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Abstract Modeling complex systems that consist of different types of objects
leads to multilayer networks, where nodes in the different layers represent
different kinds of objects. Nodes are connected by edges, which have positive
weights. A multilayer network is associated with a supra-adjacency matrix.
This paper investigates the sensitivity of the communicability in a multilayer
network to perturbations of the network by studying the sensitivity of the
Perron root of the supra-adjacency matrix. Our analysis sheds light on which
edge weights to make larger to increase the communicability of the network,
and which edge weights can be made smaller or set to zero without affecting
the communicability significantly.
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1 Introduction

Many complex systems can be modeled as networks. Informally, a network is
a collection of objects, referred to as nodes or vertices, that are connected to
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each other in some fashion; the connections are referred to as edges. The edges
may be directed or undirected, and may be equipped with positive weights that
correspond to their importance. The nature of the nodes, edges, and weights
depends on the application. Some modeling situations require more than one
kind of nodes or more than one type of edges.

Multilayer networks are networks that consist of different kinds of edges
and possibly different types of nodes. This kind of networks arise when one
seeks to model a complex system that contains connections and objects with
different properties. For instance, when modeling train and bus connections in
a country, the train routes and bus routes define edges with distinctive proper-
ties, and the train and bus stations may make up nodes with diverse properties.
The connections between a train station and an adjacent bus station give rise
to yet another kind of edges along which travelers walk. Edge weights may
be chosen proportional to the number of travelers along an edge, proportional
to the distance between the nodes that the edge connects, or proportional to
the cost of traveling along an edge. Whether it is meaningful to distinguish
between different kinds of edges and nodes, and using edge weights, depends
on the nature and purpose of the network model.

It is often of interest to determine the ease of communication between
nodes in a network, as well as how important a node is in some well-defined
sense. Also, it is desirable to be able to assess the sensitivity of the measure of
communication between the nodes to perturbations in the edge weights. For
instance, if the nodes represent cities, and the edges represent roads between
the cities, with edge weights proportional to the amount of traffic on each
road, then one may be interested in which road(s) should be widened or made
narrower to increase or reduce, respectively, communication in the network
the most. The available data may be contaminated by measurement errors.
We are then interested in how sensitive to errors in the data our choice of
road(s) to widen or make narrower is.

The investigation of the importance of nodes and edges, as well as the sen-
sitivity of the communicability within a network to changes in the edge weights
of the network with only one kind of nodes and edges has received considerable
attention in the literature; see, e.g., [4,5,8–12,17,19] and references therein.
Several of the techniques discussed evaluate the exponential of the adjacency
matrix of the network, or the exponential of the adjacency matrix determined
by the line graph associated with the given network. The present paper extends
the communicability and sensitivity analysis in [8,19] to multilayer networks.
Since multilayer networks typically have a large number of nodes and edges,
we focus on techniques that are well suited for large-scale networks.

We consider multilayer networks that are represented by graphs that share
the same set of vertices VN = {1, 2, . . . , N} and have edges both within a layer
and between layers. We will simply refer to this kind of networks as multilayer
networks. Nice recent discussions on multilayer networks are provided by Berg-
ermann and Stoll [3], Cipolla et al. [6], and Tudisco et al. [22]. De Domenico
et al. [7] describe how multilayer networks with L layers can be modeled by a
fourth order tensor and introduce a supra-adjacency matrix B ∈ RNL×NL for
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the representation of such networks. In detail, let A(`) = [w
(`)
ij ]Ni,j=1 ∈ RN×N be

the non-negative adjacency matrix for the graph in layer ` for ` = 1, 2, . . . , L.

Thus, the entry w
(`)
i,j ≥ 0 is the “weight” of the edge between node i and

node j in layer `. If the graph is “unweighted”, then all nonzero entries of
A(`) are set to one. The matrix B ∈ RNL×NL is a block matrix with N × N
blocks. The `th diagonal block is the adjacency matrix A(`) ∈ RN×N for layer
`, for ` = 1, 2, . . . , L; the off-diagonal N × N block in position (`1, `2), with
1 ≤ `1, `2 ≤ L and `1 6= `2 represents the inter-layer connections between the
layers `1 and `2; see Section 4 for details.

We may consider B an adjacency matrix for a monolayer network with NL
nodes, and assume that B is irreducible. This is equivalent to that the graph
associated with B is strongly connected; see, e.g., [13]. Hence, the Perron-
Frobenius theory applies, from which it follows that B has a unique eigenvalue
ρ > 0 of largest magnitude (the Perron root) and that the associated right
and left eigenvectors, x and y, respectively, can be normalized to be of unit
Euclidean norm with all components positive. These normalized eigenvectors
are commonly referred to as the right and left Perron vectors, respectively.
Thus,

Bx = ρx, yTB = ρyT . (1)

We will assume throughout this paper that the Perron vectors x and y have
been normalized in the stated manner.

Following [8], we introduce the Perron communicability in the multilayer
network,

CPN(B) = exp0(ρ)1T
NLyxT1NL = exp0(ρ)

NL∑
j=1

yj

NL∑
j=1

xj

 , (2)

where

exp0(t) = exp(t)− 1, x = [x1, x2, . . . , xNL]T , y = [y1, y2, . . . , yNL]T ,

and 1NL ∈ RNL denotes the vector of all entries one. For a general adjacency
matrix B ∈ RNL×NL associated with a monolayer network with NL nodes,
the above measure is analogous to, but fairly different from, the total network
communicability

CTN(B) = 1T
NL exp(B)1NL,

introduced by Benzi and Klymko [1]. The latter is related to the “size” of
the matrix exp(B), while the measure (2) is determined by the Wilkinson
perturbation yxT discussed in Section 2. The latter measure provides a worst-
case perturbation of the Perron root under a small perturbation of B. We use
the modified exponential function exp0(M) in (2) instead of the exponential,
because the Maclaurin series of exp(M) has no natural interpretation in the
context of network modeling. We note that CPN(M) is easy to apply and
cheaper to compute than CTN(M) and CTN

0 (M) := 1T
NL exp0(M)1NL for

monolayer networks with many nodes or layers, i.e., when NL is large [8].
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Due to the normalization of the Perron vectors x and y in (1), we have

1 ≤
NL∑
j=1

xj ≤
√
NL, 1 ≤

NL∑
j=1

yj ≤
√
NL.

