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Abstract
When the Canonical Ramsey’s Theorem by Erdős and Rado is applied to regressive
functions, one obtains the Regressive Ramsey’s Theorem by Kanamori andMcAloon.
Taylor proved a “canonical” version of Hindman’s Theorem, analogous to the Canoni-
cal Ramsey’s Theorem. We introduce the restriction of Taylor’s Canonical Hindman’s
Theorem to a subclass of the regressive functions, the λ-regressive functions, rela-
tive to an adequate version of min-homogeneity and prove some results about the
Reverse Mathematics of this Regressive Hindman’s Theorem and of natural restric-
tions of it. In particular we prove that the first non-trivial restriction of the principle
is equivalent to Arithmetical Comprehension. We furthermore prove that the well-
ordering-preservation principle for base-ω exponentiation is reducible to this same
principle by a uniform computable reduction.

Keywords Reverse Mathematics · Ramsey Theory · Hindman’s Theorem ·
Well-ordering principles

Mathematics Subject Classification 03D80 · 05P10 · 03F35

1 Introduction andmotivation

Hindman’s well-known Finite Sums Theorem [13] states that for any finite colouring
of the natural numbers there exists an infinite subset of positive natural numbers such
that all finite sums of distinct terms from that subset get the same colour.

The strength of Hindman’s Theorem is a major open problem in Reverse Mathe-
matics (see, e.g., [23]) since the seminal work of Blass, Hirst and Simpson [1]. They
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showed that Hindman’s Theorem is provable in the systemACA+
0 (axiomatized by clo-

sure under the ω-th Turing Jump) and in turn implies ACA0 (axiomatized by closure
under the Turing Jump) over the base system RCA0. This leaves a huge gap between
the upper and the lower bound (we refer to Simpson [26], Hirschfeldt [16] and to the
recent Dzhafarov and Mummert [9] for Reverse Mathematics fundamentals).

Recently, substantial interest has been given to various restrictions of Hindman’s
Theorem (see [3, 9], Sect. 9.9.3 for an overview and references). Dzhafarov, Jockusch,
Solomon and Westrick [8] proved that the ACA0 lower bound on Hindman’s Theorem
already applies to the restriction of the theorem to colourings in 3 colours and sums of
at most 3 terms (denoted HT≤3

3 ) and that Hindman’s Theorem restricted to colourings
in 2 colours and sums of at most 2 terms (denoted HT≤2

2 ) is unprovable in RCA0. The
first author in joint work with Kołodziejczyk, Lepore and Zdanowski later showed
that HT≤2

4 implies ACA0 and that HT
≤2
2 is unprovable inWKL0 [6]. However, no upper

bound other than the one for the full Hindman’s Theorem is known for HT≤2
k , let

alone HT≤3
k , for any k > 1. Indeed, it is an open question in Combinatorics whether

Hindman’s Theorem for sums of at most 2 terms is already equivalent to the full
Hindman’s Theorem (see [14], Question 12). On the other hand some restrictions of
Hindman’s Theorem that are equivalent to ACA0 have been isolated and called “weak
yet strong” principles by the first author (see [5]). Theorem 3.3 in [6] shows that
Hindman’s Theorem restricted to colourings in 2 colours and sums of exactly 3 terms
with an apartness condition on the solution set is a weak yet strong principle in this
sense.

In this paper we isolate a new natural variant of Hindman’s Theorem, called
the Regressive Hindman’s Theorem, modeled on Kanamori–KMcAloon’s Regressive
Ramsey’s Theorem [21], and we investigate its strength in terms of provability over
RCA0 and in terms of computable reductions. In particular we prove that the weak-
est non-trivial restriction of the Regressive Hindman’s Theorem is a weak yet strong
principle in the sense of [5], being equivalent to ACA0. We also show that the Range
Existence Principle for injective functions is reducible to that same Regressive Hind-
man’s Theorem by a uniform computable reduction (called Weihrauch reduction).
Moreover, we show that the same is true of the Well-Ordering Preservation Princi-
ple for base-ω exponentiation. This principle states that, for any linear order X , if X
is well-ordered then ωX is well-ordered. It is known to be equivalent to ACA0 (see
[19]); well-ordering principles have received substantial attention in later years (see
the recent survey by Michael Rathjen [25] for an overview and references). No direct
connection to Hindman-type theorems has been drawn in previous works.

The theorems studied in this paper are �1
2-principles, i.e., principles that can be

written in the following form:

∀X(I (X) → ∃Y S(X , Y ))

where I (X) and S(X , Y ) are arithmetical formulas and X and Y are set variables.
For principles P of this form we call any X that satisfies I an instance of P and any
Y that satisfies S(X , Y ) a solution to P for X . We will use the following notions of
computable reducibility between two �1

2-principles P and Q, which have become of
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central interest in Computability Theory and ReverseMathematics in recent years (see
[9] for background and motivation).

1. Q is strongly Weihrauch reducible to P (denoted Q ≤sW P) if there exist Turing
functionals � and � such that for every instance X of Q we have that �(X) is an
instance of P, and if Ŷ is a solution to P for �(X) then �(Ŷ ) is a solution to Q for
X .

2. Q is Weihrauch reducible to P (denoted Q ≤W P) if there exist Turing functionals
� and � such that for every instance X of Q we have that �(X) is an instance of
P, and if Ŷ is a solution to P for �(X) then �(X ⊕ Ŷ ) is a solution to Q for X .

3. Q is computably reducible to P (denotedQ ≤c P) if every instance X ofQ computes
an instance X̂ of P such that if Ŷ is any solution to P for X̂ , then there is a solution
Y to Q for X computable from X ⊕ Ŷ .

The above reducibility notions are related by the following strict implications:

≤sW �⇒ ≤W �⇒ ≤c,

and make it possible to illuminate subtle differences in the intuitive idea of solving a
problem Q algorithmically from a problem P. Note that Q ≤c P implies that each ω-
model of RCA0 +P is also a model of Q (the latter fact is usually denoted by Q ≤ω P).
We refer the reader to Dzhafarov and Mummert [9] for examples witnessing how the
three reducibility notions differ.

In the present paper we only establish positive reducibility results, indicating
when implications of type P → Q over RCA0 are witnessed by strongly Weihrauch,
Weihrauch or computable reductions. A few non-reducibility results are obtained as
simple corollaries of our reducibility results and non-reducibility results from the
literature.

2 Canonical and regressive Ramsey’s theorems

We review some definitions and known facts concerning Ramsey’s Theorem and its
canonical and regressive versions. We useN for the set of natural numbers andN+ for
the set of positive integers. For X ⊆ N and n ≥ 1 we denote by [X ]n the set of subsets
of X of cardinality n. For k ∈ N+ we identify k with {0, 1, . . . , k − 1}. Accordingly,
for S ⊆ N, c : [S]n → k indicates a colouring of [S]n in k colours. Intervals are
intervals in N. We start by recalling the statement of the standard countable Ramsey’s
Theorem.

Definition 1 (Ramsey’s theorem) Let n, k ∈ N+. We denote by RTn
k the following

principle. For all c : [N]n → k there exists an infinite set H ⊆ N such that c is
constant on [H ]n . The set H is called homogeneous or monochromatic for c. Also,
we use RTn to denote (∀k ≥ 1) RTn

k and RT to denote (∀n ≥ 1) RTn .

For n ∈ N+, S ⊆ {1, . . . , n}, I = {i1 < · · · < in} ⊆ N and J = { j1 < · · · <

jn} ⊆ N we say that I and J agree on S if and only if for all s ∈ S, is = js . Note that
if S is empty then all n-sized subsets of N agree on S.
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The following generalization of Ramsey’s Theorem to colourings in possibly
infinitely many colours was established by Erdős and Rado [11].

Definition 2 (Erdős and Rado’s canonical Ramsey’s theorem) Let n ∈ N+. We denote
by canRTn the following principle. For all c : [N]n → N there exists an infinite set
H ⊆ N and a finite (possibly empty) set S ⊆ {1, . . . , n} such that for all I , J ∈ [H ]n

the equality c(I ) = c(J ) holds if and only if I and J agree on S. The set H is called
canonical for c. We use canRT to denote (∀n ≥ 1)canRTn .

TheReverseMathematics of canRTn is studied in [22], where it is denoted byCANn .
As observed in [22] (Proposition 8.5), canRT1 is equivalent to RT1 over RCA0.
Kanamori and McAloon [21] isolated a straightforward corollary of the Canonical

Ramsey’s Theorem inspired by Fodor’s Lemma in Uncountable Combinatorics. To
state the Kanamori–McAloon’s principle we need the following definitions.

Definition 3 (Regressive function) Let n ∈ N+. A function c : [N]n → N is called
regressive if and only if, for all I ∈ [N]n , c(I ) < min(I ) if min(I ) > 0, else c(I ) = 0.

Definition 4 (Min-homogeneity) Let n ∈ N+, c : [N]n → N and H ⊆ N an infinite
set. The set H is min-homogeneous for c if and only if the following condition holds:
for any I , J ∈ [H ]n , if min(I ) = min(J ) then c(I ) = c(J ).

