
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-06374-5

A distributed approach for persistent homology
computation on a large scale

Riccardo Ceccaroni1 · Lorenzo Di Rocco1 · Umberto Ferraro Petrillo1 ·
Pierpaolo Brutti1

Accepted: 17 July 2024
© The Author(s) 2024

Abstract
Persistent homology (PH) is a powerful mathematical method to automatically
extract relevant insights from images, such as those obtained by high-resolution
imaging devices like electron microscopes or new-generation telescopes. However,
the application of this method comes at a very high computational cost that is bound
to explode more because new imaging devices generate an ever-growing amount
of data. In this paper, we present PixHomology, a novel algorithm for efficiently
computing zero-dimensional PH on 2D images, optimizing memory and processing
time. By leveraging the Apache Spark framework, we also present a distributed
version of our algorithm with several optimized variants, able to concurrently
process large batches of astronomical images. Finally, we present the results of an
experimental analysis showing that our algorithm and its distributed version are
efficient in terms of required memory, execution time, and scalability, consistently
outperforming existing state-of-the-art PH computation tools when used to process
large datasets.

Keywords Persistent homology · Distributed computing · Apache spark · Large-
scale image analysis

This work was carried out while occupying the role of visiting student at Bielefeld University,
Germany.

 * Lorenzo Di Rocco
 lorenzo.dirocco@uniroma1.it

 Riccardo Ceccaroni
 riccardo.ceccaroni@uniroma1.it

 Umberto Ferraro Petrillo
 umberto.ferraro@uniroma1.it

 Pierpaolo Brutti
 pierpaolo.brutti@uniroma1.it

1 Department of Statistical Sciences, Università di Roma “La Sapienza”, P.le Aldo Moro 5,
Rome 00185, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06374-5&domain=pdf

 R. Ceccaroni et al.

1 Introduction

Since the advent of the first electron microscopes, the field of electron microscopy
(EM) has undergone significant transformations. Modern microscopy techniques
are now achieving near-atomic resolution in the structural analysis of individual
proteins and molecular complexes. As a result of this, it is becoming common to
generate large digital image files, often above one terabyte in size, in a single data
acquisition session [1]. This advancement poses serious performance challenges
when it turns to the analysis of these images.

A similar problem affects also other application domains. For example, the
Vera C Rubin Observatory is a new-generation ground-based telescope currently
under construction (see [2]). When ready, it is expected to generate approximately
15 terabytes of data per night. Such an impressive amount of data requires very
efficient methods to be analyzed [3].

In contexts like these, topological data analysis (TDA) [4] plays a significant
role as a tool for the automatic extraction of relevant structural information from
large datasets of images. This is especially true for persistent homology (PH)
[5], a fundamental component of TDA, capable of constructing multiresolution,
noise-resilient topological features from a variety of different data clouds [6].

Several techniques have been proposed so far for the efficient PH calculations
(see, e.g., [7]). However, processing large images within a reasonable time is still
impractical. The primary performance bottleneck is the complex computational
procedure employed by many of these techniques, i.e., the filtration of simplicial
and cubical complexes [8]. The execution cost of this procedure increases
exponentially with the size of the input data. For this reason, innovative
algorithms and software solutions that can efficiently handle vast datasets of very
large images are required.

In this work, we propose PixHomology, a novel algorithm for computing
the particular case of zero-dimensional PH on digital images that speed up the
filtering of a simplicial complex. Our approach offers a substantial reduction in
memory usage compared to existing methods, like the one employed by the state-
of-the-art Ripser package, when applied to zero-dimensional PH computation.
We also introduce a software pipeline for using PixHomology on a distributed
system, to compute zero-dimensional PH on large batches of images.

We evaluate the performance of our algorithm and its distributed version
using a reference dataset of images and show its efficiency compared to existing
methods and software, making it the fastest algorithm available nowadays for
zero-dimensional PH computation, in both its sequential and distributed versions.

Organization of the paper In Sect. 2, we provide a short introduction to the
theoretical concepts behind the PH computation problem. Then, in Sect. 3 we
review the existing literature on computational methods and software tools for
efficient PH evaluation. In Sect. 4, we briefly describe the MapReduce distributed
computing paradigm and its implementing framework, Apache Spark. Following
this, in Sect. 5, we present our novel algorithm for efficiently computing zero-
dimensional PH and its distributed version, together with several variants we

A distributed approach for persistent homology computation…

developed to improve upon its original performance. In Sect. 6, we report the
results of a thorough experimental analysis designed to assess the performance
of our algorithm also in comparison with other existing state-of-the-art tools
and methods for PH computation. Finally, some concluding remarks are given in
Sect. 7.

2 Theoretical background

2.1 Simplicial and cubical complexes

Simplicial and cubical complexes are the fundamental building blocks of
computational topology to fully describe topological spaces. Simplicial complexes
consist of simplices, such as vertices, edges, and triangles. In general, a d-simplex
represents the convex hull of d + 1 points, and each subset of these d + 1 points
forms a face of this d-simplex. A collection of simplices, denoted by K, represents
a simplicial complex if it satisfies two conditions: All faces of a simplex in K also
belong to K, and the intersection of any two simplices in K is either empty or a
common face.

For cubic complexes, an elementary interval can be described as a unit interval
[k, k + 1] or as a degenerate interval [k, k]. For a d-dimensional space, a cube is
the product of d elementary intervals, denoted

∏d

i=1
Ii . The dimension of a cube is

determined by the number of non-degenerate intervals in this product. In particular,
0-cubes, 1-cubes, 2-cubes, and 3-cubes correspond to vertices, edges, squares, and
3D cubes, respectively. When comparing two cubes a and b in ℝd , a is considered to
be the face of b only if a is contained in b. A cubic complex of dimension d consists
of cubes of dimensions at most d. Similar to a simplicial complex, it must be closed
under operations with faces and intersections.

For an in-depth discussion of these topics, we refer the interested reader to [4, 9].

