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We study scalar fields in a black hole background and show that, when the scalar is suitably coupled to
curvature, rapid rotation can induce a tachyonic instability. This instability, which is the hallmark of
spontaneous scalarization in the linearized regime, is expected to be quenched by nonlinearities and endow
the black hole with scalar hair. Hence, our results demonstrate the existence of a broad class of theories that
share the same stationary black hole solutions with general relativity at low spins, but which exhibit black
hole hair at sufficiently high spins (a=M ≳ 0.5). This result has clear implications for tests of general
relativity and the nature of black holes with gravitational and electromagnetic observations.
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Introduction.—Direct and indirect detections leave little
doubt that black holes (BH) exist in nature [1–8]. In general
relativity (GR) the mass and the spin of an astrophysical
BH fully determine its properties. An electric charge is also
technically allowed, but is expected to be paltry for
astrophysical BHs, see, e.g., [9]. Any other quantity, hair
in jargon, is not necessary according to no-hair theorems
[10–12]. Future gravitational wave detectors will finally
allow us to confront theorems and observations with
unprecedented precision [13–15], improving upon current
observations, which are perfectly compatible with hairless
BHs [16,17].
It is tempting to interpret an absence of BH hair as a

vindication of GR minimally coupled to the standard model.
However, new fundamental fields can be more elusive. It is
illustrative to consider scalar fields: no-hair theorems exist
for stationary BHs in scalar-tensor theories [18,19], and
static, spherically symmetric and slowly rotating BHs in
shift-symmetric generalized (Horndeski) scalar-tensor
theories [20,21]. No-hair theorems also exist for stars in
shift-symmetric scalar-tensor theories [22–25]. In fact, it
turns out that there is a single coupling term in the Horndeski
class that gives rise to hair: a linear coupling between the
scalar and theGauss-Bonnet (GB) invariant [21,26], given by

G ¼ RμνρσRμνρσ − 4RμνRμν þ R2: ð1Þ

Considering that the Horndeski class contains all actions for
a massless scalar nonminimally coupled to gravity that yield
second order equations upon variation, the absence of hair
actually seems to be the norm rather than the exception for
scalar fields. Indeed, known hairy BH solutions circumvent
theorems by evading one or more of their assumptions, see,
e.g., [21,27–32].

A further complication in attempting to detect new fields
through BH hair is the possibility that, even within the
context of the same theory, only certain BHs might actually
exhibit it. This was realized only recently, as the first
models of BH scalarization appeared in the literature
[33,34]. For concreteness, consider the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∇μϕ∇μϕþ fðϕÞG

�
; ð2Þ

where f is some function of ϕ, and where we have also set
(as in the rest of this Letter) 8πG ¼ c ¼ 1. Varying the
action with respect to ϕ yields

□ϕ ¼ −f0ðϕÞG; ð3Þ

where f0ðϕÞ≡ df=dϕ. Assume that f0ðϕ0Þ ¼ 0, for some
constant ϕ0. Then solutions with ϕ ¼ ϕ0 are admissible
and they are also solutions of GR. A no-hair theorem [33]
ensures that they are unique if they are stationary, provided
that f00ðϕÞG < 0.
The fact that GR BHs are stationary solutions to this

theory is not sufficient to conclude that there are no
observable deviations from GR, as the perturbations over
these solutions do not generally obey the GR field
equations [35]. These perturbations may even grow unsta-
ble, thus rendering the GR solutions irrelevant. Indeed, one
can think of −f00G as the (square of the) mass of the scalar
perturbation on a fixed background. Hence, the condition
above ensures that this effective (squared) mass is positive.
If the condition is violated and the effective (squared) mass
becomes sufficiently negative, the GR solutions suffer a
tachyonic instability and the scalar develops a nontrivial
profile.
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A similar scalarization effect was shown to occur for
neutron stars in a different class of scalar-tensor theories
more that 25 years ago [36], and is triggered when the star
compactness reaches a critical threshold. Related “dynami-
cal” scalarization effects [37–40] are present in the same
theories for neutron star binaries, whenever their separation
is sufficiently small (or the binary’s “compactness” suffi-
ciently large). However, in the class of theories considered
in [36–40], scalarization is not present without matter, and
BHs are vacuum solutions. Black holes can scalarize if they
have matter in their vicinity [28,29], but the densities
necessary to obtain a measurable effect are probably
astrophysically unrealistic.
Black hole scalarization is fairly well understood. It

