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Abstract—In this work we adopt a novel formulation of the
distributed parameters recursive filter for discrete-time systems
evolving in L2 spaces to widen the class of systems that can
be processed by a state estimation algorithm. Starting from
a rigorous definition of Kronecker algebra on L2 spaces that
involves both elements and bounded operators of L2, we provide
a computationally efficient solution in the case of linear systems
with multiplicative noises. We illustrate the potential application
of the approach by developing a case-study concerning the
conceptual design of a distributed thermo-couple in the presence
of the Nyquist–Johnson noise.
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I. INTRODUCTION

The optimal filtering problem for finite-dimensional linear
systems affected by Gaussian noises was solved in the seminal
work by Kalman [1] (discrete-time). The following decades
witnessed an astonishing development of several approaches to
the filtering problem of broader classes of dynamical systems
[2], [3]. Distributed parameters or infinite-dimensional systems
attracted much attention and found a early solution in the
infinite-dimensional Kalman-Bucy filter proposed by Falb [4],
that includes distributed parameter systems with bounded inte-
gral operators but it is not suitable for the more interesting case
of partial differential operators. Most of the subsequent efforts
on filtering infinite-dimensional systems that were developed
in the following decades have been focusing on the case of
continuous-time systems (see [5], [6], [7] and the references
therein). We point out the recent work [8] which provide a high
gain nonlinear observer for a class of deterministic quasi-linear
hyperbolic systems with an application to an epidemic model.
The same problem has been tackled by [9] with an application
to flow control. Finally, another interesting approach is the
one of [10], where a Luenberger-type boundary observer via
backstepping argument is employed for a class of time-varying
linear hyperbolic PIDEs. We notice that for the latter works,
the state vector evolve in R.

Instead, only a few recent works take into consideration
the case of sampled-data measurements [11], [12], [13] that is
indeed of great relevance in modern digital applications.
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This work considers linear distributed parameter stochastic
systems with discrete-time dynamics generated by an inte-
gral bounded operator and discrete-time measurements. The
aforementioned setting is well suited to the case when the
integral operator is the semigroup generated by an underlying
continuous-time dynamics and allows to filter continuous-
discrete infinite-dimensional systems, i.e. systems with a
continuous-time dynamics represented through a partial dif-
ferential equation and sampled measurements.

This paper extends our previous work [14] to take into
account nonlinear noise terms in the spirit of the Extended
Kalman Filter. Although in this case the filter equations
do not have a stationary form, we show that an efficient
implementation of the filter is possible. In order to emphasize
the potential impact of the proposed method we develop in
detail the design of a distributed thermo-couple to estimate
the temperature profile of a heated bar from discrete-time
scalar measurements of the voltage difference at the endpoints
when a current flows through it. The problem fits well in
our framework due to the presence of the Nyquist–Johnson
nonlinear noise term in the measurement equation ([15], [16]).

The work is structured as follows. Section II provides
the problem formulation and presents some mathematical
background on the Kronecker algebra in L2 spaces. Section III
presents the estimation theory on Hilbert spaces and introduces
the concept of optimal linear estimate through conditional
expectations and orthogonal projections, providing a discus-
sion and some insights to address the non-Gaussian estimation
problem. Section IV describes the algorithm amenable to cope
with nonlinear noise terms. Finally, in Section V we illustrate
the method on the problem of estimating the temperature
profile of a heated bar from measurements of the voltage
difference at the endpoints.

Notation: We denoteHn = L2(Θ;Rn) the Hilbert spaces
of square integrable functions with respect to the Lebesgue
measure from a domain Θ to Rn. The notation Hi will
also be used for the Hilbert space of functions in Rni , ni
positive integer. Thus, if v ∈ Hn, v(ξ) ∈ Rn for every
ξ ∈ Θ. ‖v‖2H =

∫
Θ
‖v(ξ)‖2dξ < ∞ is the squared norm

of v, where ‖v(ξ)‖ is the standard Euclidean norm. Given
a bounded linear operator A : H1 → H2, we indicate
with κA : Rm × Rm → Rn2×n1 the kernel of A. Given a
probability space (Ω,F , P ), WFH = L2(Ω;F ;H;P ) is the
Hilbert space of square integrable F-measurable functions
with values in H. E[X] ∈ H denotes the expected value
of X ∈ WFH , E[X] =

