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The distinctive characteristics of water, evident in its thermodynamic anomalies,
have implications across disciplines from biology to geophysics. Considered a valid
hypothesis to rationalize its unique properties, a liquid–liquid phase transition in
water below the freezing point, in the so-called supercooled regime, has nowadays been
observed in several molecular dynamics simulations and is being actively researched
experimentally. The hypothesis of ferroelectric phase transition in supercooled water
can be traced back to 1977, due to Stillinger. In this work, we highlight intriguing and
far-reaching implications of water: The ferroelectric and liquid–liquid phase transitions
can be designed as two facets of the same underlying phenomenon. Our results are
based on the analysis of extensive molecular dynamics simulations and are explained
in the context of a classical density functional theory in mean-field approximation
valid for a polar liquid, where dipolar interaction is treated perturbatively. The theory
underpins the potential role of ferroelectricity in promoting the liquid–liquid phase
transition, being the density-polarization coupling inherent in the dipolar interaction
potential. The existence of ferroelectric order in supercooled low-density liquid water
is confirmed by the observation in molecular dynamics simulations of collective modes
in space-time polarization correlation functions, traceable to spontaneous breaking of
continuous rotational symmetry. Our work sheds light on water’s supercooled behavior
and opens the door to experimental investigations of the static and dynamic behavior
of water’s polarization.
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The identification of equilibrium water’s thermodynamic anomalies, notably density (�)
maximum at 277 K, compressibility, and specific heat minima around 310 K and 280 K,
respectively (1), has immediately sparked broad scientific interest. A first-order liquid–
liquid phase transition (LLPT) between a high-density liquid (HDL) and a low-density
liquid (LDL) in the supercooled regime was proposed (2) to explain equilibrium water’s
anomalies and polyamorphism (3). The first observation of HDL and LDL water in
molecular dynamics (MD) simulations is reported in ref. 2. Recently, extensive MD
simulations in realistic (4), as well as ab initio neural network (5), models of water
have clearly supported the first-order LLPT existence. The first-order LLPT line ends
at a second-order critical point (CP). Despite experimental hints (6), direct evidence is
challenging due to water’s crystallization tendency near the MD simulations-predicted
CP. The Widom line (WL) (7), located in the pressure–temperature thermodynamic
plane (p, T ) region above CP but yet in the supercooled state, has been observed
via both MD simulations (7) and experiments (8). Crossing the WL from high T ,
water transforms smoothly from HDL-like to LDL-like configurations (7, 8), while the
isothermal compressibility (KT ) reaches a local maximum (9). Beyond �, different order
parameters have been proposed to characterize the LLPT and elucidate its physical origin,
mostly based on local structure geometry (10–12). Recent insights, furthermore, indicate
that varying degrees of topological order of hydrogen-bond network can distinguish
HDL from LDL (13).

The hypothesis of a ferroelectric phase transition in supercooled water stems from
a 1977 proposal by Stillinger (14), following the observation of proton ordering in
certain ice polymorphs (15). During the same years, measurements of the dielectric
constant of supercooled water emulsions at ambient p down to T = 238 K (16, 17)
revealed an increase in dielectric constant as T decreases. Ref. 17 emphasized that
this trend aligns with divergence at 228 K, close to the WL (8, 9), albeit with a
rather small critical exponent. Although the idea persisted over the years—refs. 18
and 19 explore the potential ferroelectricity of equilibrium water—the connection
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between ferroelectricity and LLPT in supercooled water was
not examined. A series of papers (20–22) deal with modeling
the free energy of supercooled water in light of a possible
ferroelectric phase transition near the WL. The ferroelectric
and the liquid–liquid phase transitions were, however, always
considered as two distinct and concomitant phenomena. By
comparing the expression of the free energy presented in ref.
20 with the one provided in Eq. 3, it becomes clear that
the former lacks the density-polarization coupling term, thus
undermining the foundational premise to relate ferroelectric and
LLPT. In ref. 22, for example, supercooled water was assumed
to be a mixture of HDL and LDL, with only LDL presumed
to undergo a ferroelectric phase transition. As further support
of this, the hypothesis that a ferroelectric phase transition could
also occur at the first-order LLPT line has never been considered.
Beyond ice polymorphs (15), incipient ferroelectricity has been
observed in confined water (23). Interestingly, electrofreezing of
water at ambient conditions was observed recently by ab initio
MD simulations, highlighting the existence of an amorphous
ferroelectric ice (24). On the other hand, dielectric measurements
reveal distinct differences in the dielectric properties of high-
and low-density amorphous ices (HDA/LDA) (25). Extrapolated
from ref. 25, LDA and HDA dielectric constant is, respectively,
∼10 at T ∼ 130 K and P = 4,000 bars, and ∼130 at same T
and P = 6,000 bars.