2.2 Persistent homology

PH is a fundamental concept in TDA specifically focusing on Z2 homology (see [4,
10] for a thorough introduction to this topic).

In the context of PH, we start with a topological space X and a filtering function
f ∶ X → R . This method examines the homological transformations of the sublevel
sets, denoted as Xt = f −1(−∞, t] . The algorithm captures the inception and
extinction times of the homology classes as the subsets evolve from X−∞ to X+∞ . For
example, it identifies components as zero-dimensional homology classes, tunnels
as one-dimensional classes, voids as two-dimensional classes, and so on. Birth
implies the emergence of a homology class, while death implies its trivialization or
amalgamation with another class that emerged earlier. The persistence or lifetime of
a class represents the time difference between its death and birth. Homology classes

 R. Ceccaroni et al.

with greater persistence provide information about the global structure of the space
X, which is affected by the function f.

A common method for visualizing persistence is a persistence diagram (PD),
shown in Fig. 1, consisting of points on a two-dimensional plane, each correspond-
ing to a PH class. These points are defined by their birth and death times.

A key reason for using persistence is the stability theorem [11]: For any two
filtering functions f and g, the difference in their persistence is always bounded by
the L∞norm of their dissimilarity:

This ensures that persistence serves as a distinctive signature. If two persistence
outputs differ, it means that the functions are different.

2.3 Computation of persistence

The original algorithm for computing persistence [5] operates in cubic time relative
to the size of the complex. This approach requires preprocessing of the data. In
the case of images, the function f is defined for all pixels. These values are first
interpreted as the values of the vertices of the complex. Then, the complex filtration
is calculated and a sorted boundary matrix is created.

During filtration, the process entails adding cells with increasing values to the
complex one by one. To achieve this, an algorithm for building the filtration extends
the function to all cells within the complex by assigning each cell the maximum
value among its vertices. Then, all cells are sorted in ascending order according to
the function value. As a result, each cell is added to the filtration according to all of

||f − g||∞ ∶= max
x∈X

|f (x) − g(x)|.

Fig. 1 A point (x, y) in the PD
indicates a topological feature
of dimension 0 (H0) born at x
and that persists until y. We call
x the pbirth and y the pdeath . By
definition, all points should lie
above the diagonal. The hori-
zontal dashed line represents
infinity

A distributed approach for persistent homology computation…

its faces, creating a sequence of cells known as lower-star filtration. This ordering of
cells allows the creation of a sorted boundary matrix.

In the reduction phase, the algorithm performs column reductions on the sorted
boundary matrix, proceeding from left to right. Each new column is reduced by
adding it to already reduced columns, to maximize the lowest nonzero entry. The
final reduced matrix contains all the information about PH.

3 Related work

Several methodological and software contributions have been proposed so far to
support the efficient calculation of PH. One of the first software tools to be proposed
for this purpose is the Plex Library, developed by the Computational Topology
Group at Stanford University [12]. Dionysus [13] has been instead the first software
package to implement the dual algorithm. Starting from the observation that
cohomology groups are usually faster to compute, this algorithm reformulates the
problem of homology group computations into a cohomology group computation
problem (for more info see [14, 15]).

Phat [16] is the first software to implement a matrix reduction algorithm that
can be executed in parallel, to accelerate the analysis of large datasets. Gudhi [17]
implements a comprehensive library offering functionalities from basic to advanced
PH, including new data structures for simplicial complexes and the boundary
matrix. Finally, Ripser [18] is considered the gold standard solution in this field,
thanks to its versatility and efficiency. It uses several optimizations and shortcuts to
speed up the computation of PH in all dimensions and has demonstrated superior
performance to other software tools in terms of both speed and memory efficiency
[7].

Indeed, the analysis of very large datasets can be computationally prohibitive,
even for efficient tools like Ripser. A natural solution to this problem is distributed
computing. DIPHA [19] has been so far the first software we know of that
implements PH computation with distributed computing, enabling efficient
processing of large-dimensional data. It works by efficiently partitioning the PH
computation problem into subprocesses to be concurrently run on the nodes of a
distributed system. This allows DIPHA to compute PH on much larger instances
than would be possible on a single machine. Moreover, the performance speed-up
granted by parallelism introduced by DIPHA at least compensates for the overhead
caused by communication between nodes.

Recently, alternative high-performance software solutions like CubicalRipser
[20] and Cubicle [21] have been introduced for the PH computation on images.

 R. Ceccaroni et al.

4 Apache spark

Apache Spark [22] is one of the most popular engines for large-scale data processing
and is based on RDDs (Resilient Distributed Datasets) and DataFrames. These are
distributed memory abstractions that allow programmers to perform in-memory
computations on large clusters in a fault-tolerant manner. The former are collection
of key–value pairs to be processed by means of distributed transformations.
The latter are table-like collections provided with the Spark SQL module, which
optimizes structured data processing by introducing SQL-like logic in a distributed
context.

The physical architecture of a Spark cluster, shown in Fig. 2, is characterized by
a master node that oversees a set of worker nodes via daemon processes. Data are
typically distributed among the worker nodes, and MapReduce is also supported.

A Spark application communicates with a Cluster Manager, which is the process
that manages the computing and storage resources of the cluster. It includes a driver
process and a set of executor processes. The driver process communicates with the
Cluster Manager to learn where the data are located and what physical computing
resources are available. Then, in each worker node, a set of parallel executor
processes is activated according to the number of threads. For example, a cluster
with three worker nodes, each with two threads, means a potential number of six
parallel executor processes.

