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Abstract
Persistent homology (PH) is a powerful mathematical method to automatically 
extract relevant insights from images, such as those obtained by high-resolution 
imaging devices like electron microscopes or new-generation telescopes. However, 
the application of this method comes at a very high computational cost that is bound 
to explode more because new imaging devices generate an ever-growing amount 
of data. In this paper, we present PixHomology, a novel algorithm for efficiently 
computing zero-dimensional PH on 2D images, optimizing memory and processing 
time. By leveraging the Apache Spark framework, we also present a distributed 
version of our algorithm with several optimized variants, able to concurrently 
process large batches of astronomical images. Finally, we present the results of an 
experimental analysis showing that our algorithm and its distributed version are 
efficient in terms of required memory, execution time, and scalability, consistently 
outperforming existing state-of-the-art PH computation tools when used to process 
large datasets.
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1  Introduction

Since the advent of the first electron microscopes, the field of electron microscopy 
(EM) has undergone significant transformations. Modern microscopy techniques 
are now achieving near-atomic resolution in the structural analysis of individual 
proteins and molecular complexes. As a result of this, it is becoming common to 
generate large digital image files, often above one terabyte in size, in a single data 
acquisition session [1]. This advancement poses serious performance challenges 
when it turns to the analysis of these images.

A similar problem affects also other application domains. For example, the 
Vera C Rubin Observatory is a new-generation ground-based telescope currently 
under construction (see [2]). When ready, it is expected to generate approximately 
15 terabytes of data per night. Such an impressive amount of data requires very 
efficient methods to be analyzed [3].

In contexts like these, topological data analysis (TDA) [4] plays a significant 
role as a tool for the automatic extraction of relevant structural information from 
large datasets of images. This is especially true for persistent homology (PH) 
[5], a fundamental component of TDA, capable of constructing multiresolution, 
noise-resilient topological features from a variety of different data clouds [6].

Several techniques have been proposed so far for the efficient PH calculations 
(see, e.g., [7]). However, processing large images within a reasonable time is still 
impractical. The primary performance bottleneck is the complex computational 
procedure employed by many of these techniques, i.e., the filtration of simplicial 
and cubical complexes [8]. The execution cost of this procedure increases 
exponentially with the size of the input data. For this reason, innovative 
algorithms and software solutions that can efficiently handle vast datasets of very 
large images are required.

In this work, we propose PixHomology, a novel algorithm for computing 
the particular case of zero-dimensional PH on digital images that speed up the 
filtering of a simplicial complex. Our approach offers a substantial reduction in 
memory usage compared to existing methods, like the one employed by the state-
of-the-art Ripser package, when applied to zero-dimensional PH computation. 
We also introduce a software pipeline for using PixHomology on a distributed 
system, to compute zero-dimensional PH on large batches of images.

We evaluate the performance of our algorithm and its distributed version 
using a reference dataset of images and show its efficiency compared to existing 
methods and software, making it the fastest algorithm available nowadays for 
zero-dimensional PH computation, in both its sequential and distributed versions.

Organization of the paper In Sect.  2, we provide a short introduction to the 
theoretical concepts behind the PH computation problem. Then, in Sect.  3 we 
review the existing literature on computational methods and software tools for 
efficient PH evaluation. In Sect. 4, we briefly describe the MapReduce distributed 
computing paradigm and its implementing framework, Apache Spark. Following 
this, in Sect.  5, we present our novel algorithm for efficiently computing zero-
dimensional PH and its distributed version, together with several variants we 
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developed to improve upon its original performance. In Sect.  6, we report the 
results of a thorough experimental analysis designed to assess the performance 
of our algorithm also in comparison with other existing state-of-the-art tools 
and methods for PH computation. Finally, some concluding remarks are given in 
Sect. 7.

2 � Theoretical background

2.1 � Simplicial and cubical complexes

Simplicial and cubical complexes are the fundamental building blocks of 
computational topology to fully describe topological spaces. Simplicial complexes 
consist of simplices, such as vertices, edges, and triangles. In general, a d-simplex 
represents the convex hull of d + 1 points, and each subset of these d + 1 points 
forms a face of this d-simplex. A collection of simplices, denoted by K, represents 
a simplicial complex if it satisfies two conditions: All faces of a simplex in K also 
belong to K, and the intersection of any two simplices in K is either empty or a 
common face.

For cubic complexes, an elementary interval can be described as a unit interval 
[k, k + 1] or as a degenerate interval [k,  k]. For a d-dimensional space, a cube is 
the product of d elementary intervals, denoted 

∏d

i=1
Ii . The dimension of a cube is 

determined by the number of non-degenerate intervals in this product. In particular, 
0-cubes, 1-cubes, 2-cubes, and 3-cubes correspond to vertices, edges, squares, and 
3D cubes, respectively. When comparing two cubes a and b in ℝd , a is considered to 
be the face of b only if a is contained in b. A cubic complex of dimension d consists 
of cubes of dimensions at most d. Similar to a simplicial complex, it must be closed 
under operations with faces and intersections.