Definition 5 (Kanamori–McAloon’s regressive Ramsey’s theorem) Let n ∈ N+. We
denote by regRTn the following principle. For all regressive c : [N]n → N there
exists an infinite min-homogeneous set H ⊆ N. We denote by regRT the principle
(∀n ≥ 1)regRTn .

The ReverseMathematics of regRTn is studied in [22], where it is denoted by REGn .
Note that regRT1 is trivial. A finite first-order miniaturization of regRT was proved
by Kanamori and McAloon [21] to be independent from Peano Arithmetic and is
often considered as one of the most mathematically natural examples of statements
independent from that system.

The following theorem summarizes the main known results about the Reverse
Mathematics of the Canonical and Regressive versions of Ramsey’s Theorem.

Theorem 1 The following are equivalent over RCA0.

(1) ACA0.
(2) canRTn, for any fixed n ≥ 2.
(3) regRTn, for any fixed n ≥ 2.
(4) RTn

k , for any fixed n ≥ 3 and k ≥ 2.

Proof The equivalences concerning ACA0 and Ramsey’s Theorems are all due to
Simpson (Theorem III.7.6 in [26]), based on the computability-theoretic analysis by
Jockusch [20]. The fact that regRTn implies ACA0 is due to Hirst, see [18]. That ACA0
implies canRTn is due to Mileti, using a new proof of the Canonical Ramsey’s The-
orem [22]. The implications from canRTn to RTn and canRTn to regRTn are simple
observations. �
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Fig. 1 Implications over RCA0. Double arrows indicate strict implications. The equivalences with ACA0
are from Theorem 1. For the other implications we refer the reader to Mileti [22]

Theorem 6.14 in Hirst’s Ph.D. Thesis [18] gives an implication (and a strong
Weihrauch reduction) from RT2n−1

2 to regRTn , for all n ≥ 2.
There seems to be no direct and exponent-preserving proof of RTn from regRTn in

the literature. A simple proof of this implication is in Proposition 7 below. As pointed
out by one of the anonymous reviewers of the present paper, a simple forgetful function
argument proves RTn from regRTn+1.

Also note that Ramsey’s Theorem for pairs is strictly between RCA0 and ACA0
(see [16] for details). Moreover, the principles canRT, RT and regRT are all equivalent
to ACA′

0, the system obtained by adding to RCA0 the axiom ∀n∀X∃Y (Y = (X)(n))

stating the closure of the set universe under the n-th Turing Jump for every n; see
[22], Proposition 8.4. The main relations among Canonical, Regressive and standard
Ramsey’s Theorems with respect to implication over RCA0 are visualized in Fig. 1.

3 Canonical and regressive Hindman’s theorems

We start by recalling Hindman’s Finite Sums Theorem [13]. For a set X ⊆ N we
denote by FS(X) the set of all finite non-empty sums of distinct elements of X .

Definition 6 (Hindman’s theorem) Let k ∈ N+. We denote by HTk the following
principle. For all c : N → k there exists an infinite set H ⊆ N such that c is constant
on FS(H). We denote by HT the principle (∀k ≥ 1)HTk .

For technical convenience, Hindman’s Theorem is usually stated with N+ instead
of N. Obviously we can always assume without loss of generality that H in the above
definition is a subset of N+.

Taylor [27] proved the following “canonical” version of Hindman’s Theorem, anal-
ogous to the Canonical Ramsey’s Theorem by Erdős and Rado (Definition 2). We
denote by FIN(N) the set of non-empty finite subsets of N.

Definition 7 (Taylor’s canonical Hindman’s theorem)Wedenote by canHT the follow-
ing principle. For all c : N → N there exists an infinite set H = {h0 < h1 < · · · } ⊆ N
such that one of the following holds:

1. For all I , J ∈ FIN(N), c
(∑

i∈I hi
) = c

(∑
j∈J h j

)
.

2. For all I , J ∈ FIN(N), c
(∑

i∈I hi
) = c

(∑
j∈J h j

)
if and only if I = J .
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3. For all I , J ∈ FIN(N), c
(∑

i∈I hi
) = c

(∑
j∈J h j

)
if and only if min(I ) =

min(J ).

4. For all I , J ∈ FIN(N), c
(∑

i∈I hi
) = c

(∑
j∈J h j

)
if and only if max(I ) =

max(J ).

5. For all I , J ∈ FIN(N), c
(∑

i∈I hi
) = c

(∑
j∈J h j

)
if and only if min(I ) =

min(J ) and max(I ) = max(J ).

The set H is called canonical for c.

None of the cases in Definition 7 can be omitted without falsifying Taylor’s The-
orem. For technical convenience, canHT is usually stated with N+ instead of N. We
can always assume without loss of generality that H in the above definition is a subset
of N+.

We first observe how Taylor’s Theorem implies the standard Hindman’s Theorem
just as the Canonical Ramsey’s Theorem implies Ramsey’s Theorem.

Proposition 1 canHT implies HT over RCA0. Moreover, canHT ≥sW HT.

Proof Let c : N → k be a finite colouring of N, with k ∈ N+. By canHT there exists
an infinite set H ⊆ N+ such that one of the five canonical cases in Definition 7 occurs.
It is easy to see that, since c is a colouring in k colours, only case (1) of Definition 7
can occur. Thus FS(H) is homogeneous for c. The argument obviously establishes a
strong Weihrauch reduction. �


In the usual Finite Unions versions of Hindman’s Theorem and of Taylor’s Theorem
the instance is a finite colouring of the finite subsets ofN and the solution is an infinite
sequence (Bi )i∈N of finite subsets of N+ satisfying the so-called block condition:
for all i < j , max(Bi ) < min(B j ); henceforth we will write X < Y to indicate
that this condition holds for the finite sets X and Y . When this condition is dropped,
Hindman’s Finite Unions Theorem becomes much weaker (in particular, provable in
RCA0) as shown by Hirst (see [3] for references). We introduce the corresponding
property in the finite sums setting. This property is already implicit in Hindman’s
original proof [13] and was called apartness by the first author in [5]. Let n ∈ N+. If
n = 2t1 + · · · + 2tp with 0 ≤ t1 < · · · < tp let λ(n) = t1 and μ(n) = tp (the notation
is from Blass et al. [1]). We set λ(0) = μ(0) = 0.

Definition 8 (Apartness condition) A set X satisfies the apartness condition if for all
x, x ′ ∈ X such that x < x ′, we have μ(x) < λ(x ′). If X satisfies the apartness
condition we say that X is apart.

If P is a Hindman-type principle, we denote by P with apartness or P[ap], the
principle P with the apartness condition imposed on the solution set.

In Hindman’s original proof the apartness condition is ensured by a simple counting
argument (Lemma 2.2 in [12]) on any solution to the Finite Sums Theorem, i.e., an
infinite H ⊆ N such that FS(H) is monochromatic (Lemma 2.3 in [12]). As noted in
[1], the proof shows that a solution satisfying the apartness condition can be obtained
computably in any such solution. In the Reverse Mathematics setting, one needs to be
slightly more careful to establish that HT implies HT with apartness over RCA0.

We first check that Lemma 2.2 in [12] holds in RCA0.
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Lemma 1 The following is provable in RCA0: For all �, for all k, for all finite sets X, if
X has cardinality 2k and is such that λ(x) = � for all x ∈ X, then there exists Y ⊆ X
such that λ(

∑
y∈Y y) ≥ � + k.

Proof The Lemma is established by a straightforward induction on k. We give the
details for completeness.

For the base case, let k = 0 and let X = {x} be a finite set of cardinality 20 such
that λ(x) = �. Obviously choosing Y = X gives the desired solution.

For the inductive step, let k ≥ 0 and let X be a set of cardinality 2k+1 such that for all
x ∈ X we have λ(x) = �. Let A and B be two disjoint subsets of X each of cardinality
2k . By inductive hypothesis there exists A′ ⊆ A such that λ(

∑
a∈A′ a) ≥ � + k and

there exists B ′ ⊆ B such that λ(
∑

b∈B′ b) ≥ �+k. We distinguish the following cases.
If λ(

∑
a∈A′ a) = � + k and λ(

∑
b∈B′ b) = � + k then λ(

∑
c∈A′∪B′ c) ≥ � + k + 1. If

either λ(
∑

a∈A′ a) > � + k or λ(
∑

b∈B′ b) > � + k then we are done.
The argument can be carried out in RCA0 since quantification over finite sets for-

mally means quantification over their numerical codes and the set Y is a finite subset
of the finite set X , so that the existential quantifier over Y is bounded. The induction
predicate is then �0

1, and �0
1-induction holds in RCA0. �


The following Lemma appears as Lemma 9.9.6 in Dzhafarov and Mummert [9].
As pointed out by one of the reviewers of the present paper, there is an error in the
proof in [9] (where it is assumed that the element denoted by x2 is in FS(I )). We give
an alternative argument, using Lemma 1.

Lemma 2 The following is provable in RCA0+RT1: For every m ∈ N and every infinite
I ⊆ N, there exists x ∈ FS(I ) with λ(x) ≥ m.