Therefore, for the multilayer network associated with B, one has

exp0(ρ) ≤ CPN(B) ≤ NL exp0(ρ). (3)

Typically, exp0(ρ)� NL. It then follows that the quantity exp0(ρ) is a fairly
accurate indicator of the Perron communicability of the graph represented by
B in the sense that it suffices to consider exp0(ρ) to determine whether the
Perron communicability of a network is large or small. The right-hand side
bound in (3) will be sharpened slightly in Proposition 2 below.

Following the approach in [7], we form the leading eigentensors Y ∈ RN×L

and X ∈ RN×L for the multilayer network associated with B by reshaping the
Perron vectors y and x, respectively. Thus, the first column of the matrix Y
is made up of the first N components of the vector y, the second column of Y
consists of the next N components of the vector y, etc. The joint eigenvector
centrality of node i in layer ` is given by the entry in position (i, `) of Y . The
rows of Y represent the eigenvector versatility of the nodes. Moreover, the
(scalar) versatility of node i is given by

νi = (Y 1L)i, i = 1, 2, . . . , N. (4)

The vector 1L may be replaced by some other vector in RL with nonnegative
entries if another weighting of the columns of Y is desired.

Remark 1 The concepts of hub and authority communicability was introduced
by Kleinberg [14] for graphs that are defined by an adjacency matrix. An exten-
sion to multi-relational networks that are based on tensors is described by Li
et al. [15]. We can define analogous concepts for tensors by using the Perron
communicability. If we replace the matrix B in (1) by BBT , then we obtain
analogously to (2) the Perron hub communicability

CPN (BBT ) = exp0(ρBBT)1T
NLxxT1NL,

where ρBBT is the Perron root for BBT and x is the Perron vector for BBT .
Similarly, if we replace the matrix B in (1) by BTB, then we obtain the Perron
authority communicability

CPN (BTB) = exp0(ρBTB)1T
NLxxT1NL,

where ρBTB = ρBBT is the Perron root for BBT and x is the Perron vector
for BBT .
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We turn to special multilayer networks in which nodes in different layers are
identified with each other. Thus, there are no edges between different nodes in
different layers; the only edges that connect different layers are edges between
a node and its copy in other layers. Hence, in the supra-adjacency matrix
B ∈ RNL×NL all off-diagonal entries in all off-diagonal blocks are zero.

We will refer to these kinds of networks as multiplex networks. They can
be represented by a third-order tensor. The graph for layer ` is associated
with the non-negative adjacency matrix A(`) ∈ RN×N , ` = 1, 2, . . . , L, and a
mode-1 unfolding of the third-order tensor that represents the network yields
an L-vector of these adjacency matrices:

A = [A(1), A(2), . . . , A(L)] ∈ RN×NL. (5)

The supra-adjacency matrix B ∈ RNL×NL for the multiplex network associ-
ated with the matrix A in (5) has the diagonal blocks A(`), ` = 1, 2, . . . , L,
and every N × N off-diagonal block is the identity matrix IN ∈ RN×N ; see,
e.g., [7]. Hence, the coupling is diagonal and uniform. One may introduce a
parameter γ ≥ 0 that determines how strongly the layers influence each other.
This yields the matrix

B := B(γ) = diag[A(1), A(2), . . . , A(L)] + γ(1L1T
L ⊗ IN − INL), (6)

where ⊗ denotes the Kronecker product; see [3].
Due to the potentially large sizes of the matrices B in (1) and (6), one

typically computes their right and left Perron vectors by an iterative method,
which only require the evaluation of matrix-vector products with the matrices
B and BT . Clearly, one does not have to store B, but only A in (5) to evaluate
matrix-vector products with the matrix B in (6) and its transpose.

Remark 2 If one is interested in the Perron hub or authority communicability
of the network, then the matrices A(`) in (5) should be replaced by A(`)(A(`))T

or (A(`))TA(`), respectively, for ` = 1, 2, . . . , L.

Following [21, Definition 3.5], we introduce for future reference the L-
dimensional vectors of the marginal layer Y -centralities and the marginal layer
X-centralities

cY = Y T1N and cX = XT1N , (7)

respectively.
It is the purpose of the present paper to investigate the Perron network

communicability of multilayer networks that can be represented by a supra-
adjacency matrix B ∈ RNL×NL, as well as the special case of multiplex net-
works that are represented by the matrix A ∈ RN×NL in (5). We also are
interested in the sensitivity of the communicability to errors or changes in the
entries of the supra-adjacency matrix B and in the entries of the matrices A(`)

in (5) in the case of a multiplex network. The particular structure of B in (6)
for multiplex networks will be exploited.

