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EPIq (Electron-Phonon wannier Interpolation over k and q-points) is an open-source software for the calculation 
of electron-phonon interaction related properties from first principles. Acting as a post-processing tool for a 
density-functional perturbation theory code (Quantum ESPRESSO) and WANNIER90, EPIq exploits the localization 
of the deformation potential in the Wannier function basis and the stationary properties of a force-constant 
functional with respect to the first-order perturbation of the electronic charge density to calculate many 
electron-phonon related properties with high accuracy and free from convergence issues related to Brillouin 
zone sampling. EPIq features include: the adiabatic and non-adiabatic phonon dispersion, superconducting 
properties (including the superconducting band gap in the Migdal-Eliashberg formulation), double-resonant 
Raman spectra and lifetime of excited carriers. The possibility to customize most of its input makes EPIq
a versatile and interoperable tool. Particularly relevant is the interaction with the Stochastic Self-Consistent 
Harmonic Approximation (SSCHA) allowing anharmonic effects to be included in the calculation of electron-

properties. The scalability offered by the Wannier representation combined with a straightforward workflow 
and easy-to-read input and output files make EPIq accessible to the wide condensed matter and material science 
communities.

Program summary

Program Title: EPIq
CPC Library link to program files: https://doi .org /10 .17632 /f2syws66d7 .1
Developer’s repository link: https://gitlab .com /the -epiq -team /epiq

Licensing provisions: GPLv3

Programming language: FORTRAN95

External routines: BLAS (http://www /netlib .org /blas), LAPACK (http://www .netlib .org /lapack), Quantum 
ESPRESSO (https://www .quantum -espresso .org/), wannier90 (https://wannier .org/)

Nature of problem: Direct first principles calculation of quantities obtained via linear response methods in 
solid-state systems, such as the deformation potential, can be computationally demanding, hindering proper 
convergence.

Solution method: An interpolation scheme exploiting the localization of the deformation potential in the 
Wannier function basis and the stationary properties of a force-constant functional with respect to the first-
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order perturbation of the electronic charge density is implemented in EPIq. Within this approach it is possible to 
calculate many electron-phonon related properties with high accuracy and a low computational effort.
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1. Introduction

Electron-phonon interaction plays a central role in solid state physics 
as it is involved in almost any material property of practical interest. 
Some prominent examples are electronic transport in metals [1] and 
semiconductors [2,3], thermal transport [4], thermoelectricity [5,6], 
charge-density waves [7], thermalization of excited carriers, supercon-

ducting [8] instabilities in a large class of superconductors, including 
the room-temperature superconducting hydrides [9], and a plethora of 
other phenomena [10]. Thanks to the theoretical developments of the 
last few decades, many material properties can now be routinely cal-

culated in a linear response formalism [11,12], including the electron-

phonon interaction. At the same time, the massive increase in compu-

tational power combined with the development of new investigation 
methodologies provide novel tools for high throughput materials engi-

neering [13–15] as well as the possibility to study systems of increasing 
complexity. It follows that developing methods for faster computational 
treatment of complex quantities such as the electron-phonon interac-

tion is becoming increasingly important. A first principles treatment 
of electron-phonon interaction related properties presents many chal-

lenges in most materials even at the semi-local density functional theory 
(DFT) level, as they often depend on the precise shape of the Fermi 
surface in metals or doped insulators (nesting), thus requiring a very ac-

curate sampling of the Brillouin Zone, resulting in a high computational 
2

cost. In this regard, the concept of maximally localized Wannier func-
tions (MLWFs) [16] is of great practical help, as the electron-phonon 
interaction and related phenomena can be accurately interpolated in the 
MLWF representation [17,18], effectively reducing the computational 
load intrinsic in the linear response calculations. “Various packages ex-

ploit the Wannier interpolation scheme of the electron-phonon coupling 
to compute electron-phonon coupling related properties: the ‘EPW’ [19]

as well as other packages focused on transport properties like ‘elphbolt’ 
[20], ‘Perturbo’ [21], ‘PHOEBE’ [22]. Other packages not specifically 
resorting on the Wannier interpolation also exist, i.e. EPIC STAR [23].”

In this work we introduce EPIq (Electron-Phonon wannier Interpola-

tion over k and q-points), an open-source software studied to facilitate 
the calculation of electron-phonon related properties of materials. EPIq
is written to be compliant with the FORTRAN95 standard. EPIq logo 
is presented in Fig. 1.EPIq acts as a post-processing of a plane wave 
DFPT calculation. By operating a Fourier interpolation of the electron-

phonon matrix elements in the optimally smooth subspace identified 
by MLWF, the code allows to precisely calculate phonon frequencies 
and electron-phonon matrix elements at an arbitrary Brillouin zone 
wavevector with a low computational cost. EPIq acts as a simple post-

processing tool of the Quantum ESPRESSO package and is very easy to 
install and execute on any calculator equipped with the free linear alge-

bra BLAS and LAPACK libraries. EPIq exploits the concept of maximally 
localized Wannier functions (MLWFs) [16], that can be obtained from 
plane waves thorough a unitary transform by minimizing the spread 

functional, as implemented in the WANNIER90 package [24,25]. The 
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Fig. 1. Logo of EPIq.
theoretical foundations underlying EPIq have been presented in a previ-

ous paper by some of the authors [18]. EPIq is released under the GPLv3 
license and exploits routines from the open source Quantum ESPRESSO 
and Wannier90 packages, released under the GPLv2 license. The aim 
of EPIq is twofold: on the one hand, EPIq wants to simplify the access 
to calculations already present in other packages, i.e. the ones related 
to superconductivity and transport. On the other hand, EPIq wants to 
enable the Wannier interpolation of other quantities not commonly in-

terpolated in other programs 𝑖.𝑒. the velocity (and others in the future) 
while also give access to other physical quantities, 𝑒.𝑔. the nonadiabatic 
correction to phonon frequencies and the Resonant Raman intensity.

The paper is organized as follows. In Sec. 2 we describe the theoreti-

cal framework underlying EPIq, as well as the practical implementation 
of these concepts in the software, in Sec. 3 we present the type of calcu-

lations available in EPIq and in Sec. 4 we demonstrate some exemplar 
applications. In Sec. 5 we explain the technical details of the implemen-

tation and in Sec. 6 we give all the technical details to reproduce the 
simulations in the paper. Finally in Sec. 7 we draw our conclusions.

2. Theoretical framework

2.1. Maximally localized Wannier functions: definition and properties

The core of EPIq is the Wannier interpolation kernel. Taking advan-

tage of the MLWF representation [16], EPIq can interpolate the quantity 
of interest over ultra-dense electron momentum (k point) and phonon 
momentum (q-point) grids. We recall here below the key ideas of MLWF 
[16,24–26].

For the sake of simplicity, we consider a composite set of bands, 
i.e. a set of 𝑁𝑤 bands isolated from all the others. In an insulator, it is 
always possible to identify such a set of bands.

The choice of the single-particle Kohn-Sham Bloch functions (|𝜓𝐤𝑛⟩) 
in this subspace is not unique as any unitary transformation of the kind

|�̃�𝐤𝑛⟩ =∑
𝑚

𝑈𝑚𝑛(𝐤)|𝜓𝐤𝑚⟩ (1)

leads to an equally acceptable Kohn-Sham Bloch function.

The 𝑛−th Wannier function on the 𝐑−th cell is defined as

|𝐑𝑛⟩ = 1√
𝑁𝑤
𝑘

𝑁𝑤
𝑘∑

𝐤=𝟏

𝑁w∑
𝑚=1

𝑒−𝑖𝐤⋅𝐑𝑈𝑚𝑛(𝐤)|𝜓𝐤𝑚⟩ (2)

where 𝑁𝑤
𝑘

is the number of points in the 𝐤-grid used to perform the 
integral (i.e. the number of electron momentum 𝐤-points in the Wannier 
procedure). As it is clear from Eq. (2), there are 𝑁𝑤 Wannier functions, 
the same number of the bands forming the composite set. They are not 
unique as different choices of 𝑈𝑚𝑛(𝐤) lead to different Wannier functions 
with different degrees of localization. The converse relation of Eq. (2)

is:

|𝜓𝐤𝑚⟩ = 1√ ∑∑
𝑒𝑖𝐤𝐑𝑈∗

𝑛𝑚
(𝐤) |𝐑𝑛⟩ (3)
3

𝑁𝑤
𝑘

𝐑 𝑛
The ideal situation would be to have Wannier functions exponentially 
localized as in this case Fourier interpolation can be used to obtain 
observables in the Bloch function basis on any 𝐤 and 𝐪 points.