Proof Fix m and I and suppose that every x ∈ FS(I ) satisfies λ(x) < m. In particular
this implies that every x ∈ I satisfies λ(x) < m, since I ⊆ FS(I ). By RT1 there exists
an � < m and an infinite set J ⊆ I such that λ(x) = � for all x ∈ J .

Since � < m there exists k such that �+ k = m. Pick a subset X ⊆ J of cardinality
2k . Then by Lemma 1 there exists a Y ⊆ X such that λ(

∑
y∈Y y) ≥ � + k = m. This

contradicts the hypothesis that λ(x) < m for all x ∈ FS(I ).
�


As a corollary one obtains the following Proposition, which will be used to show
that HT self-strengthens to HT[ap] over RCA0.

Proposition 2

(1) The following is provable in RCA0 + RT1: For every infinite set I ⊆ N, there is an
infinite set J such that J is apart and FS(J ) ⊆ FS(I ).

(2) For all infinite set I ⊆ of natural numbers there exists an infinite set J of natural
numbers computable in I such that J is apart and FS(J ) ⊆ FS(I ).

Proof Define a sequence of elements x0 < x1 < · · · in FS(I ) recursively as fol-
lows. Let x0 = min(I ). Given xi for some i ∈ N, let xi+1 be the least element of
FS(I\[0, xi ]) such that λ(xi+1) > μ(xi ). The existence of xi+1 follows from Lemma
2. Let J = {xi : i ∈ N}. By construction J is apart and FS(J ) ⊆ FS(I ). �
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Proposition 2 is close in both statement and proof to Corollary 9.9.8 in [9] but
ensures FS(J ) ⊆ FS(I ) rather than J ⊆ FS(I ) as in [9]. This stronger condition is
indeed needed in the proof of the following corollary, which appears as Theorem 9.9.9
in [9]. The proof of the latter contains an error when it is claimed that J ⊆ FS(I )
implies FS(J ) ⊆ FS(I ).

Corollary 1 HT implies HT[ap] over RCA0. Moreover HT ≥sW HT[ap].
Proof From Proposition 2 and the fact that HT trivially implies RT1 over RCA0. Let
c : N → k. Let I be a solution to HT for c. By Proposition 2 there exists an infinite J
such that FS(J ) ⊆ FS(I ) and J is apart.

It is clear from the proof of Proposition 2 that there is a Turing functional that com-
putes J from I uniformly. This is sufficient to establish the claimed strong Weihrauch
reduction. �


It is natural to ask whether Taylor’s Theorem satisfies a similar self-strengthening
with respect to the apartness condition. A positive answer is expected by considering
the finite unions version of the theorem. Yet to establish the result in RCA0 the situation
has to be analyzed more closely as we have done above for Hindman’s Theorem. As
observed by one of the reviewers of the present paper, the above argument does not
immediately apply to the case of Taylor’s Theorem. Indeed, what the min-term (or
max-term) of a number is depends onwhether that number is seen as a sum of elements
of I or as a sum of elements of J , in the notation of Proposition 2 above. Nevertheless
Taylor’s Theorem does imply its own self-strengthening with apartness, as we next
prove.

Theorem 2 canHT implies canHT[ap] over RCA0. Moreover, canHT ≥sW canHT[ap].
Proof Given c : N → N, let H = {h0 < h1 < · · · } be a solution to canHT for c. Let
H ′ = {h′

1 < h′
2 < · · · } be an infinite apart set such that FS(H ′) ⊆ FS(H) (defined as

the set J in the proof of Proposition 2.
For each i ∈ N, let Ai ∈ FIN(N) be such that

∑
a∈Ai

ha = h′
i and hmin(Ai ) > h′

i−1
if i > 0. A non-empty set with these properties exists by definition of H ′. We fix a
uniform computable method to select Ai if more than one choice exists (for instance,
we take the set A that satisfies the conditions above and that minimizes

∑
a∈A 2a).

Then, we can state the following three Claims. �

Claim 1 For any set of indexes I = {i0 < i1 < · · · < im} ∈ FIN(N), the following
properties hold:

(i) Ai0 < Ai1 < · · · < Aim .
(ii) min(

⋃
i∈I Ai ) = min(Ai0).

(iii) max(
⋃

i∈I Ai ) = max(Aim ).
(iv)

∑
i∈I h′

i = ∑
s∈⋃

i∈I Ai
hs .

Proof (i) derives from the fact that, for any s ∈ (0, m], hmin(Ais ) > h′
is−1 ≥ h′

is−1
≥

hmax(Ais−1 ), which implies min(Ais ) > max(Ais−1) because H is enumerated in
increasing order.

(ii)–(iv) are trivial consequences of (i). �
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Claim 2 For any I = {i0 < i1 < · · · < im} ∈ FIN(N) and J = { j0 < j1 < · · · <

jn} ∈ FIN(N), min(I ) = min(J ) if and only if min(
⋃

i∈I Ai ) = min(
⋃

j∈J A j ).

Proof (�⇒) By hypothesis, i0 = j0, hence Ai0 = A j0 and min(Ai0) = min(A j0).
Then, by Claim 1(ii), min(

⋃
i∈I Ai ) = min(

⋃
j∈J A j ).

(⇐�) By hypothesis, min(
⋃

i∈I Ai ) = min(
⋃

j∈J A j ) so, by Claim 1(ii),
min(Ai0) = min(A j0) and then hmin(Ai0 ) = hmin(A j0 ). Thus, we can show that i0 = j0,
i.e., min(I ) = min(J ). Assume otherwise, and suppose i0 < j0 (the case i0 > j0 is
analogous). By definition of A j0 , we can derive hmin(A j0 ) > h′

j0−1 ≥ h′
i0

≥ hmin(Ai0 ),
hence contradicting hmin(Ai0 ) = hmin(A j0 ). �

Claim 3 For any I = {i0 < i1 < · · · < im} ∈ FIN(N) and J = { j0 < j1 < · · · <

jn} ∈ FIN(N), max(I ) = max(J ) if and only if max(
⋃

i∈I Ai ) = max(
⋃

j∈J A j ).

Proof (�⇒) By hypothesis, im = jn , hence Aim = A jn and max(Aim ) = max(A jn ).
Then, by Claim 1(iii), max(

⋃
i∈I Ai ) = max(

⋃
j∈J A j ).

(⇐�) By hypothesis, max(
⋃

i∈I Ai ) = max(
⋃

j∈J A j ) so, by Claim 1(iii),
max(Aim ) = max(A jn ) and then hmax(Aim ) = hmax(A jn ). Thus, we can show that
im = jn , i.e., max(I ) = max(J ). Assume otherwise, and suppose im < jn (the case
im > jn is analogous). By definition of A jn , we can derive hmax(A jn ) ≥ hmin(A jn ) >

h′
jn−1 ≥ h′

im
≥ hmax(Aim ), hence contradicting hmax(Aim ) = hmax(A jn ). �


Now we can show that H ′ is a solution to canHT for c by analyzing each case of
Definition 7.

Case 1 For any I , J ∈ FIN(N), by homogeneity of H and by Claim 1(iv),
c(

∑
i∈I h′

i ) = c(
∑

s∈⋃
i∈I Ai

hs) = c(
∑

t∈⋃
j∈J A j

ht ) = c(
∑

j∈J h′
j ).

Case 2 Let I , J ∈ FIN(N). If I = J , then c(
∑

i∈I h′
i ) = c(

∑
j∈J h′

j ). Now assume
I �= J , as witnessed by w ∈ I \ J (the case w ∈ J \ I is analogous). By Claim 1(i)
applied to J ∪ {w}, we have that Aw ∩ A j = ∅ for all j ∈ J , therefore

⋃
i∈I Ai �=⋃

j∈J A j .

Then, c(
∑

i∈I h′
i ) = c(

∑
s∈⋃

i∈I Ai
hs) �= c(

∑
t∈⋃

j∈J A j
ht ) = c(

∑
j∈J h′

j ), where
the two equalities hold by Claim 1(iv), while the inequality holds by Case 2 of Defi-
nition 7, since c is applied to sums of different elements in H on the two sides of the
equality, as we noted above.

Case 3 Let I , J ∈ FIN(N). Ifmin(I ) = min(J ), then c(
∑

i∈I h′
i ) = c(

∑
s∈⋃

i∈I Ai
hs)

= c(
∑

t∈⋃
j∈J A j

ht ) = c(
∑

j∈J h′
j ), where the first and the last equality hold by

Claim 1(iv), while the second equality holds by Case 3 of Definition 7, since in
both sides of the equality, c is applied to sums of elements in H having the same
minimum term by Claim 2. Similarly, if min(I ′) �= min(J ′), we have c(

∑
i∈I h′

i ) =
c(

∑
s∈⋃

i∈I Ai
hs) �= c(

∑
t∈⋃

j∈J A j
ht ) = c(

∑
j∈J h′

j ).

Case 4 The proof is similar to the proof of Case 3, but using Claim 3 in place of
Claim 2.
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Case 5 The proof is analogous to the proof of Cases 3 and 4.

As observed in [21], when the Canonical Ramsey’s Theorem is applied to regressive
functions theRegressiveRamsey’sTheorem is obtained. Similarly, a regressive version
of Hindman’s Theorem follows from Taylor’s Theorem. We introduce the suitable
versions of the notions of regressive function and min-homogeneous set.

