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Abstract—In the field of earth observation (EO), continual learn-
ing (CL) algorithms have been proposed to deal with large datasets
by decomposing them into several subsets and processing them
incrementally. The majority of these algorithms assume that data
are, first, coming from a single source, and second, fully labeled.
Real-world EO datasets are instead characterized by a large het-
erogeneity (e.g., coming from aerial, satellite, or drone scenarios),
and for the most part they are unlabeled, meaning they can be
fully exploited only through the emerging self-supervised learning
(SSL) paradigm. For these reasons, in this article, we present a new
algorithm for merging SSL and CL for remote sensing applications
that we call continual Barlow twins. It combines the advantages of
one of the simplest self-supervision techniques, i.e., Barlow twins,
with the elastic weight consolidation method to avoid catastrophic
forgetting. In addition, we evaluate the proposed continual SSL
approach on a highly heterogeneous EO dataset, showing the ef-
fectiveness of this strategy on a novel combination of three almost
non-overlapping domains datasets (airborne Potsdam, satellite
US3D, and drone unmanned aerial vehicle semantic segmentation
dataset), on a crucial downstream task in EO, i.e., semantic seg-
mentation. Encouraging results show the superiority of SSL in this
setting, and the effectiveness of creating an incremental effective
pretrained feature extractor, based on ResNet50, without the need
of relying on the complete availability of all the data, with a valuable
saving of time and resources.

Index Terms—Continual learning (CL), remote sensing, self-
supervised learning (SSL), semantic segmentation.

I. INTRODUCTION

IN RECENT years, improvements in speed and acquisition
technologies have drastically increased the amount of avail-

able earth observation (EO) images [1]. These improvements
bring challenging issues to the widespread use of remote sensing
(RS) classification [2] and semantic segmentation techniques,
due to 1) the continuous arrival of new data, generally belonging
to partially overlapping domains and 2) the increasing quantity
of images, which has not been labeled by a domain expert.
Most of the time power consumption issues are raised, too. The
main aim of this article is to propose a model capable to deal
with these characteristics simultaneously that we call continual
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Fig. 1. t-Stochastic Neighbor Embedding (t-SNE) visualization results of the
features of three selected RS datasets (see Section IV for a description of the
datasets). It can easily be seen that the images from the different settings can be
considered independent but non-identically distributed.

Barlow twins (CBT). This algorithm combines the strengths
of two separate lines of research: Continual learning (CL) for
processing a large heterogeneous dataset in an incremental way,
tackling the first highlighted problem, and self-supervised learn-
ing (SSL) to deal with the lack of labeling information, solving
the issues raised by the second problem. In the following, we
describe briefly the two issues separately, before introducing
our proposed solution, shaped to be easy and intuitive, being a
first step toward what we call continual self-supervised learning
(CSSL) in EO.

A. Problem #1: EO datasets are heterogeneous

Consider the situation where we trained a semantic segmenta-
tion network on a dataset of Italian satellite images. If we receive
a new labeled dataset of similar images from a different nation,
ideally, we would like our network to be able to segment equally
well images coming from the two countries. However, most of
the algorithms developed for classification or segmentation in
EO suffer from catastrophic forgetting problems in this context,
requiring to discard the acquired knowledge to retrain the model
from scratch on the combination of the two datasets [3]. In a wide
range of EO applications, the strategy of retraining the whole
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model is computationally expensive and costly [4]. Therefore,
there is a need to ensure that the newly-developed models
have the ability to learn new tasks while retaining satisfying
performance on previous ones. The cause of the catastrophic
forgetting problem is that different datasets are independent but
not identically distributed in the feature domain, as it is known
that the distribution of RS data varies greatly [5], due to different
resolutions, acquisitions, textures, and captured scenes. This is
even more evident in urban scenes and in datasets made of
images acquired from different types of sensors, e.g., drone,
airborne, and satellite (see Fig. 1 for a visualization of this
phenomenon).

In this article, we leverage a CL algorithm [3] to mitigate the
catastrophic forgetting problem and allow our algorithm to gen-
eralize to different feature distributions without the requirement
of accessing already seen data.

