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Abstract 
This work presents DeepReGraph, a novel method for co-clustering 
genes and cis-regulatory elements (CREs) into candidate regulatory 
networks. Gene expression data, as well as data from three CRE 
activity markers from a publicly available dataset of mouse fetal heart 
tissue, were used for DeepReGraph concept proofing. In this study we 
used open chromatin accessibility from ATAC-seq experiments, as well 
as H3K27ac and H3K27me3 histone marks as CREs activity markers. 
However, this method can be executed with other sets of markers. We 
modelled all data sources as a heterogeneous graph and adapted a 
state-of-the-art representation learning algorithm to produce a low-
dimensional and easy-to-cluster embedding of genes and CREs. Deep 
graph auto-encoders and an adaptive-sparsity generative model are 
the algorithmic core of DeepReGraph. The main contribution of our 
work is the design of proper combination rules for the heterogeneous 
gene expression and CRE activity data and the computational 
encoding of well-known gene expression regulatory mechanisms into 
a suitable objective function for graph embedding. We showed that 
the co-clusters of genes and CREs in the final embedding shed light on 
developmental regulatory mechanisms in mouse fetal-heart tissue. 
Such clustering could not be achieved by using only gene expression 
data. Function enrichment analysis proves that the genes in the co-
clusters are involved in distinct biological processes. The enriched 
transcription factor binding sites in CREs prioritize the candidate 
transcript factors which drive the temporal changes in gene 
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expression. Consequently, we conclude that DeepReGraph could 
foster hypothesis-driven tissue development research from high-
throughput expression and epigenomic data. Full source code and 
data are available on the DeepReGraph GitHub project.
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Introduction
Gene regulatory networks drive gene expression during cell development. Studying the regulatory networks’ effects on
gene expression has become an essential topic in evolutionary developmental biology. Recently, awide range of temporal
high-throughput experiments has become available for both normal development and disease-related investigations.1–3

For example, the ENCODE consortium has provided comprehensive fetal development datasets for 12 tissues in mice
from the E10.5 stage to the birth time P0.1 These datasets include both gene expression data andmajor transcriptional and
epigenetic features. Some of the latter come from ATAC-seq experiments that measure chromatin accessibility, whole-
genome shotgun bisulfite sequencing experiments measuring DNA methylation, and histone modifications.1 Similar
datasets, though in lesser amount, exist to study aging (see a recent review by Pagiatakis et al.2). Cancer, instead, is among
the diseases with the largest amount of available gene regulatory datasets (see a recent review by Zboril et al.3).

Gene expression regulation occurs via non-coding segments, also known as cis-regulatory elements (CRE).4 Associating
CREs to the genes they regulate is the key to deciphering temporal dynamic changes through development. As CREs and
genes are distinct entities located on different genome coordinates, a concurrent study of these has been challenging.
Many methods have been developed to study genes and CREs separately through development in the last years. Infinite
Gaussian Process Mixture Model5 and Convolutional Neural Networks6 are among the most successful methods to
find temporal clusters of either genes or CREs. Generally, high-throughput datasets are highly clusterable, and even
conventional clustering methods like K-Means clustering can also generate satisfactory results when used for a single
source dataset (i.e. genes or CREs). However, combining or aligning the clusters across data sources is still a major
challenge.

Insights about developmental regulatory networks are typically gained by the application ofMultiview learning7 to align
single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq).8,9 Suchmethods permit the
classification of different cells through the combination of various high-throughput experiments made over the same cell
population.10,11 The Seurat method,12 for example, makes different reduced dimension representations of single-cell
gene expression and CREs data. Such a method uses Canonical Correlation Analysis to place multiple datasets on a
common latent space with reduced dimension and anchor a population of cells across different modality datasets. Other
methods rely on stronger prior knowledge about cell alignment to anchor multiple modalities. This is the case of the
Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and scalable integration of
single-cell multi-modal data.13 More recently, multi-modal dataset alignment methods have been developed based on
state-of-the-art deep learning techniques.14,15 MAGAN,16 for example, successfully aligned scRNA-seq and scATAC-
seq datasets using Generative Adversarial Networks (GAN). Yang et al.,17 used deep auto-encoders to mapmultiple data
modalities of a population of cells to a common latent space. They used prior knowledge and adversarial learning to drive
the correct alignment of data. Comprehensive surveys on multi-modal or multi-view learning applied to multi-omics
datasets can be found in.8,18

The works mentioned above explore gene expression regulatory mechanisms by combining multiple views of the
same cell population. This work investigates gene regulatory networks by clustering two diverse entity types together:
We sought to groupCREswith their correspondent regulated genes. In this sense, we performed a heterogeneous network
clustering task. Heterogeneous data interaction was also modelled by Huang et al.19 for predicting transcription
factor interactions with their target genes. Wang20 and Zhou21 instead, modelled gene-disease interactions trough a
heterogenous-network model. Other recent problems solved through heterogeneous graph-based models include Gene
Ontology Representation Learning,22 Gene prioritization for rare diseases23 and drug repurposing.24 Themain novelty of
this work is the introduction of a model for regulatory networks discovery which is based on the concept of
“Heterogeneous Graphs”.25 We modelled a graph containing two classes of nodes: genes and their potential regulatory
elements, now on termed as candidate-CREs (cCRE), and multiple types of relations or edges between nodes. One such
relation type is the similarity between temporal gene expression profiles. Another relation type is the similarity between
temporal cCREs activity patterns. Finally, we introduced a third edge type: the base-pair distance between genes and
cCREs in the genome. Having defined such relations, we propose the usage of graph representation learning (graph RL)
to group genes and cCREs as a function of the probability of the existence of gene regulation mechanisms between them.