4.1 The MapReduce paradigm

The computations within Spark are formulated according to MapReduce, a
programming paradigm that allows massive scalability [23]. MapReduce is
composed of two tasks: mapping and reducing. The mapping phase transforms
a dataset into another form with elements organized into key–value pairs.
Subsequently, the reduction process uses the output of a map as input and combines
those data tuples into a smaller set of tuples. As the name suggests, reduction always

Fig. 2 Apache Spark architecture. Example for a reference installation featuring two worker nodes and
one driver application. Each worker node in this figure runs one executor process and two tasks. The
overall distributed execution is orchestrated by a cluster manager

A distributed approach for persistent homology computation…

follows mapping. Consequently, assuming the input dataset is organized as a set
of key–value pairs, it is initially distributed among the worker nodes of a cluster.
Then, batches of key–value pairs are processed in parallel by concurrent executor
processes on the worker nodes where these data are found. Reduce functions require
a preliminary step to group on the same node all pairs having the same key (shuffle
operation). When working with large datasets, this preliminary step makes the
Reduce function potentially expensive from a computational perspective.

4.2 Fault‑tolerant applications

Spark supports various fault tolerance strategies including checkpointing, task
replication, and error handling, all of which contribute to the reliability and
robustness of the computing process. For instance, checkpointing allows Spark to
periodically save the state of distributed data structures to resilient storage, enabling
recovery from failures without recomputing from scratch, while task replication
ensures that tasks are rerun on different nodes in case of failures [24, 25].

5 Our contribution

In this section, we introduce a novel algorithm for computing PH on 2D images:
the PixHomology algorithm.1 Our algorithm comes with two relevant advantages
concerning the existing literature. First, it offers a substantial reduction in memory
usage compared to existing methods like the lower_star_img function of Ripser
package, when applied to zero-dimensional PH computation. Second, it has been
conceived to process large batches of images in parallel using a distributed system in
a more efficient way than other distributed systems (i.e., DIPHA).

The first goal has been achieved by overcoming a relevant performance bottleneck
existing in traditional general filtration PH algorithms, i.e., the computation of

Fig. 3 PH calculation using PixHomology on an image containing three components defined by Gaussian
functions. Initially, each pixel is linked to its neighbor with the highest value, and PixHomology detects
relative maxima as birth values. Subsequently, all the minimum or saddle points are located. The first
value of these points that connect the two components represents the death value of the component with
the lower birth value. Finally, the process ends with identifying the absolute minimum in the image,
which serves as the ultimate death point associated with the component relative to the absolute maximum

1 The source code of PixHomology is available at https:// github. com/ ricca rdoc95/ Spark siste nce

https://github.com/riccardoc95/Sparksistence

 R. Ceccaroni et al.

adjacency matrices. Being purposely designed to deal with the particular case of
zero-dimensional PH computation, our algorithm can avoid all the computational
burden of constructing and analyzing these matrices while dramatically reducing the
overall amount of memory required for its execution.

The second goal has been reached by using the MapReduce paradigm to develop
a distributed PH pipeline based on our algorithm. This allows the execution of the
algorithm concurrently on very large batches of images, in an efficient and scalable
way.

5.1 The PixHomology algorithm

The algorithm we propose, here called PixHomology, has been designed to process
efficiently very large images as input while yielding zero-dimensional PH as its out-
put. Specifically, the algorithm will provide the birth and death values of each object
within the image, along with their pixel coordinates.

The straightforward implementation and the computational efficiency result
from constraining the application to 2D images with specific characteristics. The
algorithm initiates by linking each pixel to its highest value neighbor among the 8
surrounding pixels. This process enables the division of the image into connected
components, which are later united to generate the points on the PD (see Fig. 3).
A crucial condition for the proper operation of PixHomology is that the pixel
containing a local maximum value must not have any neighboring pixels with the
same value among its 8 neighbors. While the application domains of this algorithm
may appear limited at this stage, it is important to note for example that whenever
Gaussian noise is added to a signal in an image, the image satisfies the necessary
conditions for the application of PixHomology.

One of the key points of our proposal, as visible in Algorithm 1, is the usage
of a maxpool2d function with a kernel size of 3, a stride of 1, and a padding of 1.
This function yields an image of the same initial dimensions, with each pixel’s value
being set to the maximum among the pixel and its eight neighboring pixels. The
arg-maxpool2d function employs identical parameters as the maxpool2d function.
However, instead of returning the pixel values with the highest value, it returns the
indices corresponding to these pixels.

Given an input image I, the algorithm we propose requires the following steps.

• Step 1: Identification of the concave components.
 This step is about the identification of the concave components within the

image I.
 To accomplish this, we use the arg-maxpool2d function to compute a new

image M of the same initial dimensions of I, with each pixel’s value being set
to the maximum among the pixel and its eight neighboring pixels. Then M is
processed in a loop.

 In each iteration, every element x ∈ M is replaced by the value M[x], which
corresponds to the value located at position x of M. This process ends when x is
equal to M[x] for every element x ∈ M.

A distributed approach for persistent homology computation…

• Step 2: detection of birth points and re-indexing of components
 At this point, all the identified elements in M are marked with the index of

their corresponding relative maximum neighbor found in I. The unique values of
M are the position of the relative maximums that are stored in an array labeled
pbirth , i.e., the birth points. A separate birth array records the values of I at these
pbirth points. We sort birth and pbirth array so that birth array is in descending
order. Subsequently, we update the values in M with positions corresponding
to the values in the pbirth array. This process assigns incremental numbers to
the components of I, starting with the component that has the smallest relative
maximum and ending with the component that has the largest relative maximum.

• Step 3: edge points detection
 Upon partitioning the image into distinct components, we calculate

maxpool2d(M) and −maxpool2d(−M) . The region where these two outcomes
differ represents the edges of the components within the image I. It is essential to
note that matrix M comprises integer values, each signifying a unique component
in the image. These component values are not arbitrarily assigned; rather, they
follow the order of the relative maxima present in I.

 An array B that contains the indices of all the edges of the components is
generated.

• Step 4: distillation
 By definition, death points are located along the edges of the components.

To connect two neighboring components, they must be either relative minimum
points or saddle points. In this step, we verify whether the points with an index
in B are minimum or saddle points. If these criteria are unsatisfied, the index is
removed from B. We characterize a minimum point as a pixel with the lowest
value in comparison to its 8 neighboring pixels. In contrast, a saddle point is a
pixel that serves as a minimum along one axis and a maximum along the other
axis, always about its 8 neighboring pixels.