∫
Ω
X(ω) dP . For X,Y ∈ WFH ,

[X,Y ]WFH =
∫

Ω
[X(ω), Y (ω)]H dP = E[X,Y ]H. IH is the

identity operator in H and In the identity matrix in Rn. For



M ∈ Rm×n, st(M) ∈ Rmn denotes the vertical stack of M ,
and, for v ∈ Rmn, st−1

m (v) ∈ Rm×n is the inverse operation.
Given two vectors or matrices A and B we denote with A⊗B
their Kronecker product and with A[2] = A⊗A the Kronecker
square. Two well known properties used in the paper, that and
hold for matrices or vectors of suitable dimensions, are

(AB)⊗ (CD) = (A⊗ C)(B ⊗D) (1)

(A⊗B) st(C) = st(BCA>). (2)

II. PROBLEM FORMULATION AND PRELIMINARIES

On a probability space (Ω,F , P ), we address the state esti-
mation problem for infinite-dimensional discrete-time systems,
described by:

xk+1(ω) = Axk(ω) + f(xk(ω))nk(ω) (3)
yk(ω) = Cxk(ω) + g(xk(ω))nk(ω), (4)

where the state xk ∈ WFHn , k ≥ 0, that is, xk(ω) ∈ Hn
and xk(.)(ξ) ∈ WFRn . Θ is a compact subset of Rm. The
measurement variable yk is in the Hilbert space WFHq . The
stochastic sequence nk ∈ WFRp is zero-mean and white with
covariance matrix E[nkn

>
k ] = Ip. A : Hn → Hn and C :

Hn −→ Hq are bounded linear operators such that

(Aϕ)(ξ) =

∫
Θ

κA(ξ, ζ)ϕ(ζ)dζ, with ϕ ∈ Hn, ξ ∈ Θ

(Cϕ)(ξ) =

∫
Θ

κC(ξ, ζ)ϕ(ζ)dζ, with ϕ ∈ Hn, ξ ∈ Θ,

where the kernels κA : Rm×Rm → Rn×n, κC : Rm×Rm →
Rq×n satisfy ∫

Θ×Θ

‖κA(ξ, ζ)‖2dξdζ <∞∫
Θ×Θ

‖κC(ξ, ζ)‖2dξdζ <∞.

Moreover, f : Hn → Hn×p, Hn×p = L2(Θ;Rn×p) and g :
Hn → Hq×p are known bounded operators. The state noise
and the output noise are uncorrelated, namely for any z, w ∈
WFHn , we have f(z(.)(ξ))g>(w(.)(ζ)) = 0, ∀ξ, ζ ∈ Θ.

The aim of the optimal filtering problem is to find an
estimate of the state xk, optimal with respect to some criterion,
given the available measurement y0, . . . , yk. In this paper, we
provide an estimation algorithm by using the formalism of the
recent paper [14] with an approximation in the spirit of the
well-known Extended Kalman Filter (EKF). We shall clarify
this point later in Section IV.

A. Preliminary definitions and results on L2 spaces

In this section we introduce a few definitions and results on
the Kronecker algebra in L2 spaces that will be instrumental
in the remainder of the work.

Definition 1: GivenHi,Hj with bases {ei}, {ej} let x ∈ Hi
and y ∈ Hj . We define x� y the element in Hi⊗j such that

(x� y)(ξ, ζ) = x(ξ)⊗ y(ζ), (5)

where x(ξ)⊗ y(ζ) is the standard Kronecker product and

Hi⊗j =
{
z =

∑
i,j

aij(ei ⊗ ej) ∈ L2(Θ2;Rninj )
}

(6)

such that
∑
i,j a

2
ij <∞. �

For x ∈ WFHi and y ∈ WFHj , x � y is the element in
L2(Ω;F ;Hi⊗j ;P ) such that

(x� y)(ω, ξ, ζ) = x(ω, ξ)⊗ y(ω, ζ). (7)

The inner product in Hi⊗j enjoys special properties.
Lemma 1: If x, y ∈ Hi⊗j , x = x1 � x2, y = y1 � y2 then

[x, y]Hi⊗j = [x1, y1]Hi · [x2, y2]Hj . (8)

Thus, ‖x‖2H1⊗2 = ‖x1‖2H1‖x2‖2H2 .
Lemma 1 implies that the norm of x� y is finite whenever

x and y have finite norm. For x ∈ Hn we define x 2 ∈ Hn⊗n

x 2 (ξ, ζ) = (x� x)(ξ, ζ) = x(ξ)⊗ x(ζ). (9)

The operation “�” is bilinear and associative. In order
to derive further properties we introduce an analogue tensor
product among bounded linear operators, that we still denote
by � (the appropriate product shall be clear from the context).