The localization properties of the Wannier functions are related 
to the regularity of the periodic part of the Bloch function, 𝑢𝐤𝑛 =
𝑒−𝑖𝐤𝐫𝜓𝐤𝑛

√
𝑁𝑤
𝑘

as a function of k. The more regular the states, the more 
localized the Wannier functions [27–29]. Exponential decay is obtained 
if and only if the functions 𝑢𝐤𝑛 are analytic in 𝐤 [28,30]. The set of 
Bloch functions having periodic parts analytic in 𝐤 is called the opti-
mally smooth subspace.

For one-dimensional insulating systems, Kohn [27] proved that ex-

ponentially localized Wannier functions exist. In two and three dimen-

sional insulators displaying time reversal symmetry, the existence of 
exponentially localized Wannier functions has been proved in Ref. [31]. 
However, these theorems do not provide a recipe to find the optimally 
smooth subspace, namely they do not suggest a way to obtain the ma-

trix 𝑈𝑚𝑛(𝐤) leading to Bloch functions analytic in 𝐤.

MLWF are obtained by imposing that the sum of the spreads of the 
Wannier functions is minimized. Namely, the spread functional

Ω=
𝑁𝑤∑
𝑛=1

[⟨𝑟2⟩𝑛 − 𝐫2
]

(4)

is minimized with respect to the matrices 𝑈𝑛𝑚(𝐤). The following quan-

tities have been defined in Eq. (4), namely ⟨𝑟2⟩𝑛 = ⟨𝟎𝑛|𝑟2|𝟎𝑛⟩ and 𝐫𝑛 =⟨𝟎𝑛|𝐫|𝟎𝑛⟩.
The Wannier functions minimizing the spread Ω are called MLWF 

and the corresponding transformation 𝑈𝑚𝑛(𝐤) leads to the optimally 
smooth subspace via Eq. (1). It should be stressed that this transfor-

mation does not necessary leads to Bloch functions analytic in 𝐤 and, 
consequently, to exponentially localized Wannier functions. However, 
as the minimization of the spread leads to Wannier functions with a 
substantial degree of localization, it is expected that the corresponding 
Bloch functions possess a certain degree of smoothness (even if they are 
not necessarily analytic in 𝐤).

In the case of systems with entangled bands, namely metals or sys-

tem with substantial band mixing, it has been shown [26] that a dis-

entanglement procedure can be carried out. In particular, if 𝑁𝑛𝑏𝑛𝑑 is 
the number of bands calculated in the first-principles simulations, it is 
possible to isolate an energy window that encompasses the 𝑁𝑤 bands 
of interest. The procedure is carried out for each 𝐤-point in the simu-

lation. Having isolated a target group of 𝑁𝑤 bands, then the standard 
minimization for composite bands can be carried out.

Within the EPIq workflow, the construction of Wannier functions 
(disentanglement and minimization of Ω) is operated by a preliminary 
run of the WANNIER90 package [24,25] according to the procedure il-
lustrated in Ref. [32] and later accessed by EPIq.

2.2. Wannier interpolation of matrix elements

We distinguish two kinds of matrix elements, namely those related 
to operators diagonal in the electron-momentum space and those not 

diagonal in the electron-momentum space.
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2.2.1. Operators diagonal in the electron momentum
We consider an operator  diagonal in the electron-momentum 𝐤,

𝑛𝑚(𝐤) = ⟨𝑢𝑃𝑊𝐤𝑛 ||𝑢𝑃𝑊𝐤𝑚 ⟩ (5)

where |𝑢𝑃𝑊𝐤𝑚 ⟩ are the periodic parts of the Bloch functions obtained from 
a density functional theory code (Quantum ESPRESSO [33,34] in our 
case) and the integral with respect to the electronic coordinate is over 
the unit cell. As the functions |𝑢𝑃𝑊𝐤𝑚 ⟩ are produced by a routine that diag-

onalizes a complex hermitian hamiltonian, they are not smooth in 𝐤 (the 
phase of the eigenvectors is random). Moreover they are known on a 
𝑁𝑤
𝑘

𝐤-point grid. If the MLWF procedure is carried out, then the unitary 
transformation 𝑈𝑚𝑛(𝐤) is known for any 𝐤 point in the 𝑁𝑤

𝑘
electron-

momentum grid. Thus, the Wannier functions |𝐑𝑛⟩ are also known. By 
using Eq. (2) we have:

𝑛𝑚(𝐑) = ⟨𝟎𝑛||𝐑𝑚⟩ = 1
𝑁𝑤
𝑘

∑
𝐤
𝑒−𝑖𝐤𝐑

∑
𝑛′𝑚′

⟨𝑢𝑃𝑊𝐤𝑛′ |𝑈∗
𝑛′𝑛(𝐤)𝑈𝑚′𝑚(𝐤)|𝑢𝑃𝑊𝐤𝑚′ ⟩

= 1
𝑁𝑤
𝑘

∑
𝐤
𝑒−𝑖𝐤𝐑 ̃𝑛𝑚(𝐤) (6)

where

̃𝑛𝑚(𝐤) =
∑
𝑛′𝑚′

⟨𝑢𝑃𝑊𝐤𝑛′ |𝑈∗
𝑛′𝑛(𝐤)𝑈𝑚′𝑚(𝐤)|𝑢𝑃𝑊𝐤𝑚′ ⟩ (7)

From Eq. (6), it is seen that the operator in the Wannier function basis 
is connected via a Fourier transform to the operator ̃(𝐤). The following 
procedure is then adopted: 𝑛𝑚(𝐤) in Eq. (5) is obtained from the Quan-

tum ESPRESSO output, then by using Eq. (7) and Eq. (6), the operator 
𝑛𝑚(𝐑) is obtained on a real-space supercell of size 𝑁𝑤

𝑘
.

As Eq. (6) is an inverse Fourier transform, we can use Fourier inter-

polation to estimate the operator ̃(�̃�) at any point �̃� in the Brillouin 
zone, namely

̃𝑛𝑚(�̃�) =
∑
𝐑
𝑒𝑖�̃�𝐑𝑛𝑚(𝐑) (8)

For short range operators the accuracy of the Fourier interpolation is 
dictated by the degree of localization of the Wannier functions.

One last step is needed to obtain the matrix element 𝑛𝑚(�̃�), namely 
we have to left and right multiply by the transformation matrices, 
namely

𝑛𝑚(�̃�) =
∑
𝑛′𝑚′

𝑈𝑛′𝑛(�̃�)̃𝑛𝑚(�̃�)𝑈∗
𝑚′𝑚(�̃�) (9)

The problem in performing this last operation is that the transformation 
matrices 𝑈𝑛𝑛′ (�̃�) are not known in a point �̃� that does not belong to 
the initial 𝑁𝑤

𝑘
𝐤-point grid. In order to circumvent this difficulty it is 

sufficient to consider the electronic bands 𝜖𝑃𝑊𝐤𝑛 and note that Eq. (6)

applied to the Hamiltonian 𝐻 leads to

𝐻𝑛𝑚(𝐑) =
1
𝑁𝑤
𝑘

∑
𝐤
𝑒−𝑖𝐤𝐑

∑
𝑛′
⟨𝑢𝑃𝑊𝐤𝑛′ |𝑈∗

𝑛′𝑛(𝐤) 𝜖
𝑃𝑊

𝐤𝑛′ 𝑈𝑛′𝑚(𝐤)|𝑢𝑃𝑊𝐤𝑛′ ⟩

= 1
𝑁𝑤
𝑘

∑
𝐤
𝑒−𝑖𝐤𝐑�̃�𝑛𝑚(𝐤) (10)

It is then possible to obtain via Fourier interpolation of 𝐻𝑛𝑚(𝐑) the 
matrix �̃�𝑛𝑚(�̃�) at any point �̃� in the Brillouin zone. Diagonalization of 
�̃�𝑛𝑚(�̃�) provides the interpolated electronic structure 𝜖�̃�𝑛 (eigenvalues) 
and the desired transformation 𝑈𝑛𝑚(�̃�) (eigenvectors).