Definition 9 (λ-regressive function) A function c : N → N is called λ-regressive if
and only if, for all n ∈ N, c(n) < λ(n) if λ(n) > 0 and c(n) = 0 if λ(n) = 0.

Obviously every λ-regressive function is regressive since λ(n) < n for n ∈ N+.

Definition 10 (Min-term-homogeneity for FS) Let c : N → N and H = {h0 <

h1 < · · · } ⊆ N. We call FS(H) min-term-homogeneous for c if and only if, for all
I , J ∈ FIN(N), if min(I ) = min(J ) then c(

∑
i∈I hi ) = c(

∑
j∈J h j ).

The following is an analogue of Kanamori–McAloon’s Regressive Ramsey’s The-
orem in the spirit of Hindman’s Theorem.

Definition 11 (Regressive Hindman’s theorem) We denote by λregHT the following
principle. For all λ-regressive c : N → N there exists an infinite H ⊆ N such that
FS(H) is min-term-homogeneous.

For technical convenience we will always assume that H ⊆ N+. In this paper we
do not investigate optimal upper bounds on canHT and λregHT.

We start by observing how Taylor’s Theorem implies the Regressive Hindman’s
Theorem just as the Canonical Ramsey’s Theorem implies the Kanamori–KMcAloon
Regressive Ramsey’s Theorem.

Proposition 3 canHT implies λregHT over RCA0. Moreover, canHT ≥sW λregHT.

Proof Let c : N → N be a λ-regressive function. By canHT there exists an infinite set
H ⊆ N+ such that one of the five canonical cases occurs for FS(H). It is easy to see
that, since c is λ-regressive, only case (1) and case (3) of Definition 7 can occur. Thus
FS(H) is min-term-homogeneous for c. �


Similarly to Hindman’s Theorem and Taylor’s Theorem, the Regressive Hindman’s
Theorem self-improves to its own version with apartness, as shown below. We first
show that λregHT implies the Infinite Pigeonhole Principle.

Lemma 3 λregHT implies RT1 over RCA0.

Proof Given f : N → k, with k ≥ 1, let g : N → N be defined as follows:

g(n) =
{

λ′(n) if λ′(n) < k,

f (n) otherwise,

where λ′(n) = λ(n) − 1 if λ(n) > 0, otherwise λ′(n) = 0. �
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Clearly, g is f -computable and λ-regressive, so let H = {h0 < h1 < · · · } be a
solution to λregHT for g. First, we prove the following Claim.

Claim There exists an infinite H ′ = {h′
0 < h′

1 < · · · } ⊆ H such that λ′(h′
n1 + h′

n2 +
h′

n3 + h′
n4) ≥ k for all n1 < n2 < n3 < n4.

Proof Let us define J = { j ∈ H | λ′( j) < k}. If J contains finitely many elements,
then (H \ J ) witnesses the existence of H ′. Thus, let us assume J = { j0 < j1 < · · · }
is infinite.

Notice that the sequence λ′( j0), λ′( j1), . . . never decreases: suppose otherwise by
way of contradiction, and let j, j ′ ∈ J be such that j < j ′ and λ′( j) > λ′( j ′). Then
we have g( j) = λ′( j) > λ′( j ′) = λ′( j + j ′) = g( j + j ′); this contradicts the min-
term-homogeneity of FS(H). Hence λ′ on J is a bounded non-decreasing function on
an infinite set.

Then we have two cases. Either for any j ∈ J there exists j ′ > j in J such that
λ′( j ′) > λ′( j), or there exists j ∈ J such that, for any j ′ > j in J , λ′( j) ≥ λ′( j ′).
The former case can not hold, since by definition of J , λ′( j) < k for any j ∈ J .

In the latter case, instead, we have some m ∈ J such that λ′(m) ≥ λ′( j) for any j
in J . Since λ′( j0), λ′( j1), . . . is non-decreasing, λ′( j) = λ′(m) holds for each j in the
infinite set J ′ = J \ [0, m). Finally, we can show that J ′ witnesses the existence of
H ′. Assume otherwise by way of contradiction. Then, there exist j, j ′, j ′′, j ′′′ ∈ J ′
such that j < j ′ < j ′′ < j ′′′ and λ′( j + j ′ + j ′′ + j ′′′) < k. Thus g( j + j ′ +
j ′′ + j ′′′) = λ′( j + j ′ + j ′′ + j ′′′) by definition of g. On the other hand, since
j ∈ J ′ ⊆ J , λ′( j) < k and therefore g( j) = λ′( j) by definition of g. Moreover,
λ′( j) = λ′( j ′) = λ′( j ′′) = λ′( j ′′′) since j, j ′, j ′′, j ′′′ ∈ J ′. Therefore we have the
following inequality

g( j + j ′ + j ′′ + j ′′′) = λ′( j + j ′ + j ′′ + j ′′′) > λ′( j) = g( j),

contradicting the min-term-homogeneity of FS(H). This completes the proof of the
Claim. Notice that, while λ(x) = λ(y) implies λ(x + y) > λ(x) for any x, y ∈ N+,
the same implication does not hold when using λ′: hence, sums of 4 elements are
required in the argument above.

In order to prove the lemma, let H ′ = {h′
0 < h′

1 < · · · } be as in the previous Claim.
Then, for any n0 < n1 < n2 in N+, we have

f (h′
0 + h′

n0 + h′
n1 + h′

n2) = g(h′
0 + h′

n0 + h′
n1 + h′

n2)

= g(h′
0 + h′

1 + h′
2 + h′

3)

= f (h′
0 + h′

1 + h′
2 + h′

3),

where the first and the last equalities hold by the previous Claim and by definition of
g, while the second equality holds by min-term-homogeneity of FS(H).

Hence {(h′
0 + h′

n0 + h′
n1 + h′

n2) | 0 < n1 < n2 < n3} is an infinite homogeneous
set for f . �

Proposition 4 λregHT implies λregHT[ap] over RCA0. Moreover, λregHT ≥sW
λregHT[ap].
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Proof The proof of Theorem 2 adapts verbatim to the case of λregHT. Lemma 3 takes
care of the use of RT1 in that proof, which is only needed for the implication over
RCA0. �


It is easy to see that the proof of Lemma 3 uses only sums of at most 4 terms.
However, this does not help in extending the previous Proposition to some restriction
of λregHT (see Sect. 4), since the proof of Theorem 2 still requires sums of arbitrary
length.

The following proposition shows that the Regressive Hindman’s Theorem implies
Hindman’s Theorem.

Proposition 5 λregHT implies HT over RCA0.

Proof Given f : N → k, with k ≥ 1, and let g : N → k be as follows:

g(n) =
{

f (n) if f (n) < λ(n),

0 otherwise.

The function g is λ-regressive by construction and obviously f -computable. Let H =
{h0 < h1 < · · · } ⊆ N+ be an infinite set such that F S(H) is min-term-homogeneous
for g. By Proposition 4 we can assume that H is apart. Let i be the minimum such
that λ(hi ) > k. Let H− = H \ {h0, . . . , hi }. By choice of H−, g behaves like f on
FS(H−). Let g− be the k-colouring of numbers induced by g on H−.

By RT1k (which we can assume by Lemma 3) let H ′ = {h′
0 < h′

1 < · · · } be an
infinite subset of H− homogeneous for g−. Then, for {s1, . . . , sm} and {t1, . . . , tn}
non-empty subsets of H ′, we have

f (s1 + · · · + sm) = g(s1 + · · · + sm)

= g(s1) = g−(s1)

= g−(t1) = g(t1)

= g(t1 + · · · + tn)

= f (t1 + · · · + tn),

since FS(H−) is min-term-homogeneous for g and g coincides with f on FS(H−). �

We do not know if the implication in Proposition 5 can be reversed. In the next

section we will observe that RT1k can be Weihrauch-reduced to some restriction of
λregHT with apartness—hence, a fortiori, it can be Weihrauch-reduced to λregHT
(see Proposition 6 infra).

4 Restrictions of the regressive Hindman’s theorem

Restrictions of Hindman’s Theorem relaxing the monochromaticity requirement to
particular families of finite sums received substantial attention in recent years (see [3]
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for an overview and bibliography). Two natural families of restrictions of Hindman’s
Theorem are obtained by restricting the number of terms in the monochromatic sums.
We introduce the needed terminology. For X ⊆ N and n ∈ N+ we denote by FS≤n(X)

the set of all non-empty sums of at most n distinct elements of X ; we denote by
FS=n(X) the set of all sums of exactly n distinct elements of X .

Definition 12 (Bounded Hindman’s theorems) Let n, k ∈ N+. We denote by HT≤n
k

(resp. HT=n
k ) the following principle. For every c : N → k there exists an infinite set

H ⊆ N such that FS≤n(H) (resp. FS=n(H)) is monochromatic for c.
We use HT≤n (resp. HT=n) to denote (∀k ≥ 1)HT≤n

k (resp. (∀k ≥ 1)HT=n
k ).