The organization of this paper is as follows. The Wilkinson perturbation
for a supra-adjacency matrix is defined in Section 2. This perturbation forms
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the basis for our sensitivity analysis of multilayer networks. Section 3 discusses
some properties of the Perron and total network communicabilities. A sensi-
tivity analysis for multilayer networks based on the Wilkinson perturbation is
presented in Section 4. Both Sections 3 and 4 first discuss multilayer networks
that can be defined by general supra-adjacency matrices, and subsequently
describe simplifications that ensue for multiplex networks that can be defined
by the supra-adjacency matrix B in (6). Section 5 presents a few computed
examples, and Section 6 contains concluding remarks.

2 Wilkinson perturbation for supra-adjacency matrices

Let B ∈ RNL×NL be the supra-adjacency matrix in (1). We assume that B
is irreducible. Let ρ > 0 be the Perron root of B, and let x and y be the
associated right and left normalized Perron vectors. Thus, all entries of x and
y are positive, and ‖x‖2 = ‖y‖2 = 1. Throughout this paper ‖ · ‖2 denotes the
Euclidean vector norm or the spectral matrix norm, and ‖ · ‖F stands for the
Frobenius norm. The vectors x and y are uniquely determined.

Let E ∈ RNL×NL be a nonnegative matrix such that ‖E‖2 = 1, and let
ε > 0 be a small constant. Denote the Perron root of B + εE by ρ+ δρ. Then

δρ = ε
yTEx

yTx
+O(ε2); (8)

see [16]. Moreover,

yTEx

yTx
=
|yTEx|

yTx
≤ ‖y‖2‖E‖2‖x‖2

yTx
=

1

cos θ
, (9)

where θ is the angle between x and y. The quantity 1/ cos θ is referred to as
the condition number of ρ and denoted by κ(ρ); see Wilkinson [23, Section 2].
Note that when B is symmetric, we have x = y and, hence, θ = 0. In this
situation ρ is well-conditioned. Equality in (9) is achieved for the Wilkinson
perturbation

E = yxT ∈ RNL×NL, (10)

which we will refer to as W . For E = W , the perturbation (8) of the Perron
root is δρ = εκ(ρ)+O(ε2). We observe that all the above statements hold true
if everywhere the spectral norm is replaced by the Frobenius norm.

3 Some properties of the Perron and total network
communicabilities

This section discusses a few properties of the Perron communicability and how
it relates to the total network communicability.
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Proposition 1

CPN(B) = exp0(ρ)cTY cX , (11)

where cX is the vector of the marginal layer X-centralities and cY is the vector
of the marginal layer Y -centralities in (7).

Proof The proof follows from (2) by observing that

1T
NLyxT1NL = 1T

NY X
T1N = cTY cX .

Remark 3 When the network is undirected, one has according the definitions
(7) that cX = cY , because x = y. This gives, by (11), the symmetric Perron
communicability

CPN sym(B) = exp0(ρ)‖cY ‖22.

Proposition 2

CPN(B) ≤ NL exp0(ρ) cosφ,

where φ is the angle between the vector cY of the marginal layer Y -centralities
and the vector cX of the marginal layer X-centralities in (7).

Proof One has

cTY cX = ‖cX‖2‖cY ‖2 cosφ,

where φ is the angle between cY and cX . Let ‖ · ‖1 denote the vector 1-norm.
It is evident that

‖cX‖1 =

NL∑
j=1

xj = ‖x‖1, ‖cY ‖1 =

NL∑
j=1

yj = ‖y‖1.

Since

‖cX‖2 ≤ ‖cX‖1 = ‖x‖1 ≤
√
NL‖x‖2, ‖cY ‖2 ≤ ‖cY ‖1 = ‖y‖1 ≤

√
NL‖y‖2,

we have the bound

‖cX‖2‖cY ‖2 ≤ NL‖x‖2‖y‖2 = NL,

which gives the proof by using (11).

Remark 4 When the network is undirected, by Remark 3, Proposition 2 reads

CPN sym(B) ≤ NL exp0(ρ),

which is the same bound as (3).
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Matrix function-based communicability measures have been generalized in
[3] to the case of layer-coupled multiplex networks that can be represented by a
supra-adjacency matrix B of the form (6), i.e., by A defined by (5). Following
the argument in [8], assume that the Perron root ρ of a supra-adjacency matrix
B of the form (6) is significantly larger than the magnitude of its the other
eigenvalues. Then

CTN
0 (A) ≈ κ(ρ)CPN(A),

where CTN
0 (A) = 1T

NL exp0(B)1NL and CPN(A) refers to the Perron network
communicability (2) when B is of the form (6). Thus, the multiplex total
network communicability depends on the conditioning of the Perron root.

Remark 5 It is straightforward to see that if the network represented by the
matrix B of the form (6) is undirected, and the Perron root ρ is significantly
larger than the magnitude of the other eigenvalues of B, then one has

CTN sym
0 (A) ≈ CPN sym(A).

Indeed, the Perron vectors x and y coincide so that κ(ρ) = 1.

4 Multilayer network Perron root sensitivity

Let the supra-adjacency matrix B ∈ RNL×NL be associated with an L-layer
network as described above. Then an edge from node i in layer k to node j in
layer `, with i, j ∈ {1, 2, . . . , N}, i 6= j, and k, ` ∈ {1, 2, . . . , L}, is associated

with the (i, j)th entry w
(k,`)
ij > 0 of the (k, `)th block of order N × N of the

matrix B.
Consider increasing the weight w

(k,`)
ij of an existing edge by ε > 0 or

introducing a new edge from node i in layer k to node j in layer ` with weight
ε > 0. This corresponds to perturbing the supra-adjacency matrix B by the
matrix εE, where the matrix E ∈ RNL×NL has entries zero everywhere, except
for the entry one in position (i, j) in the block (k, `). It follows from (8) that
the impact on the Perron root of this perturbation is

δρ = εκ(ρ) yN(k−1)+i xN(`−1)+j +O(ε2).

