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Abstract— This paper considers the problem of guaranteeing
avoidance of critical state space regions during tracking of
reference trajectories for systems with dynamics equivalent to
r-th order decoupled integrators. The necessity to avoid those
critical regions during trajectory tracking may arise during
the transient phase or because the reference trajectory was
planned without taking into account the presence of those
critical regions. A typical problem in mobile robotics, taken
as reference in this paper, is the avoidance of obstacles in
the robot workspace during tracking of reference state space
trajectories. The proposed controller ensures a safety clearance
from the forbidden regions by filtering out, when appropriate,
the component of the tracking command that would eventually
lead the system to enter the critical region. The method relies
on the construction of first-order control barrier functions
and closed-form controllers, with formal proof of safety and
stability, and its effective application to wheeled mobile robots
and quadrotors is demonstrated through simulation.

I. INTRODUCTION

This paper considers the problem of avoiding regions of
the state space of a dynamic system that are considered
critical with respect to safety or performance criteria, while
tracking reference state trajectories.

This is a problem arising, for example, in mobile robotics,
when the vehicle must follow a reference trajectory in an
environments cluttered by obstacles. In this case, the refer-
ence trajectory might not avoid collisions with the obstacles
because all or some of the obstacles were not known a priori.
It is therefore necessary to combine a tracking controller
with an obstacle avoidance method. Even if the reference
trajectory has been planned to be collision-free, collisions
with obstacles may still occur during transient. While shap-
ing the transient is possible in some cases, a general method
is not available and safety during transient is complicated to
guarantee, particularly for high relative degree constraints.

There exist few examples of methods combining tracking
and obstacle avoidance with formal guarantees of safety
and tracking error boundedness. Among these, the work [1]
proposes a method to track the output trajectory, namely
the Cartesian position of a reference point on the vehicle,
for differential drive mobile robots. With respect to [1], the
proposed approach is more general because it can consider
the avoidance of generic regions of the state space and, due
to the adopted methodology, is amenable to extension to
systems with higher relative degree. A more general method,
strictly related to the one proposed here, is [2] which also
relies on the construction of a safety filter to guarantee
obstacle avoidance during trajectory tracking for a quadrotor.
The controller, however, relies on online optimization with
the avoidance constraint in order to modify the tracking
commands when necessary for safety keeping.
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Optimization-based methods are, in fact, usually adopted
to avoid collisions with obstacles during tracking [3], to avoid
collisions among vehicles, each accomplishing its own output
tracking tasks, in a multi-agent scenario [4], [5], to enforce
other safety constraints [6], or to rise risk awareness [7]. The
approach is to consider the safety requirement, enforced and
certified by properly defined barrier functions, as a constraint
of the optimization problem. This computational approach,
however, does not allow in general to easily predict or
shape the produced trajectories, thus resulting in a somewhat
difficult physical interpretation of the control action.

Considering systems governed by r-th integrator dynam-
ics, possibly under feedback, in this paper we propose to
adopt control barrier functions to formally guarantee the
avoidance of regions of the state space, during tracking of
reference state trajectories. In particular, the avoidance of
obstacles, in the case of a second order model of mobile
robots, is obtained by properly defining a control barrier
function (CBF) in the state space that takes into account not
only the robot position but also its velocity. The proposed
controller modifies, when necessary, the trajectory tracking
law by filtering out only those components of the tracking
control command that would eventually lead the system
to a collision. Formal safety guarantees are provided by
ensuring forward invariance of the safe region together with
conditions for boundedness of the tracking error and stability
of the controlled system. Although illustrated for the case
of trajectory tracking with obstacle avoidance for mobile
robots, the proposed method is general and can be extended
to systems with arbitrary order dynamics. Preliminary results
are presented for a quadrotor UAV. The contribution of the
paper consists in: i) proposing an intuitive approach to the
design of first-order CBFs for second order systems to avoid
obstacles, and the preliminary extension for application to
systems with higher order dynamics; ii) providing explicitly a
safe tracking controller in closed-form, which can be proven
to coincide with the solution obtained via QP methods; iii)
formally proving the stability of the control system.

The presentation is organized as follows. Section II for-
malizes the problem and illustrates the proposed solution
approach, leading to a control law that combines trajectory
tracking and obstacle avoidance. The stability of the obtained
control system, its generalization to include multiple obsta-
cles and higher order dynamics, are then analysed in Sect. III.
The validation results are reported in Sect. IV. Concluding
remarks and future developments are proposed in Sect. V.