To this end, we extended a state-of-the-art graph RL algorithm presented in Ref. 26 to make it capable of learning
representations of heterogeneous graphs and applied it to the ENCODE heart dataset in Ref. 1. We used open chromatin
regions from ATAC-seq as cCREs. Besides ATAC-seq, we used H3K27ac and H3K27me3 histone marks, well-known
markers of enhancer activity, and polycomb repression. Our framework produced a relation type between genes and
cCREs which is aware of both same-class pattern similarities and base-pair proximities between elements of different
classes. Moreover, through the usage of the adaptive neighbors model presented in Ref. 26 we produced a “clustering-
friendly” embedding where we could straightforwardly perform clustering. The resulting clusters contained both genes
and cCREs and tended to identify possible regulatory mechanisms. We demonstrated this claim by evaluating such
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clusters’ semantic power with external expert criteria. We concluded that the proposed methodology is able to learn
suitable combinations of multiple entity relations to form a unique relation under a graph that resembles a gene regulatory
network. Our framework is called DeepReGraph, because it is aDeep learning-based algorithm for identification of gene
expression Regulatory mechanisms through heterogeneous Graph RL. Our full code, the pre-processed datasets used,
and the values used for all the parameters and hyperparameters used in our experiment are online available at our
repository[1].

Methods
To demonstrate DeepReGraph’s ability to cluster genes and cCREs simultaneously, we applied this method to a mouse
heart fetal developmental dataset from the ENCODE project.1 Gene expression and cCRE activities were time-series
formatted. We used three well-characterized epigenetic markers: ATAC-seq, H3K27ac, and H3K27me3 measurements
as features of cCRE temporal activities. We aimed to create a low-dimensional and clustered representation of the whole
dataset, where clusters represent candidate gene-expression regulatory mechanisms (GERM). In other words, we aimed
to create clusters containing both genes and cCREs, with the working hypothesis that cCRES on a cluster are plausibly
regulating the expression of the genes in the same cluster. Moreover, genes on the same GERM cluster should have
similar gene expression profiles, and cCREs should have similar activity profiles. Lastly, the base-pair distances between
genes and cCREs on the same cluster should be relatively small with respect to distances between elements in different
clusters. We validated heterogeneous clusters of genes and cCRES to study how gene regulatory networks (GRN) drive
changes in gene expression during mouse heart fetal development. To validate gene expression clusters, we performed
enrichment analysis of biological process gene ontology terms using the ClusterProfiler bioconductor package.27 To
validate the cCRE clusters, we looked for the Enriched Homer Motifs.28

Data pre-processing
Data pre-processing was done in two stages. Firstly, gene expression and cCRE datasets were normalized across temporal
data. The second stage included filtering-out temporal profiles where the correlation across replicates or the variance
across time was below some pre-defined thresholds. We explain the pre-processing stages in greater detail below.

We firstly downloaded the gene expression values, called peaks, and bam files of ATAC-seq, H3K27ac, and
H3K27me3 from the ENCODE database1 (mice heart fetal tissue). We used logFPKM values of gene expression
throughout this paper. To detect cCRE regions, we re-centered ATAC-seq called peaks across time points and replicates
using the bioconductor DiffBind package.29 To determine chromatin accessibility in each cCRE region, we took regions
of 500 nucleotides long (250 nucleotides on each side from the center of cCREs).We recorded binding intensities for each
replicate of each time point separately by using the bioconductor Rsubread package.30 We counted H3K27ac and
H3K27me3marks for cCREs in the samemanner, but used regions 3000 nucleotides long instead (1500 nucleotides each
side from the center of cCREs). We took the median value of non-peak regions in each experiment separately to remove
background counts from real intensity counts. Then, we subtracted these median values from the intensities of each
experiment separately. We used logRPKM values of denoised counts across replicates and time points. Removing the
background noise caused the distribution of each experiment to resemble a Gaussian distribution.

At the end of this process, we had two replicas of gene expression time-series profiles for a set of genes and two replicas of
cCRE activity time-series for each activity marker over a set of cCREs. We then proceeded to filter out invalid genes and
cCREs based on two criteria. The first group of filters we applied to this data were proposed in Ref. 31. For each gene, we
measured the correlation of the gene expression profiles of both replicates and discarded every genewhose replicate had a
negative correlation value. We did the same with the cCREs for each activity marker profile. If only one activity marker
had a negative correlation between replicates, the cCREwas discarded. We also discarded every element (gene or cCRE)
where two consecutive time probes had an absolute ratio greater than 2.

We also discarded low-expressed genes and low activity-characterized cCREs.32We computed themean gene expression
value for each gene and discarded every gene whose mean expression value was under the 0.8 percentile of such mean
value distribution. We did the same with cCREs: we computed the mean activity value for each activity marker and
discarded every cCRE where the mean value was below a minimum percentile threshold. Such thresholds were 0.8 for
ATAC-seq and 0.7 for H3K27ac and H3K27me3. Lastly, for gene expression and each activity marker dataset, we
created a 3-rd degree polynomial regression to estimate the variance of each time series as a function of itsmean value.We
discarded all the elements where the actual variance was below the predicted variance. Our pre-processed and cleaned
data consisted of 607 genes and 5239 cCREs from the mouse heart dataset. This dataset is available online on our public
repository. Our objective was to shed light on regulatory mechanisms among genes and cCREs. Having cleaned our

1https://github.com/QwertyJacob/DeepReGraph
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dataset, modeling it as a heterogeneous graph is the strategy we used to combine all the data and learn a new relation type
between elements that gives information about gene expression regulation. We explain the graph modelling in the next
paragraph.