B. Problem #2: EO datasets are largely unlabeled

Most methods, especially in EO applications, are framed as
supervised systems, relying on annotated data. More than in
other fields, for drone, aerial, and satellite images, it is difficult
to rely on a labeled dataset, in light of the high cost and the
amount of effort and time that are required, along with domain
expertise [6]. In computer vision (CV), SSL has been proposed
to handle this problem, reducing the amount of annotated data
needed [7], [8]. The goal of SSL is to learn an effective visual
representation of the input using a massive quantity of data
provided without any label [9]. We can see the task as the need
to build a well-structured and relevant set of features, able to
represent an image, which is useful for several downstream
tasks. There is a growing research line demonstrating how SSL
techniques increase performance in EO applications [10], [11],
[12], although most of the evaluations have been limited to a
single dataset or domain. More recent works employed different
datasets for their SSL solutions [13], [14], [15], but focused
their effort toward multimodal models, based on existing CV
approaches [16].

C. Contributions of This Article

While CL and SSL have been explored in isolation in RS
(as described in Section II), we propose to investigate a novel
CSSL scenario wherein multiple heterogeneous datasets arrive
continuously and a single backbone network must be updated
for the downstream tasks. This poses new and interesting chal-
lenges, both in terms of data heterogeneity (as we build each
task from a completely different data source) and effectiveness
of existing CL solutions in the SSL task. To this end, we
design and experimentally evaluate a novel strategy, built on
two popular algorithms that is able to train a deep network for
RS by exploiting vast amounts of unlabeled, continually arriving
data.

Our experimental results show that it is possible to exploit
the potential of SSL incrementally, to obtain an efficient and
effective pretrained model trained in several successive steps,
without the need to retrain it from scratch every time new data

is added [17]. The proposed CBT algorithm trains a feature
extractor (ResNet50) with Barlow twins (BT) [7], whose loss
is integrated with a regularization term targeted for CL, bor-
rowed from elastic weight consolidation (EWC) [18], to avoid
catastrophic forgetting. With the obtained feature extractor, we
train a UNet++ [19] to perform semantic segmentation. We
underline that while our method is built on the combination
of two easy and widespread methods from the CV literature,
the proposed CSSL scenario has not, to the best of authors’
knowledge, been investigated in RS. The selection of EWC
and BT was based on the current RS literature on SSL [11],
[13], [20], [21], [22], and CV more in general [7], [8], [16],
[23]. We strongly believe that EWC and BT are an effective
combination, due to their properties. The former proposes an
easy weight regularization term, based on the importance of the
weights in solving the tasks. The latter, avoiding typical issues
of contrastive frameworks [24], aims to reduce the redundancy
of the embeddings. Thus, when acquiring new RS data, CBT
can be trained quickly, as it will be necessary to update it on
the new data only, discarding all old data. Our method also
provides computational efficiency, potentially allowing small
realities to train a large model on huge amounts of data that
would be unfeasible otherwise [15].

Since the generalization capabilities and benefits of SSL on
RS data from non-overlapping domains (as shown in Fig. 1)
are still unexplored, we also propose a new benchmark by
combining three datasets with images captured with different
sensors (drone, airborne, and satellite data), with different res-
olutions and acquired under different conditions, representing
different objects and scenes. In fact, in RS, there are several CL
benchmarks focused on incremental annotation of land cover
classes [5], [25], [26], but the case where images with different
characteristics arrive in a continual scenario is underexplored.
On the other hand, datasets based on the bundle of already
existing datasets, are gaining more and more interest in SSL
for RS [13], [14], [27], [28]. Thus, we show that SSL targeted to
RS images can outperform standard pretrained strategies (e.g.,
ImageNet), and we expect this to become a useful benchmark
scenario for further research in SSL and CL in RS. We also
show that the proposed CBT algorithm offers significantly more
versatility and less computing time compared to a standard
approach.

II. RELATED WORKS

In this section, we briefly review the relevant literature on
SSL (see Section II-A) and CL (see Section II-B) in EO. In
CV, the combination of these two technologies is starting to be
explored, and some works have already started to demonstrate
how SSL methods are feasible to learn incrementally [17], [29],
[30]. In EO, this combination has not yet been explored, to
the best of authors’ knowledge, apart from a few contributions
combining weakly-supervision [31] and contrastive losses [32],
[33] with CL. On the other hand, we observe an increasing
interest in foundation models [15], [34], based also on new
extensive datasets [14], [27], [28].
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A. Self-Supervised Learning in EO

