) ∧ s2(x, x)} over S , and the atom β = P2(c2, x) over O. Let α1 = s1(c2, x, y)

and α2 = s2(x, x). Note that ρ(β, J) = (s1(c2, x, c1) ∧ s2(x, x)) ∨ (s1(c2, x, c2) ∧ s2(c2, x)). Thus, we have that β J -covers α1,
30

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
whereas β does not J -cover α2. This latter is because in the disjunct (s1(c2, x, c2) ∧ s2(c2, x)) of ρ(β, J) there is no atom
α′ such that α′ instantiates α2.

Clearly, for an OBDM specification J = 〈O, S, M〉, an atom β over O, and an atom α over S , checking whether β
J -covers α is feasible in polynomial time.

B.1. Verification

We start by proving the following lemma, which will be used to prove that the verification problem in this setting can
be solved in polynomial time.

Lemma B.1. Let J = 〈O, S, M〉 be an OBDM specification, and let qS and qO be a CQJFE over S and a CQ over O, respectively, with
the same target list. We have that qO is a sound J -abstraction of qS if and only if it is the case that for each atom α of qS there exists
an atom β of qO such that β J -covers α.

Proof. “Only-if part:” Suppose, for the sake of contradiction, that there exists an atom α of qS such that for no atom β
of qO it is the case that β J -covers α. Let q′ be the disjunct of PerfRefqO, J obtained by unfolding each atom β of qO
with the disjunct of ρ(β, J) in which there is no atom α′ that instantiates α. For each atom β of qO , there is at least
one disjunct among the ones of ρ(β, J) that satisfies this condition, otherwise, following Definition B.1, we would trivially
derive a contradiction on the fact that β does not J -cover α.

Thus, the disjunct q′ of PerfRefqO, J contains no atom that instantiates the atom α of qS , and therefore, due to Lemma 7.1,
this implies that q′ �� qS . It follows that PerfRefqO, J �� qS , which, since VO = {() | ∃y.⊥(y)} and due to Lemma 5.1, in turn
implies that qO is not a sound J -abstraction of qS , as required.

“If part:” Since for each atom α of qS there is an atom β such that β J -covers α, we derive that each possible disjunct
q′ of PerfRefqO, J satisfies the following condition: for each atom α of qS , there is an atom α′ of q′ such that α′ instantiates
α. Due to Lemma 7.1, it follows that q′ � q. Since this is true for each possible disjunct q′ of PerfRefqO, J , we also derive
that PerfRefqO, J � qS , which, since DL-LiteRDFS does not allow for disjointness assertions, implies that qO is a sound J -
abstraction of qS . �

Based on the above lemma, the following theorem proves that, in the restricted scenario for CQJFEs, the verification
problem for sound abstractions can be solved in polynomial time.

Theorem B.1. In the restricted scenario for CQJFEs, the verification problem is in PTime.

Proof. Since DL-LiteRDFS does not allow for disjointness assertions, it is sufficient to show how to check the containment
PerfRefqO, J � qS in polynomial time, where qO and qS are a UCQ over O and a CQJFE over S , respectively. To start, note
that by construction qO is a sound J -abstraction of qS if and only if each disjunct q of qO is a sound J -abstraction of qS ,
i.e., PerfRefqO, J � qS if and only if PerfRefq, J � qS for each disjunct q of qO . It is therefore enough to show that, given a
CQ q = {�t′ | ∃ �y′.φ′(�x′, �y′)} over O and a CQJFE qS = {�t | ∃�y.φ(�x, �y)} over S , checking whether PerfRefq, J � qS can be done in
polynomial time.

We assume that every atom β of q appears in the right-hand side of some mapping assertion in M, otherwise we triv-
ially have that PerfRefq, J ≡ false/n (where n is the arity of q), and therefore q is a sound J -abstraction of qS . Furthermore,
if q and qS do not have the same target list, i.e., �t′ = (t′

1, . . . , t
′
n) �= �t = (t1, . . . , tn), then consider the function f from the set

of terms in the target list of q to the set of terms in the target list of qS with f (ti) = t′
i , for each i ∈ [1, n]. Formally, since

repetitions of terms in target lists is allowed, f might give rise to a multivalued function. In this case, as well as in the case
that f (a) = b with a �= b for two constants a ∈ �t and b ∈ �t′ , it is straightforward to verify that PerfRefq, J �� qS trivially holds.
Indeed, in those cases there can be no homomorphism from qS to the disjuncts of PerfRefq, J by construction.

Consider the query q′
S obtained in polynomial time from qS by replacing every occurrence of the term ti in qS (even in

the target list) with the term f (ti) = t′
i , for each i ∈ [1, n]. Observe that now q′

S is a CQJFE having the same target list �t′ of
q. By virtue of Lemma B.1, we can now check whether q is a sound J -abstraction of q′

S by checking whether it is the case
that for each atom α of q′ there exists an atom β of q such that β J -covers α. This can be clearly done in polynomial time.

Obviously, if q is a sound J -abstraction of q′
S , then we trivially have that q is sound J -abstraction of qS as well.

Conversely, if q is not a sound J -abstraction of q′
S , then there is a disjunct r of PerfRefq, J such that r �� q′ . But then, it can

be readily seen that Dr (i.e., the freezing of r) is the database witnessing that r �� qS . It follows that, for the S-database Dr ,
we have certDr

q, J � qDr
S , which implies that q is not a sound J -abstraction of qS .

From the above considerations, it is immediate to derive a polynomial time algorithm for checking whether a UCQ qO
over O is a sound J -abstraction of a CQJFE qS over S . �
31

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
B.2. Computation

As for the computation problem, we now provide an algorithm for computing UCQ-maximally sound abstractions which
avoids the enumeration of all possible CQs over O of a certain bound as algorithm MaximallySoundForUCQJFEs does. The
computation of the returned UCQ over O is rather guided by the atoms occurring in the input query qS , in a very similar
fashion to the bucket algorithm [64] used for rewriting queries using views.

Specifically, by exploiting Lemma B.1, the idea is as follows: for each atom αi occurring in the body of qS , we compute a
set Bi containing all the atoms β over O such that β J -cover α. Then, disjuncts of the final UCQ qO over O are constructed
by simply selecting atoms from each set Bi and conjoining them.