Note that HT≤1
k , HT=1

k and RT1k are all equivalent and strongly Weihrauch inter-
reducible (by identity).

To formulate analogous restrictions of λregHT we extend the definition of min-
term-homogeneity in the natural way. For n ≥ 1, we denote by FIN≤n(N) (resp.
FIN=n(N)) the set of all non-empty subsets of N of cardinality at most n (resp. of
cardinality n).

Definition 13 (Min-term-homogeneity for FS≤n,FS=n) Let n ∈ N+. Let c : N → N
be a colouring and H = {h0 < h1 < · · · } an infinite subset of N. We call FS≤n(H)

(resp. FS=n(H)) min-term-homogeneous for c if and only if, for all I , J ∈ FIN≤n(N)

(resp. I , J ∈ FIN=n(N)), if min(I ) = min(J ) then c(
∑

i∈I hi ) = c(
∑

j∈J h j ).

Wecan then formulate the natural restrictions of theRegressiveHindman’sTheorem
obtained by relaxing themin-term-homogeneity requirement fromFS(H) to FS≤n(H)

or FS=n(H). For example, λregHT≤n is defined as λregHT with FS≤n(H) replacing
FS(H).

Definition 14 (Bounded λ-regressive Hindman’s theorems) Let n ∈ N+.We denote by
λregHT≤n (resp. λregHT=n) the following principle. For all λ-regressive c : N → N
there exists an infinite H ⊆ N such that FS≤n(H) (resp. FS=n) is min-term-
homogeneous for c.

Note that λregHT≤1 and λregHT=1 are trivial. We also point out the following
obvious relations: λregHT yields λregHT≤n which yields λregHT=n for all n (both
in RCA0 and by strong Weihrauch reductions) and similarly for the versions with the
apartness condition. Also, for m > n, λregHT≤m obviously yields λregHT≤n , while
λregHT=m yields λregHT=n if m is a multiple of n (see the analogous results for
Hindman’s Theorem for sums of exactly n terms in [6], Proposition 3.5).

4.1 Bounded regressive Hindman’s theorems and Ramsey-type principles

We compare the bounded versions of our regressive Hindman’s Theorem with other
prominent Ramsey-type and Hindman-type principles.

We start with the following simple Lemma showing that, for every n ≥ 2,
λregHT=n[ap] implies RT1. Note that in Lemma 3 we established that λregHT with-
out apartness implies RT1 and we later used this result to show that λregHT implies
λregHT[ap] (Proposition 4).
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Lemma 4 Let n ≥ 2. Over RCA0, λregHT=n[ap] implies RT1. Moreover, for any
k ∈ N+, we have RT1k ≤sW λregHT=n[ap].

Proof We give the proof for n = 2 for ease of readability. Let f : N → k be given,
with k ≥ 1. Define g : N → k as follows.

g(m) =
{
0 if λ(m) ≤ k,

f (μ(m)) otherwise.

Clearly g is λ-regressive and f -computable in a uniform way. Let H = {h0 < h1 <

· · · } ⊆ N+ be an infinite apart set of positive integers such that FS=2(H) is min-term-
homogeneous for g.

By the apartness condition, for all h ∈ H\{h0, h1, . . . , hk} we have g(h) =
f (μ(h)). Then it is easy to see that M = {μ(hk+2), μ(hk+3), . . .} is an infi-
nite f -homogeneous set of colour f (μ(hk+2)) since, for any i , f (μ(hk+2+i )) =
g(hk+1 + hk+2+i ) = g(hk+1 + hk+2) = f (μ(hk+2)). �


The following proposition relates the principles λregHT=n[ap] (respectively
λregHT≤n[ap]) with the principles HT=n

k [ap] (respectively HT≤n
k [ap]). The proof is

essentially the same as the proof of Proposition 5.

Proposition 6 Let n ≥ 2.

(1) λregHT=n[ap] implies HT=n[ap] over RCA0. Moreover, for any k ∈ N+,
λregHT=n[ap] ≥c HT=n

k [ap].
(2) λregHT≤n[ap] implies HT≤n[ap] over RCA0. Moreover, for any k ∈ N+,

λregHT≤n[ap] ≥c HT
≤n
k [ap].

Proof We prove the second point, the proof of the first point being completely analo-
gous. Given f : N → k, with k ∈ N+, let g : N → k be as follows:

g(m) =
{

f (m) if f (m) < λ(m),

0 otherwise.

The function g is λ-regressive and f -computable. By λregHT≤n[ap] let H = {h0 <

h1 < · · · } ⊆ N+ be an infinite apart set such that FS≤n(H) is min-term-homogeneous
for g. Let g′ : H\{h0, . . . , hk−1} → k be defined as g′(hi ) = g(hi + hi+1 + · · · +
hi+n−1).

By RT1k , let H ′ ⊆ H be an infinite homogeneous set for g′. For the sake of estab-
lishing the implication over RCA0, recall that RT1 follows from λregHT=2[ap] by
Lemma 4 and therefore also from λregHT≤n[ap] for any n ≥ 2. For the sake of the
computable reduction result, just notice that for each fixed k ∈ N+, RT1k is computably
true. Then, for {s1, . . . , sp} and {t1, . . . , tq} non-empty subsets of H ′, with p, q ≤ n
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and s1 < · · · < sp, t1 < · · · < tq , we have

f (s1 + · · · + sp) = g(s1 + · · · + sp)

(∗)= g(s1) = g′(s1)
= g′(t1) = g(t1)

(∗∗)= g(t1 + · · · + tq)

= f (t1 + · · · + tq),

where the equalities dubbed by (∗) and (∗∗) hold by the min-term-homogeneity of
FS≤n(H) for g. This shows that H ′ is an apart solution to HT≤n

k for f . �

Remark 1 The previous proof gives us a hint as how to extend the reduction to
HT≤n[ap], i.e. to the universally-quantified principles (∀k ≥ 1) HT≤n

k [ap]. In that
case, the number of colours is not given as part of the instance, and it cannot be
computably inferred from the instance X of the principle HT≤n[ap] (see the discus-
sion in [9] p. 54 for more details on this issue). Nevertheless, we can easily obtain
a computable reduction by just observing that the proof of Proposition 6 provides
us, for any k ≥ 1, with both an X -computable procedure giving us an instance X̂ of
λregHT≤n[ap], and an (X ⊕ Ŷ )-computable procedure transforming a solution Ŷ for
X̂ to a solution for X : so, even if we do not know the actual value of k, we know
that the two procedures witnessing the computable reduction do exist. Thus, we can
conclude that for any n ≥ 2, λregHT≤n[ap] ≥c HT≤n[ap]. It is not straightforward to
improve this result to a Weihrauch reduction.

The same argument also applies to the case of λregHT=n[ap], so that we have that
for any n ≥ 2, λregHT=n[ap] ≥c HT=n[ap].

Also, we point out that a proof of λregHT≤2 that does not also prove HT (or, more
technically, a separation over RCA0 of these two principles) would answer Question
12 from [14].

It is worth noticing that a further slight adaptation of the proof of Proposition 6
gives a direct proof of RTn from regRTn and also shows that regRTn ≥c RTn

k . The
following definition can be used for computably reducing RTn

k to regRTn (for n ≥ 2
and k ∈ N+). Given c : [N]n → k, with k ∈ N+, let c+ : [N]n → k be as follows:

c+(x1, . . . , xn) =
{
0 if x1 ≤ k,

c(x1, . . . , xn) otherwise.

We can thus state the following Proposition.

Proposition 7 For any n ≥ 2 and k ∈ N+, RTn
k ≤c regRTn.

Note that by HT=n
k [ap] ≤sW RTn

k (see [6]), the above also implies HT=n
k [ap] ≤c

regRTn for any n ≥ 2 and k ∈ N+.
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Equivalents of ACA0.
Proposition 6, coupled with the fact that HT=3

2 [ap] implies ACA0 (Theorem 3.3 in
[6]), yields the following corollary.

Corollary 2 λregHT=3[ap] implies ACA0 over RCA0.

Proof From Theorem 3.3 in [6] and Proposition 6 above. �

We have the following reversal, showing that λregHT=3[ap] is a “weak yet strong”

restriction of Taylor’s Theorem in the sense of [5]. The result is analogous to the
implication from RTn

k to HT=n
k (see [6]).

Theorem 3 Let n ∈ N+. ACA0 proves λregHT=n[ap]. Moreover, λregHT=n[ap] ≤sW
regRTn.

Proof We give the proof for n = 2 for ease of readability.
Let f : N → N be λ-regressive. Let g : [N]2 → N be defined as follows:

g(x, y) = f (2x +2y). The function g is regressive since f is λ-regressive. Recall that
regRT2 is provable in ACA0. Let H ⊆ N+ be a min-homogeneous solution to regRT2

for g. Let Ĥ = {2h : h ∈ H}. Obviously Ĥ is apart. It is easy to see that FS=2(Ĥ) is
min-term-homogeneous for f : let 2h < 2h′

< 2h′′
be elements of Ĥ . Then

f (2h + 2h′
) = g(h, h′) = g(h, h′′) = f (2h + 2h′′

).