• Step 5: dead points identification and partition merging
 We sort B in descending order to maintain the chronological sequence of

partition merges in M. Each point x in B that is adjacent to two partitions triggers
their merger. We call x the pdeath point for the lesser-indexed partition. Merger
history is captured in vector C, which stores the new index of each partition after
the merger.

 To further improve the efficiency of the algorithm, we restrict the changes to
the eight pixels around the point x, rather than the entire array M.

• Step 6: PD construction
 In this step, we create a PD, to associate each birth point with its respective

death point within the same partition. We then extract the birth and death values
for the pbirth and pdeath points from I and aggregate them into a DGM matrix.

When compared with the existing literature, PH achieves minimal memory usage
and efficient execution times by eliminating the classical adjacency matrix in step
1 and accelerating filtration in step 5 by avoiding pixel-by-pixel control. In terms
of computational complexity, each operation in Algorithm 1 incurs a cost of O(n),
where n is the number of pixels in image I, except for the while loop. In a highly

 R. Ceccaroni et al.

improbable scenario where there is only one component in the image with birth
value in the last pixel of I, the while loop concludes after n(n − 1) operations.

Algorithm 1 Outline of the PixHomology algorithm. It assumes the availability
of the unique function, which is used to extract the unique elements from an array,
thereindex function, which is used to reset the indexes of the components so that the
highest index corresponds to the component containing the pixel with the greatest
value, and the maxpool2d and arg-maxpool2d functions which return, respectively,
the output of maxpool operation on 2D images and the indexes of this operation.
Additionally, the distillation function, detailed in the step with the same name, iden-
tifies and removes unnecessary pixel indices in subsequent steps.

5.2 The distributed PixHomology pipeline

Tools like DIPHA overcome the heavy memory and computational requirements of
many PH algorithms by distributing the computation across multiple nodes. How-
ever, this approach presents a significant challenge: Dividing the image into patches
for parallel processing reduces the memory required per node, but it also leads to
substantial data traffic between nodes, as the computational units handling adjacent
patches must communicate frequently to detect birth and death coordinates within
their respective regions.

Given the expected smaller memory footprint of our algorithm, we were able to
adopt a different solution: concurrently processing multiple images at once using
the different computational units of a distributed system. Based on this idea, we
developed a simple distributed pipeline for our PH algorithm using the Apache
Spark framework. The choice of this technology over other distributed computing

A distributed approach for persistent homology computation…

frameworks has been motivated by its inherent scalability and by its ability to better
operate on cloud-based big data processing infrastructures.

The proposed pipeline, shown in Fig. 4, consists of two Spark distributed
transformations, followed by one Spark distributed action to collect the computation
results. The first distributed transformation, implemented as a map operation, is
named load_preprocess_image() . It is used by each Spark executor to load each
input image in memory and prepare auxiliary data structures used by the algorithm
for subsequent steps. Images are retained in memory using 2D array representations.

The second distributed transformation, also implemented as a map operation, is
named process_image() . It is used by each executor to apply the PH algorithm to
each of the arrays loaded in the previous step, yielding zero-dimensional PH.

5.2.1 Variants

Once ready, we performed a preliminary experimental analysis targeting our
distributed algorithm, to identify hotspots and address possible performance
bottlenecks. The insights gained from this analysis were used for the development of
the following more efficient variants.

• Variant 1: reducing images loading time.
 A simple yet effective way to handle input data in Spark is to load the

entire dataset in the memory of the driver application and then convert it into
a distributed RDD representation using the parallelize() method. This
approach fails with huge datasets both because of the large amount of memory
required by the driver application to initially store the datasets and because of

Fig. 4 An overview of the distributed workflow of PixHomology on a Spark cluster involving four execu-
tor processes scattered across two computing nodes. After partitioning the URLs of the images across
the various executors, each executor performs two map operations. The former operation loads the image
into memory, while the latter performs the PixHomology algorithm to compute the zero-dimensional PH

 R. Ceccaroni et al.

the long execution times needed to first load in memory the dataset and then
distribute it across the cluster.

 We developed an alternative approach where each executor loads the images to
be processed on its own, either from the local disk or from a remote web server.
This solution alleviates the pressure on the driver application and reduces loading
times. From the technical viewpoint, this solution was implemented by avoiding
the need for the driver to load any images. Instead, we modified the original
load_preprocess_image() distributed transformation to instruct executors about
the physical location of the images to load and process. This variant is much
faster than the original one, so we will use it in all the following experiments.
Notice that our improved approach is still vulnerable to the case where the size
of the images to be processed exceeds the amount of memory available to a
single executor. Such a problem could be circumvented by reducing the number
of executors to use, so as to increase the amount of memory available to each of
them.

• Variant 2: reducing the amount of pixels to process.
 In the analysis of digital images, processing every individual pixel might

not be imperative. Hence, there could be situations where it proves beneficial
to set some sort of threshold value t, below which pixels do not necessitate
examination.

 Applying this technique can be of significant help when analyzing
large batches of high-resolution images, as it can significantly reduce the
computational burden. In our case, we consider a very simple preprocessing
method, where we assign a threshold to each image within the dataset. This
threshold is acquired with each image and then applied to the image itself using
the load_preprocess_image() function in each experiment. Consequently, when a
new image is loaded, all pixels with a value under this threshold are identified as
background pixels and excluded from the subsequent analysis. Notice that we do
not aim to find an optimal thresholding strategy, but rather to assess the potential
performance gain achievable by applying this technique.

• Variant 3: improve the workload distribution.
 When a distributed data structure is created in Spark, it is automatically

partitioned into a number of partitions based on factors such as the number of
executors and the size of the data. The developer can override these settings and
specify the number of partitions to use.