In [11] and [12], we can find two reviews of SSL in RS. Sat-
MAE [13] trains a masked autoencoder [16], properly modified
for RS purposes. In [21], the authors train CMC [8] on three large
datasets both with RGB and multispectral bands, evaluating the
effectiveness of the learned features on several classification
downstream tasks. The same authors, in [10], apply a split-brain
autoencoder on aerial images. In [35], a global style and local
matching contrastive learning network is proposed. FALSE [36]
sets an effective strategy for negative sampling. Also in [37], a
contrastive method for EO semantic segmentation is proposed.
GeoKR [38] uses metadata for an efficient pretraining strategy
on a wide dataset. Marsocci et al.[22] performed a semantic
segmentation downstream task on the Vaihingen dataset [39] to
learn the features of the encoder of the network that solves the
segmentation. Ayush et al. [40] introduced a loss term based
on the geolocation of the tiles. Similarly, SeCo [41] is based
on seasonal difference among same views. Other contrastive
strategies are proposed by [42] and [43]. Vincenzi et al.[44]
learned visual representations inferring information on the vis-
ible spectrum from the other bands on BigEarthNet [45]. Dong
et al. [46] proposed a GAN discriminator, which has to identify
patches taken from two temporal images. A similar approach,
with multiview images, is proposed in [47]. Yuan and Lin [48]
showed the effectiveness of an SSL pretraining for time-series
classification. In [49], SSL strategy for transfer learning super-
resolution purposes is used. Finally, several semisupervised
approaches have been proposed [50], [51], [52], often along
with new extensive datasets for effective pretraining [27], [28].
Recently, referring to CV in general, several innovations have
been proposed [53], [54], reviewed in many surveys [24], [55],
[56], [57], [58].

B. Continual Learning in EO

Ammour [25] proposed a two-block network for RS land
cover classification tasks, where one module minimizes the error
among classes, while another one learns how to effectively dis-
tinguish among tasks, based on a linear memory. In [59], contin-
ual prototype calibration is proposed for few-shot classification
CL. The authors in [32] and [33] make use of contrastive learning
to learn effective representations that can reduce catastrophic
forgetting. A fine-grained CL algorithm for SAR incremental
target recognition is presented in [60]. In [61], a CL network
for pansharpening is proposed for the first time. The authors
in [62] and [63] proposed adapting and remembering strategies
based on a memory that holds the previous-task net. Continual
learning benchmark for remote sensing [64] is a large-scale re-
mote sensing image scene classification database based on three
CL scenarios. CILEA-Net [65] proposes a CL strategy, based
on the incremental learning of new classes ordered according
to the similarity with the old ones. In [66], an incremental
learning with open-set recognition framework and a new loss
are proposed for RS image scene classification. Alqahtani and
Ammour [67] trained two subnetworks for continually learning
classes from RS generated images. Lightweight incremental

approach proposes a small feature transfer module, to align rep-
resentations continually. Focused on small object segmentation,
class incremental learning proposes a diversity distillation loss.
Shaped for semantic segmentation, Feng et al. [5] proposed two
regularization components: representation consistency structure
loss and pixel affinity structure loss. The first retains the informa-
tion in the isolated pixels. The second saves the high-frequency
information throughout the tasks. Recently, a geospatial foun-
dation model [15] has been proposed, to obtain an effective
pretrained model, similarly to [13], but in a continual fashion.
In the wider deep learning landscape, several surveys reviewed
the best CL approaches and nets [3], [68], [69].

III. METHODOLOGY

A. Overview of the Components

We consider an RS scenario where:
� data are coming incrementally from multiple domains (e.g.,

drone, airborne, and satellite images);
� we cannot retrain from scratch the model when new data

are received;
� the majority of the data is unlabeled.
We refer to each domain (or subset of the dataset) as a task,

in accordance with the CL literature. Differently from several
CL for RS benchmarks [5], [25], [26], we are not interested in
the continual annotation of new classes on images arriving from
the same source (i.e., sensor), but on the incremental acquisition
of images from different sensors (i.e., domains). Thus, when
dealing with multiple datasets, most of the classes can change
and we want our method to naturally adapt to this shift by consid-
ering separate heads in a task incremental scenario, common in
CL [68], [69]. To achieve our compound objective, the intuition
is to embed a CL strategy in a self-supervised framework, by
combining two algorithms that are considered state-of-the-art in
their respective fields: (i) BT [7], which trains a network based on
measuring the cross-correlation matrix between the outputs of
two identical networks fed with augmented versions of a sample,
and making it as close to the identity matrix as possible; (ii)
EWC [18] consisting of constraining important weights of the
network to stay close to the value obtained in previous tasks. We
decided to put together two methods that would simultaneously
work well in terms of the effective regularization of the internal
embeddings of the network, and in reducing their redundancy
across tasks. Our intuition is confirmed by the experiments (see
Section VI). In the following section, we highlight how CBT
works. A schematic overview of the method is provided in Fig. 2.