Reanalyzing the water MD simulations of ref. 4, a distinct cor-
relation between � and total polarization magnitude (P) emerges:
While HDL retains paraelectric characteristics, the trend of LDL
polarization suggests a ferroelectric character, as shown in Fig. 1.
A qualitatively similar result was obtained recently in ref. 26,
where simulations based on ab initio deep neural-network force
field are presented. Thereby this result is resilient to changes in
the MD simulation’s potential and water model. The persistence
of the result when moving from an ab initio deep neural-network

force field, which includes molecular polarizability, to empirical
potentials with rigid nonpolarizable molecules, indicates that the
primary effect is due to the orientation of molecular dipoles
rather than molecular polarizability. This provides a more solid
foundation for our subsequent developments. Though it clearly
shows the existence of a correlation between P and �, this
result does not demonstrate what is the role of P in the
LLPT. Since the dipolar degrees of freedom drawing P, though
coupled to positional degrees of freedom, are governed by a
different interaction potential, occurrence that distinguishes P
from other proposed order parameters (10–12), the hypothesis
can be advanced that P plays an active role, different from that
of �, in the LLPT. An analogy akin to that of ferroeleastic
phase transition in crystals (27, 28) or liquid crystals (29) can be
envisioned. On this trail, we first obtain from MD simulations
the P-� phase diagram in the (p, T ) plane, second, starting from
the microscopic interaction potential and treating the dipole in-
teraction perturbatively, we develop a classical density functional
theory (DFT) in a mean-field approximation. Unlike previous
treatments, such as the notable examples in the Stockmayer fluid
(30), our theory uniquely features the emergence of coupling
between P, the order parameter, and �, in the free energy,
stemming directly from the dependence of the dipolar interaction
potential from the positional degrees of freedom. Interestingly,
ref. 31 proposes that the coupling between P and � fluctuations
can explain some of the nonlocal dielectric properties of water.
However, it should be kept in mind that we are dealing with
their macroscopic counterparts here, and this coupling cannot
explain the emergence of a connection between ferroelectricity
and LLPT. Our developments aim rationalizing the LLPT in
water, modeled as a polar liquid. It does not exclude that different
systems or different water models with different microscopic
interactions (32) could lead to the same phenomenology. A
similar DFT approach could, in these cases, be applied.

Fig. 1. Temporal evolution of � (Top) P (Middle), and Pi (Bottom) across supercooled water in LDL (Left), near CP (center), and in HDL (Right) as obtained from
MD simulations, suggesting paraelectric and ferroelectric character for HDL and LDL, respectively. It is P̄ = Nd. The CP for TIP4P/Ice model has been evaluated
(4) to be (p̄c = 1,725 bar, T̄c = 188.6 K).
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1. Results

1.1. Ferroelectric Character of the LLPT in Supercooled Water.
Fig. 1 shows the temporal evolution of P, polarization com-
ponents along the three spatial directions (Pi) and � obtained
by reanalyzing extensive MD simulations of TIP4P/Ice water
lasting up to 40 μs of ref. 4. A clear correlation emerges between
P, Pi, and � trends. MD simulations employed isothermal–
isobaric (NpT) ensemble with N = 1,000 molecules. For
additional details on MD simulations and analysis, refer to
Sections 3.1 and 3.2 and ref. 4. In the LDL phase, all Pi’s
maintain a nonzero value, while in the HDL phase, they show
large fluctuations around a zero mean value. At CP = (p̄c , T̄c),
where the temporal series shows the characteristic bimodal
behavior, the � fluctuation between LDL and HDL coincides
with a transition in P and Pi’s trend. Analyses covering several