 Partitioning is important because partitions are the basic units of parallelism in
Spark. A good partitioning strategy will ensure that all executors in a distributed
system have approximately the same workload, resulting in shorter execution
times.

 In our particular case, the processing time of each image is relatively long.
Provided that each executor is fed with approximately the same number of
partitions, this does not necessarily guarantee a balanced workload, as the
processing time for each image may vary depending on several factors. Moreover,
because the amount of data stored in each partition is very small (i.e., the address
where each image is stored) and the time spent transmitting it over the network is

A distributed approach for persistent homology computation…

negligible, there is no need to ensure the locality of data in the worker nodes. To
account for these factors, we tried several partitioning strategies for our pipeline.

– Strategy 1: partitioning by the number of executors
 Let n be the number of input images and m be the number of executors

available on the distributed system. We partition the image dataset into m
partitions, one for each executor. To do so, we first create a list of n integers,
where each integer represents the index of an image in the dataset. We then
shuffle the list of integers and divide it into m partitions, each containing n/m
integers. Finally, we assign each partition to an executor.

 This partitioning strategy ensures that all executors have approximately the
same workload, as each partition contains the same number of images. It also
minimizes the amount of data that need to be transmitted over the network,
as each executor processes the images in its assigned partition. However,
it can perform poorly with datasets that have a skewed image complexity
distribution. If an executor is assigned a partition with images requiring very
long processing times, its execution time will dominate the overall algorithm
execution time, making it a straggler.

– Strategy 2: partitioning by the number of images
 Let n be the number of input images and m be the number of executors

available on the distributed system. We partition the image dataset into
n partitions, one for each image. Then, we let Spark assign partitions to
executors using the default partitioning strategy.

 As before, this partitioning strategy ensures that all executors have
approximately the same workload, as each executor is initially assigned
approximately the same number of partitions. Differently from the previous
case, we expect this strategy to be more effective in handling datasets that
have a skewed image complexity distribution. If an executor is assigned a
partition with an image requiring processing times much longer than other
partitions, Spark may automatically reassign the remaining partitions to other
executors, thus mitigating the effects of that straggler on the overall algorithm
execution time.

– Strategy 3: overriding standard partitioning rules

Fig. 5 A cropped section of
500 × 500 pixels from an image
in the dataset

 R. Ceccaroni et al.

 We expect strategy 2 to help mitigate the effects of stragglers, but still
under the possibly wrong assumption that all images have approximately
the same processing time. To overcome this problem, we introduce a third
partitioning strategy. We estimate the computational cost for the analysis
of input images and then use the lasting processing time (LPT) rule [26] to
schedule the analysis of input images on all executors to ensure a uniformly
distributed workload.

 LPT provides a heuristic solution to the NP-hard scheduling problem with
identical parallel machines and no preemption. It has already been used in the
literature to minimize the completion time (also referred to as makespan) of
Spark jobs, as shown in [27].

 The goal consists of distributing n jobs, characterized by specific
processing times {pj, j = 1,… , n} , among a set of m executors operating in
parallel to minimize the maximum makespan. Basically, the LPT rule sorts
the jobs in a non-increasing order according to their processing times and,
iteratively, assigns a job to the machine that currently has the minimum
completion time.

 In our case, each job corresponds to the PH calculation on a single image,
and we estimate the processing time as proportional to the number of pixels
that have been identified as non-background during the preprocessing phase
(see Variant 2).

6 Experimental analysis

In this section, we present the results of an experimental analysis done to assess the
performance of our algorithm and its variants, according to several metrics. We also
compare its performance with the state-of-the-art software in this field. While recent
software [20, 21] has demonstrated outstanding performance in computing PH on
images, this section will focus on comparing results with the Ripser package. This
decision is based on potential differences in output between software using cubical
complexes and those analyzing simplicial complexes. However, a comparison
will also be conducted with DIPHA, the only software implementing distributed
calculation, despite its use of cubical complexes.

6.1 Computing environment

Our experiments were conducted on the Terastat HPC infrastructure of 24 nodes,
where each node is equipped with 128 computing units and a maximum of 2 GB
RAM of memory per computing unit (see [28] for more details). Experiments with
our pipeline were performed using a Spark installation with multiple computing
nodes, providing a total of 256 GB RAM of memory per node.

A distributed approach for persistent homology computation…

6.2 Dataset

The dimensions of the images in the dataset were selected to enable a fair
comparison between the software using the hardware resources available to us.
Smaller dimensions were omitted as they fell outside the scope of our study.

We generated for our experiments a dataset of 90 astronomical images (see
Fig. 5) using the Astropy library [29]. The creation of the image starts with the crea-
tion of an array of dimensions 10, 000 × 10, 000 , where all pixels are set to zero.
Gaussian readout noise and sky background are added. Stars are then generated and
added to the image. The details of the process are described in [30]. To make the
images more realistic, we set the number of objects within each image to approxi-
mately 340, 000. The resulting images with a precision of float32 were saved in .fits
format, resulting in a dataset size of about 36 GB.

6.3 Performance assessment of PH

In our first round of experiments, we analyzed the experimental performance
of several different variants of our PixHomology algorithm in order to find the
combination leading to the best performance.

6.3.1 Variant 1: reducing images loading times

In this experiment, we conducted a comparative analysis of the execution time
required by two distinct approaches for handling the input dataset of images. The
first approach requires the driver program to be responsible for loading the entire
dataset in memory and distributing it to the computing nodes (i.e., load_driver).
The second approach (i.e., load_self), detailed in Sect. 5.2.1, allows the executors to
load the images on their own.

This latter approach resulted to be significantly faster than the former (results
not reported but available upon request). The observed efficiency of load_self is
mostly due to its ability to greatly reduce the communication overhead for the driver
program, as well as to deeply decrease its memory requirements.