II. PROBLEM FORMULATION AND PROPOSED APPROACH

This section formalizes the problem of safe trajectory
planning and illustrates the proposed controller design by
making reference to the second order linear dynamic system

p̈(t) = u(t), p ∈ Rn, u ∈ Rn. (1)



It is worth to note that n-dimensional systems of decou-
pled r-th order integrators can represent the dynamics of
nonlinear systems that are exactly linearizable through static
or dynamic feedback and these include a wide range of
mobile robots like, e.g., unicycle-like, differential drive, car-
like robots, standard trailer-truck systems, quadrotors.

Interpreting eq. (1) as the motion dynamics of a single
rigid body, p represents the vector of Cartesian coordinates
of the body center of mass P , while u is the control input.
The task is to track the, not necessarily feasible and not
necessarily collision-free, output reference trajectory pd(t)
while guaranteeing safety with respect to collisions with
obstacles discovered at the tracking time.

To track the pre-planned output trajectory pd(t) as close
as possible while guaranteeing to stay clear from obstacles
even when moving away from pd(t), the paper proposes to
design the control u based on the definition of an appropriate
barrier function (see [3] for a brief history and fundamental
concepts). Consider the function

h(p(t), ṗ(t)) = (p(t)− p̄)T (p(t)− p̄) + µ(p(t)− p̄)T (ṗ(t)),
(2)

where p̄ denotes the position of a point obstacle and µ is a
positive constant. Equation (2) defines the norm of distance
vector from the body center of mass position p to the obstacle
position p̄ plus a term with sign depending on the relative
direction of the distance vector and the velocity ṗ of the
system. In particular, if the velocity points away from the
obstacle, this term adds to the norm of the distance between
P and the obstacle, otherwise it is subtracted. The objective
is to define the control u so as to guarantee that this function
is always bigger than a positive constant δ which defines the
obstacle clearance. The system states that satisfy the equation

h̄(p(t), ṗ(t)) := h(p(t), ṗ(t))− δ ≥ 0 (3)

define the safety region Sfree = {(p, ṗ) ∈ R2n : h̄(p, ṗ) ≥ 0}.
To guarantee safety, we need to prove that h̄, defined through
the function h in (2), is a CBF, i.e., we need to find u such
that [3]:

ḣ(t) + α(h(t)− δ) ≥ 0.

where α > 0 is a fixed positive constant. If h̄ is a CBF, then
a trajectory of the system starting in Sfree is guaranteed to
remain in that set.

Dropping the time dependence for brevity, we look for a
right-differentiable input u such that

2(p− p̄)T (ṗ) + µṗT ṗ+ µ(p− p̄)Tu+ α(h− δ) ≥ 0. (4)

Assuming that the initial state is within the safety region (3),
and considering that the differential condition for h̄ reads as

˙̄h ≥ −αh̄, (5)

application of the comparison lemma [8, Lemma 3.4] implies
that h̄(t) ≥ e−αth̄(0) > 0 for any t ≥0, that is the safety set
is forward invariant with (p(t), ṗ(t)) ∈ Sfree for any t ≥ 0.

Introducing a slight conservatism, a sufficient condition
for the forward invariance of the safety set is obtained by
determining u such that ˙̄h ≥ 0. If this condition is satisfied, h̄
can never become negative. The input u is therefore obtained
by satisfying the following inequality

2(p− p̄)T ṗ+ µ(p− p̄)Tu ≥ 0. (6)

Some preliminary definitions are in order to formulate
the control u such that the desired output trajectory pd is
asymptotically tracked while keeping the system safe.

• Define the projection operators

Πp−p̄ := (p− p̄)[(p− p̄)T (p− p̄)]−1(p− p̄)T (7)
Π⊥

p−p̄ := I −Πp−p̄. (8)

It is easy to verify that (p − p̄)TΠ⊥
p−p̄w = 0 for any

w ∈ Rn, i.e., the operator defined in (8) returns the
component of w which is orthogonal to (p− p̄).