Heterogeneous graph model
Many industrial data are represented in a graph, as multiple entities with quantifiable relationships between them.
Nowadays, graph modelisation is widely used in bioinformatics.33 One strategy to extract added-value from graphs is
the use of graph RL algorithms. Graph RL has been widely studied by the research community over the past few years
years.25,34–36 Graph RL algorithms seek tomap the information of a graph on a reduced-dimension latent space where the
geometrical distances between elements in such space resemble the relations in the original graph. In other words, graph
RL, also referred to as “graph embedding”, consists in finding a reduced dimensional representation of the nodes of a
graph while conserving most of the semantic information of such a graph.37,38

A graph can be homogeneous if it has a unique type of node and a unique type of relation defined between them, or
heterogeneous, if it introduces multiple edge and node types. We argue that regulatory networks during embryonic
development can also benefit from beingmodelled as a heterogeneous graph. Reduced-dimension representations of such
a graph could contain multiple types of information that, if well combined, could semantically express regulatory
mechanisms of gene expression.

We defined a heterogeneous graph and described it as G¼ V,ℰ,Tð Þ, where V is the set of nodes,ℰ is the set of edges and
T ¼T ℰ∪T V is the set containing all the node types and edge types. The set of node types consists of genes and cCREs,
and is denoted by T V ¼ genes,ccresf g. Each gene gi,∀i∈jVgenesj in the dataset is characterized by a gene expression time-
series profile that will be encoded in a vector denoted by gi. Note that the length of gi coincides with the number of time-
points considered in the gene expression data. The vectors gi,∀i∈jVgenesj can be concatenated as rows to form the feature
matrix represented in red in panel A of Figure 1.

Every candidate cis-regulatory element, instead, will be denoted as c j,∀j∈jVgenesj and will be characterized byM activity
time-series profiles, that will be encoded in corresponding vectors denoted as c1j,c

2
j,…,cMj . The time-points under which

gene expression and cCRE activity values are available are the same. In this work,M¼ 3. Specifically, we considered the
ATAC-seq, H3K27ac, and H3K27me3 activity time-series profiles for each cCRE, but one could include more cCRE

Figure 1. Schematic representation of DeepReGraph. Our framework combines multiple temporal enhancer
activity markers with temporal gene expression data and base-pair distances to build a heterogeneous graph of
genes and cis-regulatory elements (CRE). The proposed framework then applies an adapted version of AdaGAE26 to
finda low-dimensional, easy-to-cluster embedding representationof data throughan iterative optimisationprocess.
In the final embedding produced by our method, the spatial distribution of genes and cCREs resembles candidate
gene-expression regulatory Mechanisms.
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activity markers in the set of features. Note that the vectors cmj ,∀j∈jVcCREsj can be concatenated as rows to form the
matrices represented in blue in panel A of Figure 1.

Each node of our graphwas associated to one or multiple feature vectors that can be seen as points on amulti-dimensional
feature space. The set of feature-spaces defined for the nodes in G is denoted as R¼ G,C1,C2,…CMf g where G is the
gene expression feature space and C1,C2,…CM are the feature spaces of the M cCRE activity data. Each one of these
feature spaces will be referred to as original feature space, and the vectors gi,c

1
j ,c

2
j ,…,cMj as original feature vectors from

now on. Note that such vectors correspond to the rows of the matrices in panel A of Figure 1. It is well-known that the
probability of the existence of a regulatory mechanism between a gene and a cis-regulatory element is inversely
proportional to the base-pair distance between them.39 For this reason, in our work, we used another data source, called
the LinkMatrix, that gives us information about the base-pair distance between genes and cCREs.We represented such a
matrix in panel C of Figure 1. Interaction between cCREs and genes is generally possible in the range of 1 Mega base-
pair.40 Consequently, we considered only distances lower than 106 base-pairs. For practical purposes, we scaled the base-
pair distance values in the interval 0,1½ � to define a scaled base-pair distance function, DBP:

DBP : gi,c j

� �
! dBPi,j ∈ 0,1½ �,

∀ gi∈Vgenes,c j∈VcCREs

Given the scaled distance function, we created a base-pair proximity relationship SBP using a parametric transformation:

SBP i, jð Þ¼ 1

dBPi,j =βc
� �βd þ1

, ∀i, j∈jVj (1)

where βc and βd are fixed hyper-parameters. Notice that the domain and co-domain of SBP is defined in the interval 0,1½ �.
The gene-to-cCREs relationships defined by SBP are sparse in the sense that, for each gene, only a few cCREs will have a
non-zero proximity value for it.

The interaction between CREs and the genes they regulate is complex. Some CRE markers are correlated with gene
expression and some others are anti-correlated.41 This correlation or anti-correlation is governed by the mechanism
that a specific marker affects the gene expression. For example, chromatin should be opened prior to the gene expression.
Therefore, chromatin accessibility is commonly directly correlated with gene expression. H3K27ac is also directly
correlated with gene expression, as this epigenetic modification happens in active transcription regions. On the other
hand, H3K27me3 shows epigenetic modifications that happen at polycomb repressed regions, and are consequently
inversely correlated with the expression of the corresponding regulated genes. We needed to capture the relevance of
these and other temporal covariances between gene expression and the correspondent regulatory elements’ activity
markers.

To this end, we created a joining score, JT , as a function of the temporal slopes of gene expression and cCRE activity time-
series:

JT gi,c j

� �
¼
����γgi þ

P
m∈MωmγmjP
m∈Mωm

����, where :

γgi ¼ sgn
∂gi
∂t

� �
, γmj ¼ sgn

∂cmj
∂t

� �
∀ gi∈Vgenes,c j∈VcCREs

(2)

where the temporal slope of gene expression vector gi is denoted by ∂gi
∂t , the slope of cCRE activity vectors is

∂cmj
∂t ,∀m∈ 0,1,…,M�1f g, sgn �ð Þ is the signum function, and ωm∈ �1,1½ � is a fixed parametric weight for the cm trend
slope.