6.3.2 Variant 2: reducing the amount of pixels to process

In this experiment, we assessed the impact of different filtering rules on the
performance of our algorithm. Namely, we evaluated how the number of background
pixels removed by the filtering rule introduced in variant 2 (see Sect. 5.2.1) affected
the efficiency of the algorithm. We investigated four different scenarios:

• vanilla: Baseline scenario: no filtering rule is applied.
• filter_std: Standard filtering rule: all pixels below a predefined threshold are

classified as background.

 R. Ceccaroni et al.

• filter_light: More conservative filtering rule: only pixels below 30% of the pre-
defined threshold are classified as background.

• filter_heavy: More aggressive filtering rule: all pixels up to 30% above the
predefined threshold are classified as background.

The results of this experiment, shown in Table 1, indicate that filtering rules can
reduce the execution time of PixHomology by up to 10% , without any relevant
degradation in the output quality. Instead, this optimization seems to have no
significant effect on the performance of traditional PH tools like Ripser.

6.3.3 Variant 3: improve the workload distribution

In this experiment, we measured the overall time required to analyze our entire
dataset using the three partitioning strategies outlined in Sect. 5.2.1: partitioning
by the number of executors (part_executors), partitioning by the number of

Table 1 Execution time comparison of PixHomology using different filtering threshold levels

For each test conducted on 10 images of the dataset, the median and standard deviation are provided,
along with the percentage of background pixels dropped. These times are compared with those of Ripser

Dropped pixels (%) PixHom. time (min) Ripser time (min)

Vanilla – 7.08 ± 0.04 9.28 ± 0.04

Filter_light 4.19 ± 1.98 7.01 ± 0.04 9.28 ± 0.03

Filter_std 4.68 ± 2.25 6.49 ± 0.04 9.29 ± 0.04

Filter_heavy 5.08 ± 2.48 6.30 ± 0.04 9.29 ± 0.04

Fig. 6 Comparative analysis of the execution time for analyzing the entire input dataset when using dif-
ferent partitioning strategies and an increasing number of executors

A distributed approach for persistent homology computation…

images (part_images) and partitioning according to the Longest Processing Time
(LPT) rule (part_LPT).

We evaluated the performance of these strategies, including the impact of the
number of available executors, under several different scenarios. We expected
that the impact of these strategies would be more relevant when considering a
large number of executors, as the average number of images to be processed per
executor would decrease, leading to possible performance bottlenecks due to
straggler executors (i.e., executors requiring a much longer time to complete than
the other ones, causing delays in the overall execution). For this reason, we varied
the number of executors used in our test from 2 to 18, while processing a constant
number of images.

As expected, the results in Fig. 6 show that there is little difference between the
three partitioning strategies when using a very small number of executors or a very
large number of images. In this scenario, all strategies resulted in a very similar
workload distribution. However, we observed a relevant change when increasing the
number of executors and decreasing their average workload. Under these conditions,
the part_executors strategy began to underperform, also because of its inability to
reassign tasks to balance the workload.

Moreover, the experiments proved the LPT-based strategy to require a lightweight
computation (taking at most 20 s) and be slightly faster than the others, although
the performance improvement was very small. On closer inspection, we found that
the execution cost estimation, which is based on the number of background pixels,
can be inaccurate, sometimes leading to suboptimal task assignments in the LPT
strategy.

6.3.4 Final configuration

Based on the results of the experiments presented so far, we determined the most
effective variants to use for the next experiments. The selected variants are:

• Variant 1: we chose load_self for its efficiency when loading input images.
• Variant 2: we chose filter_std for its balanced approach to image filtering.
• Variant 3: we chose part_LPT thanks to its improved performance in workload

distribution.

6.4 Experimental comparative analysis: Ripser

As described in Sect. 3, Ripser is the current gold standard software for computing
PH filtrations across all dimensions. Thus, we used it in our experiments to evaluate
both the quality of the output of our algorithm and its performance, when applied to
the particular case of zero-dimensional PH computation.

In our first experiment, we performed a qualitative comparison of the outputs
from the two algorithms using the bottleneck distance [31]. It is an index measuring
distances between two persistence diagrams as a minimal matching between them,
allowing points to be matched with the diagonal Δ , which is the set of all (x, x) ∈ ℝ

2 .

 R. Ceccaroni et al.

To this end and for visualization purposes, we selected a 50 × 50 pixels reference
image, obtained by cropping one image chosen at random from our dataset.

As shown in Fig. 7, the PDs returned by the two algorithms are consistent, sug-
gesting that the two methodologies produce similar results. To validate this outcome,
we computed the bottleneck distances between the two diagrams, which resulted to
be zero.

Figure 8 compares the pixel-based outputs of the two algorithms for the same
image. Birth pixels are marked in red and death pixels in blue. The position of
one point, specifically the point at infinity, differs between the two outputs. This
is because Ripser does not return the positions of birth and death points in pixel
coordinates, requiring an additional reconstruction step. This limitation can pose

Fig. 7 PD representation of the outputs from Ripser and PixHomology, when used to process a 50 × 50
pixels reference image obtained by cropping one image chosen at random from our dataset. The pbirth and
pdeath points identified by the two algorithms are consistent

Fig. 8 Pixel representation of the outputs from Ripser and PixHomology for a 50 × 50 pixels reference
image obtained by cropping one image chosen at random from our dataset. The pbirth and pdeath identified
on the filtered image reveal a discrepancy at the point of infinity between the two methods

A distributed approach for persistent homology computation…

serious identification challenges, especially when multiple pixels share the same
value in the image. In contrast, PixHomology returns the positions of birth and
death points in pixel coordinates, thereby circumventing this issue.

Next, we compare the experimental performance of the two algorithms
in terms of total execution time and overall memory usage. To ensure a fair
comparison and due to the inability of Ripser to take advantage of distributed or

Fig. 9 Execution time comparison between Ripser and PixHomology, for analyzing the images of our
dataset, using a random crop of each image, with a size varying from 20 × 20 to 10, 000 × 10, 000 pixels.
PixHomology was executed on a single-core single-executor Spark distributed system

Fig. 10 Maximum memory usage comparison of Ripser and PixHomology for analyzing the images of
our dataset, using a random crop of each image, with a size varying from 20 × 20 to 10, 000 × 10, 000
pixels. PixHomology was executed on a single-core single-executor Spark distributed system

 R. Ceccaroni et al.

multicore systems, we executed PixHomology using one single executor running
on one single core.