B. Continual Barlow Twins

Consider for now a single task, and denote byX a batch of un-
labeled images. Our main training step, taken from BT, produces
two disturbed views of X , YA, and YB , based on a set of data
augmentations strategiesS (e.g., random rotations and scalings).
In this article, we consider standard sets of data augmentations
(see Section V), although augmentations specific to RS could
also be considered. The two views are fed to a convolutional
neural network with weights θ that produces, respectively, two
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Fig. 2. Schematic representation of the CBT algorithm. When computing LCBT , C, and I contribute to the BT loss term, fθ,T1, F , and fθ,T2 to the EWC
regularization term.

embeddings ZA and ZB (assumed to be mean-centered along
the batch dimension). To learn effective representations of the
input images in a self-supervised fashion we leverage the BT
loss, which is composed of two terms called invariance and
redundancy reduction terms

LBT (X) =
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+μ
∑
i

∑
j �=i

C2
ij︸ ︷︷ ︸

redundancy reduction term

(1)

where μ is a positive constant balancing the invariant and the
redundancy reduction terms of the loss, and C is the cross-
correlation matrix, with values comprised between−1 (i.e., total
anticorrelation) and 1 (i.e., total correlation), computed between
the outputs of the two networks along the batch dimension (i.e.,
for each mini-batch, the vectorZA

b compute the cross-correlation
against ZB

b , where b = 1, . . ., N is the index of the mini-batch
andN is the mini-batch size). Practically, the first term of the loss
has the goal to make the diagonal elements of C equal to 1. In this
way, the embeddings become invariant to the applied augmenta-
tions. On the other hand, the second term of the loss has the aim
to bring to 0 the off-diagonal elements of C. This ensures that
the various components of the embeddings are decorrelated with
each other, making the information non-redundant, enhancing
the representations of the images.

Suppose now that the network has been trained on images
coming from a task T1 using the loss (1) (e.g., drone images),
and we receive a new dataset of images coming from a second
task T2 (e.g., satellite images). We denote the weights obtained
at the end of the first training as θT1 , and the data of the two
tasks, respectively, as DT1

and DT2
. To retain old knowledge

from T1 and avoid catastrophic forgetting, we complement the
BT loss (1) with an EWC regularization term [18], which forces
the weights to stay close to θT1 depending on their importance,
given by the diagonal of the Fisher information matrix F , which
is a positive semidefinite matrix corresponding to the second
derivative of the loss near the minimum. In our scenario, the
loss cannot be decomposed for each individual data point, as it
depends on the cross-correlations between data in a mini-batch
and its corresponding augmentations. To this end, denoting by
BT1

the number of mini-batches X that can be extracted from
DT1

, we approximate the ith element of the diagonal Fisher
information matrix as

Fi =
1

BT1

∑
X∈DT1

[
∂LBT (X)

∂θT1
i

]2

(2)

where LBT (X) denotes the BT loss computed on mini-batch
X , as in (1). Intuitively, each weight of the network is given an
importance that depends on the square of the corresponding loss
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TABLE I
SUMMARY OF THE DATASETS USED FOR THE EXPERIMENTS

gradient. Given this approximation, the new loss for a batch of
images X taken from the second task is given by

L(X) = LBT (X) +
∑
i

λ

2
Fi

(
θi − θT1

i

)2

(3)

where LBT (X) is the BT loss (1) computed on the data from
task T2, and λ weights the constraint on the previous task. If
moving to a third task, we repeat the computation of the Fisher
information matrix at the end of training for the second task and
replace it. The CBT approach is summarized in Fig. 2, and the
associated code is available online.1 After the self-supervised
pretraining, the network can be exploited for any downstream
task of interest in EO. In particular, we explore in Section V, a
fine-tuning for a semantic segmentation task.