The notion of multilayer network Perron root sensitivity with respect to
the direction (i, k) −→ (j, `), defined by

SPR
i, j, k, `(B) := κ(ρ) yN(k−1)+i xN(`−1)+j , (12)

is helpful for determining which edge(s) to insert in, or remove from, a multi-
layer network.

Remark 6 Notice that the largest entries of x and y are strictly smaller than
1, hence the multilayer network Perron root sensitivity (12) with respect of
any direction is less than κ(ρ). Indeed, x and y are unit vectors with positive
entries so that, if, e.g., xN(`−1)+j = 1, this would imply that xk = 0 for all
k 6= N(`− 1) + j, which is not possible.
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We also introduce the multilayer network Perron root sensitivity matrix as-
sociated with B, denoted by SPR(B), whose entries are given by the quantities
SPR
i, j, k, `(B). The following result holds true.

Proposition 3 The multilayer Perron root sensitivity matrix is given by

SPR(B) = κ(ρ)W ∈ RNL×NL, (13)

where W is the Wilkinson perturbation defined by (10).

Proof The proof follows from (12) by observing that

SPR
i, j, k, `(B) = κ(ρ)WN(k−1)+i, N(`−1)+j ,

with W = yxT .

Remark 7 Notice that both the spectral norm and the Frobenius norm of the
multilayer network Perron root sensitivity matrix are equal to the condition
number of the Perron root. Moreover, the Perron communicability (2) reads

CPN(B) =
exp0(ρ)

κ(ρ)
1T
NLS

PR(B)1NL.

Remark 8 Following [19, Eqs (2.1)-(2.2)], the spectral impact of each existing
edge in B can be analyzed by means of the matrix

−1

ρ
B ◦ SPR(B) ∈ RNL×NL,

where ◦ denotes the Hadamard product.

The exponential of the spectral radius of the graph associated with B often
is a fairly accurate relative measure of the Perron network communicability
of the graph; cf. (3). If we would like to modify the graph by adding an edge
that increases the Perron network communicability as much as possible, then
we should choose the indices i, j, k, and ` for the new edge so that

xN(`−1)+j = max
1≤q≤NL

xq, yN(k−1)+i = max
1≤q≤NL

yq.

We turn to the removal of an edge, with the aim of simplifying the graph
without affecting the Perron network communicability much. We therefore

would like to choose the indices 1 ≤ ı̂, ̂ ≤ N and 1 ≤ k̂, ˆ̀≤ L such that w
(k̂,ˆ̀)
ı̂,̂

is positive and

yN(k̂−1)+ı̂ xN(ˆ̀−1)+̂ = min
1≤i,j≤N
1≤k,`≤L
w

(k,`)
ij >0

yN(k−1)+i xN(`−1)+j .
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A way to determine such an index quadruple {ı̂, ̂, k̂, ˆ̀} is to first order the
products yixj , 1 ≤ i, j ≤ NL in increasing order. This yields a sequence of

index pairs {iq, jq}N
2L2

q=1 such that

yiqxjq ≤ yiq+1
xjq+1

∀ 1 ≤ q < N2L2.

Then determine the first index pair {iq̂, jq̂} in this sequence such that w
(k̂,ˆ̀)
ı̂,̂ >

0, where

iq̂ = N(k̂ − 1) + ı̂, jq̂ = N(ˆ̀− 1) + ̂

with 1 ≤ ı̂, ̂ ≤ N and 1 ≤ k̂, ˆ̀≤ L.
We remark that the perturbation bound (8) only is valid for ε of small

enough magnitude. Nevertheless, it is useful for choosing which edge(s) to
remove to simplify a multilayer network. This is illustrated in Section 5. It
may be desirable that the graph obtained after removing an edge is connected.
The connectedness has to be verified separately.

Remark 9 Notice that when the network is undirected, it may be meaning-
ful to require the perturbation of the network also be symmetric. Thus, in-
stead of considering the network sensitivity (12) with regard to the direction
(i, k) −→ (j, `), we investigate the sensitivity of the network with regard to
perturbations in the directions (i, k) −→ (j, `) and (j, `) −→ (i, k). This results
in the expression

SPR sym
i, j, k, ` (B) := κ(ρ) (yN(k−1)+i xN(`−1)+j + yN(`−1)+j xN(k−1)+i)

= 2xN(k−1)+i xN(`−1)+j ,

where we have used that x = y. This expression is analogous to (12).

We conclude this section with a discussion on multiplex networks. In such
a network, an edge from node i to node j in layer `, with i, j ∈ {1, 2, . . . , N},
i 6= j, and ` ∈ {1, 2, . . . , L} is associated with the entry w

(`)
ij ≥ 0 of the

adjacency matrix A(`). Increasing the weight w
(`)
ij > 0 of an existing edge by

ε > 0, or introducing a new edge by setting a zero weight w
(`)
ij to ε > 0, means

perturbing A in (5) by εP, where

P = [ON , . . . , ON , P
(`)
ij , ON , . . . , ON ] ∈ RN×NL with P

(`)
ij = eie

T
j ∈ RN×N .

(14)
Here ON ∈ RN×N denotes the zero matrix. The perturbation εP corresponds
to perturbing the supra-adjacency matrix B by an NL × NL block matrix
with all null N ×N blocks except for the `th diagonal block A(`) in which the
(i, j)th entry is set equal to ε.