We expect Ripser to perform very well on small images, while our algorithm
is expected to handle better very large images. To assess this expectation, we
designed our experiment to evaluate the performance of the two algorithms on
our entire dataset, but using a random crop of each image, with a size varying
from 20 × 20 to 10, 000 × 10, 000 pixels.

The resulting execution times are presented in Fig. 9. As expected, Ripser
outperforms PixHomology on small patches. However, as the image size increases
to 1000 × 1000 and beyond, PixHomology becomes much faster than Ripser. The
differences in memory usage between the two algorithms are even more relevant,
as shown in Fig. 10. Notably, for 10, 000 × 10, 000 pixel patches, Ripser requires
approximately 112 GB of memory because of the adjacency matrix computations.
In contrast, PixHomology only requires around 8 GB.

We remark that the large memory requirements of Ripser limit its applicability
to the analysis of very large images and prevent running multiple instances of it
concurrently on a single machine. Conversely, PixHomology’s efficient memory
usage makes it a more viable option for large-scale parallel processing on many
core systems.

6.5 Experimental comparative analysis: DIPHA

We were interested in assessing the performance of PixHomology when run as a
distributed pipeline, in terms of execution times and scalability. For this purpose,
we benchmarked its performance against DIPHA, the only existing distributed
pipeline designed for large-scale PH computation.

Fig. 11 Execution time comparison between DIPHA and PixHomology, for analyzing the images of our
dataset, using an increasing number of computing units

A distributed approach for persistent homology computation…

We recall that the strategy adopted by DIPHA for the distributed PH calculation
implies that each computing unit of the distributed system analyzes a segment
of the input image, with the size of this segment being inversely proportional to
the total number of computing units. Consequently, when processing very large
images using a few computing units, each unit requires a significant amount of
memory to run. This was a limiting factor in our experiments, as we were unable
to execute DIPHA with only two computing units because of the memory required
per unit, due to its high memory requirements (approximately 9 GB per unit).

For this reason, the analysis of our entire dataset with DIPHA was only possible
when using a large number of computing units. In such a setting the results, avail-
able in Fig. 11 show that, although both algorithms exhibit a very good scalability,
PixHomology consistently outperforms DIPHA in terms of execution time.

7 Conclusions and future directions

In this paper, we presented PixHomology, a novel and efficient algorithm for
computing PH on large batches of images. We also presented a distributed
version of PixHomology able to leverage the Apache Spark computing
framework to concurrently process large batches of digital images. In addition,
we also considered several variants of our distributed algorithm, for addressing
performance bottlenecks identified during preliminary experimental evaluation.

We compared the performance of our algorithm to that of the state-of-the-
art algorithm in this field, finding that PixHomology is significantly faster and
less memory-demanding for processing batches of large digital images. We also
compared PixHomology to the only other distributed pipeline for PH computation
available and again found that our algorithm is more favorable in terms of
execution time and memory requirements.

Despite this progress, there is still room for improvement and expansion.
Primarily, there is potential to enhance the algorithm’s versatility for application
across diverse image types. To address this, a possible solution involves
introducing controlled noise into the image, mitigating the likelihood of
neighboring pixels adopting identical values. Another avenue for exploration
is the potential to distribute the analysis of a single image by partitioning the
image processing workflow into smaller, more manageable subprocesses. This
partitioning strategy could significantly enhance the scalability of our pipeline
and further optimize memory utilization. A further problem occurs when the
size of input images exceeds the amount of memory available to each executor
(see Sect. 5.2.1). Possible solutions to address this problem would be either
to partition each images into independent parts to be processed by different
executors or develop out-of-core algorithms for this purpose.

Additionally, comprehensive testing and evaluation of the pipeline’s perfor-
mance on other application domains, such as the analysis of diagnostic images,
is essential. This would thoroughly assess the versatility and adaptability of the
pipeline and ensure that it remains a robust solution across diverse scientific dis-
ciplines. Notably, PH encounters challenges when applied to large-scale images,

 R. Ceccaroni et al.

as evident in possible tasks like tumor segmentation from whole slide histology
images [32] and astronomical image segmentation [33].

Finally, a research line that has still to be explored but has a potential for giving
breakthrough results, is about the possibility to employ machine learning techniques
to solve the PH problem. Indeed, such an approach may lead to results that may be,
to some extent, less accurate than deterministic solutions but in a fraction of time.

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the
CRUI-CARE Agreement. This work was supported in part by Sapienza University of Rome under pro-
ject, “Caratterizzazione, sviluppo e sperimentazione di algoritmi efficienti”(nr. RM12117A8720C2A0). It
was also supported in part by INdAM—GNCS under project “Approcci computazionali per il supporto
alle decisioni nella Medicina di Precisione” (2023), and STILES “Strengthening the Italian leadership in
ELT and SKA,” financed by the EU and approved by the MUR (Ministerial Decree No. 3264 of Decem-
ber 28th, 2021, “Creation of new research infrastructures”) based on the NRRP—NextGenerationEU—
Mission 4 “Education and Research”, Component 2 “From research to business” - Investment 3.1, “Fund
for the realization of an integrated system of research and innovation infrastructures.”

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Poger D, Yen L, Braet F (2023) Big data in contemporary electron microscopy: challenges and
opportunities in data transfer, compute and management. Histochem Cell Biol 160(3):169–192

 2. Large synoptic survey telescope (2023)
 3. Starck J, Murtagh F (2007) Astronomical image and data analysis. Astronomy and astrophysics

library. Springer, Berlin
 4. Edelsbrunner H, Harer J (2010) Computational topology: an introduction. American Mathemati-

cal Society, New York
 5. Edelsbrunner H, Letscher D, Zomorodian A (2003) Topological persistence and simplification.