starts as a linear tachyonic instability and, as such, its onset
is controlled only by terms that contribute to linear
perturbations around GR solutions. In this sense, action
(2) with fðϕÞ ¼ ηϕ2=2 is sufficient to study the onset of
scalarization [33,41]. As the instability develops and the
scalar grows, nonlinear terms become increasingly impor-
tant and eventually quench the instability. Hence, the end
point and properties of the scalarized solutions are actually
controlled by the nonlinear interactions of the scalar
[42,43]. A characteristic example is that in models with
different nonlinear interactions, scalarized solutions have
different stability properties [42,44].
Here, we will focus exclusively on the onset of scala-

rization, so we will restrict our attention to quadratic scalar
GB (QSGB) gravity, i.e., fðϕÞ ¼ ηϕ2=2 (without loss of
generality [41]). The effective (squared) mass of the scalar
on a fixed background is then

μ2EFF ¼ −ηG: ð4Þ
For the Schwarzschild solution, one has G ¼ 48M2=r6,
which is always positive and decreasing with r, and which
yields the horizon value Gðr ¼ 2MÞ ¼ 3=ð4M4Þ. Hence, a
tachyonic instability only occurs for η > 0, and the insta-
bility is expected to be more violent for smaller masses.
(Note that in curved spacetimes μ2EFF can be somewhat
negative without necessarily developing a tachyonic insta-
bility.) This is why the focus in the literature so far has been
on η > 0 (or the equivalent condition in more complicated
models). However, for a Kerr BH of mass M and spin
parameter a in Boyer-Lindquist ðt; r; θ;φÞ one has

GKERR ¼ 48M2

ðr2 þ χ2Þ6 ðr
6 − 15r4χ2 þ 15r2χ4 − χ6Þ; ð5Þ

where, for brevity, χ ≡ a cos θ. Clearly, GKERR is not
monotonic, and can even become negative close to the
horizon. This explains the results of [45,46], where it was
shown that rotation suppresses scalarization for η > 0.
In this Letter, we focus on η < 0, which yields a real

effectivemass μEFF for lowBH spins, but which can yield an

imaginaryμEFF for high spins.We investigate the behavior of
linear scalar perturbations to the GR solution by evolving
Eq. (3) on a Kerr background, with the goal of assessing for
what BH spins and couplings η the perturbations become
unstable. Indeed, at least two possible instability mecha-
nisms may be at play in Eq. (3). The first is the tachyonic
instability associated to spontaneous scalarization, men-
tioned above. The second could be a superradiant instability,
which is known to exist at high spins for constant realmasses
[47–50], and potentially also for nonconstant effective
masses [51] such as the one of Eq. (4). Superradiance
occurs when bosonic waves with nonvanishing angular
momentum are amplified when scattered by a spinning
BH, at the expense of the rotational energy of the BH, which
as a result spins down. For massive bosons, superradiant
scattering can develop into an instability because the field is
confined near the BH by its own mass.
It should be stressed that, in principle, both instabilities

could be present. However, they have distinct features
(timescales, the angular momenta involved, dependence
on the BH spin). We show below that the tachyonic
instability is by far the dominant effect for η < 0. More
broadly, our results strongly suggest that there exist
theories in which scalarization occurs only for rapidly
rotating BHs.
Methodology.—For fðϕÞ ¼ 0 and over a Kerr back-

ground, Eq. (3) separates into ordinary differential equa-
tions when ϕ is decomposed onto a basis of spheroidal
harmonics. However, the choice fðϕÞ ¼ ηϕ2=2 yields an
intrinsically nonseparable equation. We therefore resort to a
time-domain numerical integration of this equation, by
using techniques akin to those presented in [51,52], to
which we refer for more details.
In brief, the idea is to project Eq. (3) onto a basis of

spherical harmonics Ylm (there is no advantage in using
spheroidal harmonics, for which analytic expressions are
unavailable, as they do not lead to a separable equation
anyway), which yields 1þ 1 evolutions equations (in t and
r) for the components of the scalar field,

