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Abstract—This paper investigates the design of reduced-order
observers for robot manipulators. Observer stability conditions
are obtained based on a Lyapunov analysis. The proposed
observer is enhanced with a hybrid scheme that may adjust
the gains to cope with possible unbounded velocities of the
robot joints. Thanks to such hybrid strategy, the observer works
accurately both for robots driven by open-loop controllers and
by output feedback controllers. Numerical simulations illustrate
the efficacy of the reduced-order observer in several scenarios,
including a comparison with the performance of a classical full-
order observer.

I. INTRODUCTION

Robot manipulators are typically equipped with encoders
mounted on the driving motors, which provide a direct mea-
sure of the joint (angular) positions. On the other hand, most
control laws require also a velocity feedback in order to be
executed. A rough knowledge of the joint velocity can be
obtained by numerical differentiation of the position measures,
but the risk of occurring in large errors due to noise is
high. Implementing state observers using the available position
measurements is usually a better option.

The literature on observer design for nonlinear control sys-
tems is fairly large and several approaches have been explored,
see for instance [1], [2], [3], [4], [5], [6] and the references
therein. A considerable number of studies are devoted to the
specific problem of observer design for robot manipulators [7],
[8], [9], [10], including also sliding mode observers [11],
[12]. A common feature of such observers is that their design
parameters depend, in one way or the other, on a bound on
the maximum achievable velocity. Such a design weakness is
somewhat mitigated by the fact that this bound can be enforced
when the observer is used to implement feedback control laws
for set-point regulation or trajectory tracking. Furthermore,
most available observers for robot manipulators are full-order
estimators (i.e., of dimension 2n if the robot has n joints),
whereas the development of reduced-order schemes seems
limited to a handful of papers, such as [13] which however
still suffers from the requirement of a known velocity bound.
Reduced-order observers are well recognized for having faster
convergence rates and lower computational burden, as the only
state variables to be estimated are the ones which are actually
not measured.

In this paper, we propose the design of a reduced-order
observer derived from the full-order structure of [8]. In addi-
tion, hinging on the powerful setup of hybrid systems [14], a
scheduling strategy is introduced for the observer gain, which
is automatically adjusted according to the actual velocity of
the joints, thus removing the need for a global bound. The

The authors are with the Department of Computer, Control and Manage-
ment Engineering, Sapienza University of Rome, Via Ariosto 25, 00185 Rome,
Italy. Email: {cristofaro, deluca}@diag.uniroma1.it

proposed observer works independently of any used open- or
closed-loop control law, and performs efficiently even when
the joint velocity possibly grows unbounded.

The paper is structured as follows. The robot dynamic
model and the main assumptions are summarized in Sect. II.
Section III is devoted to the observer design and to its stability
analysis, whereas Section IV illustrates the enhancement of the
observer with a switching scheme for the output injection gain.
The efficiency of the reduced-order observer is showcased
through several simulation examples in Sect. V. Concluding
remarks are given in Sect. VII.

II. PRELIMINARIES ON ROBOT DYNAMICS

Consider a robotic manipulator with n rigid joints, described
by the dynamic model [15]

M(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ, (1)

where q ∈ Rn is the vector of joint positions and q̇ ∈ Rn is the
vector of joint velocity. In the following, we assume that all
robot joints are revolute. The symmetric inertia matrix M(q)
is positive definite for any q ∈ Rn and there exists positive
definite constant matrices M1 and M2 ∈ Rn×n with

M1 �M(q) �M2, ∀q ∈ Rn. (2)

The term C(q, q̇)q̇ encodes Coriolis and centrifugal torques,
F is a viscous dissipation matrix, g(q) is the gravity torque,
and τ ∈ Rn is the input torque at the joints.

Assumption 1: The following conditions are fulfilled:
• the angular position q is known;

• the matrix C(q, q̇) in the factorization of the Coriolis and
centrifugal terms is such that Ṁ(q) − 2C(q, q̇) is skew-
symmetric;

• the matrix F is positive semi-definite, i.e., F � 0.
Some useful facts can be observed about the matrix C(q, q̇).