Definition 2: Let M : H1 → H2 and N : H3 → H4 be
two bounded linear operators with kernels κM : Rm×Rm →
Rn2×n1 and κN : Rm × Rm → Rn4×n3 , respectively. Then,
the operator M �N : H1⊗3 → H2⊗4 is defined as

∀z ∈ H1⊗3 : ((M �N)z) (ξ, ζ) =∫
Θ×Θ

(
κM (ξ, s)⊗ κN (ζ, t)

)
z(s, t)ds dt. (10)

Lemma 2: Let x ∈ H1, y ∈ H3 and M : H1 → H2 and
N : H3 → H4 be two bounded linear operators with kernels
κM and κN respectively. Then,

(Mx) � (Ny) = (M �N)(x� y). (11)

Lemma 3: Let Hi be Hilbert spaces for i = 1, 2, 3, M :
H2 → H3 and N : H1 → H2 be two bounded linear operators
with kernel κM and κN , respectively. Then, the composition
M ◦N : H1 → H3 is given by(

(M ◦N)x
)
(ξ) =

∫
Θ

κMN (ξ, η)x(η)dη (12)

with
κMN (ξ, η) =∆

∫
Θ

κM (ξ, s)κN (s, η)ds (13)

Lemma 4: Let M : H2 → H3, N : H1 → H2, P : H5 →
H6, and Q : H4 → H5 be bounded linear operators with
kernels κM , κN , κP , κQ respectively. Then,

(M ◦N) � (P ◦Q) = (M � P ) ◦ (N �Q). (14)

We are interested to Kronecker product between linear oper-
ators when one of the operators is the identity. The following
result descends immediately from the definitions above.

Corollary 1: Let M : H1 → H2 and IH2 be the identity
operator in H2. Then, ∀x ∈ H1, y ∈ H2,

(M � IH2)(x� y) = (Mx) � y, (15)
(IH2 �M)(y � x) = y � (Mx) (16)



Finally, we have the following definition1

Definition 3: Let M : H1 → H2 and IH2 the identity
operator in H2. Then, ∀z ∈ H1⊗2,

((M � IH2)z)(ξ, ζ) =∆
∫

Θ

(κM (ξ, s)⊗ In2
)z(s, ζ) ds (17)

((IH2 �M)z)(ξ, ζ) =∆
∫

Θ

(In2
⊗ κM (ζ, s))z(ξ, s) ds. (18)

Definitions 1, 2 can obviously be used when one of the
Hilbert spaces is replaced by the Euclidean space Rn. This is
useful to express particular cases of (3)–(4), for example when
the available output is finite-dimensional.

III. ESTIMATION THEORY ON HILBERT SPACES

A. Covariance vectors, uncorrelated vectors and projections

We apply the framework introduced above to define the co-
variance vectors of the noise terms. In order to provide an intu-
itive analogy with the linear time-invariant finite-dimensional
case where F ∈ Rn×p we recall that, when E[nk] = 0,
the covariance of the state noise, E[(Fnk)(Fnn)>] = FF>,
can be represented in an equivalent way as E[(Fnk)[2]] =
F [2] · st(Ip) = st(FF>). In the infinite-dimensional case with
multiplicative noise, let Fk(ω) := f(xk(ω)) ∈ Hn×p. Clearly,
Fk ∈ WFHn×p and Fk(ω)nk(ω) ∈ Hn. Thus, E[(Fknk) 2 ] ∈
Hn⊗n. From Lemma 2 we obtain

E[(Fknk) 2 ] = E[(Fk � Fk)n
[2]
k ] = F̄ 2

k st(Ip), (19)

where F̄ 2
k = E[(Fk�Fk)] . The elements F̄ 2

k st(Ip) ∈ Hn⊗n

and Ḡ 2
k st(Ip) ∈ Hq⊗q , with Ḡ 2

k = E[(Gk � Gk)], are
(respectively) the state and measurement noise covariance
vectors. For concision we denote them as Qk = F̄ 2

k st(Ip)

and Rk = Ḡ 2
k st(Ip), with

Qk(ξ, ζ) =E[(Fk(ω)(ξ)⊗ Fk(ω)(ζ))] st(Ip), (20)
Rk(ξ, ζ) =E[(Gk(ω)(ξ)⊗Gk(ω)(ζ))] st(Ip). (21)

The operation “�” can be used to define uncorrelation in
WFH . We recall another definition and a lemma of [14].