ψ lm ≡
Z

Y�
lmðrϕÞdΩ: ð6Þ

These equations are coupled and given explicitly by

½ðr2þa2Þ2−a2Δð1−cmll Þ�ψ̈ lþa2Δðcml;lþ2ψ̈ lþ2þcml;l−2ψ̈ l−2Þ
þ4iamMr _ψ l−ðr2þa2Þ2ψ 00

l

−
�
2iamðr2þa2Þ−2a2

Δ
r

�
ψ 0
l

þΔ
�
lðlþ1Þþ2M

r
−
2a2

r2
þ2iam

r

�
ψ lm

þΔ
X
j

hlmjμ2EFFðr2þχ2Þjjmiψ j¼0; ð7Þ
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Δ≡ r2 − 2Mrþ a2; ð8Þ

cmjl ≡ hlmj cos2 θjjmi

¼ δlj
3
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

2lþ 1

r
hj; 2; m; 0jl; mihj; 2; 0; 0jl; 0i; ð9Þ

where hj1; j2; m1; m2jj3; m3i are the Clebsch-Gordan coef-
ficients [53]. Note that the evolution of modes of different
m decouples because of the axisymmetry of the problem.
Moreover, because of reflection symmetry with respect to
the origin, even-l and odd-l modes also decouple: the
evolution of a mode ðl; mÞ is coupled to that of all the
modes ðlþ 2k;mÞ, with k ¼ 1; 2; 3;….
To numerically evolve the system (7), we discretize the

spatial grid and use a method of lines. By integrating in
time using a fourth order explicit Runge-Kutta time step
inside the computational grid (as done, e.g., in [51]), it
becomes apparent that the equations are stiff for large η, and
that the numerical integration becomes unstable. To over-
come this problem, we have used an implicit-explicit
(IMEX) Runge-Kutta solver with adaptive time step,
namely the IMEX-SSP3(3,3,2) and IMEX-SSP(4,3,3)
schemes of [54]. Note that implicit methods [55], while
effective at dealing with stiff problems, are typically less
accurate and more computationally expensive. However,
implicit-explicit algorithms, by employing explicit steps for
the nonstiff terms and implicit steps only for the stiff ones,
can tackle stiff problems with limited computational over-
head. We successfully compared our code to results from
both frequency-domain techniques [56] and similar time-
domain codes [52]. Our implementation was also tested by
analyzing the convergence of the results (and their overall
robustness) vs time-step and spatial-grid resolution.
Results.—To investigate the possible presence of an

instability, we evolve the scalar field by integrating the
system given by Eq. (7), with l ranging from 0 to lmax ¼ 30
and jmj ≤ l, and with Gaussian initial conditions for each
mode ψ lm. The results are robust against the choice of the
cutoff lmax—as long as that is sufficiently large—and initial
conditions, which only affect the early transient evolution
of the scalar and not the unstable growth phase, if present.
We consider BH spins a=M ∼ 0.5–0.999 and QSGB
coupling jηj=M2 ∼ 0.1–105.
From the simulations showing an exponential scalar

growth, we extract the instability timescale τ of the
reconstructed field jϕj ¼ ðPlm jψ lmj2Þ1=2 ∝ expðt=τÞ by
fitting the time evolution of the scalar’s amplitude after
the initial transient. The contours in Fig. 1 show τ−1 as a
function of a=M and jηj=M2. The instability becomes
stronger as either the spin or the coupling increases.
Moreover, there is a minimum spin amin below which
the instability disappears. For jηj → ∞, it appears that
amin=M → 0.5 (up to percent level numerical errors). The
solid green line denotes the combinations of parameters for