There is, however, a preliminary issue to solve in order to apply this simple idea: let J = 〈O, S, M〉 be an OBDM
specification, and let α be an atom of a CQ qS = {�t | ∃�y.φ(�x, �y)} over S . It might happen that an atom β over O does not
J -cover α, but β J -covers α′ if some equalities are applied in the target list of qS , where α′ denotes the atom obtained
from α after applying such equalities. The next example shows this complication:

Example B.2. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = ∅
• S = { s }
• M = { m1, m2 }, where:

m1: s(x, x) → A(x),

m2: s(x, c1) → A′(x).

Consider the CQJFE qS = {(x1, x2) | s(x1, x2)} over S . Observe that there is no atom β over O such that β J -covers
s(x1, x2).

Notice, however, that if we consider more specific queries obtained by applying some equalities to the query qS , such
as q1

S = {(x1, x1) | s(x1, x1)} (obtained by applying x1 = x2) and q2
S = {(x1, c1) | s(x1, c1)} (obtained by applying x2 = c1),

then we get that atom A(x1) J -covers s(x1, x1) and atom A′(x1) J -covers s(x1, c1). As a result, due to Lemma B.1, queries
q1
O = {(x1, x1) | A(x1)} and q2

O = {(x1, c1) | A′(x1)} are a sound J -abstraction of q1
S and q2

S , respectively. It follows that, since
by construction qi

S � qS for both i = 1 and i = 2, both q1
O and q2

O are sound J -abstractions of qS as well.
Furthermore, when applying equalities, we have to take into account not only constants occurring in mapping assertions

M, but also constants occurring in the body of the input query. Consider indeed the CQJFE q′
S = {(x) | s(x, c2)} over S .

Observe that there is no atom β over O such that β J -covers s(x, c2). Notice, however, that if we consider the query
q3
S = {(c2) | s(c2, c2)} (obtained by applying x = c2 to q′

S), then we get that atom A(c2) J -covers s(c2, c2). So, due to
Lemma B.1, the query q3

O = {(c2) | A(c2)} is a sound J -abstraction of q3
S , and therefore a sound J -abstraction of q′

S since
q3
S � q′

S .

Therefore, before of applying the idea described above for computing UCQ-maximally sound abstractions, we first have
to compute the head completion of qS with respect to conM ∪ conqS , where conM (respectively, conqS) denote the set of
all constants occurring in M (respectively, qS).

Roughly speaking, the head completion of a CQ qS = {�t | ∃�y.φ(�x, �y)} with respect to a set of constants con is an equivalent
UCQ in which each disjunct is computed by considering a possible unification between the terms in �t ∪ con.

We now present the algorithm HeadCompletion that, given a CQ q and a set of constants con, returns a logically equiva-
lent UCQ representing the head completion of q with respect to con.

In the algorithm, two terms t1 and t2 are compatible if t1 and t2 denote distinct terms and at least one of them is a
variable. Furthermore, for a query q, q[t1/t2] denotes the query obtained from q by replacing every occurrence (even in the
target list) of the term t1 in q with the term t2 (if one of the two terms is a constant, then we always assume that t2 is the
constant and t1 is the variable).

For a CQ q and a set of constants con, HeadCompletion(q, con) computes the equivalent UCQ Q obtained by unifying
compatible terms of the target list of q, and of the set of constants con, in all possible ways.

The next example illustrates an execution of the HeadCompletion algorithm.

Example B.3. Let qS be the following CQ qS = {(x1, x2) | ∃y.s1(x1, c2, y) ∧ s2(x1, x2)}, and let con be the following set of
constants con = {c1, c2}. One can verify that HeadCompletion(qS , con) returns the UCQ Q = ⋃

1≤i≤10 qi
S , where:

• q1
S = {(x1, x2) | ∃y.s1(x1, c2, y) ∧ s2(x1, x2)};

• q2
S = {(x1, x1) | ∃y.s1(x1, c2, y) ∧ s2(x1, x1)};

• q3
S = {(x1, c1) | ∃y.s1(x1, c2, y) ∧ s2(x1, c1)};
32

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Algorithm HeadCompletion.
Input: CQ q; set of constants con
Output: UCQ Q

1: Q := q
2: repeat
3: Q ′ := Q
4: for each CQ q′ ∈ Q ′ do
5: Let q′ = {�t | ∃�y.φ(�x, �y)}
6: for each each pair of compatible terms t1, t2 in �t ∪ con do
7: Q := Q ∪ q′[t1/t2]
8: end for
9: end for

10: until Q ′ = Q
11: return qO

Algorithm MaximallySoundForCQJFEs.
Input: OBDM specification J = 〈O, S, M〉; CQJFE over qS over S of arity n
Output: UCQ qO over O
1: qO := {(x1, . . . , xn) | ⊥(x1) ∧ . . . ∧ ⊥(xn)}
2: con := conM ∪ conqS
3: for each CQ q ∈ HeadCompletion(qS , con) do
4: Let q = {�t | ∃�y.φ(�x, �y)}, where φ(�x, �y) = α1 ∧ . . . ∧ αη(qS)

5: for each i ← 1 to η(qS) do
6: Bi := ∅
7: for each possible atoms β over O having as arguments the terms occurring in αi and possibly fresh existential variables do
8: if β J -covers αi then
9: Bi := Bi ∪ β

10: end if
11: end for
12: end for
13: for each combinations of atoms (β1, . . . , βη(qS)) ∈ B1 × . . . × Bη(qS) do

14: qO := qO ∪ {�t | ∃ �y′ .φ′(�x, �y′)}, where φ′(�x, �y′) = β1 ∧ . . . ∧ βη(qS)

15: end for
16: end for
17: return qO

• q4
S = {(x1, c2) | ∃y.s1(x1, c2, y) ∧ s2(x1, c2)};

• q5
S = {(c1, x2) | ∃y.s1(c1, c2, y) ∧ s2(c1, x2)};

• q6
S = {(c2, x2) | ∃y.s1(c2, c2, y) ∧ s2(c2, x2)};

• q7
S = {(c1, c2) | ∃y.s1(c1, c2, y) ∧ s2(c1, c2)};

• q8
S = {(c1, c1) | ∃y.s1(c1, c2, y) ∧ s2(c1, c1)};

• q9
S = {(c2, c1) | ∃y.s1(c2, c2, y) ∧ s2(c2, c1)};

• q10
S = {(c2, c2) | ∃y.s1(c2, c2, y) ∧ s2(c2, c2)}.