• Let
u⋆ = p̈d + kd(ṗd − ṗ) + kp(pd − p)

be the trajectory tracking control law. Setting u = u⋆ in
(1), the gains kp, kd are chosen such that the closed-loop
state transition matrix

Acl =

ï
0 I

−kpI −kdI

ò
,

where the identity blocks have dimension n, is Hurwitz.
• Decompose the state space R2n as follows

R2n = Dtrack(t)∪D⊥(t), Dtrack(t) = Du⋆(t)∪Dδ1 .

Dtrack is the state subspace where the priority of the
control action is the asymptotic tracking of pd(t). In
particular, in region

Du⋆(t) := {(p, ṗ) : (p− p̄)T (µu⋆ + 2ṗ) > 0}

forward invariance of Sfree during tracking is preserved
because the control vector and the current velocity are
such that p is moving away from the closest obstacle.
When the state belongs to the conservative safety region

Dδ1 := {(p, ṗ) : h(p, ṗ) > δ1 > δ}

forward invariance is guaranteed for any direction of
motion of the state. The control priority in the region

D⊥(t) = R2n \ Dtrack(t)

is instead to avoid obstacles.
Safety during tracking is then enforced by

u =

ß
u⋆ if (p, ṗ) ∈ Dtrack

− 2
µΠp−p̄ ṗ+Π⊥

p−p̄u
⋆ if (p, ṗ) ∈ D⊥.

(9)

In fact, whenever (p, ṗ) ∈ D⊥, the evaluation of ˙̄h yields

˙̄h = 2(p− p̄)T ṗ+ µṗT ṗ
+µ(p− p̄)T (− 2

µΠp−p̄ ṗ+Π⊥
p−p̄u

⋆) = µṗT ṗ ≥ 0,

thus showing that the control action prevents the state of
the system from approaching further the obstacle. The con-
trol policy (9) essentially overrules, when needed, the PID
tracking controller u⋆ by filtering out the component of the
acceleration pointing toward the obstacle. As well known,
triggering control switchings based on state conditions is
likely to generate chattering. However, this can be avoided by
enforcing an hysteresis scheme, for instance by introducing
a smooth junction between the two control laws.

Remark 1. It is worth stressing that the proposed explicit
controller (9), which results from the natural intuition of
pruning the nominal input components pointing towards



the obstacle, is actually equivalent to the solution provided
by QP methods. For instance, using Karush-Kuhn-Tucker
conditions, the control law (9) can be shown to be the
explicit solution of the QP problem [3, CBF-QP page 3423]
subject to the CBF constraint (6). Nevertheless, the latter
optimization problem alone is not capable to formally guar-
antee a stable closed-loop behaviour. Conversely, the system
driven by our switching control strategy is proven to be
asymptotically stable, in a hybrid sense, in Sect. III. ◦

III. PROPERTIES AND GENERALIZATION

A. Stability analysis
To prove that the closed-loop system, driven by the control

law (9), is stable it is convenient to use the state space z =
(z1, z2) =: (p, ṗ) and recast the system as

ż = (A−BK)z +Bφ(t) if (z1, z2) ∈ Dtrack

ż = Az +Bg(z) +BΠ⊥
z1−p̄φ(t) if (z1, z2) ∈ D⊥

(10)
with matrices given by

A =

ï
0 I
0 0

ò
, B =

ï
0
I

ò
, K = [kpI kdI] ,

g(z) = − 2
µΠz1−p̄z2 −Π⊥

z1−p̄Kz,

and where φ(t) is the feed-forward term

φ(t) = p̈d(t) + kdṗd(t) + kppd(t)

To address stability, consider the unforced system (10),
i.e., neglect the external input φ(t). Next results show that
stability of the closed loop is guaranteed by positive PD
gains and µ small enough. In particular, a common Lyapunov
function exists for both switching modes in (10).

Theorem 1. Let us consider the autonomous system

ż = (A−BK)z if (z1, z2) ∈ Dtrack

ż = Az +Bg(z) if (z1, z2) ∈ D⊥

For any choice of positive gains kp, kd > 0 and for µ <

min
{

2
kd
, 2kd

kp+k2
d

}
, the system is stable and, in particular,

the set A = {z ∈ R2n : z1 = γp̄, γ ∈ R, z2 = 0} is an
asymptotically stable attractor.