For any y, u, w ∈ Rn, the following identity holds

C(y, u)w = C(y, w)u. (3)

Moreover, a bounded, nonnegative function 0 ≤ c0(q) ≤ c̄0
can be found with the property

‖C(q, q̇)‖ ≤ c0(q)‖q̇‖. (4)

For the next developments, it is convenient to rewrite the
second-order dynamics (1) as a first-order system with state
x = (x1, x2) = (q, q̇) ∈ R2n and output y = x1:

ẋ1 = x2

M(x1)ẋ2 = −C(x1, x2)x2 − Fx2 − g(x1) + τ

y = x1.

(5)
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III. REDUCED-ORDER OBSERVER

Being x1 available for direct measurement, the aim of this
section is to design a reduced-order observer for system (5)
providing an asymptotic estimate of the velocity x2. Consider
a reduced-order observer with the following structure

M(y)ż = −C(y, x̂2)x̂2 − Fx̂2 − g(y)

−M(y)
∂k(y)

∂y
x̂2 + τ

x̂2 = z + k(y),

(6)

with the differentiable mapping k : Rn 7→ Rn to be specified.
Remark 1: In the case of a constant inertia matrix M , i.e.,

with C(q, q̇) ≡ 0, the observer (6) can be traced back to
a classical reduced-order observer for a second-order linear
system.

The dynamics of the estimation error ε = x2− x̂2, with x̂2
provided by (6), is given by

M(y)ε̇ = −C(y, x2)x2 + C(y, x̂2)x̂2 − Fε−M(y)
∂k(y)

∂y
ε.

Adding and subtracting C(y, x̂2)x2, and then using the identity
(3), the dynamics can be rearranged as

M(y)ε̇ = (−C(y, x2)x2 + C(y, x2)x̂2)

+(−C(y, x̂2)x2 + C(y, x̂2)x̂2)

−Fε−M(y)
∂k(y)

∂y
ε

= −C(y, x2)ε− C(y, x̂2)ε− Fε−M(y)
∂k(y)

∂y
ε.

Consider now the time-varying Lyapunov function candidate

V (ε, t) =
1

2
εTM(y(t))ε, (7)

which is clearly positive definite due to the uniform bounds
λ1‖ε‖2 ≤ V (ε, t) ≤ λ2‖ε‖2 provided by (2), where

λ1 = min
y∈Rn

λmin(M(y))

2
, λ2 = max

y∈Rn

λmax(M(y))

2
. (8)

Evaluating the time derivative of (7) along the error system
trajectory yields

V̇ (ε, t) =
1

2
εT Ṁ(y)ε+ εTM(y)ε̇

= εT

(
Ṁ(y)

2
− C(y, x2)

)
ε︸ ︷︷ ︸

=0

− εTC(y, x̂2)ε

−εT
(
F +M(y)

∂k(y)

∂y

)
ε.

To proceed with the stability analysis, we need to select
a suitable gain function k(y). The simplest yet effective
strategy1is picking k(y) as a linear function k(y) = k0y with
k0 > 0. This leads to the simplification

∂k(y)

∂y
= k0In×n. (9)

1See Section VI for an overview of more advanced strategies.

Observing that C(y, x̂2) = C(y, x2 − ε), and that the bound
‖C(y, r)‖ ≤ c0(y)‖r‖ holds true, a bound on the Lyapunov
function derivative can be obtained as follows

V̇ = εT (−C(y, x2) + C(y, ε)− F −M(y)k0) ε

≤ (c0(y)(‖x2‖+‖ε‖)− λmin(F )− k0λmin(M(y))) ‖ε‖2.
(10)

Next assumption is made in order to eliminate the dependency
on x2 in the right-hand side.

Assumption 2: A known bound is available for the angular
speed, i.e.

‖q̇‖ = ‖x2‖ ≤ vmax

for some known positive number vmax > 0.
Thanks to such bound on the admissible angular velocity,

we can infer the condition

V̇ ≤ (c0(y)(vmax+‖ε‖)− λmin(F )− k0λmin(M(y))) ‖ε‖2
(11)

that enables for the selection of the gain k0. Pick arbitrarily
η > 0 and set

k0 = max
y∈Rn

c0(y)(vmax + η)− λmin(F )

λmin(M(y))
. (12)

Due to this choice, the right-hand side of (11) is negative as
long as the error ε is such that

‖ε‖ < η ≤ k0λmin(M(y)) + λmin(F )− c0(y)vmax

c0(y)
.