�

We do not know if the reduction in Theorem 3 can be reversed.
We next show that λregHT=2[ap] already implies Arithmetical Comprehension.

The proof is reminiscent of the proof that HT≤2
2 [ap] implies ACA0 in [6], but the use

of λ-regressive colourings allows us to avoid the parity argument used in that proof.
As happens in the proofs of independence of combinatorial principles from Peano
Arithmetic [21], in the present setting the use of regressive colourings simplifies the
combinatorics.

Let RAN be the �1
2 principle stating that for every injective function f : N → N

the range of f (denoted by ρ( f )) exists. It is well-known that RAN is equivalent to
ACA0 (see [26]).

Theorem 4 Let n ≥ 2. λregHT=n[ap] implies ACA0 over RCA0. Moreover,

λregHT=n[ap] ≥W RAN.

Proof We give the proof for n = 2. The easy adaptation to larger values is left to the
reader.

Let f : N → N be injective. For technical convenience and without loss of gener-
ality we assume that f never takes the value 0. We show, using λregHT=2[ap], that
ρ( f ) (the range of f ) exists.

Define c : N → N as follows. If m is a power of 2 then c(m) = 0. Else c(m) = the
unique x such that x < λ(m) and there exists j ∈ [λ(m), μ(m)) such that f ( j) = x
and for all j < j ′ < μ(m), f ( j ′) ≥ λ(m). If no such x exists, we set c(m) = 0.
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Intuitively c checks whether there are values below λ(m) in the range of f restricted
to [λ(m), μ(m)). If any, it returns the latest one, i.e., the one obtained as image of the
maximal j ∈ [λ(m), μ(m)) that is mapped by f below λ(m)). In other words, x is the
“last” element below λ(m) in the range of f restricted to [λ(m), μ(m)).

The function c is computable in f and λ-regressive.
Let H = {h0 < h1 < · · · } ⊆ N+ be an apart solution to λregHT=2 for c. Without

loss of generality we can assume that λ(h0) > 1, since H is apart. Let hi ∈ H .
We claim that if x < λ(hi ) and x is in the range of f then x is in the range of f

restricted to [0, μ(hi+1)).
We prove the claim as follows. Suppose, by way of contradiction, that there exist

hi ∈ H and x < λ(hi ) such that x ∈ ρ( f ) but x /∈ f ([0, μ(hi+1)). Let b be the
true bound for the elements in the range of f smaller than λ(hi ), i.e., b is such that if
n < λ(hi ) and n ∈ ρ( f ), then n < b. The existence of b follows in RCA0 from strong
	0

1-bounding (see [26], Exercise II.3.14):

∀n∃b∀i < n(∃ j( f ( j) = i) → ∃ j < b( f ( j) = i)),

where we take n = λ(hi ).
Let h j in H be such that h j > hi+1 and μ(h j ) ≥ b. Such an h j exists since H is

infinite.
Then, by min-term-homogeneity of FS=2(H), c(hi + hi+1) = c(hi + h j ). But by

choice of hi , x and h j , and the definition of c, it must be the case that c(hi + hi+1) �=
c(hi +h j ). To see this, first note that, by apartness of H , the following equalities hold:

λ(hi + hi+1) = λ(hi ) = λ(hi + h j ), μ(hi + hi+1)

= μ(hi+1), μ(hi + h j ) = μ(h j ).

Then observe that c(hi +h j ) > 0: by hypothesis f −1(x) ∈ [μ(hi+1), b) (recall that f
is injective), therefore x is a value of f below λ(hi +h j )whose pre-image under f is in
[λ(hi+h j ), μ(hi+h j )), i.e. in [λ(hi ), μ(h j )). Supposenow that c(hi+hi+1) = z > 0.
Then, by definition of c, it must be the case that z < λ(hi + hi+1), i.e., z < λ(hi ), and
f −1(z) is in [λ(hi + hi+1), μ(hi + hi+1)), i.e. in [λ(hi ), μ(hi+1)). This z cannot be
the value of c(hi + h j ), since by hypothesis and by choice of b, we have x < λ(hi )

and f −1(x) is in [μ(hi+1), b), hence in [λ(hi +h j ), μ(hi +h j )). Thus z cannot be the
value of f below λ(hi ) with maximal pre-image under f in [λ(hi + h j ), μ(hi + h j ))

as the definition of c(hi + h j ) requires, since f −1(z) < μ(hi+1) ≤ f −1(x) and f is
injective. This concludes our reasoning by way of contradiction and hence establishes
the claim that values in the range of f below λ(hi ) appear as values of f applied to
arguments smaller than μ(hi+1).

In view of the just established claim it is easy to see that the range of f can be
decided computably in H as follows. Given x , pick any hi ∈ H such that x < λ(hi )

and check whether x appears in f ([0, μ(hi+1)). �


Theorem 4 for the case of n = 2 should be contrasted with the fact that HT=2
2 [ap]

follows easily from RT22 and is therefore strictly weaker than ACA0, while HT=3
2 [ap]
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Fig. 2 Implications over RCA0. Double arrows indicate strict implications. The equivalence of canHT[ap]
and canHT is from Theorem 2. The implication from canHT to λregHT is from Proposition 3 and similarly
for the versionswith apartness. The equivalence betweenλregHT andλregHT[ap] is fromProposition 4. The
implication from λregHT to HT is from Proposition 5. The implication from λregHT≤n [ap] to HT≤n [ap]
is from Proposition 6. The equivalence of λregHT=n [ap] with ACA0 (for n ≥ 2) is from Theorems 3 and
4. The equivalence of HT=n

k [ap] with ACA0 (for n ≥ 3, k ≥ 2) is from [6]. The equivalence of RTn
k with

ACA0 (for n ≥ 3, k ≥ 2) is a classical result of Simpson, see Theorem III.7.6 in [26]

implies ACA0 as proved in [6]. The situation matches the one among regRT2, RT32 and
RT22 (see Theorem 1).

The proof of Theorem 4 can be recast in a straightforward way to show that there
exists a computable λ-regressive colouring such that all apart solutions to λregHT=2

for that colouring compute the first Turing Jump ∅′. Analogously, the reduction can
be cast in terms of the �1

2-principle ∀X∃Y (Y = (X)′) expressing closure under the
Turing Jump, rather than in terms of RAN.

The next theorem summarizes the implications over RCA0 for the Regressive Hind-
man’s theorems for sums of exactly n elements, compared with other prominent
Ramsey-theoretic principles (see Fig. 2).

Theorem 5 The following are equivalent over RCA0.

(1) ACA0.
(2) regRTn, for any fixed n ≥ 2.
(3) RTn

k , for any fixed n ≥ 3, k ≥ 2.
(4) HT=n

k [ap], for any fixed n ≥ 3, k ≥ 2.
(5) λregHT=n[ap], for any fixed n ≥ 2.

Proof The equivalences between point (1), (2) and (3) are as in Theorem 1. The
equivalence of (1) and (4) is from Proposition 3.4 in [6]. Then the equivalence of (5)
with points from (1) to (4) follows from Theorem 3, Theorem 4 and Proposition 6. �


In terms of computable reductions we have the following, for n ≥ 2 and k ∈ N+:

RT2n−1
2 ≥sW regRTn ≥c RTn

k ,
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where the first inequality is due to Hirst [18] and the second inequality is from Propo-
sition 7. Furthermore we have that

regRTn ≥W λregHT=n[ap] ≥c HT=n
k [ap],

from Theorem 3 and Proposition 6.
Moreover, whereas λregHT=n[ap] ≥W RAN for any n ≥ 2 (Theorem 4), we have

that HT=n
k [ap] ≥W RAN only for n ≥ 3 and k ≥ 2 (by an easy adaptation of the

proof of Theorem 3.3 in [6]). Also note that RTn
k ≥sW HT=n

k [ap] by a straightforward
reduction (see [6]).

Some non-reducibility results can be gleaned from the above and known non-
reducibility results from the literature. First, Dorais, Dzhafarov, Hirst, Mileti, and
Shafer showed that RTn

k �sW RTn
j (Theorem 3.1 of [8]). Then RTn

k �W RTn
j was proved

byBrattka and Rakotoniaina [2] and, independently, byHirschfeldt and Jockusch [17].
Patey further improved this result by showing that the computable reduction does not
hold either [24]; i.e., RTn

k �c RTn
j for all n ≥ 2, k > j ≥ 2. We can derive, among

others, the following corollaries.

Corollary 3 For each n, k ≥ 2, regRTn �c RTn
k .

Proof From Proposition 7 we know that RTn
k+1 ≤c regRTn , so if we had regRTn ≤c

RTn
k we could transitively obtain RTn

k+1 ≤c RTn
k , hence contradicting the fact that

RTn
k+1 �c RTn

k proved by Patey [24]. �

Corollary 4 RT33 �c λregHT=2[ap].
Proof It is known from [24] that RT33 �c RT32. On the other hand λregHT=2[ap] ≤W

RT32, since λregHT=2[ap] ≤W regRT2 (Theorem 3) and regRT2 ≤sW RT32 (from
the proof of Theorem 6.14 in [18]) and since the involved reducibilities satisfy the
following inclusions and are transitive: ≤sW⊆≤W⊆≤c. �


As proved in [6], restrictions of Hindman’s Theorem have intriguing connections
with the so-called Increasing Polarized Ramsey’s Theorem for pairs IPT22 of Dzhafarov
and Hirst [10]. For example, HT=2

2 [ap] ≥W IPT22 (Theorem 4.2 in [6]). By this result
and Proposition 6 we have the following corollary.