Proof. Let us consider a quadratic Lyapunov function can-
didate V (z) = zTPz with P = PT of the form

P =

ï
P1 P2

P2 P3

ò
where the blocks are given by Pi = λiI , for i = 1, 2, 3. The
positive definiteness of P is guaranteed by the inequalities

λ1 > 0, λ1λ3 − λ2
2 > 0. (11)

The derivative of the candidate Lyapunov function along the
system trajectories must be negative for asymptotic stability:

zT ((A−BK)TP + P (A−BK))z < 0, (12)

which is equivalent toï
−2kpλ2 λ1 − kdλ2 − kpλ3

λ1 − kdλ2 − kpλ3 2(λ2 − kdλ3)

ò
< 0. (13)

The previous inequality is satisfied by selecting 0 < λ2 <
kdλ3 and λ1 = kdλ2 + kpλ3. Note that this choice is also

compatible with the conditions (11). In particular, the first
inequality in (11) is trivially satisfied, whereas the second
one reads as kpλ

2
3 + kdλ2λ3 − λ2

2 > 0, which is verified
whenever

λ2 ∈

Ñ
kd −

»
k2d + 4kp

2
λ3,

kd +
»
k2d + 4kp

2
λ3

é
.

The lower bound is negative by construction and the upper
bound is always larger than kdλ3. It is then sufficient to pick
0 < λ2 < kdλ3 to stay within these bounds so as to satisfy
simultaneously (11) and (13). The above computations prove
that, as long as z ∈ Dtrack, V (z) is a strict Lyapunov
function for the closed-loop system.

Let us now evaluate the derivative of V (z) along the
system trajectories belonging to the set D⊥, which is

V̇ (z) = zTP (Az +Bg(z)) + (Az +Bg(z))TPz. (14)

Direct computation of Az +Bg(z) yields

Az +Bg(z) =

ï
0 I

−kpΠ
⊥
z1−p̄ −kdΠ

⊥
z1−p̄ − 2

µΠz1−p̄

ò
z,

which, together with the special structure of P and thanks
to the symmetry of the matrices Π⊥

z1−p̄ and Πz1−p̄, implies
that (14) reads as

V̇ (z) = zT
ï
−2kpλ2Π

⊥
z1−p̄ (kdλ2 + kpλ3)I − q2(z)

∗ 2(λ2I − q3(z))

ò
z

where ∗ indicates a symmetric quantity and with

q2(z) := ((kdλ2 + kpλ3)Π
⊥
z1−p̄ +

2
µλ2Πz1−p̄)

q3(z) := kdλ3Π
⊥
z1−p̄ +

2
µλ3Πz1−p̄.

We aim at cancelling the off-diagonal terms and, observing
that by construction the projection operators satisfy Π⊥

z1−p̄+
Πz1−p̄ = I , this cancellation can be achieved if

kdλ2 + kpλ3 =
2

µ
λ2.

The above condition, which is feasible and compatible with
(13) if µ satisfies the assumptions µ < 2

kd
and µ < 2kd

kp+k2
d

,
yields the following expression for λ2

λ2 =
µkp

2− µkd
λ3.

Thanks to this choice, V̇ (z) becomes

V̇ (z) = zT
ñ
−2kpλ2Π

⊥
z1−p̄ 0

0 −q̄3λ3I − ( 4µ − 2kd)λ3Πz1−p̄

ô
︸ ︷︷ ︸

=:Q(z)

z

(15)
where q̄3 = 2kd − 2µkp

2−µkd
> 0 and Q(z) ≤ 0 is a negative

semi-definite matrix for any z ∈ R2n and for any fixed
coefficient λ3 > 0. As a consequence, the system trajectories
remain bounded and, invoking LaSalle’s principle, converge
to the largest invariant set contained in Z := {z ∈ R2n :
V̇ (z) = 0}. The lower-right block of Q(z) is negative
definite for any z, whereas the upper-left block is negative
semi-definite, with null-space given by the set N0 = {z1 ∈
Rn : Π⊥

z1−p̄z1 = 0}. On the other hand, Π⊥
z1−p̄z1 = 0



if and only if z1 is a multiple of p̄, that is z1 = γp̄
for some γ ∈ R. In conclusion, combining (12) and (14),
we have shown that the set A = {z ∈ R2n : z1 =
γp̄, z2 = 0} is a global attractor, with rate of convergence
β = min{2kpλ2, 2(kdλ3 − λ2), q̄3}.