Definition 4: Given x ∈ WFH1 and y ∈ WFH2 , we say that x
and y are uncorrelated and write x ⊥ y when

E[x� y] = 0. (22)

Clearly, when x ⊥ y, E[x(ω)(ξ)⊗y(ω)(ζ)] = 0, ∀ξ, ζ ∈ Θ.
Notice that, in analogy with the finite-dimensional case, when
H1 = H2 = Hn then x ⊥ y ⇒ [x, y]WFHn

= 0, but the
converse is true only when n = 1.

Lemma 5: If x ∈ WFH1
, y ∈ WFH2

and x ⊥ y, then Mx ⊥
Ny for any bounded linear operators M , N .
We can use Definition 4 to express in an alternative way that
state and measurement noise in (3)–(4) are uncorrelated.

Corollary 2: The noises Fk(ω)nk(ω), Gk(ω)nk(ω) are
uncorrelated if and only if E[(Fk(ω) �Gk(ω))] st(Ip) = 0.

1(17)–(18) do not descend from Corollary 1. They can be derived by
representing the kernel of IH as a Dirac function. The latter is however not
in L2. To maintain a simple L2 framework we use Definition 3.

Proof. The proof is readily obtained since

E[(Fknk) � (Gknk)] = E[(Fk �Gk)]E[n
[2]
k ]

= E[(Fk �Gk)] st(Ip) = 0. (23)

In our case the structure of the functions f and g ensures that
(23) always holds true. Finally, we recall another definition of
[14] on the projection onto subspaces.

Definition 5: Given x ∈ WFH and a subspace WF1

H of WFH ,
the projection of x onWF1

H , denoted Π[x|WF1

H ], is the unique
vector z ∈ WF1

H such that x− z ⊥ w, ∀w ∈ WF1

H .
As remarked above, it follows that [z, x−z]WFH = 0. Moreover,
if ∀y ∈ WFH , x ⊥ y we write x ⊥ WFH and it follows from
the uniqueness of the projection that Π[x|WFH ] = 0.

B. Optimal linear estimate

The optimal estimate x̂k of xk ∈ WFHn in the mini-
mum variance sense is the conditional expectation with re-
spect to the σ-algebra Fyk generated by the output sequence
Y k = {y0, . . . , yk}, that is, x̂k = E[xk|Fyk ]. The conditional
expectation can be equivalently expressed as the projection
of xk ∈ WFHn on the the subspace of the Fyk -measurable
functions Ω→ Hn, that is, x̂k = Π[xk|W

Fy
k

Hn ].
In the hypothesis that the sequences xk and yk are jointly

Gaussian, the projection of xk onto WF
y
k

Hn is identical to the
projection on the space Lyk of the affine functions of Y k having
value in WF

y
k

Hn .

Lyk = {z ∈ WF
y
k

Hn : z =

k∑
i=0

Kiyi +N, N ∈ Hn}, (24)

where Ki : Hq → Hn are bounded linear operators. We can
then write

x̂k = Π[xk|Lyk]. (25)

When the sequences xk or yk are not Gaussian, the con-
ditional expectation E[xk|Fyk ] does not coincide with (25),
that however provides the best linear unbiased estimator in
the minimum variance sense. In our case, both the state and
output processes are allowed to be non-Gaussian because of
the nonlinear map f and g. Moreover, even in the finite-
dimensional case, i.e. xk ∈ Rn, in the case of non-Gaussian
noises, the conditional expectation is the solution of an infinite
dimensional problem ([17]) that can be solved by numerical
approximate solutions with high computational burden. Thus,
it is essential to provide feasible approximate solutions. For
these reasons, we shall provide an approximation for the
solution of (25) in the spirit of the EKF.