IV. DATASETS

To perform the experiments, we build a novel dataset, which
is a combination of three previously introduced datasets. Each
contains images from a different source: airborne, satellite,
and drone. As previously stated, the construction of a novel
mixed dataset is crucial since the data are vastly heterogeneous,
presenting almost non-overlapping domains, as shown in Fig. 1.
In fact, the choice was dictated by the desire to demonstrate the
effectiveness of the SSL on a challenging task (that is semantic
segmentation), extending its validity even in the case of highly
variable data, while most previous works focused on a single
domain (see Section II). We briefly summarize next each dataset.
Salient information is summed up in Table I.

A. Potsdam

The ISPRS Potsdam dataset [39] consists of 38 high-
resolution aerial true orthophotos (TOP), with four available
bands (near-infrared, red, green, and blue). Each image is
6000 × 6000 pixels, with a ground sample distance of 5 cm,
ending up in covering 3.42 km2. For our experiments, we took
in consideration only the 38 RGB TOPs. These are annotated
with pixel-level labels of six classes: background, impervious
surfaces, cars, buildings, low vegetation, and trees. We used the
eroded mask, and we selected 24 images for training, 13 for
testing, and 1 for validation, without considering the background
class, similarly to [72]. We cropped each image in 512 × 512
non-overlapping patches, ending up in 2640 images for training,
120 for validation, and 1680 for test.

1) Unmanned Aerial Vehicle Semantic Segmentation Dataset
(UAVid): UAVid [70] consists in 42 video sequences, captured
with 4 K high-resolution by an oblique point of view. UAVid is

1[Online]. Available: https://github.com/VMarsocci/CBT

a challenging dataset due to the very high resolution of images,
large-scale variation, and complexities in the scenes. The authors
extracted ten labeled images per each sequence, ending up in
420 images with 3840 × 2160 pixels. The annotated classes are
eight: building, road, static car, tree, low vegetation, human,
moving car, and background clutter. The images are already
divided into train, validation, and test, by the authors, however,
the test segmentation maps have not yet been released. For this
reason, we used a part (80%) of the validation set as test set in
our experiments. Moreover, we cropped the images in 512 × 512
non-overlapping patches, ending up in ∼ 7500 images.

2) US3D: The US3D dataset [71] includes approximately
100 km2 coverage for the United States cities of Jacksonville,
Florida, and Omaha, Nebraska. Sources include incidental
satellite images, airborne LiDAR, and feature annotations de-
rived from LiDAR. The dataset is composed of 2783 images,
1024 × 1024, obtained from the WorldView-3 satellite: they
are non-orthorectified and multiview. The images have eight
bands, six of which are part of the visible spectrum, and two
of the near-infrared. Semantic labels for the US3D dataset,
derived automatically from Homeland Security Infrastructure
Program, are five: ground, trees, water, building, and clutter.
For our experiments, we considered only RGB bands and all
the classes. Also for this dataset, we cropped the images in
512 × 512 non-overlapping patches, ending up in more than
11 000 images, randomly divided in train (∼ 70%), validation
(∼ 10%), and test (∼ 20%).

V. EXPERIMENTAL SETUP

For the training phase, a single Tesla V100-SXM2 32 GB
GPU has been used. For the semantic segmentation task, we
use UNet++ [19], with the squeeze and excitation strategy [73]
and the softmax function as activation on the last layer. For the
experiments on all the three datasets, we fix the batch size to 8,
the number of epochs to 200, and the learning rate to 0.0001.
Moreover, we used Adam as optimizer, Jaccard loss as the
cost function, and the following set of augmentations: random
horizontal flip, random geometric transformation (i.e., shifting,
scaling, rotating), random Gaussian noise, random radiometric
transformation (i.e., brightness, contrast, saturation variations).
The mean intersection over union (mIoU), and F1-score (F1) are
the selected evaluation metrics. Under these conditions, we test
different pretraining strategies for UNet++:

1) ImageNet, ResNet50 pretrained on ImageNet in a super-
vised manner. It is used as a baseline;

2) BT ImageNet, ResNet50 pretrained on ImageNet data with
BT strategy,2 used as additional baseline;

3) CBT, an incrementally pretrained ResNet50 on the three
datasets in this order: US3D, UAVid, Potsdam (with λ =
10e− 2). The rest of parameters are as in [7]. This is our
proposed model;

4) BT, a ResNet50 pretrained on the three datasets, taken
together in only one step, being the upperbound baseline;

2[Online]. Available: Downloaded at https://github.com/facebookresearch/
barlowtwins

https://github.com/VMarsocci/CBT
https://github.com/facebookresearch/barlowtwins
https://github.com/facebookresearch/barlowtwins
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TABLE II
ELAPSED TRAINING TIMES

5) 3-step BT, a ResNet50 pretrained consequentially on the
three datasets (US3D, UAVid, Potsdam) with a vanilla BT,
without CL constraints. This experiment is meant to assess
the emergence of catastrophic forgetting.