Corollary 5 IPT22 ≤c λregHT=2[ap].
Note that IPT22 is the strongest known lower bound for HT

=2
2 [ap] in terms of reduc-

tions. Some interesting lower bounds onHT=2 without apartness are in [7].We haven’t
investigated λregHT=n without the apartness condition; we conjecture that the lower
bounds on HT=2 (without apartness) from [7] can be adapted to λregHT=2.

4.2 Bounded regressive Hindman’s theorem andwell-ordering principles

Let (X ,<X ) be a linear ordering. We denote by ωX the collection of finite sequences
of the form (x1, x2, . . . , xs) such that, for all i ∈ [1, s], xi ∈ X and, for all i, j ∈ [1, s]
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such that i < j , xi ≥X x j . We call the xi s the components of σ . We denote by |σ | the
length of σ , i.e. |σ | = s. We order ωX lexicographically. Then, if σ, τ ∈ ωX and σ

strictly extends τ , we have σ > τ . If j is least such that x j = σ( j) �= τ( j) = x ′
j and

x j >X x ′
j then σ > τ . Otherwise τ ≥ σ .

If (X ,<X ) is a well-ordering, then the just defined ordering on ωX is also a well-
ordering (provably in sufficiently strong theories). In this case we can then identify
an element σ = (x1, x2, . . . , xs) of ωX with the ordinal ωx1 + ωx2 + · · · + ωxs . The
lexicographic ordering of ωX coincides with the usual ordering of ordinals in Cantor
Normal Form.

The well-ordering preservation principle (or well-ordering principle) for base-ω
exponentiation is the following �1

2-principle:

∀X (WO(X ) → WO(ωX )),

where WO(Y ) is the standard �1
1-formula stating that Y is a well-ordering. We abbre-

viate the above well-ordering preservation principle by WOP(X �→ ωX ).
It is known that WOP(X �→ ωX ) is equivalent to ACA0 by results of Girard and

Hirst (see [19]). A direct combinatorial proof from RT33 to WOP(X �→ ωX ) in RCA0
was given by Carlucci and Zdanowski [4] (the proof yields a Weihrauch reduction as
clear by inspection). On the other hand, we proved in Theorem 4 that, for any n ≥ 2,
λregHT=n[ap] implies ACA0 over RCA0. Therefore in RCA0 we have that, for n ≥ 2,
λregHT=n with apartness impliesWOP(X �→ ωX ). However, we can not use the same
arguments to derive an analogous chain of reductions. In the next theorem we show
that WOP(X �→ ωX ) is Weihrauch-reducible to λregHT=n[ap], while also giving a
direct proof of the implication in RCA0. This result relates for the first time, to the best
of our knowledge, Hindman-type theorems and transfinite well-orderings.

To make the principle WOP(X �→ ωX ) amenable to questions of reducibility it
is natural to consider its contrapositive form: an instance is an infinite descending
sequence in ωX and a solution is an infinite descending sequence in X (in fact, one
might require that the solution consists of terms already occurring as subterms of the
elements of the instance sequence, as is the case in our argument below).

We briefly describe the idea in the proof of Theorem 6 below. Let X be a linear
ordering. Let α = (αi )i∈N be an infinite decreasing sequence in ωX . We show, using
λregHT=2[ap], that there exists an infinite decreasing sequence in X . The proof uses
ideas from our proof of the fact that λregHT=2 with apartness implies ACA0 (Theorem
4) adapted to the present context, based on the following analogy between deciding
the first Turing jump ∅′ and computing an infinite descending sequence inX . Given an
enumeration of ∅′ and a number n, RCA0 knows that there is a b such that all numbers
in ∅′ below n appear within b steps of the enumeration, but is not able to compute this
b. Similarly, given an ordinal α in an infinite decreasing sequence in ωX , RCA0 knows
that there is a b such that if a term of α ever decreases, it will do so by the b-th term of
the infinite descending sequence, but is unable to compute such a b. More precisely,
while one can computably run through the given infinite descending sequence to find
the first point at which an exponent of a component of α is decreased, we can not
locate computably the leftmost such component. An appropriately designed colouring
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will ensure that the information about such a b can be read off from the elements of
any apart solution to λregHT=n .

We start with the following simple Lemma. For technical convenience in the rest
of this section we index infinite sequences and sets starting from 1.

Lemma 5 The following is provable in RCA0: If α = (αi )i∈N+ is an infinite descending
sequence in ωX , then

∀n ∃n′ ∃m ≤ |αn|
(
n′ > n ∧ m ≤ |αn′ | ∧ αn,m >X αn′,m

)
,

where αi, j denotes the j-th component of αi for j ∈ [1, |αi |] and is otherwise unde-
fined.

Proof Assume by way of contradiction that the statement is false, as witnessed by n,
and recall that for any distinct σ, τ ∈ ωX , we have σ < τ if and only if either (1.) σ

is a proper initial segment of τ , or (2.) there exists m such that σ(m) <X τ(m) and
σ(m′) = τ(m′) for each m′ < m. Then we can show that:

∀p (p ≥ n → (αp+1 is a proper initial segment of both αp and αn))

by 
0
1-induction.

The case p = n is trivial, since αn >X αn+1 and (2) cannot hold by assumption.
For p > n, by induction hypothesis we know that αp is a proper initial segment

of αn . Since αp+1 <X αp, αp+1 must be a proper initial segment of αp, otherwise
the leftmost component differing between αp+1 and αp – i.e. the component of αp+1
with index m witnessing (2.) – would contradict our assumption, for we would have
m ≤ |αp| and αp+1,m <X αp,m = αn,m .

So αp+1 must be a proper initial segment of αp and, by our assumption, it must be
a proper initial segment of αn as well.

The previous statement implies that:

∀p (p ≥ n → |αp| > |αp+1|),

which contradicts WO(ω). This concludes the proof. �

Theorem 6 Let n ≥ 2. λregHT=n[ap] implies WOP(X �→ ωX ) over RCA0. Moreover,
λregHT=n[ap] ≥W WOP(X �→ ωX ).

Proof Let α = (αn)n∈N+ be an infinite descending sequence in ωX . We say that αn,m

is decreasible if there exists a n′ > n such that αn′,m <X αn,m . In this case we say that
αn′,m decreases αn,m . With this terminology Lemma 5 says that RCA0 knows that for
all i ≥ 1 there exists j ∈ [1, |αi |] such that αi, j is decreasible. If αn′,m decreases αn,m

and no αk,m with k < n′ decreases αn,m we call αn′,m the least decreaser of αn,m .
Now suppose that f : N → N is a function with the following property:
Property P: For all i ∈ N+ for all j ∈ [1, |αi |] if αi, j is decreasible then αi, j is

decreased by αk, j for some k ≤ f (i).
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Wefirst show that given such an f we can compute (in f and α) an infinite descend-
ing sequence (σi )i∈N+ in X as follows.

Step 1. Pick the leftmost decreasible component of α1 (which exists by Lemma 5).
This can be done by inspecting all components in α up through α f (1), since f has
Property P .

Let p1 be the position of the leftmost decreasible component ofα1. Pick the smallest
d1 ≤ f (1) such that αd1,p1 decreases α1,p1 . We set σ1 = αd1,p1 and observe that all
decreasible components in αd1 occur at positions ≥ p1. Suppose otherwise and let
1 ≤ p∗ < p1 be such that αd1,p∗ is decreasible. Let d∗ > d1 such that αd∗,p∗ decreases
αd1,p∗ . Then αd∗,p∗ <X αd1,p∗ by definition of decreasible. On the other hand, by
choice of d1 and p1, and since p∗ < p1, it must be the case that αd1,p∗ = α1,p∗ . Hence
α1,p∗ is a decreasible component in α1 on the left of position p1, which contradicts
the choice of p1.

Step i + 1 (i > 0). Suppose di , pi , σi are defined so that σi = αdi ,pi , (σ j )1≤ j≤i is
decreasing in X and all decreasible components in αdi occur at positions ≥ pi .

Pick the leftmost decreasible component in αdi (which exists by Lemma 5). This
can be done by inspecting all components in α up to α f (di ), since f has Property P .
Let αdi ,� be the chosen component. Set pi+1 = � and note that necessarily pi+1 ≥ pi .

Pick d ≤ f (di ) minimal such that αd,pi+1 decreases αdi ,pi+1 . Set di+1 = d.
Let σi+1 = αdi+1,pi+1 . Obviously σi >X σi+1, since σi = αdi ,pi ≥ αdi ,pi+1 >X
αdi+1,pi+1 = σi+1 (note that pi ≤ pi+1).