IV. ALGORITHM FOR THE FILTER, THE APPROXIMATED
COVARIANCE VECTORS AND THE GAIN KERNEL

The discrete-time Kalman filter for linear systems on L2

spaces is derived in [14]. Here we propose a sub-optimal
filter for systems with nonlinear noise terms which enlarges
consistently the class of systems that can be processed without
increasing the complexity. We summarize the algorithm for
the computation of the approximated covariance vectors and



the kernel of the distributed Kalman gain. We consider the
classical recursive Kalman-like structure

x̂k(ω) = Ax̂k−1(ω) +Kk (yk(ω)− (C ◦A)x̂k−1(ω)) , (26)

where x̂k is the state estimate and Kk : Hq → Hn
is the Kalman gain operator at time k. If Σ0(ξ, ζ) =∆

E [x0(ξ)⊗ x0(ζ)] is known, Kk and the approximated covari-
ance vectors can be computed by iteratively solving for k ≥ 0

P0 = Σ0 (27)

P pk+1 = A 2Pk + Q̂k (28)

P ok+1 = C 2P pk+1 + R̂k (29)

(Kk+1 � IHq )P ok+1 = (IHn � C)P pk+1 (30)

Pk+1 = P pk+1 − ((Kk+1 ◦ C) � IHn)P pk+1.
(31)

In these integral equations Q̂k = F̂ 2
k st(Ip), R̂k = Ĝ 2

k st(Ip),
F̂k := f(x̂k(ω)) ∈ Hn×p, Ĝk := f(x̂k−1(ω)) ∈ Hq×p

Q̂k(ξ, ζ) =
(
F̂k(ω)(ξ)⊗ F̂k(ω)(ζ)

)
st(Ip), (32)

R̂k(ξ, ζ) =
(
Ĝk(ω)(ξ)⊗ Ĝk(ω)(ζ)

)
st(Ip), . (33)

This corresponds to computing for k ≥ 0, ∀(ξ, ζ) ∈ Θ×Θ,

P pk+1(ξ, ζ) =

∫
Θ×Θ

(κA(ξ, s)⊗ κA(ζ, t))Pk(s, t)ds dt

+ Q̂k(ξ, ζ) (34)

P ok+1(ξ, ζ) =

∫
Θ×Θ

(κC(ξ, s)⊗ κC(ζ, t))P pk+1(s, t)ds dt

+ R̂k(ξ, ζ) (35)∫
Θ

(κKk+1(ξ, s)⊗ Iq)P ok+1(s, ζ) ds =

=

∫
Θ

(In ⊗ κC(ζ, s))P pk+1(ξ, s) ds (36)

Pk+1(ξ, ζ) = P pk+1(ξ, ζ)

−
∫

Θ2

(κKk+1(ξ, t)κC(t, s))⊗ In)P pk+1(s, ζ) dt ds (37)

In the above recursion the difficult step is solving for κKk+1

the integral equation (36) at each k. We notice that, by using
Definition 3, (2) and the symmetry of st−1

n

(
P pk+1

)
, equation

(36) can be written ∀(ξ, ζ) ∈ Θ×Θ:∫
Θ

κKk+1(ξ, s) st−1
q

(
P ok+1(s, ζ)

)
ds

=

∫
Θ

st−1
n

(
P pk+1(ξ, t)

)
κC(ζ, t)> dt. (38)

The case of finite-dimensional output

A common case is that the output is finite dimensional (see
also theoretical motivations in [7]). In this section we obtain
the closed-form solutions of (34)–(37) for this case, where
yk ∈ WFRq , Gk ∈ Rq×p and C is a bounded linear operator,

yk(ω) =

∫
Θ

κC(s)xk(ω, s) ds+Gknk(ω), (39)

with κC(s) ∈ Rq×n. We also notice that the filter gain Kk :
Rq → Hn is such that, for v ∈ Rq and ξ ∈ Θ,

(Kv)(ξ) =

∫
Θ

κK(ξ, s) ds · v = K(ξ)v (40)

with K(ξ) ∈ Rn×q . Although equation (34) is the same as
in the general case, equation (35) for the output innovation
covariance becomes

P ok+1 =

∫
Θ×Θ

(
κC(s)⊗ κC(t)

)
P pk+1(s, t)ds dt+ R̂k. (41)

Thus, by letting

P̃ pk (ξ, ζ) =∆ st−1
n (P pk (ξ, ζ)) (42)

we finally have, from (38), (41)

st−1
q

(
P ok+1

)
=

∫
Θ×Θ

κC(t)P̃ pk+1(s, t)κC(s)> ds dt+ ĜkĜ
>
k

(43)

Kk+1(ξ) =

(∫
Θ

P̃ pk+1(ξ, s)κC(s)> ds
)

·
(∫

Θ×Θ

κC(t)P̃ pk+1(s, t)κC(s)> ds dt+ ĜkĜ
>
k

)−1

(44)