With the encoders so trained, we trained the semantic segmen-
tation models in a supervised way, with different percentages
(10%, 50%, 100%) of labeled data for the three datasets. Par-
ticularly, we run all the experiments three times, reporting the
mean and the standard deviation of the resulting metrics. The
results are shown and commented in the following Section VI.

VI. EXPERIMENTAL RESULTS

The results of the experiments on the downstream task are
shown both in Fig. 3 and Tables III–V. As can be seen, the
feature extractors that perform best are the ones obtained from
the CBT and BT training on the three selected EO datasets. Pre-
cisely, these conformations outperform, with reference to mIoU,
their counterpart trained with ImageNet supervised pretraining,
respectively, by 3.39% and by 3.69% in average. Moreover, it
is interesting to note that the performance of the models with
the CBT feature extractor is only slightly lower (average drop
of a negligible ≈ 0.3%, referring to mIoU) than that obtained
with an encoder trained by means of BT, demonstrating how
the proposed approach gives up only a slight part of optimal
performance, against clear advantages in terms of computational
efficiency and general versatility. In absolute terms, it is neces-
sary to notice once again how self-supervision strategies lead
to better results than exclusively supervised ones [21], [40],
and, above all, how this is even more true when combining
EO data from domains that are not homogeneous in terms
of type of sensor, acquisition, resolution, and objects repre-
sented. In particular, in the next paragraphs, we will go in the
depth of some specific evidences regarding: computational times
(Section VI-A), UAVid experiments (Section VI-B), Potsdam
experiments (Section VI-C), US3D experiments (Section VI-D),
and catastrophic forgetting (Section VI-E).

A. Computational Times

As stated earlier, one of the best advantages of the proposed
new method is the shorter computational time with a very limited
performance drop in the case of incremental data availability. As
already stressed, this situation is especially likely in the field
of EO, where new data often arrives continuously [62], due
to satellite revisit times, scheduled acquisition campaigns, and
other variable parameters. In Table II, we can observe the results
of the experiments. Concerning the traditional BT strategy, for
the training of the three considered datasets, we simulate an
incremental arrival of data as follows:

Fig. 3. mIoU metrics on experiments with an increasing amount of labeled
data of, respectively, (a) UAVid, (b) US3D, and (c) Potsdam.

1) training of the only US3D;
2) joint training of US3D and UAVid;
3) training of the three datasets together.
This strategy is employed to create a salient feature extractor

for all datasets, with the mean of avoiding catastrophic forget-
ting, in situations of incremental data availability. On the other
hand, for CBT, step 1) is referred to training on US3D, step 2)
on UAVid, and step 3) on Potsdam, as previously stated. We
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TABLE III
UAVID RESULTS FOR DIFFERENT % OF TRAINING DATA

can easily affirm, observing Table II that our method could save
nearly 50% of times, when the data are available incrementally.
It is also interesting to state that, also in case of complete and
immediate availability of all data, the computational times are
comparable (28.75 h for CBT versus 24.61 h for BT, where the
computational times of the latter consist of just the third step).

B. Unmanned Aerial Vehicle Semantic Segmentation Dataset

According to the results shown in Table III and represented
in Figs. 3(a) and 4(a), when using a limited amount of data,
the performance of the supervised pretrained encoder is inferior
overall. Looking at Fig. 4(a), we can see that a better encoder,
when 10% are used, leads to a more stable and effective training.
On the other hand, the training with 50% of data is the most
similar along the different pretrained encoders, with just∼ 0.5%
mIoU gap between the worst result (74.92% mIoU, obtained
with ImageNet encoder) and the best (75.39% mIoU, achieved
with BT encoder) that it is almost negligible considering the stan-
dard deviations of the results. This trend can be mainly explained
by what has been stated above with respect to the image domain.
In fact, the images captured by drone are definitely more similar
to close-range camera taken images, like ImageNet ones, than
those from the other two RS datasets. This is mainly due to the
point of view from which the images were captured. For Potsdam
and US3D, the viewpoint is almost nadiral, while for UAVid it
is oblique, more precisely the camera angle is set to around 45◦

to the vertical direction, at a flight height of about 50 m. As
also stated by the authors [70], a non-nadiral view allows easier
reconstruction of object geometry (i.e., volume, shape, etc.,),
making the use of more sophisticated feature extractors less
effective. These reasons favor the high performance of ImageNet
pretrained models, especially with a limited number of labels.
However, by increasing the number of labels, the models with
encoders trained on the proposed datasets are able to match
their features to the best conformation to solve the task with
the best performance (80.64% mIoU with respect to 77.87%
mIoU of the ImageNet encoder experiment). In addition, the fact
that the pretraining on UAVid was the second of the three steps
slightly affected the performance of the CBT pretraining strategy