We are now ready to focus on the problem of computing UCQ-maximally sound abstractions in the restricted scenario
for CQJFEs, and present algorithm MaximallySoundForCQJFEs.

Informally, the algorithm first computes the head completion of qS with respect to con, where con = conM ∪ conqS .
Subsequently, for each possible CQ q ∈ HeadCompletion(qS , con), the algorithm proceeds in two main steps. In the first step,
for each atom αi occurring in the body of q, it is computed the set Bi of relevant atoms over O, where β J -covers αi for
each β ∈ Bi .

In the second step, for each possible combination which includes a single atom from every set Bi (i.e., for each possible
tuple of the Cartesian product B1 × . . . × Bη(qS)), the CQ with the same target list of q and body the conjunction of those
atoms is added as a disjunct of the final returned UCQ qO over O.

Example B.4. Let J = 〈O, S, M〉 be the following OBDM specification:

• O = ∅
• S = { s1, s2, s3, s4, s5, s6 }
33

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
• M = { m1, m2, m3, m4, m5, m6 }
m1: ∃y.s1(x1, x2, y) → P1(x1, x2),

m2: s2(x1, x2) → P2(x1, x2),

m3: s3(x1, x2) → P2(x1, x2),

m4: ∃y.s2(x, x) ∧ s4(x, y) → A1(x),

m5: ∃y.s2(x, x) ∧ s4(x, y) → A2(x),

m6: s2(x1, c1) ∧ s6(x1, x2) → P3(x1, x2)

Let qS be the CQJFE illustrated in Example B.3. As a first step, the algorithm computes HeadCompletion(qS , con) which,
since conM = {c1} and conqS = {c2}, it turns out to be the UCQ Q = ⋃

1≤i≤10 qi
S illustrated in Example B.3, where con =

conM ∪ conqS = {c1, c2}.
Then, for each i ∈ [1, 10], the algorithm processes query qi

S to add possible CQs that are sound J -abstractions of qi
S (and

therefore of qS). We point out that, for every j = [1, 4, 5, 6, 7], the resulting atom α j
2 with predicate name s2 in the body

of q j
S is such that B j

2 = ∅, i.e., there is no atom β for which β J -covers α j
2, and therefore no disjunct is added for those

queries.
As for the query q2

S = {(x1, x1) | ∃y.s1(x1, c2, y) ∧ s2(x1, x1)}, we have B2
1 = {P1(x1, c2)} and B2

2 = {A1(x1), A2(x1)}. Thus,
the CQs q1

O = {(x1, x1) | P1(x1, c2) ∧ A1(x1)} and q2
O = {(x1, x1) | P1(x1, c2) ∧ A1(x1)} are disjuncts of the final UCQ qO .

As for the query q3
S = {(x1, c1) | ∃y.s1(x1, c2, y) ∧ s2(x1, c1)}, we have B3

1 = {P1(x1, c2)} and B3
2 = {P3(x, y′)}. Thus, the

CQ q3
O = {(x1, c1) | ∃y′.P1(x1, c1) ∧ P3(x1, y′)} is a disjunct of the final UCQ qO .

For the queries q j
S with j = [8, 9, 10], we observe that all disjuncts over O generated by the algorithm are subsumed

(w.r.t. J) by qi
O for some i = [1, 2, 3]. As a conclusion, one can verify that MaximallySoundForCQJFEs(J , qS) returns a UCQ

that is equivalent (w.r.t. J) to qO = q1
O ∪ q2

O ∪ q3
O , which is the UCQ-maximally sound J -abstraction of qS .

The following theorem establishes termination and correctness of the MaximallySoundForCQJFEs algorithm.

Theorem B.2. In the restricted scenario for CQJFEs, MaximallySoundForCQJFEs (J , qS) terminates and returns the UCQ-maximally
sound J -abstraction of qS .

Proof. Termination of the algorithm easily follows from the termination of the HeadCompletion algorithm, and the fact that
checking whether an atom β over O J -covers an atom α over S can be done in polynomial time.

As for the correctness, we first show that the computed qO is a sound J -abstraction of qS . By construction, each disjunct
{�t | ∃ �y′.φ′(�x, �y′)} of qO satisfies the following condition: there is a query q ∈ HeadCompletion(qS , con) with target list �t such
that for each atom αi of q there is an atom βi of φ(�x, �y′) that J -covers αi , where con = conM ∪ conqS . Due to Lemma B.1,
this implies that {�t | ∃ �y′.φ′(�x, �y′)} is a sound J -abstraction of a query q ∈ HeadCompletion(qS , con). Since for each query
q ∈ HeadCompletion(qS , con) we trivially have that q � qS , we derive that {�t | ∃ �y′.φ′(�x, �y′)} is a sound J -abstraction of qS as
well. Furthermore, since the above condition is true for each disjunct {�t | ∃ �y′.φ′(�x, �y′)} of qO , it follows that the computed
qO is a sound J -abstraction of qS . We now show that qO is actually the UCQ-maximally sound J -abstraction of qS , that
is, each UCQ q′

O that is a sound J -abstraction of qS is such that certq′
O, J � certqO, J (cf. Definition 3.4). We do this by way

of contradiction.
Let q′

O be a UCQ such that certq′
O, J �� certqO, J , that is, there exists an S-database D consistent with J such that

certD
q′
O, J

� certD
qO, J . It follows that there is a tuple of constants �c = (c1, . . . , cn) such that �c ∈ certD

q′
O, J

but, at the same

time, �c /∈ certD
qO, J . If �c /∈ qD

S , then q′
O is trivially not a sound J -abstraction of qS , and we are done. Therefore, we assume

that �c ∈ qD
S . Specifically, let H the set of all homomorphisms h from qS to D with h(�t′) = �c (where �t′ is the target list of

qS), and let � be the set of all facts in D that partecipate in some homomorphism h ∈ H , i.e.: � = ⋃
h∈H h(qS)

Consider now the S-database � = D \ �. Obviously, since � ⊆ D , and since the left-hand side of mapping assertions are
CQs, we have that CM(�)

O ⊆ CM(D)

O . In particular, let � = {β1, . . . , βk} be the set composed of all the facts in CM(D)

O that
are not in CM(�)

O , i.e., � = CM(D)

O \ CM(�)

O (since M is a pure GAV mapping and O is a DL-LiteRDFS ontology, clearly, both
CM(D)

O and CM(�)

O do not introduce variables). We now exhibit an S-database D ′ for which (i) �c /∈ qD ′
S , and CM(D)

O ⊆ CM(D ′)
O .