(p, T ) points are in SI Appendix, section I. While there is never
spontaneous magnetization in a finite system, the ferroelectric
phase exhibits a nonzero 〈Pi〉, as in Fig. 1, as long as the box
size L of MD simulations exceeds the correlation length of the
order parameter. The brackets 〈 〉 denote ensemble average.
Nevertheless, obtaining a full characterization of the polarization
probability distribution is challenging because of spatial domains
with varying polarization and orientation transitions. The fourth
order cumulant of the polarization probability distribution, so-
called Binder cumulant UL = 1 − 1

3
〈P4
〉

〈P2〉2
, has emerged as a

powerful tool for discerning between paraelectric and ferroelectric
phases (33–35). We derived UL, 〈�〉, the dielectric constant (�0),
and KT from MD simulations, as detailed in Section 3.2. It
is �0 = 1 + � , where � is the electric susceptibility. These
quantities are shown in Fig. 2, supporting that the LLPT and the

A

B

Fig. 2. (A) The figure depicts UL, �, �0, and KT at different points in the (T, p) plane obtained from MD simulations. Color scale represents the quantities
value, symbol size is proportional to the associated error, obtained through block averaging. Full and dashed black lines serve as visual guidance, marking the
first-order LLPT and WL, respectively. The diamond symbol marks CP. (B) UL, 〈�〉, �0, and KT as functions of T along constant-p lines intersecting the WL (P = 0
bar, 1,000 bar, Left) and the first-order LLPT line (P = 2,500 bar, Right). The values of each quantity at CP are marked by a diamond symbol. A gradual change is
observed in UL and � when crossing the WL, while a sudden shift in UL occurs at the first-order LLPT line.
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behavior at WL in supercooled water involves the dipolar degrees
of freedom, as discussed below. i) UL passes from about 4/9,
indicative of a paraelectric phase (34), to about 2/3, indicative
of a ferroelectric phase (33, 34), crossing from high-T both the
WL (smooth transition) and the first-order LLPT line (sharp
transition). ii) 〈�〉 gradually decreases as it crosses the WL from
high-T , transitioning from typical values of HDL to LDL. The
transitions of 〈�〉 and UL co-occur. The �-transition expected
when crossing the first-order LLPT line is obscured by the 〈�〉-
variation with T at this p. iii) Crossing the WL or the LLPT
line from low-T , �0 increases to reach its maximum along the
WL and the first-order LLPT line. iv) KT exhibits a maximum
along the WL and the first-order LLPT line. v) Along the WL,
the maximum value of KT increases as it approaches p̄c , where it
reaches a large value consistent with a divergence. Notably, unlike
KT , the peak value of �0, still reaching large values, remains almost
unchanged along the WL and at CP. Considering that KT and �0
are related to the second derivative of the free energy with respect
to � and P, respectively, this result suggests that the features of the
free energy as a function of P or � differ. Fig. 1 shows the existence
of a correlation between � and P. However, the results in points
i)–v) provide additional insights. If P were simply coupled to �
by a linear relationship, P and � could be used interchangeably
as the order parameter of the LLPT. However, this is not the case
here because if it were, KT and � would exhibit the same trend.

In SI Appendix, section II, the local spatial distribution of
dipoles in LDL and HDL is presented. A complete characteri-
zation is beyond the scope of this manuscript, which focuses on
the emergence of spontaneous macroscopic polarization in LDL.
However, the potential appearance in LDL of a local dipolar
order resembling a chiral pattern, in line with the molecular
chiral order observed in ref. 36, warrants further investigation. To
gain further and complementary insights into microscopic spatial
distribution of masses and dipoles, SI Appendix, section III shows
the wavevector (k)-dependent transverse and longitudinal to k
static dielectric functions, respectively �T k̂(k) and �Lk̂(k), and the
static structure factor, S(k), in the HDL, LDL, and close to CP.
k = kk̂ is the Fourier conjugate variable of the space variable r. In
this text, bold quantities are vectors, the corresponding nonbold
symbols are their magnitudes, and those with a circumflex accent
are unit vectors. Averages have been taken over k̂, as for all the
quantities introduced in the following. Details are in Section 3.2.
The figure in SI Appendix, section III reveals divergences followed
by negative �L values, akin to overscreening phenomena (37, 38).
Interestingly, in ref. 31, water’s overscreening was attributed to
�-P fluctuations coupling.