We computed a trend-aware score multiplying (1) and (2) for each gene-cCRE pair in our graph:

SBPjT gi,c j

� �
¼ SBP i, jð Þ � JT gi,c j

� �
,

∀ gi∈Vgenes,c j∈VcCREs
(3)

We represented the computation of Equation (3) in panel D of Figure 1. Having defined the trend-aware score, we could
differentiate between any pair of genes, g j and gk , when these were equally proximal to any cCRE ci but had gene
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expression vectors with different temporal trends. In this case, the original base-pair proximity score in (1) assigned the
same value to the association g j,ci

� �
and gk,cið Þ. Notice that the trend-aware score in (2), instead, distinguishes the most

plausible association of ci with respect to the alternatives g j and gk as a function of the temporal slopes of the gene
expressions elements. In our experiment, we found the best results setting ωATAC ¼ 1,ωH3K27ac ¼ 0 and ωH3k27me3 ¼ 0 in
Equation (2).

The set of edge types in the graph is denoted as T ℰ ¼ SBPjT ,SG,SC1 ,SC2 ,…,SCM

	 

. As explained before, SBPjT indicates

the trend-aware base-pair proximity relationship explained above; SG stands for the gene expression profile similarity
between genes, and SC1 , SC2 ,…, SCM are the relationships that express the different cCRE activity time-series similarities.
We aimed to combine all edge types in T ℰ to find a unique multi-semantic edge type that resembled gene expression
regulation mechanisms. The process of combining edge types is represented in panel E of Figure 1 and is explained later
in this section. To perform the combination of all edge types in T ℰ, we modelled the data as a heterogeneous graph
and designed a graph RL algorithm capable of extracting such a dependency between elements using prior biological
knowledge and the data available. We explain the graph RL algorithm we used to fulfil our objective in the next
paragraph.

Graph representation learning
Graph RL algorithms aim at finding a matrix: Z∈ℝjVj�d that contains information about every feature-space in R. In our
case, we used a graph RL algorithm to find a unique feature space for the nodes of G that comprises most of the
information encoded by the feature spaces contained in R. The rows of Z correspond to a new set of feature vectors for
each node inG. Each row ofZ is called an “embedding vector” and is a reduced-dimension representation of thewhole set
of original feature vectors of a given node.37,34 The embedding vectors are “multi-semantic” in that they contain
information from every feature space in R. The dimension of embedding vectors, d, is generally lower with respect to the
dimension of the original feature spaces. The embedding matrix Z is represented in panel F of Figure 1.

GraphRL is also referred to as “graph embedding”. Giving a node v∈V, and a specific edge-type τ∈T ℰ, the neighborhood
of v in τ is denoted asN τ vð Þ and corresponds to the set of nodes that are connected to v by τ-type edges. We denote with
N vð Þ instead the set containing every neighborhood of v:

N vð Þ¼ N τ vð Þ,∀τ∈T ℰf g

The heterogeneous graph embedding process can be represented by an encoding function that takes in input a node v∈V
and its neighborhood set, N vð Þ, and returns a new representation for that node:

f : v,N vð Þð Þ! z∈ℝd (4)

One of the most common methodologies for implementing (4) is the encoder-decoder paradigm.25 This paradigm also
models an auxiliary decoding function. Considering a homogeneous graph, i.e. a graph with a unique node feature space
X, the encoder function in (4) takes as input original feature vectors of X, and outputs the corresponding embedding
vectors:

f xið Þ¼ zi,∀i∈jVj

The decoding function, instead, takes as input a pair of node embeddings produced by the encoder, e.g. zi and z j, and
outputs a real number. Such a number is the prediction of the value of a pre-defined pair-wise relationship between xi
and x j:

Dec : zi,z j

� �
!bνi,j∈ℝ (5)

wherebνi,j is the predicted value of any pre-defined pair-wise relationship between xi and x j. For example,bνi,j could be the
predicted cosine similarity between such vectors, or any other similarity/distance function.

The encoding and decoding functions should minimize a reconstruction loss of the form:

ℒ¼
X
i, j∈jVj

Δ bνi,j,νi,j� �
(6)

where νi,j is the real value of the pair-wise relationship between xi and x j that (5) predicts, and Δ is a pre-defined
discrepancy function that takes as input the predicted and real values for any pair of nodes. Once the encoding and
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decoding functions that minimize (6) have been found, the original feature vectors can be fed to f to obtain the
definitive graph embedding Z. This embedding consists of a group of points in a low-dimension embedding space. In
our experiment, we adapt the encoder/decoder paradigm to a heterogeneous graph context. Ourmain objectivewas for the
the spatial distribution of these points in the embedding space to reflect plausible gene-expression regulation mecha-
nisms. To this end,we proposed to find a parametric encoding function, and in particular, we chose to implement (4) using
a deep graph auto-encoder as explained in the next paragraph.

Graph auto-encoders
A convenient framework that implements the encoding-decoding paradigm is the deep graph auto-encoder (deep
GAE).42 In this framework, (4) was implemented through a graph neural network (GNN), an artificial neural network
that takes the original feature vectors and the adjacency matrix of G as input and produces the node embedding vectors.
GNNs are non-linear parametric functions, and after a pre-defined initialization schema, the parameters of these functions
can be optimized to minimize (6) through gradient descent.

In this work, we proposed the use of the basic GNN model presented in Ref. 25. In a homogeneous graph context, the
basic GNN takes as input the node feature matrix X∈ℝjVj�m and a pre-defined graph adjacency matrix denoted by
A∈ℝjVj�jVj, and performs non-linear parametric operations with this information to produce Z. In matrix notation, the
operations made by the basic GNN model can be represented as follows:

Z¼ σ WselfXþWneigh
eAX� �

(7)

where σ is a non-linear operator, the learnable parameter matrices Wself and Wneigh are responsible for combining the
features of each node with the features of an aggregation over its neighborhood, and eA is the symmetric-normalized
adjacency matrix of G:

eA¼D�1
2 Að ÞD�1

2

where D is the degree matrix of A.