For an in-depth discussion of these topics, we refer the interested reader to [4, 9].

2.2 � Persistent homology

PH is a fundamental concept in TDA specifically focusing on Z2 homology (see [4, 
10] for a thorough introduction to this topic).

In the context of PH, we start with a topological space X and a filtering function 
f ∶ X → R . This method examines the homological transformations of the sublevel 
sets, denoted as Xt = f −1(−∞, t] . The algorithm captures the inception and 
extinction times of the homology classes as the subsets evolve from X−∞ to X+∞ . For 
example, it identifies components as zero-dimensional homology classes, tunnels 
as one-dimensional classes, voids as two-dimensional classes, and so on. Birth 
implies the emergence of a homology class, while death implies its trivialization or 
amalgamation with another class that emerged earlier. The persistence or lifetime of 
a class represents the time difference between its death and birth. Homology classes 
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with greater persistence provide information about the global structure of the space 
X, which is affected by the function f.

A common method for visualizing persistence is a persistence diagram (PD), 
shown in Fig. 1, consisting of points on a two-dimensional plane, each correspond-
ing to a PH class. These points are defined by their birth and death times.

A key reason for using persistence is the stability theorem [11]: For any two 
filtering functions f and g, the difference in their persistence is always bounded by 
the L∞norm of their dissimilarity:

This ensures that persistence serves as a distinctive signature. If two persistence 
outputs differ, it means that the functions are different.

2.3 � Computation of persistence

The original algorithm for computing persistence [5] operates in cubic time relative 
to the size of the complex. This approach requires preprocessing of the data. In 
the case of images, the function f is defined for all pixels. These values are first 
interpreted as the values of the vertices of the complex. Then, the complex filtration 
is calculated and a sorted boundary matrix is created.

During filtration, the process entails adding cells with increasing values to the 
complex one by one. To achieve this, an algorithm for building the filtration extends 
the function to all cells within the complex by assigning each cell the maximum 
value among its vertices. Then, all cells are sorted in ascending order according to 
the function value. As a result, each cell is added to the filtration according to all of 

||f − g||∞ ∶= max
x∈X

|f (x) − g(x)|.

Fig. 1   A point (x, y) in the PD 
indicates a topological feature 
of dimension 0 ( H0 ) born at x 
and that persists until y. We call 
x the pbirth and y the pdeath . By 
definition, all points should lie 
above the diagonal. The hori-
zontal dashed line represents 
infinity
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its faces, creating a sequence of cells known as lower-star filtration. This ordering of 
cells allows the creation of a sorted boundary matrix.

In the reduction phase, the algorithm performs column reductions on the sorted 
boundary matrix, proceeding from left to right. Each new column is reduced by 
adding it to already reduced columns, to maximize the lowest nonzero entry. The 
final reduced matrix contains all the information about PH.

3 � Related work

Several methodological and software contributions have been proposed so far to 
support the efficient calculation of PH. One of the first software tools to be proposed 
for this purpose is the Plex Library, developed by the Computational Topology 
Group at Stanford University [12]. Dionysus [13] has been instead the first software 
package to implement the dual algorithm. Starting from the observation that 
cohomology groups are usually faster to compute, this algorithm reformulates the 
problem of homology group computations into a cohomology group computation 
problem (for more info see [14, 15]).

Phat [16] is the first software to implement a matrix reduction algorithm that 
can be executed in parallel, to accelerate the analysis of large datasets. Gudhi [17] 
implements a comprehensive library offering functionalities from basic to advanced 
PH, including new data structures for simplicial complexes and the boundary 
matrix. Finally, Ripser [18] is considered the gold standard solution in this field, 
thanks to its versatility and efficiency. It uses several optimizations and shortcuts to 
speed up the computation of PH in all dimensions and has demonstrated superior 
performance to other software tools in terms of both speed and memory efficiency 
[7].

Indeed, the analysis of very large datasets can be computationally prohibitive, 
even for efficient tools like Ripser. A natural solution to this problem is distributed 
computing. DIPHA [19] has been so far the first software we know of that 
implements PH computation with distributed computing, enabling efficient 
processing of large-dimensional data. It works by efficiently partitioning the PH 
computation problem into subprocesses to be concurrently run on the nodes of a 
distributed system. This allows DIPHA to compute PH on much larger instances 
than would be possible on a single machine. Moreover, the performance speed-up 
granted by parallelism introduced by DIPHA at least compensates for the overhead 
caused by communication between nodes.

Recently, alternative high-performance software solutions like CubicalRipser 
[20] and Cubicle [21] have been introduced for the PH computation on images.
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4 � Apache spark

Apache Spark [22] is one of the most popular engines for large-scale data processing 
and is based on RDDs (Resilient Distributed Datasets) and DataFrames. These are 
distributed memory abstractions that allow programmers to perform in-memory 
computations on large clusters in a fault-tolerant manner. The former are collection 
of key–value pairs to be processed by means of distributed transformations. 
The latter are table-like collections provided with the Spark SQL module, which 
optimizes structured data processing by introducing SQL-like logic in a distributed 
context.