1.2. A Classical DFT for the Ferroelectric LLPT. In one-
component polar liquid, composed of nonpolarizable molecules,
the number density of particles at the point r having the unit
vector d̂ as dipole orientation is

�̃(r,d̂) =
N∑

i=1
�(d̂ −d̂ i)�(r− ri) = �(r)�(Ω, r), [1]

where ri and d̂i are, respectively, the center of mass position
vector and dipole orientation of the i-th particle. �(r) and
�(r,Ω) are, respectively, the particle number density without
specified dipole orientation and the probability distribution of
dipole orientation at point r. Ω is the solid angle element.
As detailed in SI Appendix, section IV, introducing molecular
polarizability does not qualitatively affect the DFT obtained

for nonpolarizable molecules. To parameterize the Helmholtz
free energy in terms of �̃(r), we decompose it into two parts:
F0, the free energy of a reference system devoid of dipole
interaction, and the perturbative term F , which incorporates
dipole interaction. The structure of most liquids, especially at
high density, is indeed primarily influenced by short-range hard-
core pair interaction (39). The perturbative effect will be treated
via mean-field approximation, excluding from F contributions
of �̃(r) correlations (39). Assumption of spatial homogeneity fixes
�(r) = �. We furthermore use for �(Ω) the simple ansatz

�(Ω, r) = �(Ω) =
1 + �d̂

4�
, [2]

which can identify paraelectric (� = 0) and ferroelectric (� 6=
0, with total polarization vector P ∝ �) states, as detailed in
Section 3.3. To facilitate comparison with MD simulations, the
NpT ensemble (39) is used. The Gibbs free energy derived from
the DFT, with detailed derivation in Section 3.3, is

G = 
0(V̄ ) +
a
2
(T − Tc)P2 +

B
4

P4 +
B′

6
P6 +

M
2
ΔV 2

− p�ΔVP2 + pΔV − E · P, [3]

where a, B, B′, M , and � are positive constants, V̄ is the
equilibrium volume of the reference system, 
0 is its Gibbs free
energy, and ΔV is the difference between the system’s volume
(V ) and V̄ . E is the external electric field. The potential in
Eq. 3 belongs to the class of potentials leading to tricritical points
(28, 40), mirroring those of ferroelastic or magnetoelastic crystals
(27, 28), where the deformation tensor replaces p. Notably, the
free energy expression in Eq. 3 and the signs of its coefficients
are derived from DFT rather than being arbitrarily chosen to
align with the MD simulation results. The key points in the
DFT developments, detailed in Section 3.3 are i) the positional
disorder of the liquid which, combined with the microscopic
expression of the dipolar potential interaction, leads to the
potential cancellation of the coefficient of the P2 term in Eq. 3;
and ii) the �-Taylor expansion of F around the density of the
reference system �̄, which, given the characteristics of the dipolar
interaction potential, yields the �−P coupling term. The dipolar
interaction potential in Eq. 26 depends indeed on the vector
distance between two dipoles in the liquid. This introduces a
dependence of F on � and, through the �-Taylor expansion,
leads to the �−P (or V −P in the NpT ensemble) coupling term.
Note that the sign of the coefficient in front of the coupling term
is also determined, beyond the features of the dipolar potential
interaction, by positional disorder. The equilibrium values of P
and ΔV , Peq and ΔV eq, are determined through a variational
principle,

∂G
∂P

∣∣∣∣
P=Peq

= a(T − Tc)Peq + BP3
eq + B′P5

eq

− 2p�PeqΔVeq − E = 0; [4]

∂G
∂ΔV

∣∣∣∣
ΔV =ΔVeq

= MΔVeq − p�P2
eq + p = 0. [5]

It follows
ΔVeq = −

p
M

(1− �P2
eq). [6]