We observe that also the last part of the inductive invariant is guaranteed, since
no decreasible component in αdi+1 occurs on the left of pi+1. Suppose otherwise as
witnessed by 1 ≤ p∗ < pi+1. Let d∗ > di+1 such that αd∗,p∗ decreases αdi+1,p∗ . Then
αd∗,p∗ also decreases αdi ,p∗ since αdi+1,p∗ = αdi ,p∗ , where the latter is due to the fact
that α is decreasing and p∗ is less than pi+1, which is the position of the leftmost
decreasible component in αdi . This contradicts the choice of pi+1.

We next show how to obtain a function satisfying Property P from a solution
of λregHT=n[ap] for a suitable colouring. The argument is similar to the proof of
Theorem 4.

For this purpose it is convenient to use a sequence β of all the components of the
terms αn in α, enumerated in order of appearance: more precisely, (βh)h∈N+ is the
ordered sequence α1,1, α1,2, . . . , α1,|α1|, α2,1, α2,2, . . . , α2,|α2|, . . . . This sequence is
obviously easily computable from α. Formally we construct such a sequence by first
defining a function ι : N+×N+ → N+ as follows: ι(n, m) = ∑

1≤k<n |αk |+m, for all
n ∈ N+ and all m ∈ [1, |αn|], while ι(n, m) = 0 in all other cases. We correspondigly
fix functions t : N+ → N+ and p : N+ → N+ such that for each n ∈ N+ we have
ι(t(n), p(n)) = n. The sequence (βh)h∈N+ of all components appearing in α is then
defined by setting βh = αt(h),p(h).

Define c : N → N as follows: c(x) = the unique i < λ(x) satisfying the following
conditions:

1. There exists j such that λ(x) ≤ j < μ(x) and β j is the least decreaser of βi , and
2. For all j ′ such that j < j ′ < μ(x), if β j ′ is the least decreaser of βi ′ then i ′ ≥ λ(x).

If no such i exists, we set c(x) = 0.
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The function c is computable inα andλ-regressive. Let H = {h1 < h2 < h3 < . . . }
be an apart solution to λregHT=n for c. The following Claim ensures the existence of
an (α ⊕ H)-computable function with Property P . �

Claim 4 For each hk ∈ H and each α�,m such that ι(�, m) < λ(hk), if there exists
α�′,m such that α�′,m decreases α�,m then there exists such an α�′,m with ι(�′, m) <

μ(hk+n−1).

Proof of Claim 4 Assume by way of contradiction that there is some hk ∈ H and some
α�,m with ι(�, m) = i < λ(hk) such that α�,m is decreasible but not by any α�′,m with
ι(�′, m) < μ(hk+n−1).

Let b be such that if α�′′,m is decreasible and ι(�′′, m) < λ(hk), then there exists
�′, m such that ι(�′, m) < b and α�′,m decreases α�′′,m . The existence of b can be
proved in RCA0 using the following instance of strong 	0

1-bounding (similarly as in
the proof of Theorem 4):

∀n∃b∀i < n(∃ j(αt( j),p( j) decreases αt(i),p(i)) → ∃ j < b(αt( j),p( j) decreases αt(i),p(i)).

Since H is infinite, there is an hk′ ∈ H such that hk′ > hk+n−1 and μ(hk′) ≥ b. Then,
by min-term-homogeneity, c(hk + · · · + hk+n−1) = c(hk + · · · + hk+n−2 + hk′). But
by choice of hk , hk′ and the definition of c, we can show that c(hk + · · · + hk+n−1) �=
c(hk + · · · + hk+n−2 + hk′), yielding a contradiction.

To see this we reason as follows. First observe that, by apartness of H , the following
identities hold:

λ(hk + · · · + hk+n−1) = λ(hk + · · · + hk+n−2 + hk′) = λ(hk),

and

μ(hk + · · · + hk+n−2 + hk′) = μ(hk′).

Let j ∈ [μ(hk+n−1), μ(hk′)) be such that αt( j),p( j) is the least decreaser of α�,m . Such
a j exists by choice of α�,m , hk and hk′ . In fact, by hypothesis, α�,m is decreasible
but not by any component with ι-index below μ(hk+n−1). By choice of h′

k the least
decreaser of α�,m must have ι-index smaller than μ(hk′), since ι(�, m) < λ(hk).

First note that c(hk +· · ·+ hk+n−2 + hk′) cannot be 0, since this occurs if and only
if there is no i∗ < λ(hk) such that for some j∗ ∈ [λ(hk), μ(hk′)), αt( j),p( j) decreases
αt(i∗),p(i∗); but the latter is false by choice of hk and hk′ .

If c(hk + · · · + hk+n−1) takes some non-zero value i∗ < λ(hk), then this same
value cannot be taken by c(hk +· · ·+hk+n−2+hk′) under our assumptions. If it were,
it would mean that αt(i∗),p(i∗) is decreased for the first time by some αt( j∗),p( j∗) with
j∗ < μ(hk′) such that j∗ is also maximal below μ(hk′) such that αt( j∗),p( j∗) is the
least decreaser of some αt(q),p(q) with q < λ(hk). This is impossible since the least
decreaser ofαt(i∗),p(i∗), by the hypothesis that c(hk+· · ·+hk+n−1) = i∗, occurs earlier
in the sequence of the βh’s than the least decreaser of αt(i),p(i) since, by the definition
of c, it must be that j∗ < μ(hk + · · · + hk+n−1) and the latter value, by apartness,
equals μ(hk+n−1), as noted above. On the other hand, j is in [μ(hk+n−1), μ(hk′)),
so that j∗ < j . Thus j∗ cannot be maximal below μ(hk′) such that αt( j∗),p( j∗) is the
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Fig. 3 Diagram of reductions. HT≤n [ap] ≤c λregHT≤n [ap] is from Proposition 6. That the versions
with sums of exactly n terms reduce to the corresponding versions for sums of ≤ n terms is a trivial
observation. The reduction WOP(X → ωX ) ≤W λregHT=n for n ≥ 2 is Theorem 6. The reduction
RAN ≤W λregHT=n for n ≥ 2 is Theorem 4. The reduction RAN ≤W HT=n

k [ap] for n ≥ 3, k ≥ 2 is from
[6]. The reduction RTn

k ≤c regRTn is from Proposition 7. The reduction HT=n
h ≤sW RTn

k is folklore

least decreaser of some α�′′,m with ι(�′′, m) below λ(hk), as required by the definition
of c, since αt( j),p( j) is such a least decreaser of αt(i),p(i), and i < λ(hk).

This proves the Claim. �

Now it is sufficient to observe that the (α ⊕ H)-computable function f defined as

follows has the Property P: on input n, pick the least k such that
∑

1≤n′≤n |αn′ | < λ(hk)

and let f (n) be the α-index of the μ(hk+n−1)-th element in the sequence β of all
components appearing in α, i.e., f (n) = t(μ(hk+n−1)). That this choice of f satisfies
Property P is implied by Claim 4 above. This concludes the proof of the theorem. �


The proof of Proposition 1 in [4] shows that WOP(X → ωX ) ≤W RT33. The proof
of Theorem 6 can be adapted to show that WOP(X → ωX ) ≤W HT=3

2 [ap]. Details
will be reported elsewhere.

The main reductions between restrictions of HT, restrictions of λregHT and other
principles of interest are visualized in Fig. 3.

5 Conclusion and open questions

In analogy with Kanamori–KMcAloon’s Regressive Ramsey’s Theorem [21] we
obtained a Regressive Hindman’s Theorem as a straightforward corollary of Tay-
lor’s Canonical Hindman’s Theorem [27] restricted to a suitable class of regressive
functions and relative to an appropriate variant of min-homogeneity. We studied the
strength of this principle and of its restrictions in terms of provability over RCA0 and
computable reductions.

In particular we showed that the seemingly weakest (non-trivial) restriction of our
Regressive Hindman’s Theorem (λregHT=2), with a natural apartness condition on the
solution set, is equivalent to ACA0. This restriction ensures that sums of two numbers
from the solution set get the same colour if they have the same minimum term. For the
restrictions of the standardHindman’sTheorem to sums of exactlyn elements, the level
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of ACA0 is reached only when we consider sums of exactly 3 elements. This situation
is analogous to that of regRT2 when compared to RT32. Furthermore, we proved that
the well-ordering preservation principle that characterizes ACA0 (WOP(X → ωX ))
is Weihrauch-reducible to λregHT=2 with apartness.

Many open questions remain concerning the strength of the Regressive Hindman’s
Theorem, of its restrictions, and of related principles. Here are some natural ones.

Question 1 What are the optimal upper bounds for canHT, for λregHT and for
λregHT≤n?

Question 2 Is λregHT implied by/reducible to HT (and similarly for bounded ver-
sions)?

Question 3 What is the strength of λregHT=2 without apartness? More generally, how
do the bounded Regressive Hindman’s Theorems behave with respect to apartness?

Question 4 Can the reductions in Proposition 6 and Theorem 6 be improved to stronger
reductions?

Very recently, Hirschfeldt and Reitzes [15] investigated Hindman-type variants of
the Thin Set Theorem which, as is the case for our Regressive Hindman’s Theorem,
deals with colourings with unboundedly many colours. It would be interesting to
investigate possible relations between the two families.
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