The physical architecture of a Spark cluster, shown in Fig. 2, is characterized by 
a master node that oversees a set of worker nodes via daemon processes. Data are 
typically distributed among the worker nodes, and MapReduce is also supported.

A Spark application communicates with a Cluster Manager, which is the process 
that manages the computing and storage resources of the cluster. It includes a driver 
process and a set of executor processes. The driver process communicates with the 
Cluster Manager to learn where the data are located and what physical computing 
resources are available. Then, in each worker node, a set of parallel executor 
processes is activated according to the number of threads. For example, a cluster 
with three worker nodes, each with two threads, means a potential number of six 
parallel executor processes.

4.1 � The MapReduce paradigm

The computations within Spark are formulated according to MapReduce, a 
programming paradigm that allows massive scalability [23]. MapReduce is 
composed of two tasks: mapping and reducing. The mapping phase transforms 
a dataset into another form with elements organized into key–value pairs. 
Subsequently, the reduction process uses the output of a map as input and combines 
those data tuples into a smaller set of tuples. As the name suggests, reduction always 

Fig. 2   Apache Spark architecture. Example for a reference installation featuring two worker nodes and 
one driver application. Each worker node in this figure runs one executor process and two tasks. The 
overall distributed execution is orchestrated by a cluster manager
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follows mapping. Consequently, assuming the input dataset is organized as a set 
of key–value pairs, it is initially distributed among the worker nodes of a cluster. 
Then, batches of key–value pairs are processed in parallel by concurrent executor 
processes on the worker nodes where these data are found. Reduce functions require 
a preliminary step to group on the same node all pairs having the same key (shuffle 
operation). When working with large datasets, this preliminary step makes the 
Reduce function potentially expensive from a computational perspective.

4.2 � Fault‑tolerant applications

Spark supports various fault tolerance strategies including checkpointing, task 
replication, and error handling, all of which contribute to the reliability and 
robustness of the computing process. For instance, checkpointing allows Spark to 
periodically save the state of distributed data structures to resilient storage, enabling 
recovery from failures without recomputing from scratch, while task replication 
ensures that tasks are rerun on different nodes in case of failures [24, 25].

5 � Our contribution

In this section, we introduce a novel algorithm for computing PH on 2D images: 
the PixHomology algorithm.1 Our algorithm comes with two relevant advantages 
concerning the existing literature. First, it offers a substantial reduction in memory 
usage compared to existing methods like the lower_star_img function of Ripser 
package, when applied to zero-dimensional PH computation. Second, it has been 
conceived to process large batches of images in parallel using a distributed system in 
a more efficient way than other distributed systems (i.e., DIPHA).

The first goal has been achieved by overcoming a relevant performance bottleneck 
existing in traditional general filtration PH algorithms, i.e., the computation of 

Fig. 3   PH calculation using PixHomology on an image containing three components defined by Gaussian 
functions. Initially, each pixel is linked to its neighbor with the highest value, and PixHomology detects 
relative maxima as birth values. Subsequently, all the minimum or saddle points are located. The first 
value of these points that connect the two components represents the death value of the component with 
the lower birth value. Finally, the process ends with identifying the absolute minimum in the image, 
which serves as the ultimate death point associated with the component relative to the absolute maximum

1  The source code of PixHomology is available at https://​github.​com/​ricca​rdoc95/​Spark​siste​nce

https://github.com/riccardoc95/Sparksistence
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adjacency matrices. Being purposely designed to deal with the particular case of 
zero-dimensional PH computation, our algorithm can avoid all the computational 
burden of constructing and analyzing these matrices while dramatically reducing the 
overall amount of memory required for its execution.

The second goal has been reached by using the MapReduce paradigm to develop 
a distributed PH pipeline based on our algorithm. This allows the execution of the 
algorithm concurrently on very large batches of images, in an efficient and scalable 
way.

5.1 � The PixHomology algorithm

The algorithm we propose, here called PixHomology, has been designed to process 
efficiently very large images as input while yielding zero-dimensional PH as its out-
put. Specifically, the algorithm will provide the birth and death values of each object 
within the image, along with their pixel coordinates.

The straightforward implementation and the computational efficiency result 
from constraining the application to 2D images with specific characteristics. The 
algorithm initiates by linking each pixel to its highest value neighbor among the 8 
surrounding pixels. This process enables the division of the image into connected 
components, which are later united to generate the points on the PD  (see Fig. 3). 
A crucial condition for the proper operation of PixHomology is that the pixel 
containing a local maximum value must not have any neighboring pixels with the 
same value among its 8 neighbors. While the application domains of this algorithm 
may appear limited at this stage, it is important to note for example that whenever 
Gaussian noise is added to a signal in an image, the image satisfies the necessary 
conditions for the application of PixHomology.

One of the key points of our proposal, as visible in Algorithm  1, is the usage 
of a maxpool2d function with a kernel size of 3, a stride of 1, and a padding of 1. 
This function yields an image of the same initial dimensions, with each pixel’s value 
being set to the maximum among the pixel and its eight neighboring pixels. The 
arg-maxpool2d function employs identical parameters as the maxpool2d function. 
However, instead of returning the pixel values with the highest value, it returns the 
indices corresponding to these pixels.

