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Abstract— In this paper we consider the distributed infinite-
horizon Linear-Quadratic-Gaussian optimal control problem
for discrete-time systems over networks. In particular, the
feedback controller is composed of local control stations, which
receives some measurement data from the plant process and
regulates a portion of the input signal. We provide a solution
when the nodes have information on the structural data of
the whole network but takes local actions, and also when only
local information on the network are available to the nodes. The
proposed solution is arbitrarily close to the optimal centralized
one (in terms of cost index) when the intermediate consensus
steps are sufficiently large.
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I. INTRODUCTION

Technological developments in ad hoc networking and
the availability of low-cost reliable computing, data storage,
and sensing devices have made scenarios possible where the
coordination of many subsystems extends the range of human
capabilities [33]. In this context, large-scale cyber-physical
systems play a fundamental role in the current and future
era of smart industries, smart cities, smart homes and smart
health care [20]. In these applications, the ability of a net-
work system to fuse information, compute common estimates
of unknown quantities, and agree on a common view of the
environment in a decentralized/distributed fashion is critical.
In particular, sensor networks and multi-agent systems, com-
posed by a set of homogeneous or heterogeneous systems
that communicate over a network, represented by a graph,
have attracted much attention in recent years due to their
potential application in many scenarios, for instance moni-
toring through wireless sensor networks [39], [22], formation
control of mobile vehicles [26], [3], distributed optimization
[19], cooperative control [2], [25], power networks [14], and
also to systems with time-delay [23], [24], among many
others.

In this paper we focus on the distributed optimal con-
trol problem of discrete-time linear stochastic systems with
Gaussian noise over sensor networks. A distributed controller
is composed of local control stations which receive some
measurement data from the plant process and regulates a
portion of the input signal by exchanging data among its
neighbors and without the need of converging some infor-
mation in specific points of the network ([40], [21], [35],
[28], [16]). In particular, we adopt the distributed discrete-
time framework where the neighboring nodes are able to
communicate with some intermediate steps between two
time instant (e.g., [1], [31], [17], [32]). Indeed, a dynamic
averaging of some important terms is performed by the
local nodes. As for the centralized classical optimal control

problem with incomplete information (i.e. when the state
is not completely available), the distributed optimal control
descends from the distributed optimal filter.

Although a lot of work has been done in the last decades,
e.g. [38], [12], [27], [13], [29], [18], to the best of our
knowledge only the recent result of [4] is able to provide
a complete analysis on the stability and the optimality of
the distributed filter for discrete-time linear system with
Gaussian noise over sensor networks (with intermediate
consensus steps). For, in the spirit of these recent advances,
this paper tackles the distributed infinite-horizon optimal
control problem for Gaussian discrete-time linear systems
with partial state information. We note that this problem
faces a fundamental difficulty. In fact, it is not possible to
simply resort to the results of [4] since each node can not
implement the full control law (which is composed by the
local input signals) received by the plant (see Remark 3 for
further details). We exploit in the paper both the cases in
which global information of the system parameters and local
information of the system parameters only of the network are
available.

Finally, for the continuous-time analog we refer to [7] for
the optimal filtering problem and to [2], [15] for the optimal
control problem.

Notation. R and C denote real and complex numbers.
For a square matrix A, tr(A) is the trace and σ(A) is the
spectrum. A is said to be Hurwitz stable if σ(A) ⊂ C−,
the set of complex numbers with negative real part. E{·}
denotes expectation. ⊗ is the Kronecker product between
vectors or matrices. The operators rowi(), coli(), diagi()
denote respectively the horizontal, vertical and diagonal
compositions of matrices and vectors indexed by i. Let
S(n) ∈ Rn×n be the set of symmetric matrices of size n,
then P(n) (resp., P+(n)) ⊂ S(n) denotes the set of positive
semi-definite (definite) matrices in S(n). We denote In the
identity matrix of size n and by Un = 1n1

⊤
n , 1n = colni=1(1),

the square matrix of size n having 1 in each entry.