Fig. 4. Value of the loss on experiments with 10% labeled data of, respectively,
(a) UAVid, (b) US3D, and (c) Potsdam.

(80.12% mIoU), with a very limited drop in performance (∼
0.5%).

Focusing on the qualitative results, reported in Fig. 5, we can
confirm some considerations. First of all, we can see how some
classes are difficult to be distinguished. Both in Fig. 5(a) and (b),
especially when few labels are employed (i.e., 10%), building,
road, and background clutter are confused, based on their similar
radiometric information. Considering the differences among
different pretrained strategies, ImageNet encoder does not work
badly, especially if compared to the BT ImageNet one. On the
other hand, the features learned on the three datasets are very
beneficial for some classes, such as trees. In fact, this class is
shared among the three datasets (e.g., see Fig. 6). For this reason,
in Fig. 5(a), we can point out that CBT and BT better segment
trees, when few labels are used.
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Fig. 5. Some results on the UAVid dataset, when using both 10% of (first row) and 100% (second row) of labeled data.

Fig. 6. Some results on the Potsdam dataset, when using both 10% of (first row) and 100% (second row) of labeled data.
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TABLE IV
POTSDAM RESULTS FOR DIFFERENT % OF TRAINING DATA

C. Potsdam

As far as the results on Potsdam are concerned, in Table IV
and Figs. 3(c) and 4(c), we see that the gap between results
with self-supervised (71.42% mIoU) and supervised encoder
(64.12% mIoU) is the largest among all experiments. This trend
is true also for the experiments with a limited amount of training
data, as the curves of Fig. 4(c) show. For example, with 10% of
data, the gap between the ImageNet encoder (58.36% mIoU) and
BT encoder (62.72% mIoU) is∼ 4.4%. This can be explained by
the fact that this dataset is the one with the least amount of data
among the three available (see Table I). This insight is supported
by the fact that the gap between performance with ImageNet
encoders and performance with CBT and BT encoders is wider
also for the other datasets when only 10% of the data is used (see
also Fig. 3). Therefore, it is definitely the one that benefits the
most from a more efficient encoder feature selection. This could
be confirmed by the fact that the Potsdam domain is comparable
with that of US3D, a very wide dataset, capable of improving
the representations used for Potsdam semantic segmentation,
confirming similar intuitions reached, for example, in [74].

Also in the qualitative results (see Fig. 6), we can observe
that ImageNet works the worst among the pretrained encoders.
Two are the main phenomena to be observed: ImageNet cannot
detect some underrepresented classes (e.g., cars), as it poorly
reconstructs the shapes. Compared to it, also BT ImageNet has
poor reconstruction capabilities. On the other hand, both CBT
and BT show good results. Also in this case, this is due to the fact
that the proper RS finetuned features help the segmentation. For
Potsdam, this is even more true for CBT, because of the order
of training (US3D, UAVid, Potsdam). See, for example, the tree
profile (similar to UAVid one) in Fig. 6(a) and the shape of the
buildings (similar to US3D ones) in Fig. 6(b).

D. US3D

Also for US3D self-supervision leads to better results on
downstream tasks. In this case, CBT performs best of all (CBT
84.56% versus ImageNet 83.41% mIoU) [see Table V and
Figs. 3(b) and 4(b)]. Therefore, considering also the standard
deviations of the final results, we observe that there are no sig-
nificant differences in performance between the other encoders

TABLE V
US3D RESULTS FOR DIFFERENT % OF TRAINING DATA

(BT ImageNet 84.49% versus CBT 84.56% versus BT 84.43%
mIoU), since the US3D is a large dataset, composed of several
images of the same area, captured from different points of view
(i.e., multiview). This redundancy, working as data augmenta-
tion itself, facilitates the resolution of the task on this dataset,
as once an efficient feature extractor is engaged, convergence is
achieved quite effectively. This intuition is confirmed also by the
training curves, showed in Fig. 4(b), where the training curves,
except of some small instability for ImageNet one, follow a
similar behavior. It is not surprising that similar conclusions
are presented in [21], where self-supervision is applied on large
datasets.