As an example of an operator diagonal in the electron-momentum, 
we consider the electron velocity operator, namely

𝑣𝛼𝐤 =
𝑖

ℏ
[𝐻𝐤, 𝑟

𝛼], (11)

defined as the commutator of the Bloch Hamiltonian 𝐻𝐤 = 𝑒−𝑖𝐤𝐫𝐻𝑒𝑖𝐤𝐫

and the position operator 𝐫 (the index 𝛼 labels the Cartesian compo-

nent). This operator is pivotal to calculate the response to the external 
4

electro-magnetic field within the dipole approximation. Contrary to the 
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case of the position operator, the electron velocity remains well-defined 
even if the Born-von Karman boundary conditions are applied [35].

By definition the local part of the self-consistent potential commutes 
with the position operator, so that the only contributions to the velocity 
operator arise from the kinetic energy and the non-local part of the bare 
potential. The latter has to be computed numerically, while the kinetic 
contribution is usually expanded in plane-waves over the reciprocal lat-

tice vector 𝐆, namely:

𝑣𝛼
𝑚𝑛
(𝐤) = ⟨𝜓𝑚

𝐤 | 𝜕

𝜕𝑟𝛼
+ 𝑖

ℏ
[𝑉 𝑛𝑙

𝐤 , 𝑟𝛼] |𝜓𝑛
𝐤⟩ (12)

=
∑
𝐆
(𝑘𝛼 +𝐺𝛼) ⟨𝜓𝑚

𝐤 | |𝐆⟩ ⟨𝐆⟩𝜓𝑛
𝐤 + 𝑖

ℏ
⟨𝜓𝑚

𝐤 | [𝑉 𝑛𝑙
𝐤 , 𝑟𝛼] |𝜓𝑛

𝐤⟩ . (13)

We then use Eq. (6) to obtain the representation of the velocity opera-

tor in the Wannier functions basis and Fourier interpolation to obtain 
𝑣𝛼
𝑚𝑛
(�̃�)

2.2.2. Operators not diagonal in the electron momentum
As an example of operators not diagonal in the electron momentum, 

we consider the deformation potential matrix element, namely

𝐝𝑠
𝑚,𝑛

(𝐤+ 𝐪,𝐤) = ⟨𝑢𝑃𝑊𝐤+𝐪,𝑚| 𝑑𝑣𝑆𝐶𝐹𝑑𝐮𝐪,𝑠
|𝑢𝑃𝑊𝐤,𝑛 ⟩ = 1

𝑁𝑤
𝑘

⟨𝜓𝑃𝑊
𝐤+𝐪,𝑚|𝑑𝑉𝑆𝐶𝐹𝑑𝐮𝐪,𝑠

|𝜓𝑃𝑊
𝐤,𝑛 ⟩ (14)

In the previous equation 𝐪 is the phonon momentum, 𝐮𝐪𝑠 is the Fourier 
transform of the phonon displacement, 𝑉𝑆𝐶𝐹 = 𝑒𝑖𝐪𝐫𝑣𝑆𝐶𝐹 is the screened 
Kohn-Sham potential and 𝑠 is a cumulative index for atom in the cell 
and cartesian coordinate. By applying the transformation in Eq. (2) we 
obtain

𝐝𝑠
𝑚,𝑛

(𝐑,𝐑𝐿) = ⟨𝟎,𝑚| 𝑑𝑉𝑆𝐶𝐹
𝑑𝐮𝑠𝐿

|𝐑, 𝑛⟩
= 1
𝑁𝑤

𝐤

∑
𝐤,𝐪

∑
𝑚′ ,𝑛′

𝑒−𝑖(𝐤⋅𝐑+𝐪⋅𝐑𝐿)𝑈∗
𝑚′𝑚(𝐤+ 𝐪)𝐝𝑠

𝑚′ ,𝑛′
(𝐤,𝐪)𝑈𝑛′𝑛(𝐤)

= 1
𝑁𝑤

𝐤

∑
𝐤,𝐪

𝑒−𝑖(𝐤⋅𝐑+𝐪⋅𝐑𝐿) 𝐝𝑠
𝑚,𝑛

(𝐤,𝐤+ 𝐪) (15)

where

𝐝𝑠
𝑚,𝑛

(𝐤,𝐤+ 𝐪) =
∑
𝑚′ ,𝑛′

𝑈∗
𝑚′𝑚(𝐤+ 𝐪)𝐝𝑠

𝑚′ ,𝑛′
(𝐤,𝐤+ 𝐪)𝑈𝑛′𝑛(𝐤) (16)

and 𝐑𝐿 is the direct lattice vector related to the Fourier transform of 
the phonon momentum. From Eq. (15) we see that the deformation 
potential in the Wannier basis is obtained via a Fourier transform of the 
matrix element 𝐝𝑠

𝑚,𝑛
(𝐤, 𝐤 + 𝐪).

It is important to underline that in metals, the quantity 𝑑𝑉𝑆𝐶𝐹
𝑑𝐮𝑠𝐿

is not 
necessarily short ranged (for example in the case of Kohn-anomalies or 
in proximity of charge density waves). Thus, the real-space localization 
of 𝐝𝑠

𝑚,𝑛
(𝐑, 𝐑𝐿) is not simply related to the localization of the Wannier 

functions, but depends also on the localization of the real-space force 
constant matrix.

Finally, by applying Eq. (2), we obtain the Fourier interpolation for-

mula for the deformation potential, namely

𝐝𝑠
𝑚,𝑛

(�̃�, �̃�+ �̃�) = 1
(𝑁𝑤

𝐤 )2
∑
𝐑𝐑𝐿

𝑒𝑖(�̃�⋅𝐑+�̃�⋅𝐑𝐿)

×
∑
𝑚′𝑛′

𝑈𝑚′𝑚(�̃�+ �̃�)𝐝𝑠
𝑚,𝑛

(𝐑,𝐑𝐿)𝑈∗
𝑛′𝑛(�̃�) (17)

where ̃𝐤 and �̃� are any vector in the Brillouin zone. The transformation 
matrices 𝑈𝑛′𝑛(�̃�) are obtained following the procedure described below 
Eq. (7).

The electron-phonon matrix elements are calculated from the fol-

lowing basis transformation,

𝜈
∑

𝑠 𝑠
√

𝑔
𝑚,𝑛

(𝐤,𝐪) =
𝑠

𝐞𝐪,𝜈 ⋅ 𝐝𝑚,𝑛(𝐤,𝐪)∕ 2𝑀𝑠𝜔𝐪,𝜈 . (18)
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The diagonalization of the dynamical matrix at phonon momentum �̃�
provides the phonon frequencies 𝜔𝐪,𝜈 and the cartesian components of 
the phonon eigenvectors 𝐞𝑠𝐪,𝜈 in Eq. (18). The dynamical matrix at �̃�
is obtained either from Fourier interpolation of the dynamical matri-

ces obtained via linear response or by using the Wannier interpolation 
technique described in Sec. 2.2.2. Alternatively, the dynamical matrix 
can also be read from input as a result of another calculation. A typ-

ical example is the use of anharmonic dynamical matrices within the 
SSCHA.

2.3. Electron-phonon coupling in polar semiconductors

The Wannier interpolation of electron-phonon interaction in the 
case of polar semiconductors has to be treated with special care, as the 
long range Frölich interaction is not localized in the real-space Wannier 
basis. Within EPIq, the Frölich interaction in polar semiconductors is 
calculated within the microscopic theory introduced by Vogl [36]. All 
the details of the implementation have been presented by some of us 
in Ref. [37]. In practice, the long-range contribution is subtracted from 
the electron-phonon matrix elements in the smooth representation (be-

fore the interpolation in the real space) and restored after the Fourier 
transform back to the reciprocal space. The inclusion of this contribu-

tion allows to extend the estimation of carrier lifetimes to the small 
wavevector limit in polar semiconductors.

3. Calculations available in EPIq

Several quantities can be interpolated and computed in EPIq, sharing 
the same Wannier interpolation kernel.

1. Adiabatic (static) and non-adiabatic (dynamic) force constant ma-

trices.