To this aim, we exploit the following things:

• Let q = {�t | ∃�y.φ(�x, �y)} = {�t | ∃�y.α1 ∧ . . .∧αη(qS)} ∈ HeadCompletion(qS , con) be the most specific query over S for which
�c = (c1, . . . , cn) ∈ qD still holds, i.e., the CQ whose target list �t = (t1, . . . , tn) is such that (i) for each i ∈ [1, n], if ci is a
constant occurring either in conqS or in conM , then ti = ci (otherwise term ti is a distinguished variable), and (ii) for
each pair of numbers i, j ∈ [1, n], ci = c j if and only if ti = t j .
34

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
• Consider the target list �t = (t1, . . . , tn) of q and the tuple of constants �c = (c1, . . . , cn). Let �′ = {β ′
1, . . . , β

′
k} be the set

of atoms over O obtained from the set of facts � = {β1, . . . , βk} by (i) replacing everywhere the constant ci ∈ �c with
the term ti ∈�t (either a distinguished variable, or the constant ci itself), for each i ∈ [1, n], and (ii) replacing everywhere
each constant c occurring neither in qS nor in M with a fresh existential variable yc .

In particular, there are two possible cases: either for each i ∈ [1, η(qS)] there is an atom β ′
i ∈ �′ such that β ′

i J -covers αi ,
or not.

In the former case, since for each atom αi of q there is an atom β ′
i ∈ �′ such that β ′

i J -covers αi , by construction of
the algorithm, it can be readily seen that the CQ q′ = {�t | ∃ �y′.β ′

1 ∧ . . . ∧ β ′
η(qS)} over O is a disjunct of qO . Furthermore, it

is clear that �c ∈ q′� . Two considerations are now in order: (i) due to the facts that �c ∈ q′� and � ⊆ CM(D)

O , and since q′ is

a CQ, we derive that �c ∈ q′CM(D)
O as well, and (ii) since �c ∈ q′CM(D)

O and since q′ is a disjunct of qO , we have �c ∈ qOCM(D)
O .

Thus, as already observed, since in this setting for OBDM specifications certD
qO, J = q

CM(D)
O

O for each UCQ qO and S-database
D , we derive that �c ∈ certD

qO, J , which is a contradiction on the initial assumption that �c /∈ certD
qO, J . It follows that the former

case just considered is not possible because it leads to a contradiction. Therefore, we consider only the latter case.
Consider the latter case, that is, there exists at least an atom αi of q for which no atom β ′ ∈ �′ is such that β ′ J -covers

αi . It is not hard to ascertain that this implies that there is at least an atom α′
i of qS (�c) for which no atom β ∈ � is such

that β J -covers α′
i , where we recall that qS (�c) = {() | ∃�y.α′

1 ∧ . . . ∧α′
η(qS)} is the boolean CQ obtained from qS by replacing

each occurrence of term t′
i in the body of qS with constant ci , for each i ∈ [1, n] (where �t′ = (t1, . . . , tn) is the target list of

qS). But then, consider the set of facts � obtained by unfolding each fact β ∈ � with a disjunct of ρ(β, J) such that there
is no atom over S that instantiates α′ (clearly, since by assumption β does not J -cover α′ , following Definition B.1, at least
one of such disjunct must exists). As a result, we trivially have that � �|= qS (�c), which implies that �c /∈ q�

S .
We now prove that the S-database we are seeking is D ′ = � ∪ �. Observe that: (i) qS is a CQJFE, and therefore it does

not have existential variables in join occurring in its body, (ii) from (i) and by construction of �, we know that there are
no facts that may partecipate in a possible homomorphism from qS to D with h(�t′) = �c (where �t′ is the target list of qS)
in �, (iii) �c /∈ q�

S . Putting together the above three observations, one can easily verify that they imply that �c /∈ qD ′
S , where

D ′ = � ∪�. Furthermore, since M is a pure GAV mapping and O is a DL-LiteRDFS ontology, and thus contains no assertions
with ∃R in the right-hand side for a basic role R , and since � is obtained by unfolding each atom β ∈ � with a disjunct of
ρ(β, J), it is easy to verify that CM(�)

O is such that CM(D)

O ⊆ CM(�)

O , which obviously implies that CM(D)

O ⊆ CM(D ′)
O because

� ⊆ D ′ and the left-hand side of mapping assertions are CQs. Notice that �c ∈ certD
q′
O, J

holds by assumption, and therefore

�c ∈ q′
O

CM(D)
O . Furthermore, since CM(D)

O ⊆ CM(D ′)
O and qO is a UCQ, we trivially derive that �c ∈ q′

O
CM(D′)
O as well, which, in

turn, implies that �c ∈ certD ′
q′
O, J

.

To complete the proof, consider the S-database D ′ . We have that, on the one hand, �c /∈ qD ′
S , and, on the other hand,

�c ∈ certD ′
q′
O, J

. It follows that q′
O is not a sound J -abstraction of qS , as required. �

As a specialization of Lemma 7.3 in the restricted scenario for CQJFEs, we have the following result which straightforward
follows from the above theorem.

Corollary B.1. Let J = 〈O, S, M〉 be an OBDM specification, and let qS be a CQJFE over S . If a CQ qO over O is a sound J -abstraction
of qS , then there exists a CQ q′

O over O with same target list of qO such that (i) the body of q′
O is the conjunction of at most η(qS)

atoms occurring in the body of qO (and therefore, certqO, J � certq′
O, J), and (ii) q′

O is a sound J -abstraction of qS as well.

Regarding the cost of the algorithm, we observe that the overall running time is exponential in the size of the input.
Indeed, the computation of the head completion of qS with respect to con = conM ∪ conqS is, in general, exponential with
respect to the size of the target list of qS , even when con = ∅. Furthermore, for each possible q ∈ HeadCompletion(qS , con),
the generated disjuncts added to the final UCQ qO are, potentially, exponentially many with respect to η(qS).

The next proposition shows that there exists OBDM specifications J and CQJFEs qS for which the UCQ-maximally sound
J -abstraction of qS necessarily consists of an exponential number of disjuncts with respect to η(qS) for exponentially many
source queries with respect to the size of the target list of qS .