II. PROBLEM FORMULATION AND PRELIMINARIES

We use a graph G = (V, E) to describe the information
exchange between the N nodes, where V = {1, 2 . . . , N} is
the set of vertices representing the N agents and E ⊆ V ×V
is the set of edges of the graph. An edge of G is denoted
by (i, j), representing that nodes i and j can exchange
information between them. The graph is undirected, that is,
the edges (i, j) and (j, i) ∈ E are considered to be the same.
Two nodes i and j, with i ̸= j, are neighbors to each other
if (i, j) ∈ E . The set of neighbors of node i is denoted by
N (i) := {j ∈ V : (j, i) ∈ E}. A path is a sequence of
connected edges in a graph. A graph is connected if there is



a path between every pair of vertices. The adjacency matrix
A of a graph G is an N×N matrix, whose (i, j)-th entry is 1
if (i, j) is an edge of G and 0 otherwise. The degree matrix
D of G is a diagonal matrix whose i-th diagonal element
is equal to the cardinality of N (i), denoted #N (i). The
Laplacian of G is defined to be a N × N matrix L such
that L = −A+D. L is symmetric if and only if the graph is
undirected. Moreover, 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN (L),
where λi(L) denotes an eigenvalue of L, if and only if the
graph is connected. An eigenvector associated to λ1(L) is
1N .

Consider the process

xk+1 = Axk +

N∑

i=1

B(i)u
(i)
k + fk, (1)

y
(i)
k =C(i)xk + g

(i)
k , i = 1, . . . , N, (2)

where xk ∈ Rn is the state of the system, y(i)k ∈ Rqi , qi ≥ 0,
is the measurement received by sensor i-th, u(i)

k ∈ Rpi , pi ≥
0, is the input signal sent by sensor i-th, and fk and g

(i)
k , i =

1, . . . , N , are zero-mean white noises, mutually independent
with covariance respectively Q ∈ P+(n), R(i) ∈ P+(qi)
i = 1, . . . , N . The matrices Q and R = diagi(Ri) are non-
singular. Also x̄0 is random with mean x̄0 := E{x̄0} and
covariance Σx̄0 := E{(x0 − x̄0)(x0 − x̄0)

⊤}. Moreover, let
us define B = rowi(B

(i)), C = coli(C(i)), uk = coli(u
(i)
k ),

yk = coli(y
(i)
k ), gk = coli(g

(i)
k ).

The infinite-horizon cost function is given by

J = lim
T→∞

1

T
E

{
T∑

k=1

x⊤
k Qcxk + u⊤

k Rcuk

}
, (3)

where Qc and Rc = diagi{R
(i)
c } are positive semi-definite

matrices (strictly positive in the case of Rc).
In order to design a distributed asymptotically optimal

output-feedback control, we need the following assumptions.
Assumption 1: The underlying graph G is undirected and

connected.
Assumption 2: The couples (A,B) and (A,Qc) are con-

trollable, and the couples (C,A), (Rc, A) are observable.
Assumption 3: Matrices A, B(i), C(i), Q, R(i), Qc, R(i)

c

are available data for the node i ∈ {1, . . . , N} of the
network.

We point out that Assumption 2 is a standard global con-
trollability/observability assumption, and we do not assume
anything for the single pairs (A,B(i)) and (C(i), A). As
regard the knowledge on the system matrices of the single
node, Assumption 3 corresponds to local information only
for the nodes.

The aim of this paper is the following.
Goal. Find the distributed optimal output-feedback control
policy u

(i)
k for each sensor i = 1, . . . , N , of system (1)–(2)

such that the cost function J defined in (3) is minimized.
The term distributed explicitly refers to the constraints on

communication local knowledge of the nodes (as specified
by Assumption 3).

We conclude this section by noticing that the model (1)–
(2) can be written in a compact form as

xk+1 = Axk +Buk + fk, (4)
yk = Cxk + gk, (5)

and, in order to clarify some notations, we recall the follow-
ing standard result.

Proposition 1 ([34]):
• Given the system (4) with the cost function (3), the

optimal state-feedback control uk is given by

u⋆
k = −Lxk, (6)

where
L = R−1

c B⊤S (7)

with S the solution to the algebraic Riccati equation

S = A⊤ (S − SB(B⊤SB +Rc)
−1B⊤S

)
A+Qc.

(8)
• Given the system (4)–(5) with the cost function (3), the

optimal output-feedback control uk is given by

u⋆
k = −L x̌k (9)

where L is again given by (7) and x̌k is the optimal
estimate (in the minimum variance sense) provided by
the centralized asymptotic Kalman filter, i.e. the Kalman
filter that employs all the measurements y

(i)
k for all i =

1, . . . , N , namely

x̌k+1 = x̌k+1|k +K(yk+1 − Cx̌k+1|k) (10)
x̌k+1|k = Ax̌k +Buk. (11)

K = PC⊤R−1, (12)

where P is the solution to the algebraic Riccati equation

P = A
(
P − PC⊤(CPC⊤ +R)−1CP

)
A⊤ +Q.