2. Electron-phonon contribution to the phonon linewidth and related 
quantities.

3. Isotropic and anisotropic Eliashberg equations.

4. Double Resonant Raman scattering.

5. Electron lifetime and relaxation time.

3.1. Adiabatic (static) and non-adiabatic (dynamic) force constant 
matrices

The knowledge of the deformation-potential throughout the full Bril-

louin zone via Wannier interpolation allows for the calculation of adia-

batic (static) or non-adiabatic (dynamic) force constant matrices at any 
phonon momentum 𝐪. In particular, it is possible to start from the first 
principles adiabatic (static) force constant matrices calculated in linear 
response with Quantum ESPRESSO by using a given electronic tempera-

ture 𝑇𝑝ℎ on a given grid of electron-momentum 𝐤−points 𝑁𝑘(𝑇𝑝ℎ) and on 
a given grid of phonon-momentum 𝐪−points and obtain the adiabatic 
(static) or non-adiabatic (dynamic) force constant matrices calculated 
at any electronic temperature 𝑇0 on any 𝐤−point grid 𝑁𝑘(𝑇0) and at any 
phonon momentum 𝐪. We briefly outline the procedure implemented in
EPIq and we refer to Ref. [18] for more details.

In the presence of a time dependent monocromatic harmonic per-

turbation of the ions, the force at time 𝑡 acting on the 𝐽 -th nucleus 
(𝐽 = {𝑀, 𝑟}, 𝑟 atom in the 𝑀 cell) due to the displacement 𝐮𝐼 (𝑡′) of 
the atom 𝐼 -th at time 𝑡′ is labeled 𝐅𝐽 (𝑡). The force constants matrix is 
defined as:

𝐶𝐼𝐽 (𝐑𝐿 −𝐑𝑀 ; 𝑡− 𝑡′) = −
𝛿𝐅𝐽 (𝑡)
𝛿𝐮𝐼 (𝑡′)

(19)

where we used the translational invariance of the crystal and make 
evident the dependence of 𝐶𝐼𝐽 on the lattice vector 𝐑𝐿−𝐑𝑀 (to lighten 
the notation we omit it in the following equations where no confusion 
may arise). For the causality principle we can suppose that:
5

𝐶𝐼𝐽 (𝐑𝐿 −𝐑𝑀 ; 𝑡) = 0 for 𝑡 < 0 (20)
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The 𝜔-transform of the force-constants matrix is thus:

𝐶𝐼𝐽 (𝜔) = ∫ 𝑑𝑡𝑒𝑖𝜔𝑡𝐶𝐼𝐽 (𝑡) (21)

While the force-constants matrix 𝐶𝐼𝐽 (𝑡) is a real quantity, its 𝜔-

transform 𝐶𝐼𝐽 (𝜔) is not real and has both a real and imaginary part. 
The Fourier transform of the force-constant matrix is

𝐶𝑠𝑟(𝐪,𝜔) =
∑
𝐿

𝑒−𝑖𝐪𝐑𝐿𝐶𝐿𝑠,𝑀𝑟(𝜔) (22)

where, without loss of generality, we have chosen 𝐑𝑀 = 𝟎. The Hermi-

tian combination of the force-constant matrix in momentum space leads 
to the dynamical matrix:

𝐷𝑠𝑟(𝐪,𝜔) =
1

2
√
𝑀𝑠𝑀𝑟

[
𝐶𝑠𝑟(𝐪,𝜔) +𝐶𝑟𝑠(𝐪,𝜔)∗

]
(23)

where 𝑀𝑠 is the mass of the s-th atom in the unit cell. Eq. (23) is valid 
also in the adiabatic (static) case by setting 𝜔 = 0. If the imaginary 
part of the dynamical matrix 𝐴𝑠𝑟(𝐪, 𝜔) =

1
2𝑖
√
𝑀𝑠𝑀𝑟

[
𝐶𝑠𝑟(𝐪,𝜔) −𝐶𝑟𝑠(𝐪,𝜔)∗

]
is small with respect to the real part, i.e.

|𝐴𝑠𝑟(𝐪,𝜔)| << |𝐷𝑠𝑟(𝐪,𝜔)| (24)

then the self-consistent condition

det |||𝐷𝑠𝑟(𝐪,𝜔𝐪𝜈) −𝜔2
𝐪𝜈
||| = 0 (25)

determines non-adiabatic/dynamic phonon frequencies 𝜔𝐪𝜈 and phonon 
eigenvectors 

{
𝐞𝑠𝐪𝜈

}
𝑠=1,𝑁

and 𝜈 = 1, 3𝑁 indicates the phonon branches. 
The adiabatic/static phonon frequencies and eigenvectors are obtained 
considering a static perturbation, thus diagonalizing 𝐷𝑟𝑠(𝐪, 𝜔𝐪𝜈 = 0).

We label with 𝐶𝑠𝑟(𝐪, 0, 𝑇𝑝ℎ) the adiabatic (static) force constant 
matrix obtained from a linear response calculation by using an elec-

tronic temperature 𝑇𝑝ℎ and a converged 𝐤−point grid at that temper-

ature, 𝑁𝑘(𝑇𝑝ℎ). By adopting the assumptions and the reasoning ex-

plained in Ref. [18], the non-adiabatic (dynamic) force constant matrix, 
�̃�𝑠𝑟(𝐪, 𝜔, 𝑇0), calculated at any electronic temperature 𝑇0 and on any 
𝐤−point grid 𝑁𝑘(𝑇0) reads:

�̃�𝑠𝑟(𝐪,𝜔, 𝑇0) = 𝐶𝑠𝑟(𝐪,0, 𝑇𝑝ℎ) + Δ𝑠𝑟(𝐪,𝜔, 𝑇0, 𝑇𝑝ℎ) (26)

where Δ𝑠𝑟(𝐪, 𝜔, 𝑇0, 𝑇𝑝ℎ) is the difference between the phonon self-

energies with fully screened vertexes, namely

Δ𝑠𝑟(𝐪,𝜔, 𝑇0, 𝑇𝑝ℎ) =
2

𝑁𝑘(𝑇0)

𝑁𝑘(𝑇0)∑
𝐤𝑖𝑗

𝑓𝐤𝑖(𝑇0) − 𝑓𝐤+𝐪𝑗 (𝑇0)
𝜖𝐤𝑖 − 𝜖𝐤+𝐪𝑗 +𝜔+ 𝑖𝜂

× 𝐝𝑠
𝑖𝑗
(𝐤,𝐤+ 𝐪)𝐝𝑟

𝑗𝑖
(𝐤+ 𝐪,𝐤)

− 2
𝑁𝑘(𝑇ph)

𝑁𝑘(𝑇ph)∑
𝐤𝑖𝑗

𝑓𝐤𝑖(𝑇ph) − 𝑓𝐤+𝐪𝑗 (𝑇ph)
𝜖𝐤𝑖 − 𝜖𝐤+𝐪𝑗

× 𝐝𝑠
𝑖𝑗
(𝐤,𝐤+ 𝐪)𝐝𝑟

𝑗𝑖
(𝐤+ 𝐪,𝐤) (27)

where 𝑓𝐤𝑗 (𝑇 ) is the Fermi occupation of the band 𝜖𝐤𝑗 at a temperature 
𝑇 . We underline that Eq. (27) requires the knowledge of the electronic 
band energies and wavefunctions only in a region of energy around the 
Fermi level of the order of the maximum among 𝑘𝐵𝑇𝑝ℎ and ℏ𝜔. As such, 
Δ𝑠𝑟(𝐪, 𝜔, 𝑇0, 𝑇𝑝ℎ) can be very efficiently interpolated via MLWF.

As the deformation potential 𝐝𝑠
𝑖𝑗
(𝐤, 𝐤 + 𝐪) is interpolated by EPIq at 

any electron-momentum, Eqs. (26) and (27) allow for the calculation 
of the non-adiabatic (dynamic) force constant matrix at any electronic 
temperature and on any 𝐤-point grid but at fixed phonon momentum 𝐪. 
Eqs. (26) and (27) are valid also in the adiabatic (static) case by setting 
𝜔 = 0.

The procedure to obtain �̃�𝑠𝑟(𝐪, 𝜔, 𝑇0) is implemented in EPIq
by choosing the option calculation=phonon_frequency_grid. 

Namely, the code reads the linear response adiabatic (static) force 
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constant matrices on a phonon momentum grid and calculates the non-

adiabatic (dynamic) or adiabatic (static) ones via Eqs. (26) and (27) on 
any 𝐤−point grid and at any temperature at fixed phonon momentum 𝐪.