which the instability disappears (i.e., τ → ∞). With the
blue dotted line we show the same marginal instability
curve for the reconstructed field, but excluding the m ¼ 0
modes. As can be seen, when the latter are excluded the
parameter space region yielding an instability shrinks, i.e.,
the main contribution to the instability comes from the
m ¼ 0 modes. As a further test of this conclusion, we also
computed the marginal instability curve for the m ¼ 0
modes alone, and that does indeed match the solid green
line in Fig. 1.
Even and odd parity modes (i.e., modes with even and

odd l) automatically decouple in Eq. (7). In the m ¼ 0
sector, which dominates the instability shown in Fig. 1, the
odd and even modes give roughly comparable contribu-
tions. We have verified this by considering the marginal
instability curves for the odd and even m ¼ 0 modes
separately, which are both very close to the solid green
line of Fig. 1. As an example, the red-dashed line in Fig. 1
represents the marginal instability curve for the m ¼ 0
odd modes.
Indeed, odd modes seem to have only marginally shorter

instability times (by ∼1% − 2%) than even ones for high
spins and large couplings. Conversely, in the region
jηj < 1, a=M > 0.9 the even modes are slightly more
unstable, as can be seen from the somewhat increased
distance between the red-dashed and solid green line
curves.

FIG. 1. Instability timescale τ (color code) for the reconstructed
field as a function of spin and GB coupling. The instability
threshold for the total reconstructed field is shown by the solid
green line, while the threshold when the m ¼ 0 modes are
excluded is shown by a blue dotted line. The red-dashed line
corresponds the instability threshold for the m ¼ 0 odd modes,
while the dot-dashed cyan line marks the instability threshold for
the spherical mode l ¼ m ¼ 0 (see text for details). Note that all
shown values of η are unconstrained by different observables
(cf. discussion in the conclusions).
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Next, we consider if some individual angular mode l, m
gives the dominant contribution to the instability. To
answer this question, we have to override the nonsepar-
ability of the problem. To this end, we have forcefully
decoupled each l mode in Eq. (7), suppressing “by hand”
all the couplings between angular modes (i.e.,
hlmjμ2EFFðr2 þ χ2Þjjmi with l ≠ j) generated by the GB
invariant; we have only kept active the contributions to the
effective mass of the single l mode. We have then let
the system evolve, selecting Gaussian initial data for the
chosen mode only. By this technique, we have isolated, for
instance, the instability parameter space for the spherical
mode l ¼ m ¼ 0, whose marginal instability curve is
shown in Fig. 1 by a cyan dot-dashed line. However, we
could not find any single l, m mode for which the marginal
instability curve obtained in this way matched, even
roughly, the solid green line for the whole reconstructed
field. We therefore conclude that the gravitational coupling
between angular modes plays a fundamental role in the
onset of the observed instability.
We now proceed to examine whether the instability is

dominantly tachyonic or powered by superradiance. The
growth times, as shown in Fig. 1, can be as small as
∼0.01M. This seems to favor a tachyonic origin, as
superradiance acts on longer timescales (see, e.g.,
[50,51]). Moreover, the fact that the instability is mostly
due to the m ¼ 0 modes, and that even the spherical mode
l ¼ m ¼ 0 can be unstable (see cyan long-dashed critical
line in Fig. 1) bodes ill for superradiance, as these modes
can never satisfy the superradiance condition ω < mΩ
(with ω and Ω, respectively, the wave and horizon angular
frequencies).
One may naively expect the spherical mode l ¼ m ¼ 0

not to suffer from a tachyonic instability either, since
μ2EFF ¼ −ηG is positive everywhere in a Schwarzschild
spacetime when η < 0 (as considered here). However, the
(squared) effective mass for the l ¼ m ¼ 0mode is actually
−ηh00jGKerrj00i, which only matches the naive estimate
−ηGSchwarzschild at leading order in spin, correcting it by
termsOða2Þ. This explains, in particular, why the spherical
mode is stable at low spins.
To further confirm the tachyonic nature of the instabil-