(13)
Moreover, the (centralized) optimal cost is given by

J⋆ = tr{SQ}+ tr{PL⊤B⊤SA}. (14)
We point out that we use the notation x̌ to denote the ideal
centralized optimal Kalman filter.

With reference to the distributed optimal control problem,
we refer to the control (9) also as the centralized output-
feedback LQG Regulator, since it make use of all the mea-
surements of the network, that means it is not a distributed
solution.

III. DISTRIBUTED INFINITE-HORIZON LQG REGULATOR

In this section we shall design a distributed counterpart of
Proposition 1. We start with the simple case when the nodes
have global information on the system matrices and then, we
shall see how to extend this solution to the more interesting
case when local information only are available (Assumption
3). For, let us consider the following assumption.

Assumption 4: Matrices A, B, C, Q, R, Qc, Rc are
available data for the node i ∈ {1, . . . , N} of the network.

Also, let us consider the state-feedback case as indicated
in the following lemma for which we omit the trivial proof.

Lemma 1: Given the system (1), the cost function (3) with
(A,B) and (A,Qc) controllable pairs and the couple (Rc, A)



observable pair, a network with the topology specified by a
graph G, let Assumption 4 holds true. The optimal distributed
state-feedback control u(i)

k for each i = 1, . . . , N , is given
by

u
(i)
k = −L(i)xk, (15)

where L(i) is the i-th row of the gain L given by (7).
Remark 1: We note that because of Assumption 4, each

node i can compute off-line the gain L(i) since it can
compute (7) and (8).

A. Distributed optimal control with global information

We are now able to prove the main theorem of the paper
which solves the infinite-horizon distributed optimal output-
feedback control problem with global information on the
system parameters (i.e. Assumption 4).

Theorem 1: Given the system (1)–(2) with the cost func-
tion (3), a network with the topology specified by a graph G
with N nodes, let Assumptions 1, 2 and 4 hold true. Consider
the distributed output-feedback control for i = 1, . . . , N
given by

u
(i)
k = −L(i)x̂

(i)
k , (16)

where L(i) is the i-th row of the gain L of (7) and x̂
(i)
k given

by

v
(i)
k = −

N∑

j=1

B(j)L(j)x̂
(i)
k (17)

x̂
(i)
k+1|k = Ax̂

(i)
k + v

(i)
k (18)

{
z
(i)
k+1,0 = x̂

(i)
k+1|k +K(i)(y

(i)
k+1 − Cix̂

(i)
k+1|k),

z
(i)
k+1,h+1 = z

(i)
k+1,h + 1

δ

∑
j∈N (i)(z

(j)
k+1,h − z

(i)
k+1,h)

(19)

x̂
(i)
k+1 = z

(i)
k+1,γ , (20)

where h = 0, . . . , γ − 1, K(i) := NPC(i)⊤R(i)−1
, P is the

solution of (13), δ > λN (L). Then the infinite-horizon cost
function J of (3) depending on the parameter γ ∈ N satisfies

lim
γ→+∞

J = J⋆, (21)

where J⋆ is the optimal cost (14) of the centralized LQG
Regulator.
A sketch of the proof is given in the Appendix.

In other words, Theorem 1 states that, as the parameter
γ of the filter tends to +∞, the distributed control law (16)
is equivalent to the centralized optimal solution provided by
the control law (9).

Remark 2: We notice that for the node i-th, the compu-
tation of the matrices B(j) and L(j) for j = 1, . . . , N in
(17), and K(i) in (28) is possible because of Assumption 4.
In the next section we shall substitute the latter assumption
with Assumption 3, i.e. local knowledge instead of global
knowledge.

Remark 3: The role of v
(i)
k in (17) is to mimic

the full control input Buk =
∑N

i=1 B
(i)u

(i)
k =

−∑N
j=1 B

(j)L(j)x̂
(j)
k . In fact, it is easy to see that if the

input term v
(i)
k were set to Buk, then the estimation error

of the filter would coincide with the one of [4] and also the
optimality of the control would trivially follows. However,
the latter choice of v

(i)
k is not feasible since each node i

would require the control u(j)
k for all j = 1, . . . , N , which

is not the case.