Given an input image I, the algorithm we propose requires the following steps.

•	 Step 1: Identification of the concave components.
	   This step is about the identification of the concave components within the 

image I.
	   To accomplish this, we use the arg-maxpool2d function to compute a new 

image M of the same initial dimensions of I, with each pixel’s value being set 
to the maximum among the pixel and its eight neighboring pixels. Then M is 
processed in a loop.

	   In each iteration, every element x ∈ M is replaced by the value M[x], which 
corresponds to the value located at position x of M. This process ends when x is 
equal to M[x] for every element x ∈ M.
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•	 Step 2: detection of birth points and re-indexing of components
	   At this point, all the identified elements in M are marked with the index of 

their corresponding relative maximum neighbor found in I. The unique values of 
M are the position of the relative maximums that are stored in an array labeled 
pbirth , i.e., the birth points. A separate birth array records the values of I at these 
pbirth points. We sort birth and pbirth array so that birth array is in descending 
order. Subsequently, we update the values in M with positions corresponding 
to the values in the pbirth array. This process assigns incremental numbers to 
the components of I, starting with the component that has the smallest relative 
maximum and ending with the component that has the largest relative maximum.

•	 Step 3: edge points detection
	   Upon partitioning the image into distinct components, we calculate 

maxpool2d(M) and −maxpool2d(−M) . The region where these two outcomes 
differ represents the edges of the components within the image I. It is essential to 
note that matrix M comprises integer values, each signifying a unique component 
in the image. These component values are not arbitrarily assigned; rather, they 
follow the order of the relative maxima present in I.

	   An array B that contains the indices of all the edges of the components is 
generated.

•	 Step 4: distillation
	   By definition, death points are located along the edges of the components. 

To connect two neighboring components, they must be either relative minimum 
points or saddle points. In this step, we verify whether the points with an index 
in B are minimum or saddle points. If these criteria are unsatisfied, the index is 
removed from B. We characterize a minimum point as a pixel with the lowest 
value in comparison to its 8 neighboring pixels. In contrast, a saddle point is a 
pixel that serves as a minimum along one axis and a maximum along the other 
axis, always about its 8 neighboring pixels.

•	 Step 5: dead points identification and partition merging
	   We sort B in descending order to maintain the chronological sequence of 

partition merges in M. Each point x in B that is adjacent to two partitions triggers 
their merger. We call x the pdeath point for the lesser-indexed partition. Merger 
history is captured in vector C, which stores the new index of each partition after 
the merger.

	   To further improve the efficiency of the algorithm, we restrict the changes to 
the eight pixels around the point x, rather than the entire array M.

•	 Step 6: PD construction
	   In this step, we create a PD, to associate each birth point with its respective 

death point within the same partition. We then extract the birth and death values 
for the pbirth and pdeath points from I and aggregate them into a DGM matrix.

When compared with the existing literature, PH achieves minimal memory usage 
and efficient execution times by eliminating the classical adjacency matrix in step 
1 and accelerating filtration in step 5 by avoiding pixel-by-pixel control. In terms 
of computational complexity, each operation in Algorithm 1 incurs a cost of O(n), 
where n is the number of pixels in image I, except for the while loop. In a highly 
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improbable scenario where there is only one component in the image with birth 
value in the last pixel of I, the while loop concludes after n(n − 1) operations.

Algorithm 1   Outline of the PixHomology algorithm. It assumes the availability 
of the unique function, which is used to extract the unique elements from an array, 
thereindex function, which is used to reset the indexes of the components so that the 
highest index corresponds to the component containing the pixel with the greatest 
value, and the maxpool2d and arg-maxpool2d functions which return, respectively, 
the output of maxpool operation on 2D images and the indexes of this operation. 
Additionally, the distillation function, detailed in the step with the same name, iden-
tifies and removes unnecessary pixel indices in subsequent steps.

5.2 � The distributed PixHomology pipeline

Tools like DIPHA overcome the heavy memory and computational requirements of 
many PH algorithms by distributing the computation across multiple nodes. How-
ever, this approach presents a significant challenge: Dividing the image into patches 
for parallel processing reduces the memory required per node, but it also leads to 
substantial data traffic between nodes, as the computational units handling adjacent 
patches must communicate frequently to detect birth and death coordinates within 
their respective regions.

Given the expected smaller memory footprint of our algorithm, we were able to 
adopt a different solution: concurrently processing multiple images at once using 
the different computational units of a distributed system. Based on this idea, we 
developed a simple distributed pipeline for our PH algorithm using the Apache 
Spark framework. The choice of this technology over other distributed computing 
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frameworks has been motivated by its inherent scalability and by its ability to better 
operate on cloud-based big data processing infrastructures.