Remark 2. It is worth noticing that, since for z ∈ Dδ1

the derivative V̇ (z) is strictly negative and the set Sfree is
invariant, convergence onto the attractor A may only occur
towards the compact set of points of the form zγ = (γp̄, 0)
with δ ≤ h(γp̄, 0) ≤ δ1. In particular, the scale factor γ is
admissible only if δ ≤ (γ − 1)2∥p̄∥2 ≤ δ1. ◦

The results proved in Theorem 1 imply that the au-
tonomous system trajectory may eventually approach and get
stuck on points lying in a limited region aligned with the ob-
stacle p̄. This phenomenon can be ruled out by a persistency-
of-excitation condition on the feedforward input φ(t).

Corollary 1. Consider the forced system (10). Suppose that
the following persistency-of-excitation (PE) condition holds:

lim sup
t→+∞

∥Π⊥
p̄ (p̈d(t) + kdṗd(t) + kppd(t))∥ ≠ 0

Then the forced system can not remain at rest in any of the
points of the set A, in particular the state z2 can not be
identically zero.

Proof. The statement simply follows observing that assum-
ing z2 ≡ 0 would also imply ż2 ≡ 0 and that, for initial
condition (z1, z2) = (γp̄, 0), the latter is equivalent to
the identity Π⊥

p̄ φ(t) = 0 for any t. This contradicts the
persistency of excitation assumption and therefore, under
such condition, the trajectory necessarily leaves the set A
due to the driving force towards the reference path.

Remark 3. Although the fulfillment of the PE condition
by the reference trajectory prevents the state z from re-
maining in the set A, Theorem 1 and Corollary 1 are not
sufficient in general to guarantee that the tracking error
e = (e1, e2) = (z1 − pd, z2 − ṗd) vanishes asymptotically.
In particular the convergence depends on the interplay
between the reference trajectory and the obstacle (through
the barrier function). On the other hand, whenever the state
z ∈ Dtrack, the error system satisfies the Lyapunov condition
eT ((A−BK)TP + P (A−BK))e < 0, which is inherited
from (12). Accordingly, if the reference trajectory ultimately
lies away from the critical region, i.e., if h(pd(t), ṗd(t)) > δ1
for any t > t̄, asymptotic tracking is expected to be attained
based on a continuity argument. ◦

B. Connection with exponential control barrier functions
Although the primary objective of the proposed design

is to keep the position of a mobile agent (1) away from
obstacles, the considered barrier function depends explicitly
also on its velocity. This provides the barrier function with
relative degree equal to one. Nonetheless, by ensuring that
the proposed function remains positive, collisions are also
guaranteed to be avoided. The velocity term acts as a
correction of the clearance that is reduced when the vehicle
moves away from the obstacle and increased in the opposite
case. The inversion of the velocity sign can occur at most
on the boundary of the safe ball with radius δ centered
at the obstacle position. Alternatively, one could rely on

the construction of exponential barrier functions [3], as this
would relax the need for a safety test involving velocity (or
higher derivatives as in the case of higher order systems, see
Section III-D). However, the design of exponential barrier
functions is not straightforward and requires the fulfillment
of nested invariance conditions (see [3]) which would trans-
late, in our scheme, into nested switching conditions.

C. Multiple obstacles

The developments in Sect. II can be readily extended to
encompass scenarios with multiple obstacles. To this end,
consider the set of obstacles O = {p̄i ∈ Rn, i = 1, ...,m}
and assume that

∥p̄i − p̄j∥2 > 2δ1 for any i, j = 1, ...,m, (16)

these conditions being imposed to avoid overlapping of the
basins of influence of two or more obstacles. Accordingly,
define the family of barrier functions

h̄i(p, ṗ) = (p− p̄i)
T (p− p̄i)+µ(p− p̄i)

T ṗ−δ, i = 1, ...,m.
(17)

A possible way to tackle the problem is to consider the
minimum over this family, namely

h̄(p(t), ṗ(t)) = min
i=1,...,m

h̄i(p(t), ṗ(t)).

However this would result in a non-smooth function, thus
making the evaluation of the derivative of h̄ along the system
trajectories challenging. A better and simple alternative for
implementing (17), is to compute the label of the closest
obstacle to the current position, i.e.,

i∗ = arg min
i=1,...,m

∥p− p̄i∥,

and to consider active the barrier function h̄i∗ only. Note
that, thanks to the non-overlapping assumption (16), the state
(p, ṗ) must necessarily have a transition from the critical
set D⊥,i to Dtrack and cannot switch directly from D⊥,i

to D⊥,j with j ̸= i. Finally, it is worth stressing that the
Lyapunov function V (·) used in the proof of Theorem 1 and
the associated convergence rate do not depend on the obstacle
location p̄, so that such V (·) is a common Lyapunov function
for all switched modes of the system.