B. Distributed LQG regulator with local information
In order to implement the control law of Theorem 1 each

node i ∈ V needs to compute (or to know) the value of
the matrices S and P , that depend on all the nodes of the
graph. Although this solution tackles the problem with the
paradigm “known-global-act-local”, it may seem to impair a
truly distributed computation in which each node has local
information only. Thus the aim of this section is to show
how the solution of Theorem 1 can be implemented in a
completely distributed manner in order to solve the problem
with the paradigm “known-local-act-local”. In particular, we
relax Assumption 4 by assuming that each node i has only
local information as clarified by Assumption 3.

In the first place it is worth remarking that the computation
of S, solution to the algebraic Riccati equation (8), and
P , solution to the algebraic Riccati equation (13) does not
depend on the size of the graph. Moreover, the algebraic
Riccati equation (8) can be written as

S = ÃCSÃ⊤
C + (I − SBR−1

c B⊤)Qc(I − SBR−1
c B⊤)⊤

+ SBR−1
c B⊤S (22)

with ÃC := (I − SBR−1
c B⊤)A⊤, and the algebraic Riccati

equation (13) can be written as

P = ACPA⊤
C + (I − PC⊤R−1C)Q(I − PC⊤R−1C)⊤

+ PC⊤R−1CP (23)

with AC := (I − PC⊤R−1C)A. Thus, it is clear from
(22) and (23) that all the nodes can compute S and P
provided that the values of F := BR−1

c B⊤ (for (22))
and G := C⊤R−1C (for (23)) are available. We note that
F can be written as F =

∑N
i=1 B

(i)R
(i)
c

−1
B(i)⊤ and,

when measurement noises are independent (which is our
case), G can be expressed similarly with the sum G =∑N

i=1 C
(i)⊤R(i)−1

C(i).
A distributed computation of F and G can thus be

achieved by resorting to distributed algorithms to compute
aggregate functions over graphs [30], [11]. In Fig. 1 we
report an algorithm derived from the Protocol Push-Sum
of [30] to compute G in a distributed way. The main
difference is that [30] is a gossip algorithm with peer-to-
peer communication, whereas the algorithm in Fig. 1 is a
diffusion protocol with the node that broadcasts messages
to all its neighbors. The speed of convergence of the local
estimate to the true value of G can be analyzed in the light
of the results of [30]. This estimation phase can be executed
before the filtering phase for static graphs, or it can be kept
running during the execution of the filter in order to adjust
the value of S and G in presence of a dynamical graph where
nodes appear or disconnect. Finally, the value of N can be
computed by the same distributed algorithm when it is not
known at the nodes. More details can be found in [11]. We
conclude with the summarizing corollary.



Algorithm Broadcast Push-Sum

1: In all nodes set s0,i = B(i)R
(i)
c

−1
B(i)⊤ and w0,i = 0,

except for w0,1 = 1.
2: At time 0 each nodes sends (s0,i, w0,i) to itself.
3: At time t each node executes:

1. Let {sr, wr} be the pairs sent to i in round t−1.
2. Let st,i =

∑
r sr, wt,i =

∑
r wr.

3. Send to all neighbors and to i (yourself):
(

1∣∣N (i)
∣∣+ 1

st,i,
1∣∣N (i)
∣∣+ 1

wt,i

)

4. st,i/wt,i is the estimate of F at step t (if wt,i = 0
the estimate is not specified or 0).

Fig. 1. A modified version of the Push-Sum algorithm of [30] that
makes possible the distributed computation of F (and G if s0,i =

C(i)⊤R(i)−1
C(i)).

Corollary 2: Given the system (1)–(2) with the cost func-
tion (3), a network with the topology specified by a graph G
with N nodes, let Assumptions 1, 2 and 3 hold true. Consider
the distributed output-feedback control for i = 1, . . . , N
given by

u
(i)
k = −L(i)x̂

(i)
k , (24)

where L(i) = R
(i)
c

−1
B(i)⊤S is the i-th row of the gain L of

(7) when the term F := BR−1
c B⊤ in (22) is computed by

each node i ∈ V through the Push-Sum algorithm of Figure
1, and x̂

(i)
k given by

v
(i)
k = −FSx̂

(i)
k (25)

x̂
(i)
k+1|k = Ax̂

(i)
k + v

(i)
k (26)

{
z
(i)
k+1,0 = x̂

(i)
k+1|k +K(i)(y

(i)
k+1 − Cix̂

(i)
k+1|k),

z
(i)
k+1,h+1 = z

(i)
k+1,h + 1

δ

∑
j∈N (i)(z

(j)
k+1,h − z

(i)
k+1,h)

(27)

x̂
(i)
k+1 = z

(i)
k+1,γ , (28)

where h = 0, . . . , γ − 1, F (and thus S) is computed again
through the algorithm of Fig. 1, K(i) := NPC(i)⊤R(i)−1

,
P is the solution of (23) where the term G := C⊤R−1C
is computed by each node i ∈ V through the algorithm of
Figure 1, δ > λN (L). Then the infinite-horizon cost function
J of (3) depending on the parameter γ ∈ N satisfies

lim
γ→+∞

J = J⋆, (29)

where J⋆ is the optimal cost (14) of the centralized LQG
Regulator.