Introduce the multiplex Perron root sensitivity SPR
i, j, `(A) with respect to

the direction (i, j) in layer `,

SPR
i, j, `(A) := κ(ρ) yN(`−1)+i xN(`−1)+j ,
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which is analogous to the quantity (12) for more general multilayer networks.
Thus, if P is defined by (14) and A by (5), one has from (8) that δρ ≈
εSPR

i, j, `(A). Analogously, consider reducing the (i, j)th entry w
(`)
ij > 0 of the

adjacency matrix A(`) by ε and assume that 0 < ε � 1 and ε < w
(`)
ij . Then

the modified network associated with the tensor A − εP is nonnegative and
connected if the network associated with A has these properties. Then δρ ≈
−εSPR

i, j, `(A).
Moreover, as shown in Remark 9, when considering an undirected multiplex

network, we obtain the expression

SPR sym
i, j, ` (A) := 2xN(`−1)+i xN(`−1)+j .

Recall that the Perron root sensitivity matrix (13) for general multilayer
networks depends on the Wilkinson perturbation W ∈ RNL×NL of the supra-
adjacency B as well as on the condition number κ(ρ). By assuming that B
is of the type in (6), the results in the following section will lead to analo-
gous properties of the multiplex Perron root sensitivity matrix SPR(A), whose
nonvanishing entries are given by the quantities SPR

i, j, `(A).

4.1 Exploiting the structure of multiplex networks

Consider the cone D of all nonnegative block-diagonal matrices in RNL×NL

with L blocks in RN×N and let M |D denote the matrix in D that is closest
to a given matrix M ∈ RNL×NL with respect to the Frobenius norm. It is
straightforward to verify that M |D is obtained by replacing all the entries
outside the block-diagonal structure by zero.

Let E ∈ D be such that ‖E‖F = 1, and let ε > 0 be a small constant. Then

yTEx

yTx
=
|yTEx|

yTx
≤ ‖y‖2‖yxT |D‖F ‖x‖2

yTx
=
‖yxT |D‖F

yTx
, (15)

with equality for the D-structured analogue of the Wilkinson perturbation

E =
yxT |D
‖yxT |D‖F

; (16)

see [18]. The quantity

‖yxT |D‖F
yTx

= κ(ρ)‖yxT |D‖F

will be referred to as the D-structured condition number of ρ and denoted
by κD(ρ). For E in (16), the perturbation (8) of the Perron root is δρ =
εκD(ρ) +O(ε2).

Thus, the D-structured analogue of the Wilkinson perturbation is the max-
imal perturbation for the Perron root ρ of a supra-adjacency matrix of the type
(6) induced by a D-structured perturbation. The following result holds.
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Proposition 4 The multiplex Perron root sensitivity matrix is given by

SPR(A) = κ(ρ)W |D ∈ RNL×NL ,

where W is the Wilkinson perturbation defined by (10) and D is the cone of
all nonnegative block-diagonal matrices in RNL×NL with L blocks in RN×N .

Proof In the multiplex associated with the matrix A in (5) and represented
by the matrix B in the form (6), the parameter γ that yields the weight of the
inter-layer edges, i.e., the influence of the layers on each other, is determined a
priori by the model. Thus, SPR(A) ∈ D, because admissible perturbations only
affect intra-edges. Hence, one obtains from Proposition 3 that the multiplex
Perron root sensitivity matrix consists of just the projection into D of (13)
obtained by replacing all the entries of W outside the block-diagonal structure
by zero. This concludes the proof.

Analogously to (13), the multiplex Perron root sensitivity matrix is the
product of the maximal admissible perturbation and the relevant condition
number of the Perron root. Thus, SPR(A) is given by the product of the D-
structured condition number of ρ, κD(ρ), and the D-structured analogue of
the Wilkinson perturbation W :

SPR(A) = κ(ρ)‖W |D‖F
W |D
‖W |D‖F

.

Hence, the Frobenius norm of the multiplex Perron root sensitivity matrix is
equal to the structured condition number κD(ρ) of the Perron root; see Remark
7 for the general case of a multilayer network.

The above argument quantitatively shows that the Perron communicability
in multiplexes is less sensitive, both component-wise and norm-wise, than the
Perron communicability in more general multilayer networks.

Remark 10 Following the argument in Remark 7, we define the effective Per-
ron communicability in a multiplex network,

CPN(A) =
exp0(ρ)

κ(ρ)
1T
NLS

PR(A)1NL.

Moreover, observing that

1T
NLS

PR(A)1NL ≤ NL‖SPR(A)‖F = NLκD(ρ),

we obtain the upper bound

CPN(A) ≤ NL exp0(ρ)‖W |D‖F ,

which is sharper than (3).
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We conclude this subsection by defining the multiplex Perron root sensi-
tivity matrix

SPR(A) = κ(ρ)W ,

where
W := [W (1),W (2), . . . ,W (L)] ∈ RN×NL. (17)

Here W (`) ∈ RN×N is constructed by multiplying the `th column of Y by
the `th row of XT , for ` = 1, 2, . . . , L, where the matrices X,Y ∈ RN×L are
determined by reshaping the right and left Perron vectors x and y of B; see
Section 1 for the definition of X and Y .

Remark 11 Analogously to Remark 8, we note that the spectral impact of
each existing edge in A can be studied by means of

−1

ρ
A ◦ SPR(A);

cf. [19, Eqs (2.1)-(2.2)].

4.2 Exploiting the sparsity structure of multiplex networks

When considering perturbations of existing edges, we take into account the
projection of the Wilkinson perturbation W into the cone S of all matrices
in D with the same sparsity structure as diag[A(1), A(2). . . . , A(L)]. The ar-
gument that lead to the structured results (15) and (16) holds true for any
(further) sparsity structure of the matrix diag[A(1), A(2), . . . , A(L)]. Moreover,
κS(ρ) ≤ κD(ρ) ≤ κ(ρ). One has the following result for the multiplex Perron
root structured sensitivity matrix SPR struct(A), whose nonvanishing entries are
given by the quantities SPR

i, j, `(A) that correspond to the positive entries of B.