Discrete & Computational Geometry, 01
 6. Carlsson G (2009) Topology and data. Bull Am Math Soc 46:255–308
 7. Otter N, Porter M, Tillmann U, Grindrod P, Harrington H (2015) A roadmap for the computation

of persistent homology. EPJ Data Sci 6:06
 8. Kaczynski T, Mischaikow K, Mrozek M (2004) Computational homology. Applied mathematical

sciences. Springer, New York
 9. Boissonnat J-D, Chazal F, Yvinec M (2017) Geometric and topological inference. Cambridge

University Press, Cambridge (10)
 10. Munkres J (1984) Elements of algebraic topology, 1st edn. Westview Press, Nashville
 11. Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete and

Computational Geometry
 12. Adams H, Tausz A, Vejdemo-Johansson M (2014) Javaplex: a research software package for

persistent (co) homology. In: Mathematical Software–ICMS 2014: 4th International Congress,
Seoul, South Korea, August 5–9, 2014. Proceedings 4. Springer, pp 129–136

 13. DM. et al. (2012) Dionysus: a software library for topological data analysis

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A distributed approach for persistent homology computation…

 14. De Silva V, Morozov D, Vejdemo-Johansson M (2011) Dualities in persistent (co) homology.
Inverse Probl 27(12):124003

 15. De Silva V, Vejdemo-Johansson M (2009) Persistent cohomology and circular coordinates. In:
Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, pp 227–236

 16. Bauer U, Kerber M, Reininghaus J, Wagner H (2017) Phat—persistent homology algorithms
toolbox. J Symb Comput 78:76–90 (01)

 17. Maria C, Boissonnat J-D, Glisse M, Yvinec M (2014) The gudhi library: simplicial complexes
and persistent homology. In: Mathematical software–ICMS 2014: 4th international congress,
Seoul, South Korea, August 5–9, 2014. Proceedings 4. Springer, pp 167–174

 18. Bauer U (2021) Ripser: efficient computation of Vietoris–Rips persistence barcodes. J Appl
Comput Topol 5(3):391–423

 19. Wagner H, Chen C, Vuçini E (2012) Efficient computation of persistent homology for cubical
data. Springer Berlin, pp 91–106

 20. Kaji S, Sudo T, Ahara K (2020) Cubical ripser: Software for computing persistent homology of
image and volume data. arXiv preprint arXiv: 2005. 12692

 21. Wagner H (2023) Slice, simplify and stitch: Topology-preserving simplification scheme for mas-
sive voxel data. In: 39th International Symposium on Computational Geometry (SoCG 2023).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik

 22. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I et al (2010) Spark: cluster comput-
ing with working sets. HotCloud 10(10–10):95

 23. Jeffrey D, Ghemawat S (2008) "MapReduce: simplified data processing on large clusters." Com-
mun ACM 51.1:107–113

 24. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin M, Shenker S, Stoica I
(2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster comput-
ing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Imple-
mentation, pp 2–2, 04

 25. Apache Software Foundation. Apache spark documentation. https:// spark. apache. org/ docs/ lat-
est/. Accessed 2 April 2024 (2024)

 26. Graham RL (1969) Bounds on multiprocessing timing anomalies. SIAM J Appl Math
17(2):416–429

 27. Amorosi L, Rocco LD, Petrillo UF (2022) Scheduling k-mers counting in a distributed environment.
In: Amorosi L, Dell’Olmo P, Lari I (eds) Optimization in artificial intelligence and data sciences.
Springer, Cham, pp 73–83

 28. Bompiani E, Petrillo U, Lasinio GJ, Palini F (2020) High-performance computing with terastat. In:
2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing (DASC/PiCom/CBDCom/CyberSciTech). Los Alamitos, CA, USA,
Aug 2020. IEEE Computer Society, pp 499–506

 29. Price-Whelan AM et al (2022) The astropy project: sustaining and growing a community-oriented
open-source project and the latest major release (v5.0) of the core package. Astrophys J 935(2):167

 30. Craig M (2023) A guide to CCD data reduction and stellar photometry using astropy and affiliated
packages. github.io

 31. Efrat A, Itai A, Katz M (2001) Geometry helps in bottleneck matching and related problems. Algo-
rithmica 31:1–28

 32. Qaiser T, Sirinukunwattana K, Nakane K, Tsang Y-W, Epstein D, Rajpoot N (2016) Persistent
homology for fast tumor segmentation in whole slide histology images. Procedia Computer Science,
90:119–124, 2016. 20th Conference on Medical Image Understanding and Analysis (MIUA 2016)

 33. Ceccaroni R, Brutti P, Castellano M, Fontana A, Merlin E (2022) Topological persistence for astro-
nomical image segmentation. In: The 51st Scientific Meeting of the Italian Statistical Society, pp
1993–1998

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/arXiv:2005.12692
https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/

	A distributed approach for persistent homology computation on a large scale
	Abstract
	1 Introduction
	2 Theoretical background
	2.1 Simplicial and cubical complexes
	2.2 Persistent homology
	2.3 Computation of persistence

	3 Related work
	4 Apache spark
	4.1 The MapReduce paradigm
	4.2 Fault-tolerant applications

	5 Our contribution
	5.1 The PixHomology algorithm
	5.2 The distributed PixHomology pipeline
	5.2.1 Variants

	6 Experimental analysis
	6.1 Computing environment
	6.2 Dataset
	6.3 Performance assessment of PH
	6.3.1 Variant 1: reducing images loading times
	6.3.2 Variant 2: reducing the amount of pixels to process
	6.3.3 Variant 3: improve the workload distribution
	6.3.4 Final configuration

	6.4 Experimental comparative analysis: Ripser
	6.5 Experimental comparative analysis: DIPHA

	7 Conclusions and future directions
	References