The proposed pipeline, shown in Fig.  4, consists of two Spark distributed 
transformations, followed by one Spark distributed action to collect the computation 
results. The first distributed transformation, implemented as a map operation, is 
named load_preprocess_image() . It is used by each Spark executor to load each 
input image in memory and prepare auxiliary data structures used by the algorithm 
for subsequent steps. Images are retained in memory using 2D array representations.

The second distributed transformation, also implemented as a map operation, is 
named process_image() . It is used by each executor to apply the PH algorithm to 
each of the arrays loaded in the previous step, yielding zero-dimensional PH.

5.2.1 � Variants

Once ready, we performed a preliminary experimental analysis targeting our 
distributed algorithm, to identify hotspots and address possible performance 
bottlenecks. The insights gained from this analysis were used for the development of 
the following more efficient variants.

•	 Variant 1: reducing images loading time.
	   A simple yet effective way to handle input data in Spark is to load the 

entire dataset in the memory of the driver application and then convert it into 
a distributed RDD representation using the parallelize() method. This 
approach fails with huge datasets both because of the large amount of memory 
required by the driver application to initially store the datasets and because of 

Fig. 4   An overview of the distributed workflow of PixHomology on a Spark cluster involving four execu-
tor processes scattered across two computing nodes. After partitioning the URLs of the images across 
the various executors, each executor performs two map operations. The former operation loads the image 
into memory, while the latter performs the PixHomology algorithm to compute the zero-dimensional PH
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the long execution times needed to first load in memory the dataset and then 
distribute it across the cluster.

	   We developed an alternative approach where each executor loads the images to 
be processed on its own, either from the local disk or from a remote web server. 
This solution alleviates the pressure on the driver application and reduces loading 
times. From the technical viewpoint, this solution was implemented by avoiding 
the need for the driver to load any images. Instead, we modified the original 
load_preprocess_image() distributed transformation to instruct executors about 
the physical location of the images to load and process. This variant is much 
faster than the original one, so we will use it in all the following experiments. 
Notice that our improved approach is still vulnerable to the case where the size 
of the images to be processed exceeds the amount of memory available to a 
single executor. Such a problem could be circumvented by reducing the number 
of executors to use, so as to increase the amount of memory available to each of 
them.

•	 Variant 2: reducing the amount of pixels to process.
	   In the analysis of digital images, processing every individual pixel might 

not be imperative. Hence, there could be situations where it proves beneficial 
to set some sort of threshold value t, below which pixels do not necessitate 
examination.

	   Applying this technique can be of significant help when analyzing 
large batches of high-resolution images, as it can significantly reduce the 
computational burden. In our case, we consider a very simple preprocessing 
method, where we assign a threshold to each image within the dataset. This 
threshold is acquired with each image and then applied to the image itself using 
the load_preprocess_image() function in each experiment. Consequently, when a 
new image is loaded, all pixels with a value under this threshold are identified as 
background pixels and excluded from the subsequent analysis. Notice that we do 
not aim to find an optimal thresholding strategy, but rather to assess the potential 
performance gain achievable by applying this technique.

•	 Variant 3: improve the workload distribution.
	   When a distributed data structure is created in Spark, it is automatically 

partitioned into a number of partitions based on factors such as the number of 
executors and the size of the data. The developer can override these settings and 
specify the number of partitions to use.

	   Partitioning is important because partitions are the basic units of parallelism in 
Spark. A good partitioning strategy will ensure that all executors in a distributed 
system have approximately the same workload, resulting in shorter execution 
times.

	   In our particular case, the processing time of each image is relatively long. 
Provided that each executor is fed with approximately the same number of 
partitions, this does not necessarily guarantee a balanced workload, as the 
processing time for each image may vary depending on several factors. Moreover, 
because the amount of data stored in each partition is very small (i.e., the address 
where each image is stored) and the time spent transmitting it over the network is 
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negligible, there is no need to ensure the locality of data in the worker nodes. To 
account for these factors, we tried several partitioning strategies for our pipeline.

–	 Strategy 1: partitioning by the number of executors
	   Let n be the number of input images and m be the number of executors 

available on the distributed system. We partition the image dataset into m 
partitions, one for each executor. To do so, we first create a list of n integers, 
where each integer represents the index of an image in the dataset. We then 
shuffle the list of integers and divide it into m partitions, each containing n/m 
integers. Finally, we assign each partition to an executor.

	   This partitioning strategy ensures that all executors have approximately the 
same workload, as each partition contains the same number of images. It also 
minimizes the amount of data that need to be transmitted over the network, 
as each executor processes the images in its assigned partition. However, 
it can perform poorly with datasets that have a skewed image complexity 
distribution. If an executor is assigned a partition with images requiring very 
long processing times, its execution time will dominate the overall algorithm 
execution time, making it a straggler.

–	 Strategy 2: partitioning by the number of images
	   Let n be the number of input images and m be the number of executors 

available on the distributed system. We partition the image dataset into 
n partitions, one for each image. Then, we let Spark assign partitions to 
executors using the default partitioning strategy.