A similar strategy is used to interpolate adiabatic (static) and non-

adiabatic (dynamic) force constant matrices at any phonon momentum. 
The idea is to separate in the force-constant matrix obtained in Eq. (26)

in the short and long range components. The long range force constants 
are associated to Kohn anomalies driven by Fermi surface nesting, and, 
as such, they cannot be easily Fourier interpolated and require an ac-

curate sampling of the Fermi surface achievable via Wannier interpola-

tion. The short range part instead can be easily Fourier interpolated. The 
procedure is the following. We first obtain the smooth high-temperature 
(short-ranged) adiabatic force constant matrices via the equation:

�̃�𝑠𝑟(𝐪,0, 𝑇∞) = 𝐶𝑠𝑟(𝐪,0, 𝑇ph) + Δ𝑠𝑟(𝐪,0, 𝑇∞, 𝑇𝑝ℎ) (28)

This amounts to use the same interpolation procedure at fixed phonon 
momentum outlined before but on the grid 𝑁𝑘(𝑇𝑝ℎ) = 𝑁𝑘(𝑇∞) and at 
a hotter temperature 𝑇∞. The temperature 𝑇∞ is an electronic tem-

perature large enough in order to have only short range force con-

stants named �̃�𝑠𝑟(𝐪, 0, 𝑇∞) and no Kohn anomalies in the corresponding 
phonon branches. The force constant matrices �̃�𝑠𝑟(𝐪, 0, 𝑇∞) can then be 
interpolated to every phonon momentum �̃� in the Brillouin zone.

We then obtain the desired adiabatic (static) or non.adiabatic (dy-

namic) force constant matrix by using again Eq. (26) as,

�̃�𝑠𝑟(�̃�,𝜔, 𝑇0) = �̃�𝑠𝑟(�̃�,0, 𝑇∞) +Δ𝑠𝑟(�̃�,𝜔, 𝑇0, 𝑇∞) (29)

Namely we start from the Fourier interpolated hot dynamical ma-

trices and we cool them down via Wannier interpolation. In this 
way, the Kohn anomalies are correctly taken into account via the 
interpolation of the electron-phonon matrix element at any elec-

tron and phonon momentum and by employing a much denser 
𝐤−point grid. These last two steps are obtained by using the option 
calculation = phonon_frequency (adiabatic) or calculation 
= phonon_frequency_na to also calculate the non-adiabatic fre-

quencies.

3.2. Electron-phonon contribution to the phonon linewidth and related 
quantities

EPIq performs the calculation of the electron-phonon contribution to 
the phonon linewidth and related quantities at an arbitrary wavevector 
𝐪 by using any chosen 𝑁𝑘 electron momentum mesh. The electron-

phonon contribution to the phonon linewidth (FWHM) at lowest order 
(bubble diagram or Fermi golden rule) is defined as

𝛾𝐪𝜈 =
4𝜋
𝑁𝑘

∑
𝐤,𝑚,𝑛

|𝑔𝜈𝐤𝑛,𝐤+𝐪𝑚|2 (𝑓𝐤𝑛 − 𝑓𝐤+𝐪𝑚) 𝛿(𝜖𝐤+𝐪𝑚 − 𝜖𝐤𝑛 −𝜔𝐪𝜈) (30)

where 𝑓𝐤𝑛 is the Fermi occupation of the band 𝜖𝐤𝑛.
At temperatures such that 𝑘𝐵𝑇 ≫𝜔𝐪𝜈 or in the case of a temperature 

independent 𝛾𝐪𝜈 , by using the 𝛿-function condition 𝛿(𝜖𝐤+𝐪𝑚 − 𝜖𝐤𝑛 − 𝜔𝐪𝜈)
in Eq. (30) one can substitute in Eq. (30),

𝜔𝐪𝜈
𝑓𝐤+𝐪𝑚 − 𝑓𝐤𝑛

𝜔𝐪𝜈
⟼ 𝜔𝐪𝜈

𝜕𝑓

𝜕𝜖

||||𝜖=𝜖𝐤𝑛 (31)

If the temperature dependence in equation (30) is weak, then the Fermi 
functions can be considered as step functions, so that:

𝛾𝐪𝜈 =
4𝜋𝜔
𝑁𝑘

∑
𝐤,𝑚,𝑛

|𝑔𝜈𝐤𝑛,𝐤+𝐪𝑚|2𝛿(𝜖𝐤𝑛 − 𝜖𝐹 )𝛿(𝜖𝐤+𝐪𝑚 − 𝜖𝐤𝑛 −𝜔) (32)

This approximation has been discussed in details in Ref. [38–40]. In 
actual calculations, it is customary to neglect the frequency dependence 
in the 𝛿 function in Eq. (32), obtaining

𝛾 =
4𝜋𝜔𝐪𝜈 ∑ |𝑔𝜈 |2𝛿(𝜖 − 𝜖 )𝛿(𝜖 − 𝜖 ) (33)
6

𝐪𝜈
𝑁𝑘 𝐤,𝑚,𝑛

𝐤𝑛,𝐤+𝐪𝑚 𝐤𝑛 𝐹 𝐤+𝐪𝑚 𝐹
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The reader should however be aware that Eq. (33) leads to an incor-

rect (divergent) behavior of the intraband contribution to the phonon 
linewidth close to zone center as it misses the threshold for Landau 
damping, as demonstrated in Ref. [40].

EPIq calculates Eqs. (30), (32), (33) so that the effect of all the 
approximations in the calculation of the phonon-linewidth can be de-

termined.

The mode-resolved electron-phonon coupling constant 𝜆𝐪,𝜈 is related 
to the phonon linewidth from the Allen formula [38,39]:

𝜆𝐪,𝜈 =
𝛾𝐪,𝜈

2𝜋𝑁(𝜖𝐹 )𝜔2
𝐪,𝜈

(34)

where 𝛾𝐪,𝜈 is obtained from Eq. (33) and 𝑁(𝜖𝐹 ) is the density of states 
at the Fermi level. The knowledge of these quantities allows the eval-

uation of the average electron-phonon coupling constant 𝜆 and of the 
Eliashberg spectral function 𝛼2𝐹 (𝜔) via the relations:

𝜆 = 1
𝑁𝑞

∑
𝐪,𝜈

𝜆𝐪,𝜈 , (35)

𝛼2𝐹 (𝜔) = 1
2𝑁𝑞

∑
𝐪,𝜈

𝜆𝐪,𝜈𝜔𝐪,𝜈𝛿(𝜔−𝜔𝐪,𝜈), (36)

where 𝑁𝑞 is the number of phonon-momentum point of the grid 
on which 𝜆𝐪𝜈 is interpolated. Finally, the logarithmic average of the 
phonon frequencies to be used in the Allen and Dynes formula [41] is

⟨𝜔⟩log = exp[ 2
𝜆

+∞

∫
0

𝛼2𝐹 (𝜔) log(𝜔)∕𝜔𝑑𝜔] (37)

The Eqs. (35), (36) and (37), as well as the Allen and Dynes formula for 
T𝑐 , are calculated from the output of EPIq by the postprocessing tools 
alpha2F.x and average_lambda.x.

3.3. Isotropic and anisotropic Eliashberg equations

EPIq offers an especially convenient method to calculate the su-

perconducting gap within the Migdal-Eliashberg theory. The linearized 
Eliashberg equations on the imaginary frequency axis read [42,43]

𝑍(𝐤𝑠, 𝑖𝜔𝑛) = 1 + 𝜋

𝛽𝜔𝑛𝑁(0)
∑

𝐤′𝑠′ ,𝑛′

𝜔𝑛′𝛿(𝜖𝐤′𝑠′ − 𝜖𝐹 )√
𝜔2
𝑛′
+ Δ2(𝐤′𝑠′, 𝑖𝜔𝑛′ )

𝜆(𝐤𝑠,𝐤′𝑠′, 𝑛− 𝑛′)

(38)

𝑍(𝐤𝑠, 𝑖𝜔𝑛)Δ(𝐤𝑠, 𝑖𝜔𝑛) =
𝜋

𝑁(0)𝛽
∑

𝐤′𝑠′ ,𝑛′

Δ(𝐤′𝑠′, 𝑖𝜔𝑛′ )𝛿(𝜖𝐤′𝑠′ − 𝜖𝐹 )√
𝜔2
𝑛′
+ Δ2(𝐤′𝑠′, 𝑖𝜔𝑛′ )[

𝜆(𝐤𝑠,𝐤′𝑠′, 𝑛− 𝑛′) − 𝜇∗
]

(39)

where 𝑍(𝐤𝑠, 𝑖𝜔𝑛) is the mass renormalization term for the 𝑠th band, 
Δ(𝐤𝑠, 𝑖𝜔𝑛) is the momentum and frequency resolved superconducting 
gap for the 𝑠th band, the 𝑛, 𝑛′ indices denote the Matsubara frequencies 
𝜔𝑛 = (2𝑛 + 1)𝜋𝛽, and the term