Proposition B.1. In the restricted scenario for CQJFEs, there are OBDM specifications J and CQJFEs qS for which the UCQ-maximally
sound J -abstraction of qS is a UCQ having necessarily an exponential number of disjuncts with respect to η(qS), for exponentially
many source queries with respect to the size of the target list of qS .

Proof. We provide here a small example showing the main reason of why the UCQ-maximally sound J -abstraction of a
CQJFE qS may contain an exponential number of disjuncts with respect to η(qS), for exponentially many source queries
with respect to the size of the target list of qS .
35

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
Let J = 〈O, S, M〉 be the following OBDM specification:

• O = ∅
• S = { s1, s1,1, s1,2, s′

1,1, s
′
1,2, s2, s2,1, s2,2, s′

2,1, s
′
2,2, s3, s3,1, s3,2, s′

3,1, s
′
3,2 }

• M = { m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12 }, where:

m1: s1,1(x1, x2) ∧ s1(x1, x2) → P1,1(x1, x2),

m2: s1,2(x1, x2) ∧ s1(x1, x2) → P1,2(x1, x2),

m3: s′
1,1(x) ∧ s1(x, x) → A1,1(x),

m4: s′
1,2(x) ∧ s1(x, x) → A1,2(x),

m5: s2,1(x1, x2) ∧ s2(x1, x2) → P2,1(x1, x2),

m6: s2,2(x1, x2) ∧ s2(x1, x2) → P2,2(x1, x2),

m7: s′
2,1(x) ∧ s2(x, x) → A2,1(x),

m8: s′
2,2(x) ∧ s2(x, x) → A2,2(x),

m9: s3,1(x1, x2) ∧ s3(x1, x2) → P3,1(x1, x2),

m10: s3,2(x1, x2) ∧ s3(x1, x2) → P3,2(x1, x2),

m11: s′
3,1(x) ∧ s3(x, x) → A3,1(x),

m12: s′
3,2(x) ∧ s3(x, x) → A3,2(x).

Let qS be the following CQJFE over S: qS = {(x1, x2, x3, x4, x5, x6) | s1(x1, x2) ∧ s2(x3, x4) ∧ s3(x5, x6)}. Consider the fol-
lowing CQs occurring in HeadCompletion(qS , {}):

1. q1
S = qS = {(x1, x2, x3, x4, x5, x6) | s1(x1, x2) ∧ s2(x3, x4) ∧ s3(x5, x6)};

2. q2
S = {(x1, x1, x3, x4, x5, x6) | s1(x1, x1) ∧ s2(x3, x4) ∧ s3(x5, x6)};

3. q3
S = {(x1, x2, x3, x3, x5, x6) | s1(x1, x2) ∧ s2(x3, x3) ∧ s3(x5, x6)};

4. q4
S = {(x1, x2, x3, x4, x5, x5) | s1(x1, x2) ∧ s2(x3, x4) ∧ s3(x5, x5)};

5. q5
S = {(x1, x1, x3, x3, x5, x6) | s1(x1, x1) ∧ s2(x3, x3) ∧ s3(x5, x6)};

6. q6
S = {(x1, x1, x3, x4, x5, x5) | s1(x1, x1) ∧ s2(x3, x4) ∧ s3(x5, x5)};

7. q7
S = {(x1, x2, x3, x3, x5, x5) | s1(x1, x2) ∧ s2(x3, x3) ∧ s3(x5, x5)};

8. q8
S = {(x1, x1, x3, x3, x5, x5) | s1(x1, x1) ∧ s2(x3, x3) ∧ s3(x5, x5)}.

One can verify that for each of the CQs illustrated above there are at least eight CQs over O that must necessar-
ily appear in the UCQ-maximally sound J -abstraction of qS . For instance, consider the query q6

S in case 6. We have
that B1 = {P1,1(x1, x1), P1,2(x1, x1), A1,1(x1), A1,2(x1)}, B2 = {P2,1(x3, x4), P2,2(x3, x4)}, and B3 = {P3,1(x5, x5), P3,2(x5, x5),

A3,1(x5), A3,2(x5)} are the set of all the atoms that J -cover s1(x1, x1), s2(x1, x2), and s3(x5, x5), respectively. In particular, if
we consider the subsets B ′

1 = {A1,1(x1), A1,2(x1)} and B ′
3 = {A3,1(x1), A3,2(x5)} of B1 and B3, respectively, then it is easy to

verify that for each possible combination of atoms (β1, β2, β3) occurring in the Cartesian Product B ′
1 × B2 × B ′

3, we have
that the CQ {(x1, x1, x3, x4, x5, x5) | ∃ �y′.β1 ∧ β2 ∧ β3} is necessarily a disjunct of the UCQ-maximally sound J -abstraction of
qS , and, moreover, each of these CQs will not be produced when considering any other query in HeadCompletion(qS , {}).

By generalizing the above construction, one can see that it is always possible to compose OBDM specifications J =
〈O, S, M〉 and CQJFEs qS for which the number of source queries to consider when computing the UCQ-maximally sound
J -abstraction of qS is equal to 2

η(qS)

2 (and therefore, an exponential number of source queries with respect to the size of
the target list of qS). Furthermore, for each of these source queries, the number of disjuncts occurring in the UCQ-maximally
sound J -abstraction of qS is at least 2η(qS) (and therefore, an exponential number of disjuncts with respect to η(qS)). �
References

[1] G. Cima, M. Lenzerini, A. Poggi, Semantic characterization of data services through ontologies, in: Proc. of the 28th Int. Joint Conf. on Artificial Intelli-
gence, IJCAI, 2019, pp. 1647–1653.

[2] M. Lenzerini, Managing data through the lens of an ontology, AI Mag. 39 (2) (2018) 65–74.
[3] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, J. Data Semant. X (2008) 133–173, https://

doi .org /10 .1007 /978 -3 -540 -77688 -8 _5.
[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodríguez-Muro, R. Rosati, Ontologies and databases: the DL-Lite approach, in:

Reasoning Web. Semantic Technologies for Informations Systems – 5th Int. Summer School Tutorial Lectures (RW), in: Lecture Notes in Computer
Science, vol. 5689, Springer, 2009, pp. 255–356.
36

http://refhub.elsevier.com/S0004-3702(23)00122-4/bibEF74A3FD6FBF4F4CF700C7C707BDC411s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibEF74A3FD6FBF4F4CF700C7C707BDC411s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibD19B3BA37F4F6A3286CC68C65309D29Es1
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib8AB2A61410D11A3E1AFFA99CB3B79887s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib8AB2A61410D11A3E1AFFA99CB3B79887s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib8AB2A61410D11A3E1AFFA99CB3B79887s1

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
[5] M. Bienvenu, Ontology-mediated query answering: Harnessing knowledge to get more from data, in: Proc. of the 25th Int. Joint Conf. on Artificial
Intelligence, IJCAI, 2016, pp. 4058–4061.