	   As before, this partitioning strategy ensures that all executors have 
approximately the same workload, as each executor is initially assigned 
approximately the same number of partitions. Differently from the previous 
case, we expect this strategy to be more effective in handling datasets that 
have a skewed image complexity distribution. If an executor is assigned a 
partition with an image requiring processing times much longer than other 
partitions, Spark may automatically reassign the remaining partitions to other 
executors, thus mitigating the effects of that straggler on the overall algorithm 
execution time.

–	 Strategy 3: overriding standard partitioning rules

Fig. 5   A cropped section of 
500 × 500 pixels from an image 
in the dataset
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	   We expect strategy 2 to help mitigate the effects of stragglers, but still 
under the possibly wrong assumption that all images have approximately 
the same processing time. To overcome this problem, we introduce a third 
partitioning strategy. We estimate the computational cost for the analysis 
of input images and then use the lasting processing time (LPT) rule [26] to 
schedule the analysis of input images on all executors to ensure a uniformly 
distributed workload.

	   LPT provides a heuristic solution to the NP-hard scheduling problem with 
identical parallel machines and no preemption. It has already been used in the 
literature to minimize the completion time (also referred to as makespan) of 
Spark jobs, as shown in [27].

	   The goal consists of distributing n jobs, characterized by specific 
processing times {pj, j = 1,… , n} , among a set of m executors operating in 
parallel to minimize the maximum makespan. Basically, the LPT rule sorts 
the jobs in a non-increasing order according to their processing times and, 
iteratively, assigns a job to the machine that currently has the minimum 
completion time.

	   In our case, each job corresponds to the PH calculation on a single image, 
and we estimate the processing time as proportional to the number of pixels 
that have been identified as non-background during the preprocessing phase 
(see Variant 2).

6 � Experimental analysis

In this section, we present the results of an experimental analysis done to assess the 
performance of our algorithm and its variants, according to several metrics. We also 
compare its performance with the state-of-the-art software in this field. While recent 
software [20, 21] has demonstrated outstanding performance in computing PH on 
images, this section will focus on comparing results with the Ripser package. This 
decision is based on potential differences in output between software using cubical 
complexes and those analyzing simplicial complexes. However, a comparison 
will also be conducted with DIPHA, the only software implementing distributed 
calculation, despite its use of cubical complexes.

6.1 � Computing environment

Our experiments were conducted on the Terastat HPC infrastructure of 24 nodes, 
where each node is equipped with 128 computing units and a maximum of 2 GB 
RAM of memory per computing unit (see [28] for more details). Experiments with 
our pipeline were performed using a Spark installation with multiple computing 
nodes, providing a total of 256 GB RAM of memory per node.
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6.2 � Dataset

The dimensions of the images in the dataset were selected to enable a fair 
comparison between the software using the hardware resources available to us. 
Smaller dimensions were omitted as they fell outside the scope of our study.

We generated for our experiments a dataset of 90 astronomical images  (see 
Fig. 5) using the Astropy library [29]. The creation of the image starts with the crea-
tion of an array of dimensions 10, 000 × 10, 000 , where all pixels are set to zero. 
Gaussian readout noise and sky background are added. Stars are then generated and 
added to the image. The details of the process are described in [30]. To make the 
images more realistic, we set the number of objects within each image to approxi-
mately 340, 000. The resulting images with a precision of float32 were saved in .fits 
format, resulting in a dataset size of about 36 GB.

6.3 � Performance assessment of PH

In our first round of experiments, we analyzed the experimental performance 
of several different variants of our PixHomology algorithm in order to find the 
combination leading to the best performance.

6.3.1 � Variant 1: reducing images loading times

In this experiment, we conducted a comparative analysis of the execution time 
required by two distinct approaches for handling the input dataset of images. The 
first approach requires the driver program to be responsible for loading the entire 
dataset in memory and distributing it to the computing nodes (i.e., load_driver). 
The second approach (i.e., load_self), detailed in Sect. 5.2.1, allows the executors to 
load the images on their own.

This latter approach resulted to be significantly faster than the former (results 
not reported but available upon request). The observed efficiency of load_self is 
mostly due to its ability to greatly reduce the communication overhead for the driver 
program, as well as to deeply decrease its memory requirements.

6.3.2 � Variant 2: reducing the amount of pixels to process

In this experiment, we assessed the impact of different filtering rules on the 
performance of our algorithm. Namely, we evaluated how the number of background 
pixels removed by the filtering rule introduced in variant 2 (see Sect. 5.2.1) affected 
the efficiency of the algorithm. We investigated four different scenarios:

•	 vanilla: Baseline scenario: no filtering rule is applied.
•	 filter_std: Standard filtering rule: all pixels below a predefined threshold are 

classified as background.
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•	 filter_light: More conservative filtering rule: only pixels below 30% of the pre-
defined threshold are classified as background.

•	 filter_heavy: More aggressive filtering rule: all pixels up to 30% above the 
predefined threshold are classified as background.

The results of this experiment, shown in Table  1, indicate that filtering rules can 
reduce the execution time of PixHomology by up to 10% , without any relevant 
degradation in the output quality. Instead, this optimization seems to have no 
significant effect on the performance of traditional PH tools like Ripser.