Exploiting the bounds on the Lyapunov function, the error
system turns out to be locally exponentially stable with region
of attraction given by

E =

{
ε ∈ Rn : ‖ε‖ < η

√
λ1
λ2

}
. (13)

The above derivations lead to the following statement.
Theorem 1: Consider the manipulator system (5). Let As-

sumptions 1 and 2 hold, and let η > 0 be fixed. Then
the reduced-order observer (6) with linear gain function
k(y) = k0y, where k0 is assigned by (12), provides a locally
exponentially stable estimation error ε = x2−x̂2 with a region
of attraction that contains the set E defined in (13).

Remark 2: It can be easily verified that, for any compact
set K ⊂ E , the convergence rate % of the estimation error is
given by

% = η −
√
λ2/λ1 max

ε∈K
‖ε‖.

Remark 3: A simpler, but more conservative, selection for
the output injection gain k0 can be done by setting

k0 =
c̄0(vmax + η)− λmin(F )

2λ1
,

the latter being obtained by taking, separately, the upper
and lower bounds respectively for c0(y) and λmin(M(y)).
However, selecting a large k0 may lead to undesired effects
due to noisy measurements. Thus, in practice there is a trade-
off between stability properties and estimation performance.

Remark 4: The conditions obtained for the reduced-order
observer design, as well as the stability properties, are equiv-
alent to those found for the full-order observer proposed in [8].
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IV. A SWITCHING LOGIC FOR GAIN SCHEDULING

As shown in [8], when using the observer to implement
an output feedback control with estimated velocities, the
bound on the joint velocity can be automatically guaranteed.
Conversely, when the observer is considered as a standalone,
Assumption 2 is pivotal to guarantee negative definiteness of
the Lyapunov function V (ε). In this section, a switching logic
is proposed to bypass this issue and enable the observer to be
locally asymptotically stable for arbitrary values of the joint
velocity of the robot.

Picking v̄ > 0, let us consider the following decomposition
of the velocity space Rn:

D̄0 = {z ∈ Rn : ‖z‖ ≤ v̄}
D̄r = {z ∈ Rn : rv̄ < ‖z‖ ≤ (r + 1)v̄}, r = 1, 2, . . .

Clearly we have D̄r ∩ D̄` = ∅ for any k 6= ` and

Rn =
⋃
r∈N
D̄r.

The idea is to increase/decrease the observer gain when
the value of velocity ẋ drifts from one region to another.
Increasing the gain allows to keep the negative sign in the
Lyapunov condition V̇ (ε) < 0, while a decrease limits the use
of unnecessary efforts and avoids possible side effects such
as noise amplification. However, two obstacles prevent the
aforementioned strategy to be implemented. The first issue
is that, without any hysteresis logic, when the velocity lies
too close to the boundary between two regions the gain might
repeatedly switch, this providing chattering and deterioration
of performances. The second and major problem is that we do
not measure the velocity (the estimation of it being indeed our
main goal), and thus we cannot have a direct knowledge of
the index k describing the region D̄r where the true velocity
actually lies. Nevertheless, a modified and feasible strategy can
be successfully implemented by making use of the structure
of the region of attraction E in (13) for the error system and
applying a bootstrap argument.

Observe that for initial conditions (x2(0) − x̂2(0)) ∈ E ,
as long as the Lyapunov function derivative V̇ (ε) is negative
definite, the following estimate holds true

max{0, ‖x̂2‖ − η} ≤ ‖x2‖ ≤ ‖x̂2‖+ η. (14)

We can use such lower and upper estimates to define suitable,
and verifiable, switching conditions. With reference to Fig. 1,
pick v̄ > 2η and define the families of closed sets

D+
r = {z ∈ Rn : ‖z‖ ≥ rv̄ − η}
D−r = {z ∈ Rn : ‖z‖ ≤ (r − 1)v̄ + η},

(15)

with r ∈ N. Accordingly, let us define Cr as the closure of the
complementary set

Cr := Rn \ (D+
r ∪ D−r ).