ities, we have conducted the following test. We reran our
simulations with the (squared) effective mass replaced by
its absolute value, μ2EFF → jμ2EFFj. This is enough to sup-
press the instabilities, and further shows that the latter were
due to the change of sign of the GB invariant close to the
horizon. One can also look at the scalar fluxes through the
event horizon after the initial transient. In Fig. 2, we
compare the scalar field’s energy flux through the horizon
for η ¼ −10M2 (blue) vs the same fluxes for minimally
coupled scalar fields with imaginary (orange) and real
(magenta) constant masses. Clearly, the flux for a scalar
coupled to the GB invariant resembles more closely the
tachyonic (i.e., imaginary mass) scalar field evolution, both

in timescale and sign. Note that the constant, real mass
case, whose evolution is unstable due to superradiance,
shows a slower growth and negative energy fluxes. The
latter are indeed the hallmark of a superradiant instability,
which removes rotational energy and angular momentum
from the BH.
The most plausible explanation for why Kerr BHs in

QSGB do not suffer from superradiant instabilities seems to
be the rapid falloff of the GB invariant (thus of the effective
mass) at large distances, Gðr → ∞Þ ∼ 1=r6. Scalar pertur-
bations with a position-dependent mass were studied in
[51], which showed that a steep decay of the mass
with distance quenches the superradiant instability. This
happens because the effective potential for scalar pertur-
bations does not develop wells, and thus quasibound states,
unless the mass remains relatively constant till at least
r ∼ 2 − 3M [51].
Conclusions.—We have shown that a coupling, with a

suitable sign, between a scalar and the GB invariant can
lead to an instability triggered by rapid rotation. We have
also demonstrated that this instability is not related to
superradiance, but is instead tachyonic in nature. Nonlinear
effects, which our approach does not capture, are expected
to quench that instability and lead to a BH with scalar hair.
The process is analogous to the more conventional sponta-
neous scalarization, but the threshold is controlled by the
black hole rotation instead of its curvature.
The action that we use is sufficient for studying the onset

of the instability that we have found for BHs. However, the
end point of this instability, and hence the amount of hair a
BH would carry, will strongly depend on nonlinear (self)
interactions. Stationary scalarized black hole solutions that
constitute the end point of the instability will be presented
elsewhere [57,58]. There is no obvious reason to believe

FIG. 2. Energy flux FE through the BH horizon vs time, for
a ¼ 0.99M. The blue, orange, and magenta lines correspond,
respectively, to η ¼ −10M2, to a tachyonic mass μM ¼ i, and to a
constant, real mass μM ¼ 0.42. The inset enlarges the constant,
real mass flux (of which we show a moving average to decrease
the oscillations caused by the dynamics). That flux is negative,
signaling energy extraction from the BH, as expected for super-
radiant instabilities.
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that this instability is restricted to BHs, and it could well
affect rapidly rotating stars as well. Hence, our results
demonstrate that there is a broad class of theories where
rotation might control deviations from GR. Our findings
also have clear implications for searches of new physics in
the strong-field regime. Black hole scalar hair induces
vacuum dipole gravitational emission, which is potentially
observable in the low frequency inspiral of the binary
system by gravitational wave interferometers [14,15],
deviations from GR in the spectrum of the gravitational
wave ringdown [13] or in the electromagnetic spectrum of
accretion disks [59], and it may also impact the black hole
shadow observed by the Event Horizon Telescope [8].
We stress that we are not aware of any observational

upper bounds on η, which we therefore allow here to reach
very high values, for illustrative purposes and in order to
excite higher modes. Note that slowly rotating black holes
in QSGB would be identical to their GR counterpart.
Compact stars can scalarize for η < 0 [33] and hence yield
constraints. However, this effect could easily be quenched
by adding a coupling between the scalar field and the Ricci
scalar [41,60]. The latter might be necessary to get a
sensible cosmology [61], and would have no effect for
black holes, thus leaving our analysis unaffected.
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