6.3.3 � Variant 3: improve the workload distribution

In this experiment, we measured the overall time required to analyze our entire 
dataset using the three partitioning strategies outlined in Sect. 5.2.1: partitioning 
by the number of executors (part_executors), partitioning by the number of 

Table 1   Execution time comparison of PixHomology using different filtering threshold levels

For each test conducted on 10 images of the dataset, the median and standard deviation are provided, 
along with the percentage of background pixels dropped. These times are compared with those of Ripser

Dropped pixels ( %) PixHom. time (min) Ripser time (min)

Vanilla – 7.08 ± 0.04 9.28 ± 0.04

Filter_light 4.19 ± 1.98 7.01 ± 0.04 9.28 ± 0.03

Filter_std 4.68 ± 2.25 6.49 ± 0.04 9.29 ± 0.04

Filter_heavy 5.08 ± 2.48 6.30 ± 0.04 9.29 ± 0.04

Fig. 6   Comparative analysis of the execution time for analyzing the entire input dataset when using dif-
ferent partitioning strategies and an increasing number of executors
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images (part_images) and partitioning according to the Longest Processing Time 
(LPT) rule ( part_LPT).

We evaluated the performance of these strategies, including the impact of the 
number of available executors, under several different scenarios. We expected 
that the impact of these strategies would be more relevant when considering a 
large number of executors, as the average number of images to be processed per 
executor would decrease, leading to possible performance bottlenecks due to 
straggler executors (i.e., executors requiring a much longer time to complete than 
the other ones, causing delays in the overall execution). For this reason, we varied 
the number of executors used in our test from 2 to 18, while processing a constant 
number of images.

As expected, the results in Fig. 6 show that there is little difference between the 
three partitioning strategies when using a very small number of executors or a very 
large number of images. In this scenario, all strategies resulted in a very similar 
workload distribution. However, we observed a relevant change when increasing the 
number of executors and decreasing their average workload. Under these conditions, 
the part_executors strategy began to underperform, also because of its inability to 
reassign tasks to balance the workload.

Moreover, the experiments proved the LPT-based strategy to require a lightweight 
computation (taking at most 20  s) and be slightly faster than the others, although 
the performance improvement was very small. On closer inspection, we found that 
the execution cost estimation, which is based on the number of background pixels, 
can be inaccurate, sometimes leading to suboptimal task assignments in the LPT 
strategy.

6.3.4 � Final configuration

Based on the results of the experiments presented so far, we determined the most 
effective variants to use for the next experiments. The selected variants are:

•	 Variant 1: we chose load_self for its efficiency when loading input images.
•	 Variant 2: we chose filter_std for its balanced approach to image filtering.
•	 Variant 3: we chose part_LPT thanks to its improved performance in workload 

distribution.

6.4 � Experimental comparative analysis: Ripser

As described in Sect. 3, Ripser is the current gold standard software for computing 
PH filtrations across all dimensions. Thus, we used it in our experiments to evaluate 
both the quality of the output of our algorithm and its performance, when applied to 
the particular case of zero-dimensional PH computation.

In our first experiment, we performed a qualitative comparison of the outputs 
from the two algorithms using the bottleneck distance [31]. It is an index measuring 
distances between two persistence diagrams as a minimal matching between them, 
allowing points to be matched with the diagonal Δ , which is the set of all (x, x) ∈ ℝ

2 . 
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To this end and for visualization purposes, we selected a 50 × 50 pixels reference 
image, obtained by cropping one image chosen at random from our dataset.

As shown in Fig. 7, the PDs returned by the two algorithms are consistent, sug-
gesting that the two methodologies produce similar results. To validate this outcome, 
we computed the bottleneck distances between the two diagrams, which resulted to 
be zero.

Figure 8 compares the pixel-based outputs of the two algorithms for the same 
image. Birth pixels are marked in red and death pixels in blue. The position of 
one point, specifically the point at infinity, differs between the two outputs. This 
is because Ripser does not return the positions of birth and death points in pixel 
coordinates, requiring an additional reconstruction step. This limitation can pose 

Fig. 7   PD representation of the outputs from Ripser and PixHomology, when used to process a 50 × 50 
pixels reference image obtained by cropping one image chosen at random from our dataset. The pbirth and 
pdeath points identified by the two algorithms are consistent

Fig. 8   Pixel representation of the outputs from Ripser and PixHomology for a 50 × 50 pixels reference 
image obtained by cropping one image chosen at random from our dataset. The pbirth and pdeath identified 
on the filtered image reveal a discrepancy at the point of infinity between the two methods
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serious identification challenges, especially when multiple pixels share the same 
value in the image. In contrast, PixHomology returns the positions of birth and 
death points in pixel coordinates, thereby circumventing this issue.