Looking at the qualitative results in Fig. 7, we can easily
see that, when all the labels are available, the network reaches
good performance, with any pretrained encoder. The situation
changes when only 10% of labels are employed. Under this
condition, ImageNet poorly identifies some underrepresented
classes, as water and buildings. For US3D, we can affirm that a
generical SSL approach, like BT ImageNet, could be considered
enough for high performance. On the other hand, if we focus on
some details, such as the shape of the inferred trees, we can see
that CBT obtains slightly better performance, confirming the
quantitative results (see Table V).

E. Overcoming Catastrophic Forgetting

CSSL, in addition to generically improving performance, has
the main advantage of overcoming catastrophic forgetting. To
illustrate this, we performed a series of experiments in which we
trained a BT model in a sequential fashion, without introducing
any CL strategy (called 3-step BT). Specifically, starting from
a ResNet50 pretrained on ImageNet with BT, we performed
three training steps, in which we used the model obtained in the
previous step:
� BT on US3D dataset;
� BT on UAVid;
� BT on Potsdam.
Finally, we used the resulting ResNet50 as the backbone of

UNet++ model, for the semantic segmentation downstream task.
Fig. 8 and Table VI show the effectiveness of CBT as a strategy
to overcome catastrophic forgetting, making possible to train a
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Fig. 7. Some results on the US3D dataset, when using both 10% of (first row) and 100% (second row) of labeled data.

Fig. 8. Differences of mIoU among the experiments obtained with the encoder
pretrained with the proposed CBT and 3-step BT, the catastrophic forgetting
baseline (i.e., encoder pretrained with a vanilla BT sequentially trained on the
three datasets).

powerful encoder, without the need of relying on all the data
simultaneously. Particularly, we can affirm that constraining the
parameters of the model pretrained on ImageNet is an easy and

TABLE VI
MIOU VALUES FOR EXPERIMENTS WITH DIFFERENT AMOUNTS OF LABELED

DATA WITH THE ENCODER PRETRAINED WITH: I) CBT, II) A VANILLA BT
TRAINED CONSECUTIVELY ON THE THREE DATASETS

effective strategy to train the backbone. In fact, when it is not
possible to rely on a vast amount of data specifically shaped
for EO tasks, it is better to exploit the capabilities of models
pretrained on extensive datasets [14], [15], like in this scenario.

Moreover, we can see in Fig. 8 and Table VI that once again
UAVid is the dataset that, being more different from the others,
suffers most from catastrophic forgetting (e.g., drop of ∼ 2.5%
when 10% of labels are used, ∼ 2% when 100% of labels).
In fact, as we have already observed, Potsdam and US3D have
both nadiral views, making their characteristics more similar.
For this very reason, the performance of 3-step BT on US3D is
never excessively worse than the counterpart trained with CBT,
even though the average performance drop (of ∼ 1.5%) is not
negligible, being the first of the three dataset used. On the other
hand, as one can expect, the performance on the Potsdam dataset,
with the 3-step BT, are really similar to the one reached with
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CBT. In fact, being the last dataset on which the algorithm is
trained, most of the knowledge of the encoder came from this
dataset. This is true especially when few data are used, where
3-step BT performance (61.51% mIoU) overcomes the CBT
one (60.90% mIoU). In general, once again, given the required
computational power and the overall performance, CBT seems
the best solution to have consistent results on all the datasets.

VII. CONCLUSION

In this article, we have shown that the combination of CL and
SSL offers an optimal compromise between performance and
training efficiency and versatility for RS applications. In partic-
ular, we demonstrated a combined approach (CBT) leading to
consistent performance in a novel combination of datasets with
RS images that are heterogeneous in terms of sensors, resolution,
acquisition, and scenes represented. Since the availability of
unlabeled data is increasing at a great speed, and it is not possible
for everyone to train repeatedly large models, a framework like
CBT offers a potential solution. However, more work remains to
be done. First, the validity of these results could be extended to
new datasets and new tasks. Among the use of new datasets, we
mention datasets containing multispectral images (i.e., not only
with RGB bands). Second, other SSL and CL strategies can be
combined into an effective and efficient framework.
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