D. Higher order integrators

The proposed design may also be extended to systems
with higher relative degree. Let us briefly sketch the case of
a r-th order integrator, whose dynamics is given by

p(r) = u

It is convenient to adopt a state space representation with
(p, ṗ, p̈, . . . , p(r−1)) = (z1, z2, z3, ..., zr) = z and rewrite the
system as

żj = zj+1 j = 1, ..., r − 1

żr = u
(18)

The CBF candidate h̄(z) = h(z)− δ is considered, with

h(z) = (z1 − p̄)T (z1 − p̄) +

r∑
j=2

µj(z1 − p̄)T zj (19)



where µj ≥ 0 for j = 2, ..., r−1 and µr > 0. Differentiating
h(z) along the system trajectories yields

ḣ(z, u) = 2(z1 − p̄)T z2 +

r∑
j=2

µjz
T
2 zj

+

r−1∑
j=2

µj(z1 − p̄)T zj+1 + µr(z1 − p̄)Tu.

Denoting by µ1 := 2, the following input is designed1 to
guarantee that the barrier function (19) is always positive:

u†=− 1

µr

r−1∑
j=1

µjzj+1−
∑r

j=3 µjz
T
2 zj

µrh(z)

Ñ
(z1 − p̄) +

r∑
j=2

µjzj

é
.

Let us stress that, as long as the system is in the region
h̄(z) > 0, that is h(z) > δ, the second term in the right-
hand side does not become singular. By direct evaluation, it
is easy to check that the input u† guarantees the invariance
of the set {h(z)− δ ≥ 0}, i.e.

ḣ(z, u†) = µ2z
T
2 z2 ≥ 0 ∀z.

Similarly to the double integrator case, the control u† can
be combined with the projection of the tracking controller
Π⊥

z1−p̄u
∗, and input switchings can be triggered by the

condition {ḣ(z, u∗) ≤ 0}∨{h(z) ≤ δ1}. In case of obstacle
avoidance by a mobile agent, it is important to point out that
ensuring invariance of the set {h(z) − δ ≥ 0}, with h(z)
given by (19), does not necessarily imply invariance of the
set {(z1− p̄)T (z1− p̄)− δ ≥ 0}. This means that the vehicle
can enter any sphere Bδ with radius δ and center in any of
the obstacles position, before the velocity changes sign. To
guarantee that the higher order derivatives appearing in (19)
timely anticipate the inversion of motion, a proper choice of
the coefficients µj is necessary.

In principle exponential CBFs, or high order CBFs at large
[9], might be preferable for tackling the setup (18). On the
other hand, as already mentioned in Section III-B, using
exponential CBFs would introduce more complex switching
conditions which could result in a heavier implementation. In
either case the control policy guaranteeing avoidance of Bδ

would be semi-global, as the coefficients µj characterizing
the CBF (19) or the vector of gains describing the invariance
property in [3, Definition 7] are typically dependent on initial
conditions.

In this paper, we have taken a practical approach for a
preliminary illustration of the effectiveness of the proposed
method in solving the trajectory tracking problem for a
quadrotor, based on the 4-th order linear system obtained
through dynamic feedback transformation, and with coeffi-
cient µj arbitrarily chosen, assigning a larger weight to the
velocity term. In the following Remark 4 we provide a lower
bound on the possible penetration of the ball Bδ , while the
simulation results are shown in the Example 4.