This closed-form formula replaces the integral equation (36).
The last step is the computation of Pk+1 from P pk+1 and Kk+1.
Equation (31) becomes

(((Kk+1 ◦ C) � IHn)P pk+1)(ξ, ζ) (45)

=

∫
Θ

((Kk+1(ξ)κC(s))⊗ In)P pk+1(s, ζ) ds

= st

(∫
Θ

P̃ pk+1(s, ζ)κC(s)> ds ·K>k+1(ξ)

)
(46)

Pk+1(ξ, ζ) = P pk+1(ξ, ζ) (47)

− st

(∫
Θ

P̃ pk+1(s, ζ)κC(s)> ds ·K>k+1(ξ)

)
.

(48)

Summarizing, in the case of finite-dimensional output the
Kalman filter can be computed by iterating the computation
of equations (34), (44), (48) together with (26). It can be
mentioned that when in addition the kernel κC is constant,
i.e. it is a constant matrix of size q × n, equations (44) and
(48) can be further simplified.

Another important case of finite-dimensional output is that
of measurements taken at discrete spatial points,

yk(ω) = colqi=1(Cixk(ω, ξi)), Ci ∈ R1×n. (49)

The theory developed so far does not allow for discrete
observations of this kind, as this would require C to be
unbounded. In practice, however, the problem is easily solved,
as already proposed in the continuous-time case for example
in [18], by considering the components of yk as a linear
function of the weighted average value of the state over a small
spatial neighborhood of the discrete point ξi. This amounts to
a definition of the kernel κC : Hn → Rq that is amenable to
be processed by the filter (26), (34), (44), (48).



V. APPLICATION: DESIGN OF A DISTRIBUTED
THERMO-COUPLE IN THE PRESENCE OF THERMAL NOISE

We illustrate an application of the distributed Kalman Filter
to the conceptual design of a distributed thermo-couple that
solves the problem of estimating the temperature profile of a
bar of length 1 from measurements of the voltage difference
of a current flowing through it.

In order to provide an explicit computation of the underlying
kernels, we consider the heat equation on the interval [0, 1]
with Dirichlet boundary conditions. The functions φm(ξ) =√

2 sin(mπξ), with m = 1, 2, . . . , constitute an orthonormal
basis for L2([0, 1]). Given x = x(t, ξ) we have

∂x

∂t
=
∂2x

∂ξ2
(50)

with Dirichlet boundary conditions x(t, 0) = x(t, 1) = 0. The
solution to (50) with the initial condition

x(0, ξ) = x0(ξ) =

+∞∑
m=1

[φm, x0]φm(ξ) (51)

is given by

x(t, ξ) =

+∞∑
m=1

e−tλm [φm, x0]φm(ξ), (52)

where λm = (mπ)2 [19]. Thus, by the definition of the inner
product, the solution (52) is

x(t, ξ) =

∫ 1

0

+∞∑
m=1

e−tλmφm(ξ)φm(η)x0(η) dη, (53)

and by considering a sequence {tk} with discretization step
tk+1 − tk = ∆ > 0, we can write

x(tk+1, ξ) =

∫ 1

0

+∞∑
m=1

e−∆λmφm(ξ)φm(η)x(tk, η) dη. (54)

Finally, by considering also the external noise term Fnk, we
can write the difference equation in the form of (3) as

xk+1(ξ) =

∫ 1

0

+∞∑
m=1

e−∆λmφm(ξ)φm(η)xk(η) dη + F (ξ)nk,

(55)
where we recognize the kernel of the underlying operator A

κA(ξ, η) =

+∞∑
m=1

e−∆λmφm(ξ)φm(η). (56)

We note that we consider the case in which f does not depend
on the state process, thus f(xk) = F : Rp → Hn.