Based on the previous decomposition and similarly to the
principles used, for example, to implement scheduled anti-
windup policies [16], we can introduce a logic state variable
r ∈ N, define the observer with a scheduled gain given by

kr = max
y∈Rn

c0(y)(η + rv̄)− λmin(F )

λmin(M(y))
, (16)

Fig. 1. Illustration of flow and jump sets

and let r evolve according to the hybrid dynamics

ṙ = 0 (x̂2, r) ∈ Cr × {r}
r+ = r + 1 (x̂2, r) ∈ D+

r × {r}
r+ = r − 1 (x̂2, r) ∈ D−r × {r}.

(17)

Following the classical notation used in the context of hybrid
systems [14], the set

⋃
r∈N Cr ×{r} is referred to as the flow

set, whereas
⋃
r∈N(D+

r ∪ D−r ) × {r} is the jump set. Based
on this construction, the following result can be established.

Theorem 2: Consider the manipulator system (5) and let
Assumption 1 hold. Let the velocity x2(t) be such that

lim sup
t→∞

‖x2(t)‖ ≤ ṽ,

for some constant and yet unknown value ṽ > 0. Consider
the reduced-order observer (6) with gain k(y) = kry, where
kr is defined in (16) and the logic state r is governed by the
hybrid dynamics (17). Then, the dynamics of the estimation
error ε = x2−x̂2 is locally asymptotically stable with a region
of attraction containing the set E defined in (13). Furthermore,
there exists a sufficiently large natural number Nṽ ∈ N such
that the logic state is ultimately bounded with

lim sup
t→∞

r(t) ≤ Nṽ.

Proof: Suppose ε(0) ∈ E so that, in particular, ‖ε(0)‖ ≤
η and the bounds (14) hold. Without loss of generality, as-
sume2 that r(0) satisfies ‖x2(0)‖ ≤ r(0)v̄. Then, the bootstrap
argument applies: the derivative of the Lyapunov function
V̇ (ε(0)) in (10) is negative definite, the estimation error ε(t)
remains confined in a ball of radius η and this, in turn, implies
that estimates (14) continue to hold, and that the sets (15)
are well-defined for any t > 0. A correct initialization of
the observer (6) with gain k(y) = kry enhanced by the
hybrid dynamics (16–17) is then enough to guarantee that the
error system is locally asymptotically stable, independently
of a bound on the joint velocity. In fact, since the gain is
scalar, switching does not disrupt stability conditions and, in
particular, the Lyapunov function V (ε, t) defined in (11) is
common for any switched mode kr. Finally, in view of the
upper bound ṽ on the norm of x2(t), there exists a maximum
achievable value for the logic variable r, thus proving also
ultimately boundedness.

2If this is not the case, the hybrid dynamics is such that the logic state r
immediately increases, if needed, up to a value large enough to guarantee that
the gain kr defined in (16) is able to cope with the size of the joint velocity.
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V. SIMULATION RESULTS

To illustrate the performance of the reduced observer, we
consider the model of a two-link planar robot3 described by the
physical parameters in Table I. The initial conditions x1(0) =

TABLE I
PHYSICAL PARAMETERS OF A TWO-LINK ROBOT ARM

mass link 1 10 Kg
mass link 2 20 Kg

length link 1 1 m
length link 2 1.5 m

damping link 1 0.1 Kg/s
damping link 2 0.3 Kg/s

(q1(0) q2(0)) and x2(0) = (q̇1(0), q̇2(0)) for the robot state
are

q1(0) = −2π

3
[rad]

q2(0) =
π

10
[rad]

q̇1(0) = −0.5 [rad/s]

q̇2(0) = 1 [rad/s],

while the observer has been initialized at zero for the sake
of simplicity, i.e., x̂2(0) = (0 0)

T [rad/s]. Three scenarios
have been considered, addressing both the case of open-
loop commands and a regulation problem via dynamic output
feedback control.