[6] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Zakharyaschev, Ontology-based data access: a survey, in: Proc. of the 27th Int.
Joint Conf. on Artificial Intelligence, IJCAI, 2018, pp. 5511–5519.

[7] M. Ortiz, Improving data management using domain knowledge, in: Proc. of the 27th Int. Joint Conf. on Artificial Intelligence, IJCAI, 2018,
pp. 5709–5713.

[8] M.J. Carey, N. Onose, M. Petropoulos, Data services, Commun. ACM 55 (6) (2012) 86–97.
[9] D. Machan, DaaS: the new information goldmine, Wall St. J. (2009) 1–3.

[10] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman,
A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe, J.
Heringa, P.A.C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik,
S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P.
Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, The FAIR guiding principles for scientific data management and stewardship, Sci. Data 3 (2016).

[11] Z. Zheng, J. Zhu, M.R. Lyu, Service-generated big data and big data-as-a-service: an overview, in: Proc. of the IEEE Int. Congress on Big Data (BigData
Congress), 2013, pp. 403–410.

[12] G. Cima, Preliminary results on ontology-based open data publishing, in: Proc. of the 30th Int. Workshop on Description Logic (DL), in: CEUR Electronic
Workshop Proceedings, vol. 1879, 2017, http://ceur-ws .org/.

[13] G. Cima, M. Lenzerini, A. Poggi, Semantic technology for open data publishing, in: Proc. of the 7th Int. Conf. on Web Intelligence, Mining and Semantics,
WIMS, 2017, p. 1.

[14] R.M. Aracri, A.M. Bianco, R. Radini, M. Scannapieco, L. Tosco, F. Croce, M. Lenzerini, D.F. Savo, On the experimental usage of ontology-based data access
for the Italian integrated system of statistical registers: quality issues, in: European Conference on Quality in Official Statistics, 2018.

[15] C. Lutz, J. Marti, L. Sabellek, Query expressibility and verification in ontology-based data access, in: Proc. of the 16th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR), 2018, pp. 389–398.

[16] D. Lembo, R. Rosati, V. Santarelli, D.F. Savo, E. Thorstensen, Mapping repair in ontology-based data access evolving systems, in: Proc. of the 26th Int.
Joint Conf. on Artificial Intelligence, IJCAI, 2017, pp. 1160–1166.

[17] Z. Abedjan, L. Golab, F. Naumann, Data profiling: a tutorial, in: Proc. of the 2017 ACM Int. Conf. on Management of Data, SIGMOD, 2017, pp. 1747–1751.
[18] Z. Abedjan, L. Golab, F. Naumann, T. Papenbrock, Data Profiling, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2018.
[19] M. Ortiz, Ontology-mediated queries from examples: a glimpse at the dl-lite case, in: Proceedings of the Fifth Global Conference on Artificial Intelli-

gence, GCAI 2019, in: EPiC Series in Computing, vol. 65, 2019, pp. 1–14.
[20] G. Cima, F. Croce, M. Lenzerini, Query definability and its approximations in ontology-based data management, in: Proc. of the 30th Int. Conf. on

Information and Knowledge Management, CIKM 2021, ACM, 2021, pp. 271–280.
[21] I.L. Salvadori, A. Huf, F. Siqueira, Semantic data-driven microservices, in: Forty-Third IEEE Annual Computer Software and Applications Conference,

COMPSAC 2019, IEEE, 2019, pp. 402–410.
[22] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: the DL-Lite

family, J. Autom. Reason. 39 (3) (2007) 385–429.
[23] M. Lenzerini, Data integration: a theoretical perspective, in: Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems,

PODS, 2002, pp. 233–246.
[24] A. Doan, A.Y. Halevy, Z.G. Ives, Principles of Data Integration, Morgan Kaufmann, 2012.
[25] B.C. Grau, A possible simplification of the semantic web architecture, in: Proc. of the 13th Int. World Wide Web Conf., WWW, 2004, pp. 704–713.
[26] G. Cima, M. Lenzerini, A. Poggi, Answering conjunctive queries with inequalities in DL-LiteR , in: Proc. of the 34th AAAI Conf. on Artificial Intelligence,

AAAI 2020, 2020, pp. 2782–2789.
[27] G. Cima, Abstraction in Ontology-Based Data Management, Frontiers in Artificial Intelligence and Applications, vol. 348, IOS Press, 2022, http://ebooks .

iospress .nl /bookseries /frontiers -in -artificial -intelligence -and -applications.
[28] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence, IJCAI, 2005, pp. 364–369.
[29] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Query processing under GLAV mappings for relational and graph databases, Proc. VLDB Endow.

6 (2) (2012) 61–72.
[30] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries using views, in: Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp. on Principles

of Database Systems, PODS, 1995, pp. 95–104.
[31] A.Y. Halevy, Answering queries using views: a survey, VLDB J. 10 (4) (2001) 270–294.
[32] G. Cima, M. Console, M. Lenzerini, A. Poggi, Abstraction in data integration, in: Proc. of the 36th Annual ACM/IEEE Symp. on Logic in Computer Science,

LICS 2021, IEEE, 2021, pp. 1–11.
[33] F.N. Afrati, M. Gergatsoulis, T. Kavalieros, Answering queries using materialized views with disjunction, in: Proc. of the 7th Int. Conf. on Database

Theory, ICDT, in: Lecture Notes in Computer Science, vol. 1540, Springer, 1999, pp. 435–452.
[34] O.M. Duschka, M.R. Genesereth, Query planning with disjunctive sources, in: Proc. of the AAAI-98 Workshop on AI and Information Integration, AAAI

Press, 1998.
[35] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley Publ. Co., 1995.
[36] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation and Applications,