𝜆(𝐤𝑠,𝐤′, 𝑛− 𝑛′) =
∞

∫
0

𝑑Ω𝛼2𝐹 (𝐤𝑠,𝐤′𝑠′,Ω) 2Ω
(𝜔𝑛 −𝜔𝑛′ )2 + Ω2 (40)

is the band-resolved, anisotropic Eliashberg function defined as

𝛼2𝐹 (𝐤𝑠,𝐤′𝑠′,Ω) =𝑁(0)
∑
𝜈

|||𝑔𝜈𝐤𝑠,𝐤′𝑠′ |||
2
𝛿(𝜔−𝜔𝐤−𝐤′ ,𝜈 ) (41)

Here, we are neglecting impurity terms. EPIq employs a random 𝐤-

point generation algorithm onto an energetic neighborhood of the Fermi 
level in order to mitigate the computational cost due to the double cycle 
on 𝐤 and 𝐤′ = 𝐤+𝐪. Furthermore, to speed up even more the calcula-

tion, EPIq uses the symmetry properties of the normal part of the Green 
function, namely 𝑍(𝐤, 𝑖𝜔𝑛) =𝑍(𝐤, −𝑖𝜔𝑛). The sum on the Matsubara fre-
quencies is cutoffed at |𝜔𝑛′ | < 𝜔𝑐 .
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Fig. 2. Superconducting properties of MgB2. Left panel: frequency-resolved Eliashberg function and electron-phonon coupling parameter 𝜆. Right panel: Fermi 
surface resolved Migdal-Eliashberg gap (T = 10 K). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

oub
Fig. 3. Feynman diagrams of the eight processes occurring in the d

Once the Migdal-Eliashberg equations have been solved in the imag-

inary axis and the superconducting gap value is known at the 𝑁𝜔 Mat-

subara frequencies, EPIq also allows to analytically continue the gap 
function to the real space by the calculation of its N-point Padé ap-

proximant. This is done in EPIq employing the algorithm introduced in 
Ref. [44]. Finally, EPIq allows for plotting the superconducting gap on 
the Fermi surface as a 3D color intensity plot, as shown in Fig. 2.

The single particle self-energy calculated in the Migdal-Eliashberg 
approach can be used for computing the single particle propagator

�̂�−1(𝐤𝑠, 𝑖𝜔𝑛) = 𝑖𝜔𝑛𝑍(𝐤𝑠, 𝑖𝜔𝑛)𝜏0 +𝑍(𝐤𝑠, 𝑖𝜔𝑛)Δ(𝐤𝑠, 𝑖𝜔𝑛)𝜏1 − 𝜀𝑠,𝐤𝜏3, (42)

where 𝜏𝑖 are Pauli matrices in the Nambu-Gor’kov [45,46] spinor space.

In materials where the superconducting gap is known to be isotropic, 
the full 𝐤-dependence of the gap can be neglected by averaging over 𝐤-

space, while still obtaining good comparison with experiments. In this 
case, the Eliashberg equations take the following isotropic form:

𝑍(𝑖𝜔𝑛) = 1 + 𝜋

𝛽𝜔𝑛

∑
𝑛′

𝜔𝑛′√
𝜔2
𝑛′
+ Δ2(𝑖𝜔𝑛′ )

𝜆(𝑛− 𝑛′),
(43)

𝑍(𝑖𝜔𝑛)Δ(𝑖𝜔𝑛) =
∑
𝑛′

Δ(𝑖𝜔𝑛′ )√
𝜔2
𝑛′
+ Δ2(𝑖𝜔𝑛′ )

[𝜆(𝑛− 𝑛′) − 𝜇∗]
(44)

where now we have

𝜆(𝑛− 𝑛′) =

∞

𝑑Ω 2Ω𝛼2𝐹 (Ω)
(45)
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∫
0

(𝜔𝑛 −𝜔𝑛′ )2 + Ω2
le resonant Raman scattering due to phonons as explained in [50].

The isotropic solution requires a negligible computational effort 
once the isotropic Eliashberg function 𝛼2𝐹 (Ω) defined in Eq. (36) is 
known, as there is no need to perform any sum over 𝐤-points. The 
postprocessing tool isotropic_ME.x solves the isotropic Eliashberg 
equations having as input an 𝛼2𝐹 (Ω) calculated with EPIq. Both the 
isotropic and anisotropic implementations have already been employed 
in literature [47–49].

3.4. Double-resonant Raman scattering

Double-resonant Raman is a rich spectroscopic technique that pro-

vides detailed insights on the vibrational and electronic excitations 
simultaneously. It probes the fourth-order response of the system to 
the impinging laser of frequency 𝜔𝐿. A comprehensive theoretical de-

scription of this phenomenon is presented in Refs. [51,52].

Following Ref. [52], the two-phonon (pp) double-resonant Raman 
intensity is

𝐼(𝜔) = 1
𝑁𝑞

∑
𝐪,𝜈,𝜇

𝐼
𝑝𝑝
𝐪𝜈𝜇𝛿(𝜔𝐿 −𝜔−𝜔𝜈−𝐪 −𝜔

𝜇
𝐪 )[𝑛(𝜔𝜈−𝐪) + 1][𝑛(𝜔𝜇𝐪 ) + 1], (46)

where 𝑛(𝜔𝜇𝐪 ) is the Bose occupation for mode 𝜇. The probability of ex-

citing two phonons is

𝐼
𝑝𝑝 =

||| 1 ∑
𝐾
𝑝𝑝(𝐤,𝐪, 𝜈, 𝜇)

|||
2

(47)
𝐪𝜈𝜇 |||𝑁𝑘 𝐤,𝛽
𝛽 |||
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Fig. 4. Semi-log plot of the deformation potential for the x-coordinate of boron in MgB2 (arbitrary units) as a function of the real-space electronic coordinate 𝐑 at 
𝐑 = 0 (panel a) and as a function of the real-space phononic coordinate 𝐑 at 𝐑 = 0 (panel b).
𝐿 𝐿

where the matrix elements 𝐾𝑝𝑝(𝐤, 𝐪, 𝜈, 𝜇) are defined by expressions 
involving the electron and phonon band dispersion, the electron-

phonon coupling 𝑔𝜇𝐤𝑛,𝐤+𝐪𝑚 and the electron-light 𝐷𝐤𝑛,𝐤𝑚 matrix-elements 
throughout the full Brillouin Zone (see appendix A of Ref. [52]). Here, 
𝛽 labels the different possibilities of electron and hole scattering. There 
are overall 8 double-resonant two phonon processes (see Fig. 3) of 
which two involve electron-electron scattering and the other four in-

volve electron-hole and hole-electron scattering (see [52] for more de-

tails). All processes are implemented in EPIq.

The matrix elements 𝐾𝑝𝑝(𝐤, 𝐪, 𝜈, 𝜇) computed by EPIq take advantage 
of the electron-phonon and the electron-light matrix elements interpo-

lated on ultradense electron and phonon momentum grids. The EPIq
output files allow to comprehend which are the most significant two-

phonons processes, band transitions and region of the first Brillouin 
zone thanks to the analysis of the matrix elements 𝐾𝑝𝑝(𝐤, 𝐪, 𝜈, 𝜇) resolved 
for different electron and phonon band indices as well as 𝐤 and 𝐪 grid. 
The standard result of the double resonant Raman calculation includes 
also the intensity defined in Eq. (47), while the spectrum of Eq. (46) can 
be obtained with a post-processing tool integrated in the main routine.