Remark 4: We note that (25) is the same as (17) since∑N
j=1 B

(j)L(j) = BL = FS, but we stress the fact that F
and consequently S can be computed through the distributed
algorithm of Fig. 1.

IV. EXAMPLE

We consider the academic, but challenging, example of [2]
in which the network topology is characterized in Figure 2,

the system matrices are given by

A =



−0.1 0 0 −1 1 0 0 1
2.5 −0.5 −1.6 −1.5 2 0 1.6 1.5
2.6 −0.5 −0.7 −1.5 1.5 0.5 0.5 1.5
−2 0 1 0 −0.1 0 0 0
0 0 0 0 −0.1 0 0 0

−0.5 0 1 0 0.5 −0.5 −1 0
3.8 −0.5 −1.8 −0.5 2 0.5 1.6 0.5
−1 0 0 0 −1 0 1 0


,

and the state and output noises have intensity Q = 0.09 · In
and R(i) = 0.36 with i = 1, . . . , 9. The output and input
matrices of the nodes are C1 = [0, 0, 1, 0, 0, 0, 0, 0], C2 =
[−2, 1, 1, 1,−1, 0,−1,−1], C3 = [1, 0, 0, 0, 0, 0, 0, 0], C4 =
[−3, 1, 2, 1,−1, 0,−1,−1], C5 = [1, 0,−1, 0, 1, 0, 1, 0],
C6 = 2,−1,−1,−1, 1, 1, 1, 1], C7 = [0, 0, 0, 0, 1, 0, 0, 0],
C8 = [1, 0,−1,−1, 2, 0, 1, 1], C9 = [0, 0, 1, 1,−1, 0, 0, 0],
and Bi = C⊤

i for all i = 1, . . . , 9. Also, the cost
index (3) has Qc = I7 and Rc = I9. This setting
is very general since the couple (A,B(i)) (respectively
(C(i), A)) is not controllable (respectively observable) for
all i ∈ V . Also, controllability and observability prop-
erty are not satisfied even locally, namely the couple(
A, rowj∈Ni∪{i}(Bj)

)
is not controllable for any i ∈ V

and the couple
(
colj∈Ni∪{i}(C

(j)), A
)

is not observable for
any i ∈ V . However, the hypotheses of Assumption 2 are
satisfied, in particular (A,B) is controllable and (C,A) is
observable.

When the control laws (16) are applied to the plant, in
accordance with the expected optimal cost (14) of the optimal
centralized solution, we define the pseudo-cost function

J̄γ = tr{SQ}+ tr{P̄ (γ)L⊤B⊤SA}. (30)

where P̄ (γ) is the arithmetic mean of the covariance matrices
of the estimation errors of the nodes i ∈ V , namely P̄ (γ) =
1
N

∑N
i=1 X

(i)(γ) with Xi(γ) covariance of the estimation
error ei(t). By mean of the result of Theorem 1, it follows
that limγ→+∞ J̄γ = J∗, where J∗ is the optimal cost (14)
of the ideal centralized regulator. Figure 3 (right) shows the
convergence of J̄γ of cost when γ tends to infinity, and
similarly Figure 3 (left) shows the convergence of the traces
of the covariance of the estimation error of all the nodes,
namely tr(X(i)(γ)) towards the optimal value of the trace of
the covariance of the centralized Kalman filter.

The interested reader could find (or request) the journal
version of this paper ([5]) which includes a detailed proof,
some extensions and a real-plant example.

V. CONCLUSIONS

Further extensions deserve additional investigation, for
example the introduction of communications delays or packet
dropouts [41], [10], link failure [6], nonlinear systems under
sampling [37], multi-agents systems [36], or methods for
non-Gaussian noises [9], [8]. Also, other future directions
are secure and resilient solutions that account for threats and
attacks.