We defined a parametric “architecture” for the encoding function using (7), but still needed to defineA andX, to drive the
optimization of the parameters of f to minimize (6). The initialization of these matrices can followmultiple strategies. For
example, in the neural message passing framework,43 given a homogeneous graph context, one generally constructs X
stacking the original feature vectors as the rows of such a matrix. However, it is not the only valid strategy. In our
heterogeneous graph context, we decided to initialize X as the identity matrix because we had multiple original feature
matrices.Wewere confident to use the identity matrix to initializeX because we carefully initialized the adjacencymatrix
A combining the information of every relationship type in our graph, as we will explain in the next paragraph.

Finally, the similarity measure that the decoder is meant to predict needs to be specified to implement (5). In this paper,
we proposed the use of the decoding similarity function proposed by Ref. 26 to converge into a clustering-friendly
embedding, i.e., an embedding with dense and easily identifiable clusters. In the next paragraph, we give a brief
explanation of the algorithm in,26 which performs graph RL on a single-feature space. For a more detailed exposition of
the work of Xuelong et al., the reader is referred to the original paper.26

Adaptive-sparsity graph auto-encoder
In this work, we proposed the use of AdaGAE,26 which is a state-of-the-art method for RL and clustering through graph
modelling of a dataset. ThewholeAdaGAE algorithm iswrapped in a gray rectangle in Figure 1. This algorithm is defined
in a homogeneous data context. In other words, given a unique original feature matrix X∈ℝjVj�m, the objective was to
produce a low-dimensional embedding matrix Z∈ℝjVj�d where d≪m. Authors in26 used a deep GAE to embed high-
dimensional datasets in a graph-like, low-dimensional format. Xuelong et al. generated a sparse graph as a function of the
Euclidean distances between the original feature vectors using a k-nearest neighbors44 (k-NN) model.

The main novelty of AdaGAE is the adaptiveness in the sparsity parameter k. The graph auto-encoder is, in fact,
iteratively optimized with respect to various objective functions like (6), and each objective function is constructed using
a different sparsity parameter. With a custom decoding function, such a dynamic model leads to a sparse graph. In other
words, they produce a clustering-friendly embedding of the original data.

In other words, at each iteration, l∈ 0,1,2…,L�1f g, a sparse and weighted graph is generated. In this graph, the nodes
correspond to the samples of the original dataset. Instead, the weights of the edges are inversely proportional to the
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Euclidean distances between the original feature vectors. Specifically, at iteration l, a graph is generated in which the
weight of the link between nodes vi and v j is denoted as pli,j and is a function of a sparsity parameter kl:

pli,j ¼
di,klþ1�di,jPkl

j¼1 di,klþ1�di,j
� �

0
@

1
A

þ

, ∀i, j∈jVj (8)

where �ð Þþ ¼ max :,0ð Þ is the rectifier operator, di,j denotes the Euclidean distance between the feature vectors of vi and
v j, and di,klþ1 denotes the distance between the feature vectors of vi and its klþ1

� �
-th nearest neighbour.

Notice that, in (8), the parameter kl might have a different value at each iteration. Such a parameter induces the sparsity of
the generated graph: for each node vi, only up to k

l elements will have a non-zero weighted link with that node. Thus, at
each iteration l, AdaGAE generates a kl-sparse graph. Notice also that the function (8) is a discrete probability density
function (PDF):

Pl
i : v j

� �
! pi,j∈ 0,1½ �X

j∈jVj
pli,j ¼ 1

where a different PDF Pl
i is defined for each single node in the dataset. Thus, at each iteration l, AdaGAE generates a

probability distribution family Pl:

Pl ¼ Pl
0,P

l
1,…,Pl

jVj

n o

where each PDF inPl contains information about theweights of the links between one node and the rest of the nodes in the
graph. Authors in Ref. 26 proposed to re-initialize the adjacency matrix of the auto-encoder at each iteration using the
family Pl. In other words, at each iteration l, AdaGAE stacks the different distributions Pl

i,∀i∈jVj to form A.

The embedding matrix Z produced by AdaGAE was iteratively optimized. We denoted with Zl the embedding matrix
after iteration l. The embedding vector of node vi after iteration l, instead, coincides with the i-th row ofZl and is denoted
as zli. At each iteration, AdaGAE proposes to implement the decoding function in (5) as a function of the embeddings of
the previous iteration:

Ql i, jð Þ¼ qli,j ¼
exp �bdl�1

i,jPjVj
j¼1 exp �bdl�1

i,j

(9)

where bdl�1

i,j denotes the euclidean distance between the embedding vectors zl�1
i and zl�1

j . Notice that this encoding
function is also a point-wise probability distribution function:

Ql
i : v j

� �
! qi,j∈ 0,1½ �X

j∈jVj
qli,j ¼ 1

and that we can group every PDF Ql
i∀i∈jVj in a PDF family Ql as we did with Pl.

At each iteration l, AdaGAE proposes to use the Kullback-Leibler divergence (KL-divergence)45 of Pl with respect toQl

to implement (6). Explicitly, the reconstruction loss that AdaGAE seeks to minimize is the following:

ℒl ¼
X
i∈jVj

KL Pl
ikQl

i

� �
where :

KL Pl
ikQl

i

� �
¼

X
j∈jVj

pli,j � log
pli,j
qli,j

(10)
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Xuelong et al. relied on the graph convolutional network (GCN) model46 to implement the encoder of their deep GAE.
However, in this paper, we used a simpler GNN model, as explained in the previous paragraph. We represented the
iterative computation of (8) and (9) and the iterative optimization of (10) in panel E of Figure 1.

Notice that themain dynamic criterion that causes the objective functions to change is the sparsity parameter kl. However,
the sparsity is not the only thing that changes from iteration to iteration: In the first iteration, the distribution family P0 is
generated through (8) using the Euclidean distances between the original feature vectors. After the first iteration, instead,
the distribution family Pl, ∀1< l< L�1 is generated using (8) as a function of the Euclidean distances between the
embedding vectors of the Zl�1 embedding matrix. By doing so, AdaGAE considers high-order neighborhoods of each
node to construct the final embedding matrix. In other words, AdaGAE is said to “exploit the high-level information”
present in the data.