3.5. Electron lifetime and relaxation time

Due to electron-phonon interaction, electronic carriers acquire a fi-

nite lifetime, as a result of phonon emission and absorption processes. 
In particular, for an electron characterized by crystal momentum 𝐤 and 
band index 𝑛, the average electron-phonon lifetime, 𝜏𝑒𝑙−𝑝ℎ

𝑛,𝐤 , is defined in 
terms of the imaginary part of the electron-phonon self energy, Σ𝑒𝑙−𝑝ℎ

𝑛,𝐤 , 

as 𝜏𝑒𝑙−𝑝ℎ
𝑛,𝐤 = ℏ

2 Σ𝑒𝑙−𝑝ℎ
𝑛,𝐤

, where [10]:

Σ𝑒𝑙−𝑝ℎ
𝑛,𝐤 = 𝜋

∑
𝑚,𝜈

∫
𝑑𝐪
Ω𝐵𝑍

|𝑔𝑛,𝑚,𝜈(𝐤,𝐪)|2[(1 − 𝑓𝑚,𝐤+𝐪 + 𝑛𝐪,𝜈)𝛿(𝜖𝑛,𝐤 − ℏ𝜔𝐪,𝑛𝑢

−𝜖𝑚,𝐤+𝐪) + (𝑓𝑚,𝐤+𝐪 + 𝑛𝐪,𝜈)𝛿(𝜖𝑛,𝐤 + ℏ𝜔𝐪,𝜈 − 𝜖𝑚,𝐤+𝐪)]
(48)

This quantity can be calculated within EPIq, and is especially rele-

vant for the evaluation of the excited carriers lifetime in semiconduc-

tors [53]. The calculation of excited carriers’ lifetime can be extended 
to the case where a photoexcited population in the conduction band 
is present, provided that the starting linear response DFT calculation 
has been performed using the two-Fermi level approach presented in 
Ref. [54].

4. Applications

4.1. Interpolation quality: real space localization

As a first step, we qualitatively discuss the behavior of the defor-
8

mation potential in the real space, both as a function of the real-space 
Fig. 5. Phonon frequencies for MgB2, calculated with standard interpolation on 
a coarse 16 ×16 ×12 grid (blue lines), recalculated with the present interpolation 
method on top of the same coarse grid and interpolating to a 45 × 45 × 45 grid 
(red lines), and compared to the DFPT result with no interpolation error (black 
empty circles).

electronic coordinate 𝐑 and phononic coordinate 𝐑𝐿, evaluated for all 
the cells belonging to the supercell of size 𝑁𝑤

𝑘
. The results are depicted 

in Fig. 4. From the semi-log plots, it is evident how the deformation 
potential rapidly decays as a function of the distance, signaling that 
the rotation to the optimally smooth subspace has been correctly per-

formed.

4.2. Calculation of superconducting properties of MgB2

4.2.1. Phonon linewidths and electron-phonon coupling parameter 𝜆
We demonstrate the calculation of phonon linewidths within EPIq in 

MgB2. We follow the steps described in Sec. 3 and perform a phonon 
linewidth calculation setting the ‘calculation’ parameter equal to 
‘ph_linewidth’ in the ‘&control’ namelist. Finally, we employ 
the post processing alpha2F.x to produce the Eliashberg function. In 
the left panel of Fig. 2, we plot two times the Eliashberg function di-

vided by the frequency and its integral, 𝜆(𝜔). The resulting 𝜆 = 0.78 is 
in good agreement with previous results in literature [18].

4.2.2. Anisotropic Migdal-Eliashberg gap
We solve the anisotropic Eliashberg equations, Eqs. (38), (39), in or-

der to calculate the superconducting gap for MgB2 at T= 10 K. In this 
specific case, an isotropic approach is not appropriate since the com-
pound hosts multiband superconductivity. As such, a fully anisotropic 
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Fig. 6. The experimental spectra of different graphene-layer stackings (colored points) are compared to the theoretical prediction (solid line). In panel a the 
monolayer spectrum is taken from [55], in panel b the experimental data are from [56] while panel c shows the ABA and ABC trilayer measurements from Refs. 

[57,58] and calculations from [50].

calculation is performed. The resulting 𝐤-resolved superconducting gap 
is depicted in the right panel of Fig. 2. Here, each red point represents 
the superconducting gap Δ𝐤 at a specific point in the Brillouin zone, 
as a function of the imaginary frequency. The plot highlights the well 
known double gap nature of the compound.

4.3. Calculation of interpolated phonon frequencies in MgB2

We demonstrate phonon frequency interpolation within the differ-

ential approach in MgB2, following the steps described in Sec. 3. In 
Fig. 5, the phonon frequencies are interpolated on a denser 45×45×45 
𝐤-point grid using the scheme presented here (red lines) are compared 
to the result obtained using the standard interpolation method on a 
smooth 16×16×12 grid (blue lines), and to the exact linear response 
result on a denser 45×45×45 𝐤-point grid. We use T𝑝ℎ=T0=0.01 Ry 
and T∞=0.2 Ry. The agreement obtained between the direct DFPT cal-

culation and the EPIq result is excellent. On the contrary, the results 
obtained within standard interpolation fail in capturing all the Kohn 
anomalies arising from the Fermi surface geometry. This result demon-

strates the superior quality of our interpolation method with respect 
to the standard Fourier interpolation of the dynamical matrix starting 
from the very same coarse mesh.

4.4. Double-resonant Raman of graphene multi-layers

Thanks to the EPIq interpolation kernel, it is possible to compute 
the resonant Raman intensity in graphene multilayers, as done in Refs. 
[50,55,56]. The result of these calculations is twofold: from an exper-

imental perspective, the theoretical prediction power that allows to 
discern the number of layers and the stacking from the Raman spec-
9

tra; on the theoretical point of view it is now possible to comprehend 
Fig. 7. Panel a): wannierized GaAs band structure starting from a LDA cal-

culation. Here, the linewidth associated to the highest valence and lowest 
conduction band eigenvalues is two times the imaginary part of the associ-

ated electron-phonon self energy Σ𝑒𝑙−𝑝ℎ on a high-symmetry path of the FCC 
BZ. Panel b): 𝐤-resolved electron-phonon self energy Σ𝑒𝑙−𝑝ℎ and final-state den-

sity of states (FDOS, Eq. (49)) for the lowest conduction band along the same 
path of panel a).

the interplay from the different contributions due to different scattering 

processing and different region of the Brillouin zone as shown in Fig. 6.
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Fig. 8. Scalability of the EPIq code: relative speedup t/t0 as a function of number of processes. Left panel: rotation to the Wannier space execution time. Right panel: 
interpolation back to the Fourier space. Calculations are represented by red squares, while blue lines represent perfect scaling.
4.5. Electron relaxation time in GaAs

We demonstrate the usage of EPIq to calculate the relaxation of ex-

cited carriers in a gallium arsenide. We employ Eq. (48) to estimate the 
electron-phonon self-energy Σ𝑒𝑙−𝑝ℎ, for excited carriers occupying the 
lowest conduction band. The results are shown in Fig. 7. In panel a), 
the linewidth of the conduction band is proportional to the 𝐤-resolved 
electron-phonon self energy, Σ𝑒𝑙−𝑝ℎ. In panel b), together with the 
electron-phonon self energy Σ𝑒𝑙−𝑝ℎ, we plot the mode-averaged density 
of final states (FDOS) for the lowest conduction band, 𝑖.𝑒. the quantity

FDOS = 1
𝑁𝑚𝑜𝑑𝑒𝑠

∑
𝑚,𝜈

∫
𝑑𝐪
Ω𝐵𝑍

[(1 − 𝑓𝑚,𝐤+𝐪 + 𝑛𝐪,𝜈)𝛿(𝜖𝑛,𝐤 − ℏ𝜔𝐪,𝑛𝑢 − 𝜖𝑚,𝐤+𝐪)

+(𝑓𝑚,𝐤+𝐪 + 𝑛𝐪,𝜈)𝛿(𝜖𝑛,𝐤 + ℏ𝜔𝐪,𝜈 − 𝜖𝑚,𝐤+𝐪)]

(49)

5. Implementation technicalities

5.1. Gauge fixing and the phase problem

As already partially discussed in Ref. [18], care has to be taken when 
performing the transformation towards the optimally smooth subspace. 
This is due to the presence of a gauge freedom related to the global 
phase of the Bloch function. It is easy to verify that both the unitary 
transformation U𝑚𝑛(𝐤) and the deformation potential matrix elements 
𝐝𝑠
𝑚,𝑛

(𝐤 + 𝐪, 𝐤) are generally gauge dependent, carrying a phase that de-

pends on the band indexes, electron and phonon momentum. While the 
precise value of this phase is not important, it is crucial that the wave-

functions entering in the operator matrix element are exactly the same 
wavefunctions used for the Wannierization procedure in order to avoid 
the appearance of spurious phases in the expression of the deformation 
potential, completely losing its localization properties. Within the EPIq
workflow, the gauge is opportunely fixed employing the same wave-

functions for the Wannierization and the calculation of the deformation 
potential matrix elements within Quantum ESPRESSO. Additional de-

tails about the workflow are given in Sec. 5.3.