Remark 4. Consider a simplified version of the fourth order
barrier function

h(z) = (z1 − p̄)T (z1 − p̄) + µ(z1 − p̄)T (qz2 + z4), (20)

1By imposing the condition ḣ ≥ 0.

which corresponds to (19) with coefficients
µ4 = µ > 0, µ3 = 0, and µ2 = µ q > 0.
The condition h(z) > δ does not always ensure in this case
that |z1−p̄|2 > δ. In particular “obstacle penetration” might
occur when the following conditions are simultaneously
satisfied:

• (z1 − p̄)T (qz2 + z4) > 0
• (z1 − p̄)T z2 < 0

By some algebraic manipulations and considering the safety
margin δ1 > δ, we can give a lower bound on such
penetration, that is

|z1 − p̄|2 ≥
Ç

4δ1

2µζ + 2
√

4δ1 + µ2ζ2

å2

=: ω(ζ)

where ζ = |qz2+ z4|. This inequality allows for the possible
tuning of parameters δ1, q and µ depending on the initial
conditions z2(0), z4(0) in order to guarantee ω(ζ) ≥ δ. ◦

IV. SIMULATION RESULTS

This section shows the simulation results obtained in
CoppeliaSim by applying the proposed method to systems
of increasing complexity. In particular, the first example
considers the second order dynamics (1) as the unconstrained
equation of motion of a mass on the plane; the second
example considers that same dynamics as the result of the
dynamic feedback linearization of a unycicle model [10],
notably subject to nonholonomic constraints; the third and
forth examples consider the application of the proposed ap-
proach to a quadrotor, first relying on a hierarchical control,
then resorting to the dynamic feedback linearization of the
system equations. Detailed comments follow, and a videoclip
showing the simulations results is available at:
http://diag.uniroma1.it/labrob/research/TrajTrackCBF.html

Example 1. In this example, a unconstrained mass has
to track an elliptic reference trajectory on the plane in a
scenario with 5 static obstacles. The mass initial state is off
the trajectory and the obstacles have not been considered
in the planning phase. Hence, there is a risk of collision
both while moving toward the trajectory and during tracking
the reference itself. The controller (9) with the barrier
function (2) is applied using the parameters δ = 0.5, δ1 = 3,
µ = 0.05, {kp, kd} = {100, 30}. The behaviour is shown in
Fig. (1a) and (1c). A persistent deviation from the reference
path can be appreciated when the trajectory lies too close to
the obstacles.
Example 2. Considering the same scenario of the previous
example, the dynamics considered here is that of a differen-
tial drive wheeled mobile robot. It is well known that, under
input transformation and dynamic feedback [10], the motion
of the vehicle can be recast into pair of double-integrators
together with a dynamic compensator. The linearizing out-
puts are the Cartesian coordinates of the vehicle that are
kept at a due distance to the obstacles by the proposed
method. Fig. (1b) and (1d) show the good performance of
the proposed strategy in such more advanced scenario.
Example 3. Let us now consider the more challenging case
of tracking control for quadrotor, with an elicoidal reference
path. Using a hierarchical control strategy [11], based on a
inner loop for attitude control and a outer loop for position
and height control, we can still use the CBF (2), applied to



the system of double-integrators in R3 corresponding to the
outer loop subsystem. The parameters used in the simulation
are: δ = 0.9, δ1 = 1.8, µ = 0.05, {kp, kd} = {100, 30}.
We considered a scenario with two static obstacles, and the
results are shown in Fig. (2a) and (2c). We can see that the
obstacles are successfully avoided, and the reference path is
safely reached without collisions.
Example 4. In the last example, the same scenario with
a different control strategy is considered for the quadrotor,
based on dynamic feedback linearization [12]. In particular,
the dynamics can be reformulated as a system of 4-th order
integrators, for which we used a higher-order barrier function
of the form (20) with µ = 0.05 and q = 8. The tracking
control gains are such that the characteristic polynomial of
the closed loop system is Hurwitz with real roots. Results are
reported in Fig. (2b) and (2d), showing that the tracking and
safety goals are attained, with a reduced transient compared
to the previous case.

V. CONCLUSIONS

The problem of avoidance of critical state space regions
during tracking of reference trajectories has been tackled
in this paper. For systems with dynamics equivalent to r-
th order decoupled integrators, the proposed controllers are
given in closed-form and are based on CBFs ensuring that
the state keeps a safety clearance from the forbidden regions
during tracking. The main idea of our approach is to filter out
the component of the tracking controller that might drive the
system towards unsafe conditions, while retaining the track-
ing action of the harmless components. The efficacy of the
method has been validated through numerical simulations in
CoppeliaSim, addressing collision avoidance for a unicycle
robot in a 2D scenario and for a quadrotor in a 3D scenario.
Future developments include the study of constraints with
generic relative degree, the generalization of the method to
the avoidance of moving obstacles, the combination of the
proposed approach with fast motion planning methods.
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