Different embeddings for various iterations are plotted in panel G of Figure 1. In those plots, one can see the embedding of
a small set of genes and cCREs extracted from the original mouse heart dataset. Large points represent genes, while
cCREs are the small points. Point colors, instead, correspond to single-modality or homogeneous cluster assignments,
i.e., cluster assignments of genes and cCREs, taking into account their corresponding feature spaces separately. Note that
the embedding turns more cluster-friendly at each iteration. In other words, the density and separation of clusters are
increased at each iteration, and clusters can be caught visually in the final embedding in panel H of Figure 1. In AdaGAE,
the sparsity parameter initialization, k0, the increment of this parameter from iteration to iteration, δk, and the number of
iterations, L, regulate the number of clusters in the final embedding. In our experiment, we tested various parameter
configurations and found eight significant GERM clusters with L¼ 11, k0 ¼ 350, δk¼ 25.

Notice that the original work of Xuelong et al. defined (8) as a function of the Euclidean distances over a unique feature
space.We extended theAdaGAE framework to dealwithmultiple node feature spaces. In particular, at each iteration l, we
combined the Euclidean distances of multiple node feature spaces - the gene expression and the cCRE activity time-series
- to generate a unique distance function that is given to (8) to generate Pl. In the next paragraph, we explain how we
combined the feature spaces to adapt AdaGAE to heterogeneous graph RL.

Extending AdaGAE to heterogeneous graphs
As explained previously, wemodelled thewhole set of gene expression and cCRE-activity data as a heterogeneous graph.
We proposed to extend thework in Ref. 26 to heterogeneous graphRL.We ran the same process described in the previous
paragraph, with some differences. The first difference was the construction of the reference distance function to feed to
(8). At each iteration l, we combined the Euclidean distances defined in each one of the original feature spaces to form a
unique distance function Dl that generated the sparse distribution family Pl.

Recall that R¼ G,C1,C2,…,CMf g is the set of feature spaces defined, whereG is the gene-expression feature space and
C1,C2,…,CM are the cCRE activity feature spaces, for example ATAC-seq, H3k27ac, aH3k27me3, etc. At each iteration
l, for each feature space r∈R, we computed the Euclidean distances between the original feature vectors in r, scaled these
distances into the interval 0,1½ �, and denoted them with dri,j, ∀i, j∈jVj. Notice that the Euclidean distances between the
original feature vectors were only defined between same-class elements: The Euclidean distances in the gene-expression
feature space G, were defined between genes, and the distances in C1,C2,…,CM , only between cCREs. Consequently,
we set the distance between different-class elements to the maximum value, i.e., 1, for each feature space. Finally, we
create a custom linear combination of these distance functions to form a unique distance function bDl

:

bDl
: vi,v j

� �
! bdli,j∈ℝ,∀i, j∈jVj

where :

bdli,j ¼
1�αlG � 1�dGi,j

� �
, if vi,v j∈Vgenes

P
m¼01�αlCm

� 1�dCm
i,j

� �
M

, if vi,v j∈VcCREs

1, otherwise

8>>>>>><
>>>>>>:

(11)

whereVgenes is the set of genes andVcCREs is the set of cCREs, d
G
i,j is the Euclidean distance between the expression profile

of gene i and gene j, dCm
i,j is the Euclidean distance between the Cm activity profiles of cCREs i and j, and αlG and αlCm

are
fixed parameters that indicate the importance weights of the distances of gene-expression and cCRE-activity at iteration l,
respectively.
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At the beginning of the l-th iteration, the Euclidean distances between the embedding vectors of Zl�1 are denoted
byDl�1

Z . We combined such information with bDl
defined in (11), to generate the unified distance function,Dl as follows:

Dl ¼
bDlþ bDl�1

Z

2
(12)

where bDl�1

Z is a weighted version of Dl�1
Z :

bDl

Z ¼ 1�αlZ � 1�Dl�1
Z

� �
(13)

In (13), αlZ is the fixed parametric importance weight of the Euclidean distances inDl�1
Z . Notice that, in (12), bDl�1

Z allows
to exploit the high-level information in the data and bDl

helps to reduce the loss of information with respect to the original
feature spaces at each iteration.

At each iteration l,∀l∈ 0,L�1½ �, we computed Dl using (12). This computation is represented in panel E of Figure 1.
We then used Dl and the corresponding sparsity parameter kl to compute a connectivity distribution family bPl

using (8).
Notice that this distribution family was generated using only the same-class relation types in T ℰ� SBPjT

	 

. In other

words, we only used the node feature spaces in R to create bPl
. We needed to add the trend-aware base-pair proximity

relationship SBPjT defined in (3) to compute the definitive distribution family Pl that takes into account all information we
have:

Pl ¼ bPlþωl
BP �SBPjT (14)

where ωl
BP is a parametric importance weight of the base-pair proximity information SBPjT during iteration l.

After computing bPl
, we computed Ql using (9), and optimized the embedding matrix Z, minimizing a reconstruction

loss of the form (6). AdaGAE proposed the use of (10) to implement the reconstruction loss. In this paper, however,
we propose to extend such a loss function to better separate elements that are distant in the original feature spaces, as
explained in the next paragraph.

Regularization of the loss function
The minimization of (10) has the same effect of an attractive force that tends to collapse points in the embedding space,
reducing the distances between z j and z j proportionally to pli,j. When considering a single node vi, such an objective
function could lead to errors in the manipulation of the position of the most distant neighbors of such node.47 Inspired by
Ref. 48, in this work, we added a regularization term that acts as a repulsive force. Such a repulsive force tends to increasebdli,j proportionally to the inverse of pli,j. In other words, we pushed elements away from each other proportionally to their
distance Dl in (12). To create this force, we added the KL-divergence of 1�Pl

i with respect to 1�Ql
i to (10).