5.2. Parallelization

EPIq supports parallel execution both on 𝐤- and 𝐪-points. Depend-

ing on the number of processors, number of 𝐤-points and number 
of 𝐪-points included in the calculation, EPIq automatically establishes 
whether to perform a 𝐪-point or 𝐤-point parallel execution. We test 
the scalability of EPIq on the specific case of electron doped mono-

layer MoS2. We consider the two most expensive operations, namely 
the rotation to the Wannier basis and the Fourier interpolation back 
10

to the reciprocal space. The cumulative cost of all the other operations 
Table 1

Power-law scaling with respect to calculation parameters of the leading op-

erations in terms of computational cost. Here, N𝑤𝑎𝑛 represents the number of 
Wannier functions, N𝑚𝑜𝑑𝑒𝑠 the number of phonon modes, N𝑤

𝐤 the number of 𝐤-

points in the Wannier interpolation grid while N𝑖𝑛𝑡
𝐪 and N𝑖𝑛𝑡

𝐤 are the number of 
interpolated 𝐤- and 𝐪- points.

Calculation N𝑤𝑎𝑛 N𝑚𝑜𝑑𝑒𝑠 N𝑤
𝐤 N𝑖𝑛𝑡

𝐪 N𝑖𝑛𝑡
𝐤

Rotation to smooth subspace 4 1 2 0 0

Transformation to real space 1 1 4 0 0

El.-ph. interpolation 2 1 2 1 1

performed by EPIq is typically negligible with respect to these two op-

erations. To study how the rotation to the Wannier basis scales, we 
consider a 8×8 Wannier grid (64 points) and use 13 Wannier functions. 
The results are presented in Fig. 8 a). To test the interpolation, we in-

terpolate over 64×64 𝐪- and 𝐤-grids, this time using a single Wannier 
orbital. The results are shown in Fig. 8 b). We notice that in both cases 
the scaling is almost optimal up to a very high number of processor, only 
becoming suboptimal when the number of processor becomes compara-

ble to the number of 𝐪- and 𝐤-points in the interpolation. In Table 1, we 
schematically report the power-law scaling of the most expensive oper-

ations in terms of the significant calculation parameters is schematically 
reported.

5.3. Interface with Quantum ESPRESSO and WANNIER90 and workflow of
EPIq

We now give a brief practical description of the steps necessary to 
perform any EPIq calculation. A detailed explanation on how to run

EPIq can be found in the dedicated website, https://the-epiq-
team.gitlab.io/epiq-site/. Any calculation performed using

EPIq relies on the following files produced by the parent Quantum 
ESPRESSO and WANNIER90, namely electron-phonon matrix elements 
calculated within the Quantum ESPRESSO package with the option

electron_phonon=‘Wannier’

and the prefix.eig and prefix.chk files produced by the WAN-

NIER90 code.

The calculation of any quantity within EPIq is characterized by a 
precise and simple workflow, which we briefly summarize here (see 
also Fig. 9):

1. Produce prefix.chk and prefix.eig files using WANNIER90.

2. Produce electron-phonon matrix elements using Quantum
ESPRESSO.
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Fig. 9. Schematic workflow of EPIq.

. 
3. Execute a preliminary EPIq run in order to transform the electron-

phonon matrix elements in the MLWF basis, setting dump_gR=
.true.

4. Calculate the quantity of interest setting the opportune value 
for the ‘calculation’ variable and setting read_dumped_gR=
.true. in the ‘&control’ namelist.

In order to correctly fix the gauge, both the wannierization in Step 
1. and the calculation of electron-phonon matrix elements in Step 2. 
must be performed employing the same wavefunctions. To this aim, 
both steps must be performed on top of the same non-self-consistent 
calculation. This is possible thanks to the Quantum ESPRESSO-EPIq in-

terface, which is activated when calculating the electron-phonon in the 
ph.x code with the flag electron_phonon=‘Wannier’. Detailed in-

structions are given in the EPIq website.

The correct compilation of EPIq can be verified by EPIq’s test suite, 
which is activated from the Makefile using the make test_install 
option.

All the input parameters of an EPIq calculation must be specified 
in the input file. Input parameters are organized in three namelists: 
‘&control’, ‘&electrons’, ‘&phonons’. The ‘&control’ name-

list contains all the general control parameters of the calculation. EPIq
gives the possibility to perform different types of calculation that are 
specified by the following values of the ‘calculation’ parameter in 
the ‘&control’ namelist:

‘ph_linewidth’

Calculation of phonon linewidths at specific Brillouin zone wavevec-

tors.

‘phonon_frequency_grid’ and ‘phonon_frequency’

First, ‘phonon_frequency_grid’ is specified to calculate dy-

namical matrices at 𝑇 = ∞ on the symmetrized 𝐪-grid; the obtained 
dynamical matrices are then interpolated to the desired 𝐪-point (us-

ing the post-processing matdyn.x of the Quantum ESPRESSO re-

lease), and finally non-adiabatic or adiabatic phonon frequencies at 
the desired 𝐪-point are produced performing another EPIq calcula-

tion using calculation = ‘phonon_frequency’ (adiabatic) or 
‘phonon_frequency_na’ (non adiabatic), respectively, according to 
the formalism explained in Sec. 3.1. The detailed procedure can be 
found in the EPIq website.

‘migdal_eliashberg’

Perform the solution of the anisotropic Migdal-Eliashberg equations.

‘el_relaxation’

Compute the electron-phonon driven excited carrier relaxation time.

‘resonant_raman’
11

Calculate the resonant Raman spectrum.
5.4. Usage of alternative dynamical matrices

In EPIq it is implemented the possibility of using alternative dynami-

cal matrices with respect to the ones employed in the calculation of the 
electron-phonon coupling matrix elements. This feature allows the user 
to evaluate the isotope effect or to include anharmonic effects in the dy-

namical matrices, for example employing the Hessian of the free energy 
calculated within the stochastic self-consistent harmonic approximation 
(SSCHA). [59] This is what has been done for example in Ref. [47].

5.5. Utilities and post-processing tools

EPIq also includes some post-processing tools to analyze the out-

come of calculations, namely alpha2F.x, average_lambda.x, 
analyse_ME_gap.x, pade.x, plot_me_FS.x and isotropic_ME.x
The former two help the user to process the result of a phonon linewidth 
calculation and to produce the Eliashberg function 𝛼2𝐹 (𝜔) and the 
electron-phonon coupling parameter 𝜆, together with an estimation of 
the superconducting critical temperature in the Allen-Dynes formal-

ism and other related data. analyse_ME_gap.x processes the output 
of an anisotropic Eliashberg calculation, while pade.x calculates the 
Eliashberg gap in real space using N-point Padé approximants [44]. Fi-

nally, isotropic_ME.x solves the Migdal-Eliashberg equation in the 
isotropic gap approximation, taking the average Eliashberg function 
𝛼2𝐹 (𝜔) as an input.

6. Computational details

First-principles calculations were performed within density func-

tional theory (DFT) as implemented in the Quantum ESPRESSO dis-

tribution [33,34]. We employ norm-conserving pseudopotentials gen-

erated within the Martin-Troullier (MgB2) and Hartwigsen, Goedecker 
and Hutter (GaAs) schemes [60,61], setting the kinetic energy cutoff for 
the plane-wave expansion of the electronic wavefunctions to 35 Ry for 
MgB2 and 60 Ry for GaAs. The exchange-correlation energy is approx-

imated within the generalized gradient approximation (GGA), in the 
Perdew, Burke and Ernzerhof (PBE) scheme [62]. Wannier interpolation 
of the MgB2 band structure is carried out using the same prescriptions 
indicated in Ref. [18]. The phonon dispersion and the electron-phonon 
matrix elements are calculated within density-functional perturbation 
theory [12].

7. Conclusions

In this paper we presented EPIq, a new tool for the computation of 
𝑎𝑏-𝑖𝑛𝑖𝑡𝑖𝑜 electron-phonon coupling related properties. EPIq aims to sim-

plify the calculation of many different properties of solids, making it 
accessible to the whole condensed matter and material science commu-
nity by employing a straightforward workflow and easy-to-read input 
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and output files. EPIq is interfaced with the Quantum ESPRESSO plane-

wave code and with the WANNIER90 software. The workflow is very 
simple and can be used by scientists having any degree of experience 
in DFT calculations. Any detailed information regarding EPIq installa-

tion and usage can be found in the dedicated website, https://the-
epiq-team.gitlab.io/epiq-site/.
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