Example 1: Open-loop command with bounded velocity.
Let the robot motion be driven by the open-loop torque
command

τ(t) = g(q) +

 cos
t

2
− cos t

 , (18)

which includes a term compensating for gravity. Using the
linear formulation (9), the observer parameters have been
chosen as follows

η = 1 [rad/s], vmax = 2 [rad/s],

with the constant and fixed gain k0 given by (12). This
provides a stability region that contains the ball of unitary
radius, subject to the initial start ‖x2(0)‖ ≤ 1.5 [rad/s].

To better highlight the performance of our reduced-order
design, we report also the results obtained using the full-
order observer in [8]. For the sake of comparison, two cases
have been considered: a) noisy and quantized measurements,
with a quantitazion step ∆q = 7 · 10−4 [rad]; b) model
uncertainties, where the actual masses m1,m2 are increased by
10% with respect to the nominal values used for the observer
design. As illustrated in Figure 2, the reduced-order observer
is characterized by a faster convergence than the full-order
version, even though the former is slightly more sensitive
to noise and quantization errors. This has to be ascribed to
the presence of the direct feedthrough term in (6) and may
be accommodated by preprocessing the system outputs with
a filter. On the other hand, referring to Figure 3, one can
appreciate the intrinstic robustness properties of the reduced-
order observer, which provides a tight convergence in spite of
model uncertainties.

3The links are assumed as thin rods, with center of mass in d = L/2 and
barycentric inertia given by by I = (1/12)mL2.
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Fig. 2. Example 1a): Actual joint velocities (solid) and their estimation under
noisy and quantized measurements using the proposed reduced-order observer
(dashed) or the full-order observer of [8] (dashed-dotted)
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Fig. 3. Example 1b): Actual joint velocities (solid) and their estimation
subject to model uncertainties using the proposed reduced-order observer
(dashed) or the full-order observer of [8] (dashed-dotted)

Example 2: Open-loop command with unbounded velocity.
Consider now the open-loop command

τ(t) = g(q) +

(
cos t

−1 + sin 2t

)
. (19)

Unlike in the previous case, under such torque input the robot
velocity will grow unbounded. Therefore, we need to resort
to the hybrid scheme with the scheduled gain kr proposed
in (16)–(17) in order to guarantee the stability of the observer.
The velocity bound has been fixed at v̄ = 2 to be consistent
with the setup of the first example and, accordingly, the initial
guess r(0) = 1 has been made for the logic state r.

Figure 4 shows the behaviour of the joint positions (top)
and the velocity norms and their bound used to compute the
scheduled observer gain (bottom). As expected, thanks to a
successful initial guess, despite the presence of measurement
noise, the norm of the actual velocity remains bounded by the
estimated velocity norm, and this allows to correctly trigger
the jumps of the logic state r and update the observer gain
accordingly. A tolerance layer has been introduced in the
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Fig. 4. Example 2: Joint positions in open-loop mode (top); actual and
estimated joint velocity norms, with the scheduled bound (bottom)
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Fig. 5. Example 2: Actual joint velocities (solid) and their estimation in
open-loop mode using the proposed reduced-order observer with switching
gain (dot-dashed) and fixed gain (dashed)

conditions triggering the jumps to avoid chattering due to
noise. Figure 5 clearly shows the efficiency of the proposed
velocity estimation technique. After a very short transient the
observer state perfectly match the velocity of the two joints. To
better highlight the advantages of the hybrid scheme (16)-(17),
the results using a reduced-order observer with a fixed high
gain have been also reported. We have intentionally introduced
a high level of noise to show how the use of a switching gain is
beneficial for mitigating the amplification which would occur
with a gain fixed selected based on a worst case scenario.

Example 3: Dynamic output feedback control. Consider
now a scenario in which the robot is controlled by a full state
feedback law for tracking a desired joint trajectory qd(t) that
reaches a constant position q̄ = (π/4 − π/3) at steady state,
i.e., after t = 8 s. Since the robot velocity is not directly
measured, the velocity feedback has been implemented using
the estimation provided by the observer, subject to quantization
and measurement noise on the output quantity y = q. In

particular, the following control law has been fed to the system

τ(t) = M(q(t))(q̈d(t) + Λ(q̇d(t)− x̂2(t)))

+C(q(t), x̂2(t)) (q̇d(t) + Λ(qd(t)− q(t))) + g(q(t))