Notice that the union of the attractive and repulsive force is equivalent to the minimization of the binary cross-entropy of
Pl with respect toQl as defined in Ref. 48. Lastly, we added parametric importance weights to the attractive and repulsive
force components and constructed our final objective function:

ℒl ¼CE Pl,Ql
� �

¼
X
i∈jVj

X
j∈jVj

ψl
A �KL PlkQl

� �
þψl

R �KL 1�Plk1�Ql
� �� �

(15)

where ψl
A and ψl

R are the importance weights of the attractive and repulsive term during iteration l, respectively.

We iteratively optimized the parameters of our GNN-based encoder. At each iteration, weminimized (15) with a different
set of parameters. After running the optimization for a predefined number of iterations, we processed to a clustering-
friendly embedding where the clusters reflect plausible gene regulatory networks. We then ran k-means clustering on the
embedding to find plausible gene expression regulatory mechanisms. This clusterization is represented in panel H of
Figure 1.

Results
DeepReGraph performs the co-clustering of genes and cCREs together. Consequentially, resulting clusters are hetero-
geneous in the class of elements they might contain. DeepReGraph helped us identify eight co-clusters when applied to
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developmental fetal mouse heart datasets. We assessed the quality of gene expression and cCREs clusters from a
computational point of view. We also analyzed these clusters from a biological perspective as described below.

DeepReGraph generated high-quality co-clusters
We employed a principle component analysis (PCA) to visualize the cCRE clusters on dimension reduced plots as shown
in panel A of Figure 2. This figure highlights a clear separation of clusters onPC0,PC1, andPC2which explains the 57%
variability in the cCRE datasets. We also performed k-means clustering using k¼ 8. Panel B of Figure 2 shows a
confusionmatrix that compares cCRE clusters fromDeepReGraph with the uni-modal clustering produced with k-means
clustering. It is clear from this confusion matrix that the result of the multi-modal clustering of DeepReGraph was highly
similar to the uni-modal clustering one. This similarity indicates that DeepReGraph clustering does take into account the
same-class pattern similarities when defining clusters.We also visualized the PCAplot of gene expression data in panel C
of Figure 2. PC0 by itself explains 76% of the variability in gene expression. Basically, gene expression has two distinct
patterns throughout mouse fetal heart tissue development: genes with increasing expression and genes with decreasing
expression. Interestingly, these two major patterns have been divided into sub-patterns based on the cCRE clusters that
plausibly drive their regulation.

The clustered patterns produced by DeepReGraph are presented in Figure 3. In this figure, the y-axis contains the mean-
centered values for gene expression in the left-most column, while mean-centered CRE features are in the last three
columns. The mean value reduction process mentioned was done as follows: given a time-series vector x¼ x0,x1,…,xt½ �,

with a mean value bx¼Pt

i¼0
xi

jxj , the mean-reduced vector is ex¼ x0�bx,x1�bx,…,xt�bx½ �. The x-axes of the plots instead
correspond to the considered time-points of mouse fetal heart development. Notice that each cluster contains a set of
genes and cCREs. The area between the first and 0.75 quantile is colored for each trend plot, to help visualize the trend of
each cluster.

DeepReGraph revealed the regulatory signature of mouse fetal heart development
We investigated the enriched function of gene expression clusters and enriched transcription factor binding site motifs of
cCRE clusters to decipher the general signature of mouse fetal heart development. Figure 4 summarizes these enrichment

Figure 2. Intersections between single-modality k-means clusters and co-clusters induced by DeepReGraph.
A) Principal component analysis (PCA) reduced dimension of candidate cis-regulatory elements (cCRE) profiles
colored by the correspondent DeepReGraph cluster. B) Intersection between only-cCRE agglomerative clustering
and cCRE extracted from DeepReGraph heterogeneous clusters. C) PCA reduced dimension of gene expression
profiles colored by the corresponding DeepReGraph cluster.
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analysis. It clearly shows that all gene expression clusters have clear functional annotation and all cCRE clusters entail
clear transcription factor binding site motifs.

In general, expression of genes related to cell proliferation functions decrease during mouse fetal development, while
expression of genes related to heart functions increase.4 However, if we look at the enriched terms for the detected gene
expression clusters in panel A of Figure 3, and the pattern of gene expression the cCREs that drive them in Figure 3, we
can observe that the story is not so simple. Two of the largest gene expression clusters are cluster2 (192 genes) which
represents the heart functional genes (enriched for heart contraction function), and cluster7 (249 genes) which represents
the cell proliferation genes. The smaller gene expression clusters have more specific enriched functions. Considering
the other gene expression clusters down-regulated during development, cluster0 was more enriched for DNA replication,
while cluster3 was enriched for non-heart developmental processes. Similarly, the smaller gene expression clusters
up-regulated during development gained specific functional enrichment: cluster1 was enriched in metabolic processes
to generate energy for the heart to function. Cluster4 was enriched for ventricular cardiac muscle cell membrane
repolarization, and cluster6 was enriched for heart contraction. Cluster5 contained genes enriched for regulation of

Figure 3. Co-clusters identified by DeepReGraph and the relative profile trends. The first column of plots
contains gene expression time profiles, and the rest of the columns contain enhancer activity time profiles. The
space between the first and third quartile for each plot was colored to better show the trend.
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muscle system process. Here, co-clustering of gene expression and cCREs enabled us to derive smaller andmore specific
clusters. Otherwise, as it is clear from Figure 2 panel C, the smaller clusters of gene expression with more focused
functions could not be deduced from gene expression alone.