Proposition 5 The multiplex Perron root structured sensitivity matrix is given
by

SPR struct(A) = κ(ρ)W |S ∈ RNL×NL ,

where W is the Wilkinson perturbation defined by (10) and S is the cone of
all nonnegative block-diagonal matrices in RNL×NL with L blocks in RN×N

having the same sparsity structure as the diagonal block matrices of the supra-
adjacency matrix B in (6) that represents the multiplex.

Proof As for Proposition 4, the proof follows by observing that the multiplex
Perron root structured sensitivity matrix SPR struct(A) consists of the pro-
jection into S of W , because only perturbations of existing intra-edges are
admissible.

We have the following component-wise and norm-wise inequalities:

SPR struct(A) ≤ SPR(A),

‖SPR struct(A)‖F ≤ ‖SPR(A)‖F .
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Remark 12 Following the argument in Remark 10, we are in a position to
introduce the notion of structured Perron communicability in a multiplex net-
work,

CPN struct(A) =
exp0(ρ)

κ(ρ)
1T
NLS

PN struct(A)1NL,

and obtain by using

1T
NLS

PR struct(A)1NL ≤ NL‖SPR struct(A)‖F = NLκS(ρ)

the sharper upper bound

CPN struct(A) ≤ NL exp0(ρ)‖W |S‖F ≤ NL exp0(ρ)‖W |D‖F .

Finally, one may alternatively represent SPR struct(A) as

SPR struct(A) = κ(ρ)W||S ,

where W||S is obtained from W in (17), by projecting each matrix W (`) into
the cone S(`) of all nonnegative matrices in RN×N having the same sparsity
structure as the matrix A(`), for ` = 1, 2, . . . , L.

4.3 Symmetry patterns of multiplexes

Let the network be represented by a symmetric supra-adjacency matrix B of
the type (6). Applying the arguments in the preceding subsections to the cone
of all the symmetric matrices in D [all the symmetric matrices in S] leads
to the same structured analogue of the Wilkinson perturbation as W |D [as
W |S ]. Indeed, as the network is undirected, the right and left Perron vectors
coincide, so that the Wilkinson perturbation W = yxT = yyT is a symmetric
matrix.

5 Computed examples

This section presents some examples to illustrate the performance of the meth-
ods discussed above. The computations were carried out using Matlab R2015b.
The calculation of the Perron root and the left and right Perron vectors can
easily be evaluated by using the Matlab functions eig for small networks. For
large-scale networks these quantities can be computed by the two-sided Arnoldi
algorithm, which was introduced by Ruhe [20], and has been improved by
Zwaan and Hochstenbach [24]. Specifically, we used the function eig in Exam-
ples 1 and 2, and the two-sided Arnoldi algorithm in Example 3.
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5.1 Example 1: A small synthetic multilayer network

We construct a small directed unweighted general multilayer network with
N = 4 nodes in each layer and L = 3 layers, illustrated in Figure 1. The
network is represented by a supra-adjacency matrix B ∈ R12, whose 4 × 4
diagonal blocks are adjacency matrices that represent the graphs of each layer.
The off-diagonal blocks represent edges that connect nodes in different layers.
This results in a nonsymmetric matrix B, whose Perron root is ρ(B) = 2.3471;
the condition number of the Perron root is κ(ρ(B)) = 1.0248.

1 2

43

1 2

43

1 2

43

Fig. 1 Example 1: Layers are presented from left to right in the order L = 1, L = 2,
and L = 3. The edges connecting nodes from same layer are marked in black. The edges
connecting nodes from different layers are marked in red.

Let ε = 0.3 and let W denote the Wilkinson perturbation (10). Then
ρ(B + εW ) = 2.6512. Thus, the perturbation εW of B increases the spectral
radius by 0.3041 as can be expected since εκ(ρ(B)) = 0.3074. If we replace
the matrix W by the matrix of all ones, normalized to be of unit Frobenius
norm, then the spectral radius increases by only 0.2561. Clearly, this is not an
accurate estimate of the actual worst-case sensitivity of ρ(B) to perturbations.

The largest Perron root sensitivity is SPR
2,4,3,2(B) = 0.2241; cf. (12). This

suggests that increasing the weight of the edge connecting node 2 in layer 3
and node 4 in layer 2 results in a relatively large change in the Perron root.

In general, we expect the Perron root to increase more when introducing
new eges or increasing edge weights that correspond to the largest entries of
the Perron root sensitivity matrix SPR(B) than when introducing randomly
chosen edges or increasing randomly chosen edge weights. Table 1 confirms
this for Example 1. Similarly, we expect a smaller decrease in the Perron root
when decreasing the weights that correspond to the smallest entries of the
matrix SPR than when decreasing random weights. Table 2 confirms this for
Example 1.
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Table 1 Example 1: The four largest entries of the Perron root sensitivity matrix and
Perron roots for the supra-adjacency matrix obtained by increasing/introducing the weights

w
(k,`)
i,j , and Perron roots for supra-adjacency obtained by increasing/introducing the weight

of random edges by ε = 0.3.