A current source is applied to the bar and we measure the
voltage difference at the endpoints. As a first approximation,
the measurement y(t) is given by y(t) = I · r(t), I is the
applied current intensity, and r is the resistance of the bar that
depends on the temperature through the equation

r(t) =

∫ 1

0

(β + αx(t, ξ))dξ, (57)
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Fig. 1. Experimental average mean square error at each point (left). Temper-
ature profile x(ξ) of the bar at time t ≈ 7.8 and its estimate x̂(ξ) (right)..
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Fig. 2. Temperature xk(ξ) and its estimate x̂k(ξ) as a function of time, for
ξ = 0.1 (left) and ξ = 0.5 (right).

where α and β are some non-negative coefficients depending
on the bar. For simplicity, in what follows, we assume β = 0.
By setting c = Iα we have

y(t) =

∫ 1

0

c x(t, ξ)dξ. (58)

In practice, measurements are acquired sampled and thus it is
reasonable to consider the discrete-time model associated to
(58). Also, we model the Johnson–Nyquist noise (or thermal
noise), namely the electronic noise generated by the thermal
agitation of the charge carriers inside the bar. In particular, by
considering an infinitesimal portion of the bar d`, the thermal
noise, which depends on the temperature of the bar, is a voltage
dVT described by the following properties

E[dVT (t, ξ)] = 0, (59)

E[(dVT (t, ξ))2] = 4kBx(t, ξ)dr(t, ξ), (60)

with kB the Boltzmann constant. Thus, being dr(t, ξ) =
αx(t, ξ)dξ from (57), we have

E[V 2
T (t)] =

∫ 1

0

4αKBx
2(t, ξ)dξ = 4αKB

∫ 1

0

x2(t, ξ)dξ.

(61)
Furthermore, with the previously defined sequence {tk},

the discretization step ∆, and the described Johnson–Nyquist
noise term, the measurement equation becomes

yk =

∫ 1

0

c xk(ξ)dξ +G

(∫ 1

0

4αKBx
2
k(ξ)dξ

) 1
2

nk (62)

= Cxk +G
(
κ̃ Cx2

k

) 1
2 nk (63)



where κ̃ = 4αKB

c , G a constant matrix such that FG> = 02,
and C is the output map operator with kernel

κC(ξ, η) = κC = c. (64)

We assume nk ∈ R2 to be a Gaussian white noise vector, F =
(f(ξ), 0) and G = (0, g) (s.t. FG> = 0). We suppose that the
bar is affected by a random thermal noise for ξ ∈ [0.4, 0.7].
The state and measurement noise amplitudes are

f(ξ) =

{
0.2 · ξ(ξ − 1), ξ ∈ [0.4, 0.7]

0, ξ /∈ [0.4, 0.7]
, g = 0.1 (65)

The simulation results in this section refer to Ns = 50
simulations, with t ∈ [0, t̄], t̄ = 10, ∆ = 1 · 10−2 (i.e.
t̄/∆ = 1000 time points). The measurement parameters are
I = 5, α = 1, β = 0, that yield c = 5. The initial condition is

x0(ξ) = 0.1 sin(2πξ), ξ ∈ [0, 1]. (66)

The filter equation is given by (26). In the numerical com-
putation we used the first 10 eigenfunctions φm (e.g., m =
1, 2, . . . , 10), and a spatially discretized representation of the
vectors P , P p with N = 102 uniformly distributed points in
the interval [0, 1]. In order to test the numerical accuracy of
the estimate, we show in Fig. 1 (left), the average mean square
error (mse) at each ξ ∈ [0, 1] across simulations. The mse is
computed as

mse(ξ) =
1

Ns(Nt − τ)

Ns∑
i=1

Nt∑
k=τ

(x
(i)
k (ξ)− x̂(i)

k (ξ))2, (67)

where Nt = t̄/∆ = 1000 is the number of time samples,
xik(ξ) and x̂ik(ξ) denote the true and estimated state of i-th
simulation at time tk. τ = 100 has been chosen to exclude
the transient. For illustrative purposes we plot in Fig. 1 (right)
the true and estimated temperature profile at time t ≈ 7.8 for
a single noise realization, and in Fig. 2 the true and estimated
temperature evolution at points ξ = 0.1 and ξ = 0.5 for the
same noise realization.

VI. CONCLUSIONS

This new formulation for filtering systems on Hilbert space
provides an efficient tool for the state estimation of discrete-
time infinite-dimensional linear stochastic systems with mul-
tiplicative noise. The formalism adopted here is promising
for the design of polynomial estimators and regulators that
could better cope with non-Gaussian noise terms ([20], [21]).
Furthermore, other natural extensions of this method could be
the consideration of an underlying packet dropping network
with intermittent or delayed observations/control ([22], [23]).
Finally, another pioneering direction could be the one of
considering the distributed filtering problem in discrete-time
([24]) for infinite-dimensional systems.

2Note that it is enough to set F = col(F̃ , 0) and G = col(0, G̃) with the
appropriate dimensions.
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