Multi-modal clustering can also describe how cCREs can drive gene expression during development. First, smaller gene
expression clusters gainedmore cCREs per genes, as Figure 3 shows. Secondly, cCREs with different epigenetic patterns

Figure 4. A) Enriched function of gene expression extracted from DeepReGraph clusters. B) Enriched tran-
scription factor binding site motifs of cCRE for the same clusters.
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have been linked to similar pattern of gene expression, as can be seen also in Figure 3. For example, in the major cluster
with up-regulated genes during development, i.e. cluster2, the trends of ATAC-seq and H3K27ac increased as expected.
Similarly, for cluster7 which entails a large set of down-regulated genes throughout development, the trend of ATAC-seq
and H3K27ac decreased. However, the H3K27me3 pattern for both cluster2 and cluster7 showed no changes in Figure 3.
We can observe polycomb removal events in cluster1, cluster3, and cluster4 as H3K27me3 levels decreased in these
clusters.

Multi-modal clustering can further clarify how gene expression changes through development, as cCRE clusters
exhibited clearly enriched motifs in panel B of Figure 4. These enriched motifs can prioritize the candidate transcription
factors which drive the development. For example, the MEF2 motif was enriched in the clusters related to up-regulated
genes. The only exception was cluster1, for which the AP1 motif was enriched. We can assume that a MEF2 binding
transcription factor, and more probably MEF2C, was the major transcription factor which caused the increase in gene
expression values. Other binding site motifs were been enriched for the clusters entailing temporally up-regulated genes
in Figure 4 panel B. Interestingly, these motifs were highly cluster-specific. A similar dynamic was seen for clusters with
temporally decreased gene expression. Although zinc finger motifs were enriched in these clusters, the GATAmotif was
only enriched in cluster0 and the basic helix-loop-helix (BHLH), nuclear receptor motifs are only enriched in cluster3.

Discussion
This study introduced a novel method called DeepReGraph to perform multi-modal clustering of gene expression and
cCREs. DeepReGraph allows a cluster-friendly embedding, where clusters contain genes and CREs and tend to identify
gene regulation mechanisms. Interestingly, the results of multi-modal clusters derived by DeepReGraph for cCRESwere
highly similar to the uni-modal clustering using k-means. However, DeepReGraph generated gene expression clusters
that could not be derived by using gene expression data alone. Such a result might be expected if we consider cCRE
and gene expression changes in a “cause and effect”manner. cCREs are part of the regulatory network and are among the
driving causes of alternation in gene expression. Therefore, we can expect cCRE uni-modal clustering to be similar to
co-clustering gene expression and cCREs together. However, gene expression is controlled by cCREs. In mouse fetal
heart development, we have shown that similar gene expression (similar effect) can be divided into different clusters
based on the controlling cCREs. This result shows the added values of the multi-modal clustering method to understand
the signature of development.

Developmental regulatory networks can be straightforwardly modelled as heterogeneous graphs. The main reason for
such a claim is because they are made of two distinct classes of elements (genes and CREs) whose interaction tends to be
highly correlated with multiple features like gene expression, base-pair distance, and cCRE activity. Modelling such
regulatory networks as heterogeneous graphs is key to using graph RL algorithms to converge to low-dimensional
embeddings for such systems. The spatial distribution of nodes in the embedding might resemble complex relationships
between nodes.

We undertook the challenge of converging to an embedding where gene expression regulation mechanisms are
easily identifiable. To do so, we created our own heterogeneous graph RL algorithm by carefully designing an extension
of AdaGAE.26 First, we designed a dynamic combination schema of multiple node feature spaces to create a unique node
feature space. This unification was a necessary step to adapt AdaGAE to a heterogeneous graph scenario.We also created
a repulsive force by extending the loss function in Ref. 26. This repulsive force has proven essential to separate elements
with different gene expression or activity trends. Third, we introduce a trend-aware regularization of the base-pair
distance relationship between nodes. This regularization proved essential to produce more compact clusters. The
resulting schema is responsible for producing a clustering-friendly embedding space that sheds light on regulatory
mechanisms.

In this work, we extended the algorithm presented in Ref. 26 to produce an algorithm capable of embedding a
heterogeneous graph into a low-dimensional, easy-to-cluster embedding. Other approaches to heterogeneous graph
embedding that we could further investigate exist34; for example, the relational graph convolutional networks (RGCN).49

Such a model implies a greater number of parameters; various parameter-sharing approaches have been proposed, some
of themmaking use of the attention mechanism.50,51 We could further investigate attention-based prioritization of nodes
and relationships for learning embeddings.52 If we consider the production of a unified embedding of heterogeneous data
as a first step, we could conceive other offline clustering algorithms. The clustering-friendly embedding we present
resembles a differentiable version of agglomerative clustering. However, other algorithms like the ones in Refs. 53,54 use
a differential expectation-maximization schema, where a distance-to-centroid loss is minimized to reach final embedding
with compact clusters. Consequently, the use of different deep clustering approaches should be further investigated.
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Regulatory networks and gene regulation are dynamic processes. Therefore, temporal datasets can potentially describe
them better than static ones. However, initial efforts to associate regulatory networks and chromatin states to the
gene expression were made based on limited data. ChromHMM55 is the most used method to assign states of the
chromatin to genes. However, with the advent of large temporal datasets like ENCODE, which we used in this paper, it is
possible to move beyond a static view of regulatory networks and gene expression. This study used chromatin
accessibility, H3K27ac, and H3K27me3, three well-known epigenetic markers with a well-characterized effect on gene
expression. This framework can be further expanded to other epigenetic markers. Such an expansion could have twomain
advantages. The first advantage is the potential improvement of clustering quality. The second consists in better
deciphering the combinatorial trends of epigenetic changes and their effects on gene expression dynamics.

Data and software availability
Source code, Data and Interactive Notebook available at: https://github.com/QwertyJacob/DeepReGraph. Archived
source code, data and notebook at time of publication: https://doi.org/10.5281/zenodo.6416055

Data are available under the terms of the Apache License, Version 2.0
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