Cambridge University Press, 2003.
[37] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge University Press, 2017.
[38] T. Imielinski, W. Lipski Jr., Incomplete information in relational databases, J. ACM 31 (4) (1984) 761–791.
[39] P. Beame, P. Koutris, D. Suciu, Skew in parallel query processing, in: Proc. of the 33rd ACM SIGACT SIGMOD SIGAI Symp. on Principles of Database

Systems, PODS, 2014, pp. 212–223.
[40] P. Koutris, P. Beame, D. Suciu, Worst-case optimal algorithms for parallel query processing, in: Proc. of the 19th Int. Conf. on Database Theory, ICDT

2016, in: LIPIcs, vol. 48, 2016, 8.
[41] B. Ketsman, D. Suciu, A worst-case optimal multi-round algorithm for parallel computation of conjunctive queries, in: Proc. of the 36th ACM SIGMOD-

SIGACT-SIGAI Symp. on Principles of Database Systems, PODS 2017, 2017, pp. 417–428.
[42] E.F. Codd, A relational model of data for large shared data banks, Commun. ACM 13 (6) (1970) 377–387.
[43] M. Benedikt, P. Bourhis, L. Jachiet, E. Tsamoura, Balancing expressiveness and inexpressiveness in view design, in: Proc. of the 17th Int. Conf. on

Principles of Knowledge Representation and Reasoning, KR 2020, 2020, pp. 109–118.
[44] A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries in relational data bases, in: Proc. of the 9th ACM Symp. on Theory of

Computing, STOC, 1977, pp. 77–90.
[45] Y. Sagiv, M. Yannakakis, Equivalences among relational expressions with the union and difference operators, J. ACM 27 (4) (1980) 633–655.
[46] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL 2 web ontology language profiles, in: W3C Recommendation, World Wide Web

Consortium, second edition, 2012, available at http://www.w3 .org /TR /owl2 -profiles/.
37

http://refhub.elsevier.com/S0004-3702(23)00122-4/bib14D9F21D61525DE5B2D36D61E5ADA6F8s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib14D9F21D61525DE5B2D36D61E5ADA6F8s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibE88031665D57403DC849BDAFF1867392s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibE88031665D57403DC849BDAFF1867392s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibA187CCF9375EAABB2AF894064720E2B4s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibA187CCF9375EAABB2AF894064720E2B4s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibA3137B3C4EBB50F2F339BB61A5B4F873s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibCEEF52DC595D945A7DBAD87DFA5BFD08s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib901022C19B61E6861B59F8EDA98DB8F9s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib901022C19B61E6861B59F8EDA98DB8F9s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib901022C19B61E6861B59F8EDA98DB8F9s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib901022C19B61E6861B59F8EDA98DB8F9s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib901022C19B61E6861B59F8EDA98DB8F9s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib79BBC7C00D993E8AA1FA51A84A1D383Cs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib79BBC7C00D993E8AA1FA51A84A1D383Cs1
http://ceur-ws.org/
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib5B2C3E6CDE2B2F660C76BD69AD0A70CBs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib5B2C3E6CDE2B2F660C76BD69AD0A70CBs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib273FE66E4BDDA3A2E704A93F3B76F617s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib273FE66E4BDDA3A2E704A93F3B76F617s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib071E8184EFA12AB6EC9CF7ED53FBF7EDs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib071E8184EFA12AB6EC9CF7ED53FBF7EDs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibD2EBA0420C2C1FA1C882AA0C9E353DE7s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibD2EBA0420C2C1FA1C882AA0C9E353DE7s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibDA12DB709A5458F0919A473B7204E548s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib7F4B3F2BC8A7BC335F1A86F7C4E7B52As1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib0CCB1A53E2578B736BD40C8D99181E81s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib0CCB1A53E2578B736BD40C8D99181E81s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibC41DF0E7CB7EA06695E25F4AE3F10D34s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibC41DF0E7CB7EA06695E25F4AE3F10D34s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibE36570633840A1660424A9CAE1A07F00s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibE36570633840A1660424A9CAE1A07F00s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib7BF7E85658B4839B75E54A972DF07009s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib7BF7E85658B4839B75E54A972DF07009s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib8911F3715ADFD41D2C8B53FBD8C1C438s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib8911F3715ADFD41D2C8B53FBD8C1C438s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibD23ADC75D9E8608EEDEC2807803A08C5s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib76886E98A2CAA56528975F50F4E55C46s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib441BC2448B84400190F555254A37A121s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib441BC2448B84400190F555254A37A121s1
http://ebooks.iospress.nl/bookseries/frontiers-in-artificial-intelligence-and-applications
http://ebooks.iospress.nl/bookseries/frontiers-in-artificial-intelligence-and-applications
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib908EBFE81111CCC4D43F9F8AC23E5832s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib952866BECB08CA6D6E7C17BC13FC264Fs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib952866BECB08CA6D6E7C17BC13FC264Fs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib4FC1CDE358342AEA15280B286E2A1D6As1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib4FC1CDE358342AEA15280B286E2A1D6As1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibD529F33E659BF4D5731F8BD9FF073832s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib1B89FA65F6F1091FC5F374CD942D97DDs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib1B89FA65F6F1091FC5F374CD942D97DDs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibF58651691C7310998BA931787BAE1914s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibF58651691C7310998BA931787BAE1914s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib089887AD27FBDFAE3F49B191BABC91B5s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib089887AD27FBDFAE3F49B191BABC91B5s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibA720579C18D58BC707B4A8282919256Es1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib2FC83D0E8B5FA145273A4419B215C08Cs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib2FC83D0E8B5FA145273A4419B215C08Cs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib54355C92AD37191C29430FD2EABE406Fs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib93E9D6763A6F5D9974AA881675577799s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibB69CDF1F180ADF35EE728785AD33324Cs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibB69CDF1F180ADF35EE728785AD33324Cs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib8F419048A13E47C17FE075E5AF0B67D1s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib8F419048A13E47C17FE075E5AF0B67D1s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib9CAD6BE7432EDDBC46D1710519B7020Fs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib9CAD6BE7432EDDBC46D1710519B7020Fs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib534BD5BC5A0B37F47937BA1AB4EE6AC0s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibB6426C41230EBECCE711FC217E676A1Ds1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibB6426C41230EBECCE711FC217E676A1Ds1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibAFD6FE6E27FF6CA994E7F93AFE3D7C32s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibAFD6FE6E27FF6CA994E7F93AFE3D7C32s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib250F4C8F45DA4BD053DC75344860D27Cs1
http://www.w3.org/TR/owl2-profiles/

G. Cima, A. Poggi and M. Lenzerini Artificial Intelligence 323 (2023) 103976
[47] D. Brickley, R.V. Guha, RDF schema 1.1, W3C recommendation, world wide web consortium, available at https://www.w3 .org /TR /2014 /REC -rdf -schema -
20140225/, 2014.