APPENDIX

Sketch of the proof. of Theorem 1. Because of Lemma
1, we need to prove that the local estimates x̂k(i) for all
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Fig. 2. Communication graph G and its Laplacian matrix L.
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Fig. 3. Traces of the covariance matrices of the estimation errors tr(X(i)) of the nodes and trace of the covariance of the ideal centralized KF tr(P )
(left). Convergence of the pseudo-cost function (30) towards the centralized optimal one. (right).

i = 1, . . . , N provided by (17)–(28) tend to the centralized
estimate of the Kalman filter, i.e. the estimate given by (10)–
(12).
The first step is the definition of the matrix Υ = (IN −
1
δL)⊗In and the aggregate vectors zk,h = coli(z

(i)
k,h), vk,h =

coli(v
(i)
k,h). From (19) we get zk,h+1 = Υzk,h. Let e

(i)
k :=

xk − x̂
(i)
k be the estimation error of the node i. After some

manipulations the dynamics of the aggregate vector of the
estimation error, namely ek = coli{e(i)k }, can be written as

ek+1 = A(γ)ek + hk, (31)

where A(γ) := Υγ(diagi{M (i)A} − diagi{M (i)}Ξ), with
M (i) := I−K(i)C(i), Ξ is a matrix such that Ξ(1N ⊗In) =

0, and hk := coli{h(i)
k }, with h

(i)
k := M (i)fk −K(i)g

(i)
k+1.

Then, by considering the orthonormal transformation T =(
V
W

)
, with V = 1√

N
1⊤N and W ∈ R(N−1)×N , such that

TLT⊤ =

(
0 0
0 Λ

)
,

where Λ = diag(λ2(L), . . . , λN (L)) it is possible to see that

(T ⊗ In)A(γ)(T⊤ ⊗ In) =

(
AC H12

H21(γ) H22(γ)

)
, (32)

where H12 = (V ⊗ In)Γ(W
⊤ ⊗ In)), H21(γ) = (SγW ⊗

In)Γ(V
⊤ ⊗ In), H22(γ) = (SγW ⊗ In)Γ(W

⊤ ⊗ In)), with
Γ := (diagi{A(i)} − diagi{M (i)}Ξ) and S := IN−1 − Λ

δ . It
is not difficult to see that

H21(γ) → 0 and H22(γ) → 0 as γ → +∞. (33)

Thus, since AC is Schur stable by construction, it follows
that there exists γ0 ∈ N such that for all integer γ > γ0,
A(γ) is Schur stable. Furthermore, we prove that, for each
node, as γ increases, the covariance of the estimation error
tends to the covariance of the ideal CKF. In other words, if
we denote with UN the N×N matrix with all ones, we shall
prove that X(γ) := limk→+∞ E[eke⊤k ] → XC := UN ⊗ P ,
with P solution to (13), as γ → +∞. Firstly, note that XC

satisfies

XC = diagi{AC}XC diagi{A⊤
C}

+ diagi{I −KC}(UN ⊗Q)diagi{(I −KC)⊤}
+ diagi{K}(UN ⊗R)diagi{K⊤}. (34)

Moreover, by introducing the covariance mismatch E(γ) :=
X(γ)−XC , we can obtain after some manipulations

E(γ) = A(γ)E(γ)A⊤(γ) + Σ(γ), (35)

where the matrix Σ(γ) is such that

(T ⊗ In)Σ(γ)(T
⊤ ⊗ In) =

(
0 D12(γ)

D21(γ) D22(γ)

)
, (36)

with the sub-matrices D12(γ), D21(γ), and D22(γ) such that

D12(γ), D21(γ), D22(γ) → 0 as γ → +∞. (37)

From (32), (35) and (36)

Ẽ(γ) := (T ⊗ In)E(γ)(T⊤ ⊗ In)

=

(
AC H12

H21(γ) H22(γ)

)
Ẽ(γ)

(
A⊤

C H⊤
21(γ)

H⊤
12 H⊤

22(γ)

)

+

(
0 D12(γ)

D21(γ) D22(γ)

)
, (38)



where H12, H21(γ) and H22(γ) are defined below (32). On
account of (33) and (37) the unique solution Ẽ(γ) of (38)
tends as γ → +∞ to the unique solution Ẽ∞ of the equation

Ẽ∞ =

(
AC H12

0 0

)
Ẽ∞

(
A⊤

C 0
H⊤

12 0

)

and since AC is Schur stable, it follows that Ẽ∞ = 0, which
implies limk→+∞ E[eke⊤k ] → UN ⊗ P as γ → +∞. □

REFERENCES
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