{i, j, k, `} SPR
i,j,k,`(B) ρnew Random edges ρ̃new

{2, 4, 3, 2} 0.2241 2.4903 {1, 3, 3, 3} 2.4041
{4, 3, 2, 3} 0.1725 2.4592 {2, 4, 2, 2} 2.4479
{2, 3, 3, 3} 0.1717 2.4593 {1, 3, 1, 1} 2.3975
{3, 4, 2, 2} 0.1694 2.4627 {2, 3, 1, 1} 2.3727

Table 2 Example 1: The four smallest entries of the Perron root sensitivity matrix and

Perron roots for the supra-adjacency matrix obtained by decreasing the weights w
(k,`)
i,j , and

Perron roots corresponding to decreasing the weight of random edges by ε = 0.3.

{i, j, k, `} SPR
i,j,k,`(B) ρnew Random edges ρ̃new

{1, 2, 2, 1} 0.0073 2.3439 {3, 3, 2, 3} 2.2822
{3, 4, 3, 3} 0.0211 2.3407 {2, 4, 2, 2} 2.2728
{1, 4, 1, 1} 0.0271 2.3397 {1, 2, 3, 3} 2.2935
{1, 2, 1, 1} 0.0331 2.3332 {2, 3, 3, 3} 2.2633

The smallest entries of the matrix SPR(B) also give the candidate edges
to remove in order to simplify the network. However, we have to check the
connectedness of the network after removal of an edge. Let B̂ denote the
supra-adjacency matrix obtained by removing the edge (1, 1) −→ (4, 1), that
connects node 1 in layer 1 and node 4 in layer 1. Then ρ(B̂) = 2.3270. There-
fore, this removal decreases the Perron root only by an order of 10−2. Thus,
the network represented by the supra-adjacency matrix B can be simplified by
removing the edge (1, 1) −→ (4, 1) without a significant impact on the Perron
network communicability. The graph obtained after removal of this edge is
connected.

5.2 Example 2: The ScotlandYard data set

This example considers the Scotland Yard transportation network created by
the authors of [3]. The network can be downloaded from [2]. It consists of N =
199 nodes representing public transport stops in the city of London and L = 4
layers that represent different modes of transportation: boat, underground,
bus, and taxi. The edges are weighted and undirected. More precisely, the
edges in the layer that represents travel by taxi all have weight one. A taxi
ride is defined as a trip by taxi between two adjacent nodes in the taxi layer;
a taxi ride along k edges is considered k taxi rides. The weights of edges in
the boat, underground, and bus layers are chosen to be equal to the minimal
number of taxi rides required to travel between the same nodes.

The Perron root of the supra-adjacency matrix B is ρ(B) = 17.6055, and
its condition number is κ(ρ(B)) = 1. Let ε = 0.3 and let W be the Wilkinson
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Table 3 Example 2: The three largest entries of the Perron root sensitivity matrix and

Perron roots for the supra-adjacency matrix obtained by increasing the weights w
(k,`)
i,j by

ε = 0.3, and Perron roots corresponding to same increase for random edges.

{i, j, k, `} SPR
i,j,k,`(B) ρnew Random edges ρ̃new

{89, 67, 2, 2} 0.2407 17.7513 {103, 40, 4, 4} 17.6055
{89, 13, 2, 2} 0.2041 17.7299 {7, 188, 3, 3} 17.6055
{13, 67, 2, 2} 0.1821 17.7161 {174, 162, 3, 3} 17.6055

Table 4 Example 2: Sensitivity of the Perron root to structured increase of weights by
ε = 0.3.

{i, j, `} SPR struct
i,j,` (A) ρnew Random edges ρ̃new

{89, 67, 2} 0.2407 17.7513 {13, 52, 3} 17.6057
{89, 13, 2} 0.2041 17.7299 {74, 46, 2} 17.6085
{67, 13, 2} 0.1821 17.7161 {108, 117, 4} 17.6055
{67, 111, 2} 0.1315 17.6861 {98, 97, 4} 17.6055
{89, 140, 2} 0.1309 17.6858 {158, 142, 4} 17.6055

perturbation (10). Then ρ(B + εW ) = 17.9055. Thus, the spectral radius
increases by 0.3. This can be expected since εκ(ρ(B)) = 0.3. If we replace
the matrix W by the matrix of all ones, normalized to be of unit Frobenius
norm, then the spectral radius increases by only 0.006. This is not an accurate
estimate of the actual worst-case sensitivity of ρ(B) to perturbations.

The largest entry of the Perron root sensitivity matrix is SPR
89,67,2,2(B) =

0.2407. Increasing the weight of the edge e89,67,2,2 that connects the nodes
89 and 67 in layer 2 typically results in a larger increase in the Perron root
than when increasing a weight of a randomly chosen edge. For instance, when
increasing the weight of the edge e89,67,2,2 by 0.3, the Perron root is increased
by 0.1458; see Table 3 for illustrations.

We also note that the Perron root ρ(B) does not change significantly when
setting the entry (162, 560) of B to zero. This models the removal of the edge
that connects node 162 in layer 1 to node 162 in layer 3 in the network. This
edge corresponds to the smallest entry of the Perron root sensitivity matrix
SPR
162,162,1,3(B) = 3.2279 · 10−15.

Now consider perturbations of existing edges. We compute the multiplex
Perron root structured sensitivity matrix SPR struct(A) and compare the changes
in the Perron root when increasing the weights of existing edges according to
the largest entries of SPR struct(A) and increasing the weights of randomly cho-
sen existing edges. This is illustrated by Table 4. As expected, the Perron root
changed the most when considering edges associated with a large entry in the
matrix SPR struct(A).

Finally, we note that the Perron root of the network is not very sensi-
tive to removal of edges that correspond to the smallest entries of the matrix
SPR struct(A); see Table 5.
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Table 5 Example 2: Sensitivity of the Perron root to removal of edges.