[48] G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, Using ontologies for semantic data integration, in: A Comprehensive Guide Through the
Italian Database Research over the Last 25 Years, Springer, 2018, pp. 187–202.

[49] D. Maier, A.O. Mendelzon, Y. Sagiv, Testing implications of data dependencies, ACM Trans. Database Syst. 4 (4) (1979) 455–469.
[50] C. Beeri, M.Y. Vardi, A proof procedure for data dependencies, J. ACM 31 (4) (1984) 718–741.
[51] A. Calì, G. Gottlob, M. Kifer, Taming the infinite chase: query answering under expressive relational constraints, J. Artif. Intell. Res. 48 (2013) 115–174.
[52] B. ten Cate, L. Chiticariu, P.G. Kolaitis, W.C. Tan, Laconic schema mappings: computing the core with SQL queries, Proc. VLDB Endow. 2 (1) (2009)

1006–1017.
[53] R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data exchange: semantics and query answering, Theor. Comput. Sci. 336 (1) (2005) 89–124.
[54] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, View-based query processing: on the relationship between rewriting, answering and losslessness,

in: Proc. of the 10th Int. Conf. on Database Theory, ICDT, in: Lecture Notes in Computer Science, vol. 3363, 2005, pp. 321–336.
[55] M. Friedman, A. Levy, T. Millstein, Navigational plans for data integration, in: Proc. of the 16th Nat. Conf. on Artificial Intelligence, AAAI, 1999,

pp. 67–73.
[56] M.R. Garey, D.S. Johnson, L.J. Stockmeyer, Some simplified NP-complete graph problems, Theor. Comput. Sci. 1 (3) (1976) 237–267.
[57] L.J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1) (1976) 1–22.
[58] A. Miles, J.R. Pérez-Agüera, SKOS: simple knowledge organisation for the web, Cat. Classif. Q. 43 (3–4) (2007) 69–83.
[59] A. Miles, S. Bechhofer, SKOS simple knowledge organization system, W3C recommendation, world wide web consortium, available at http://www.w3 .

org /TR /skos -reference, 2009.
[60] S. Weibel, J.A. Kunze, C. Lagoze, M. Wolf, Dublin core metadata for resource discovery, Req. Comments 2413 (1998) 1–8.
[61] K. Knopp, Theory of Functions, Parts I and II, Dover Publications, 1996.
[62] C.H. Papadimitriou, Computational Complexity, Addison Wesley Publ. Co., 1994.
[63] G. Cima, D. Lembo, R. Rosati, D.F. Savo, Controlled query evaluation in description logics through instance indistinguishability, in: Proc. of the 29th Int.

Joint Conf. on Artificial Intelligence, IJCAI 2020, 2020, pp. 1791–1797.
[64] A.Y. Levy, A. Rajaraman, J.J. Ordille, Query answering algorithms for information agents, in: Proc. of the 13th Nat. Conf. on Artificial Intelligence, AAAI,

1996, pp. 40–47.
[65] A. Calì, D. Calvanese, G. De Giacomo, M. Lenzerini, Data integration under integrity constraints, in: Proc. of the 14th Int. Conf. on Advanced Information

Systems Engineering, CAiSE, in: Lecture Notes in Computer Science, vol. 2348, Springer, 2002, pp. 262–279.
38

https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib87BD83C8DD6C5EAA21FE7D859A0A561Ds1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib87BD83C8DD6C5EAA21FE7D859A0A561Ds1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib071AA1EB7B3FD6EC97868FC73B331FB4s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibB9E65B36C3A14739DAAC590EC2582545s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib5ED17372678952ED5E65009418D59869s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib3A3AE4D29C04569C8E90C59592963AF8s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib3A3AE4D29C04569C8E90C59592963AF8s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib631ABD8925FB087FB2F330BCD0955FE9s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib5CDD0C894B22B339153C6A7C9AA1A79Bs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib5CDD0C894B22B339153C6A7C9AA1A79Bs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibC84C4E1DCC4D9771512DD877D2AF1F13s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibC84C4E1DCC4D9771512DD877D2AF1F13s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib3D1D3345CF37B759E988401623522232s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib688E5930C272DB70F1231B85B7372817s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibCA3F8B6C402AEEEB10015EBE24D38E88s1
http://www.w3.org/TR/skos-reference
http://www.w3.org/TR/skos-reference
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibFFA9D8EE003D29328DB03B688225179Fs1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib395D495D36A64BC27D0B3B7F6897EA4Es1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib4F29FB5E00C951CC96787B83A417E6E8s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib691C4F1C8F52649ACD1EBC9398026BD4s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib691C4F1C8F52649ACD1EBC9398026BD4s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib340C1CE52FFBEFE973B4CE8258A269C1s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bib340C1CE52FFBEFE973B4CE8258A269C1s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibF4DCC59642508ECD3B712B224DB9B8D7s1
http://refhub.elsevier.com/S0004-3702(23)00122-4/bibF4DCC59642508ECD3B712B224DB9B8D7s1

	The notion of Abstraction in Ontology-based Data Management
	1 Introduction
	2 Preliminaries
	3 Framework
	4 Complete abstractions
	4.1 Verification
	4.2 Computation

	5 Sound abstractions
	5.1 Verification
	5.2 Computation

	6 Perfect abstractions
	6.1 Verification
	6.2 Computation

	7 Sound abstractions in the restricted scenario
	7.1 Containment of UCQJFEs
	7.2 Verification
	7.3 Computation
	7.4 The restricted scenario for CQJFEs

	8 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Rest of the proof of Theorem 5.2 (cases 3, 4, and 5)
	Appendix B Sound abstractions in the restricted scenario for CQJFEs
	B.1 Verification
	B.2 Computation

	References