The first term in Eq. 6 represents the liquid’s response to applied
p, leading to compression, indicated by a negative contribution
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to ΔVeq. The second term shows that at a given p, the system’s
equilibrium volume Veq = V̄ + ΔVeq is larger when Peq 6= 0
than when Peq = 0. Consequently, a ferroelectric phase exhibits
lower density than a paraelectric phase. Eq. 6 formalizes the
presence of a ferroelectric LDL phase and a paraelectric HDL.
The sign of the coefficient of the V − P coupling term in
Eq. 3, which is ultimately determined by positional disorder
as discussed in Section 3.3, is essential. It establishes that the
HDL is paraelectric and the LDL is ferroelectric, rather than the
reverse. It is also noteworthy that the relationship between ΔV
and P established by Eq. 6 is not linear but quadratic. Beyond the
detailed calculations presented in Section 3.4, this fact ultimately
explains the different behaviors of KT and �0 along the WL.
It demonstrates that, according to DFT and consistently with
MD simulations discussed in Section 1.1, P and � (or V in
the NpT ensemble) are not interchangeable order parameters.
We are interested in the possible appearance of spontaneous
polarization for E = 0. The basic mechanisms underlying the
phase transitions associated with the free energy in Eq. 3 are
briefly discussed below. The vanishing of the coefficient in front
of the P2 term induces a ferroelectric transition. The emergence
of spontaneous polarization then leads, via Eq. 6, to a LLPT. By
inserting Eq. 6, which directly results from the V − P coupling,
into Eq. 3, it becomes evident that the coefficient in front of
the P4 term can also vanish, as explicitly shown in Section 3.4.
The simultaneous cancellation of the coefficients of the P2 and
P4 terms gives rise to the existence of the tricritical point, whose
occurrence remains thus linked to the existence of the V − P
coupling. The P-� phase diagram in the (p, T ) plane associated
with Eq. 3 is obtained by analyzing the stability of solutions,
Eqs. 4 and 5, set by the conditions � , KT 〉0. See Section 3.4
and SI Appendix, section V for detailed discussions. A schematic
representation is shown in Fig. 3, with comments below.

1. Ferroelectric (first-order) LLPT. For constant p〉p̄c at T =
T̂c(p), a first-order ferroelectric LLPT is predicted. The
following points support evidence for the first-order nature.
i) By lowering T until T̂ c, P switches abruptly from Peq = 0
to Peq 6= 0 (see Table 1 in Section 3.4), and consequently
Veq = V̄ − p

M shifts to Veq = V̄ − p
M (1 − �P2

eq). ii)

Fig. 3. Pictorial representation of the P−� phase diagram of the polar liquid
in the (p,T) plane obtained from mean-field DFT. CP is marked by a diamond
symbol. For p > p̄c a first-order LLPT is predicted at T = T̂c(p), represented
by a full black line. For p < p̄c a second-order ferroelectric LLPT is predicted
at T = T∗c (p), marked by a dashed blue line. For T < T̄c the theory predict
a ferroelectric phase. A smooth transition in the P value is predicted upon
crossing the line P = p̄c . The two ferroelectric phases with different P values
are distinguished in the figure by varying degrees of texture’s line density.

There exists a T -range above and below T̂c , where the
ferroelectric LDL and the paraelectric HDL, respectively, are
metastable (see Table 1 in Section 3.4). iii) Along the curve
T = T̂c(p), the two phases are both stable and coexist. iv) At
T = T̂c(p), neither the � nor KT diverges, but both reach
a local maximum. v) At (T̄c , p̄c), the end point of the first-
order phase transition, the P- and V -difference between the
two phases goes to zero, while � and KT diverge. Comparing
with MD simulations in Section 1.1 identifies T = T̂c(p) as
the first-order LLPT line.

2. Ferroelectric (second-order) continuous LLPT. At constant
p < p̄c , the theory predicts a second-order ferroelectric phase
transition at T = T ∗c (p). The order parameter P increases
continuously from zero for T < T ∗c (see Table 2 in Section
3.4). V decreases continuously according to Eq. 6, indicating
a simultaneous continuous �-transition. At T = T ∗c (p), �
diverges. Relevantly, however, the theory predicts KT reaches
a maximum rather than diverging at T ∗c . Along the curve
T = T ∗c (p), KT increases with increasing p until it diverges at
p̄c . Details are in Section 3.4. Though a finite scaling analysis
is required to confirm �0 divergence in MD simulations,
the theory accurately predicts the KT , UL, and 〈�〉 trend
at the WL. This consistency supports identifying the WL
with the curve T = T ∗c (p).

3. Smooth polarization magnitude phase transition. For T < T̄c ,
the system exhibits a ferroelectric phase. However, crossing the
line p = p̄c at a given T < T̄c with increasing p, P gradually
increases and V decreases (refer to Tables 1 and 2 in Section
3.4). No singular behavior occurs in � or KT . Observing
this transition in MD simulations is challenging due to the
overlapping changes in ΔV and V̄ when p increases at fixed
T . Also, measuring P in MD simulations is demanding,
as a nonzero average value is strictly only apparent in the
macroscopic limit. Thus, we have not pursued this.