Next, we compare the experimental performance of the two algorithms 
in terms of total execution time and overall memory usage. To ensure a fair 
comparison and due to the inability of Ripser to take advantage of distributed or 

Fig. 9   Execution time comparison between Ripser and PixHomology, for analyzing the images of our 
dataset, using a random crop of each image, with a size varying from 20 × 20 to 10, 000 × 10, 000 pixels. 
PixHomology was executed on a single-core single-executor Spark distributed system

Fig. 10   Maximum memory usage comparison of Ripser and PixHomology for analyzing the images of 
our dataset, using a random crop of each image, with a size varying from 20 × 20 to 10, 000 × 10, 000 
pixels. PixHomology was executed on a single-core single-executor Spark distributed system
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multicore systems, we executed PixHomology using one single executor running 
on one single core.

We expect Ripser to perform very well on small images, while our algorithm 
is expected to handle better very large images. To assess this expectation, we 
designed our experiment to evaluate the performance of the two algorithms on 
our entire dataset, but using a random crop of each image, with a size varying 
from 20 × 20 to 10, 000 × 10, 000 pixels.

The resulting execution times are presented in Fig.  9. As expected, Ripser 
outperforms PixHomology on small patches. However, as the image size increases 
to 1000 × 1000 and beyond, PixHomology becomes much faster than Ripser. The 
differences in memory usage between the two algorithms are even more relevant, 
as shown in Fig. 10. Notably, for 10, 000 × 10, 000 pixel patches, Ripser requires 
approximately 112 GB of memory because of the adjacency matrix computations. 
In contrast, PixHomology only requires around 8 GB.

We remark that the large memory requirements of Ripser limit its applicability 
to the analysis of very large images and prevent running multiple instances of it 
concurrently on a single machine. Conversely, PixHomology’s efficient memory 
usage makes it a more viable option for large-scale parallel processing on many 
core systems.

6.5 � Experimental comparative analysis: DIPHA

We were interested in assessing the performance of PixHomology when run as a 
distributed pipeline, in terms of execution times and scalability. For this purpose, 
we benchmarked its performance against DIPHA, the only existing distributed 
pipeline designed for large-scale PH computation.

Fig. 11   Execution time comparison between DIPHA and PixHomology, for analyzing the images of our 
dataset, using an increasing number of computing units
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We recall that the strategy adopted by DIPHA for the distributed PH calculation 
implies that each computing unit of the distributed system analyzes a segment 
of the input image, with the size of this segment being inversely proportional to 
the total number of computing units. Consequently, when processing very large 
images using a few computing units, each unit requires a significant amount of 
memory to run. This was a limiting factor in our experiments, as we were unable 
to execute DIPHA with only two computing units because of the memory required 
per unit, due to its high memory requirements (approximately 9 GB per unit).

For this reason, the analysis of our entire dataset with DIPHA was only possible 
when using a large number of computing units. In such a setting the results, avail-
able in Fig. 11 show that, although both algorithms exhibit a very good scalability, 
PixHomology consistently outperforms DIPHA in terms of execution time.

7 � Conclusions and future directions

In this paper, we presented PixHomology, a novel and efficient algorithm for 
computing PH on large batches of images. We also presented a distributed 
version of PixHomology able to leverage the Apache Spark computing 
framework to concurrently process large batches of digital images. In addition, 
we also considered several variants of our distributed algorithm, for addressing 
performance bottlenecks identified during preliminary experimental evaluation.

We compared the performance of our algorithm to that of the state-of-the-
art algorithm in this field, finding that PixHomology is significantly faster and 
less memory-demanding for processing batches of large digital images. We also 
compared PixHomology to the only other distributed pipeline for PH computation 
available and again found that our algorithm is more favorable in terms of 
execution time and memory requirements.

Despite this progress, there is still room for improvement and expansion. 
Primarily, there is potential to enhance the algorithm’s versatility for application 
across diverse image types. To address this, a possible solution involves 
introducing controlled noise into the image, mitigating the likelihood of 
neighboring pixels adopting identical values. Another avenue for exploration 
is the potential to distribute the analysis of a single image by partitioning the 
image processing workflow into smaller, more manageable subprocesses. This 
partitioning strategy could significantly enhance the scalability of our pipeline 
and further optimize memory utilization. A further problem occurs when the 
size of input images exceeds the amount of memory available to each executor 
(see Sect.  5.2.1). Possible solutions to address this problem would be either 
to partition each images into independent parts to be processed by different 
executors or develop out-of-core algorithms for this purpose.

Additionally, comprehensive testing and evaluation of the pipeline’s perfor-
mance on other application domains, such as the analysis of diagnostic images, 
is essential. This would thoroughly assess the versatility and adaptability of the 
pipeline and ensure that it remains a robust solution across diverse scientific dis-
ciplines. Notably, PH encounters challenges when applied to large-scale images, 
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as evident in possible tasks like tumor segmentation from whole slide histology 
images [32] and astronomical image segmentation [33].

Finally, a research line that has still to be explored but has a potential for giving 
breakthrough results, is about the possibility to employ machine learning techniques 
to solve the PH problem. Indeed, such an approach may lead to results that may be, 
to some extent, less accurate than deterministic solutions but in a fraction of time.
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