{i, j, `} SPR struct
i,j,` (A) ρnew Random edges ρ̃new

{175, 162, 4} 2.0199 · 10−12 17.6055 {67, 111, 2} 16.6289
{7, 6, , 4} 4.6646 · 10−12 17.6055 {102, 103, 4} 17.6055
{30, 17, 4} 4.7102 · 10−12 17.6055 {11, 100, 3} 17.6054
{17, 7, 4} 4.7552 · 10−12 17.6055 {79, 46, 2} 17.4191

5.3 Example 3: The European airlines data set

The European airlines data set consists of 450 nodes that represent European
airports and has 37 layers that represent different airlines operating in Eu-
rope. Each edge represents a flight between airports. There are 3588 edges.
The network can be represented by a supra-adjacency matrix B (6), where
the block-diagonal matrices contain ones if an airline offers a flight between
the two corresponding airports, and zeros otherwise. Each off-diagonal block
is the identity matrix; this reflects the effort required to change airlines for
connecting flights. The network can be downloaded from [2].

Similarly as Taylor et al. [21], we only include N = 417 nodes from the
the largest connected component of the network. This component defines
the supra-adjacency matrix B. Its largest eigenvalue is ρ(B) = 38.3714 and
κ(ρ(B)) = 1. Let ε = 0.3 and let W be the Wilkinson perturbation. Then
ρ(B + εW ) = 38.6714. Thus, the spectral radius increases by 0.3 as expected
since εκ(ρ(B)) = 0.3.

If we replace the matrix W by the matrix of all ones, normalized to be of
unit Frobenius norm, then the spectral radius increases by only 0.091.

The smallest entry of the Perron root sensitivity matrix is SPR
202,202,31,28(B) =

5.1845 · 10−13. This suggests that the cost of changing from the Czech airline
to the Niki airline at Valan Airport can be avoided without influencing the
communicability of the network.

The two largest entries of the Perron root sensitivity matrix are SPR
38,2,1,1(B) =

0.0040 and SPR
157,2,1,1(B) = 0.0034. This indicates that the Perron root may

be increased the most by increasing the number of flights operated by the
Lufthansa airline between the Munich and Frankfurt Am Main airports and
between Düsseldorf and Frankfurt Am Main airports.

Finally, we consider structured perturbations. Table 6 shows important
changes in the Perron root when increasing the weights w`

i,j corresponding to
the largest entries of the multiplex Perron root structured sensitivity matrix
SPR struct(A) compared to increasing weights of random existing edges by ε =
0.3. On the other hand, removing random edges decreases the Perron root more
than removing edges that correspond to the smallest entries of SPR struct(A);
see Table 7.

We conclude that the Perron communicability of the European airlines
network is not so sensitive to removing flights operated by Wideroe Airlines
between several airports. Meanwhile, increasing the number of flights operated
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Table 6 Example 3: Sensitivity of the Perron root to structured increase of weights ε = 0.3.

{i, j, `} SPR struct
i,j,` (A) ρnew Random edges ρ̃new

{2, 38, 1} 0.0040 38.3738 {31, 157, 13} 38.3719
{2, 157, 1} 0.0034 38.3734 {246, 12, 2} 38.3717
{157, 38, 1} 0.0033 38.3734 {32, 164, 2} 38.3715
{50, 2, 1} 0.0026 38.3730 {27, 64, 28} 38.3719
{50, 38, 1} 0.0026 38.3729 {107, 78, 2} 38.3718

Table 7 Example 3: Sensitivity of the Perron root to structured removal of edges.

{i, j, l} SPR struct
i,j,` (A) ρnew Random edges ρ̃new

{350, 316, 35} 1.5058 · 10−11 38.3714 {61, 2, 1} 38.3689
{202, 144, 35} 1.5300 · 10−11 38.3714 {64, 170, 6} 38.3695
{316, 144, 35} 1.6606 · 10−11 38.3714 {237, 15, 4} 38.3697
{202, 270, 35} 1.4789 · 10−11 38.3714 {71, 80, 4} 38.3704
{350, 144, 35} 3.6032 · 10−11 38.3714 {26, 15, 9} 38.3691

by the Lufthansa airline would increase the communicability of the network
significantly.

5.4 Example 4: General multilayer network

We consider an example of a general multilayer network, where interactions
are allowed between different nodes in different layers. The network has 160
nodes, 6 layers, and 148 edges that may be directed. The network can be
downloaded from https://github.com/wjj0301/Multiplex-Networks.

The Perron root of the supra-adjacency matrix B associated with the net-
work, and its condition number are ρ(B) = 8.1324 and κ(ρ(B)) = 1.3277,
respectively. Let ε = 0.3 and let W be the Wilkinson perturbation. Then the
Perron root of B+ εW is 0.3990 larger than ρ(B). This can be expected since
εκ(ρ(B)) = 0.3983. The largest entry of the Perron root sensitivity matrix is
SPR
6,24,1,1(B) = 0.3389. Increasing the weight of the edge connecting node 6 and

node 24 in layer 1 by 0.3 increases the Perron root by 0.0998.
We used ε = 0.3 in all computed examples. The conclusions drawn would

have been the same if instead ε = 0.1 were used.

6 Conclusion

This paper investigates the communicability of multilayer networks by intro-
ducing the concept of Perron communicability for this kind of networks. The
communicability is measured by the Perron root of the supra-adjacency ma-
trix associated with the network. The Perron vectors of this matrix help to
determine which edge weights to increase or reduce in order to increase or
reduce, respectively, the Perron communicability the most. Our analysis also
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addresses the question of which edges can be removed without changing the
Perron communicability much.
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