+KP (qd(t)− q(t)) +KD (q̇d(t)− x̂2(t)) ,

with matrix Λ = 0.5 · I and PD gains KP = diag {40, 60}
and KD = diag {60, 90}. Keeping the observer parameters at
η = 1 [rad/s] and v̄ = 2 [rad/s], the logic state r is again
initialized at r(0) = 1, considering again a tolerance layer.
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Fig. 6. Example 3: Joint positions under dynamic output feedback (top);
actual and estimated joint velocity norms, with the scheduled bound (bottom)
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Fig. 7. Example 3: Actual joint velocities (solid) and their estimation under
dynamic output feedback using the proposed reduced-order observer (dashed)

The simulation results are reported in Figs. 6–7. The re-
covery of the position tracking error for both joints is clearly
shown in Fig. 6 (top). The performance of the reduced-order
observer in estimating the joint velocity is well illustrated in
Fig. 7. Despite the large initial peak of both joint velocities,
the observer is able to perfectly reconstruct the state of the
system after a very short transient (see the zoomed box). This
can be appreciated also in Fig. 6 (bottom), where the update on
the velocity bound and the consistent switching of the observer
gain occur as soon as needed. Once the initial transient is over,
the velocity q̇ is smoothly reduced and eventually converges
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to zero; accordingly, the logic state r switches down to the
least achievable value.

VI. POSSIBLE EXTENSIONS

Considering a nonlinear gain function k(y) in (6), rather
than a scalar and constant gain as in (9), might provide addi-
tional degrees of freedom in the observer design. For instance,
the bound (12) is somewhat conservative and oversized as it is
based on the least achievable eigenvalue for the inertia matrix.
Furthermore, the spectrum of the inertia matrix can have very
large variations as the joint angles range over their admissible
set. We sketch here two possible approaches that could be
pursued for designing a tighter output injection gain, one
devoted to limiting the deformation associated to the inertia
matrix and the other to seeking for a primitive of its inverse.

Deformation reduction: The underlying idea of this strategy
is to minimize the area deformation associated to the linear
mapping M(y), that is making the shape of level sets of the
quadratic form εT

(
M(y)∂k(y)∂y

)
ε as close as possible to a

sphere. To this goal, we can select k(y) = k0K1(y), with
k0 > 0 and K1(y) such that Q(y) =

(
M(y)∂K1(y)

∂y

)
+(

M(y)∂K1(y)
∂y

)T
> 0, and the ratio miny∈Rn λmin(Q(y))

maxy∈Rn λmax(Q(y)) is
maximized (ideally is equal to 1).

Matrix inversion: The idea of the second strategy is based
on the observation that, if ∂k(y)

∂y is chosen as the inverse of
M(y) multiplied by a constant gain, the resulting quadratic
form can be shaped arbitrarily. However, it is well known
that a vector function corresponds to the gradient of a scalar
function only under some rather conservative conditions. Nev-
ertheless, one may attempt to approximate the inverse by
selecting k(y) = k0K1(y) with k0 > 0 and K1(y) such that
∂K1(y)
∂y = M−1(y) +Q(y), where ‖Q(y)‖ � 1/λ2 and λ2 is

defined in (8).

VII. CONCLUSIONS

We addressed the problem of velocity observer design
for robotic manipulators when only position measurements
are available. Taking inspiration from the classical full-order
observer in [8], a reduced-order estimator was developed with
the aim of lowering the computational burden and increasing
the convergence rate. Thanks to the coupling with a hybrid
scheme that automatically adjusts the observer gains, it is
possible also to avoid the requirement of a global bound on
the robot velocity, which is a typical design restriction for this
class of mechanical systems. This enables the application of
the observer also in an open-loop regime, which usually is not
able to guarantee bounded velocities. Numerical simulations
of the observer behaviour in several scenarios support and
validate the theoretical findings. In particular, the reduced-
order observer is characterized by a faster convergence rate
compared to a full order-observer, and by promising robustness
properties, thus making it competitive also against sliding
mode observers. We are currently investigating also the use
of the reduced-order observer to implement robot momentum
filters [17] for model-based collision detection purposes.
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