In the proposed theoretical framework, the CP in supercooled
water is identified as a tricritical point, leading to critical behavior
distinct from that of an ordinary second-order phase transition
in the three-dimensional Ising model. According to mean-field
theory, a second-order phase transition occurs at the tricritical
point, but with distinctive critical exponents � and �, which
describe the behavior of the order parameter as T approaches
the critical T from below and for infinitesimal changes in the
conjugate field. For a tricritical point, � = 1/4 and � = 5,
while for an ordinary second-order phase transition, � = 1/2
and � = 3 (28). Experimental or numerical determination of
these critical exponents at CP could validate the tricritical phase
diagram scenario. Note that the order parameter referred to here
is P, for which the coefficients of the second- and fourth-order
terms in the G expansion vanish at the triciritcal point. Since
from Eq. 6, Δ� is proportional to P2, the behavior of Δ� near
CP as T → T̄−c , in the tricritical phase diagram scenario would
result in � = 1/2, matching that of the three-dimensional Ising
model. Interestingly, monitoring the dependence of P on a weak
electric field E at CP to determine � could help validate the
tricritical phase diagram scenario.

Our elementary theory is not conceived to realistically deter-
mine the critical T ’s and p’s as these may depend on microscopic
details, as well as molecular polarizability, that it overlooks.
Instead, it demonstrates that the P-based tricritical point scenario
is qualitatively supported by a polar liquid, aiming to identify
the key mechanisms underlying the LLPT in water. A similar
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rationale supports using the classical TIP4P/ice potential in MD
simulations.

1.3. Ferroelectric Order in LDL. A ferroelectric phase is charac-
terized by the spontaneous breaking of the continuous rotational
symmetry group O(3), leading to distinctive behaviors in both
the static and dynamic correlation functions of P-fluctuations
in the direction transverse and parallel to p̂ = Peq/Peq, �PT p̂
and �PLp̂, respectively. A detailed discussion is presented in
SI Appendix, section VI. If the identification of LDL as a
ferroelectric phase is correct, the correlation functions obtained
by MD simulations in LDL will thus uncover such features.
The following analysis aims to verify this. In Section 3.2, it is
described how the correlation functions are obtained from MD
simulations. One of the main signs of spontaneous rotational
symmetry breaking is the divergence of the k-dependent static
susceptibility of the so-called symmetry-restoring variable (41),
that is �PT p̂ in the case of ferroelectricity, as k−2 in the macro-
scopic limit k → 0. The static susceptibility of the transverse
to p̂ polarization fluctuations, �T p̂(k), which represents the
space correlation function of �PT p̂ at time t = 0, is thus
expected to have this trend. Furthermore, so-called Goldstone
modes (41) emerge in CT p̂T p̂(k, t), the wavevector and time-
dependent correlation function of �PT p̂, representing its space
and time correlations. Goldstone modes are propagating, leading
to oscillations in time in CT p̂T p̂(k, t), with a characteristic fre-
quency that depends on k, meaning the dispersion relation is not
constant. Detailed analysis is presented in SI Appendix, section
VI in the framework of the Mori–Zwanzig memory function
formalism (41).

Fluctuations in p̂-longitudinal polarization, �PLp̂, can arise
from P-fluctuations, �P, whose dynamics is empirically described
by the Landau–Khalatnikov–Tani equation (42, 43). This
equation predicts collective modes, also known as Higgs-like
modes (44), in the correlation function CLp̂Lp̂(k, t) of �PLp̂,
exhibiting propagating behavior with a linear dispersion relation
at moderately small k values (42), changing to constant as k→ 0.
Goldstone-like and Higgs-like modes can coexists (44).

Unlike what might be expected, a coupling between �PT p̂
and �PLp̂ is possible. It can arise from the constant-modulus
principle (40), which establish that lowest-order fluctuations

satisfy the condition �P2 = 2Peq�PLp̂ + �P2
T p̂ = 0 (40). The

onset of a polarization fluctuation in the direction transverse to
p̂ will induce a fluctuation in the direction longitudinal to p̂ to
preserve P constant, and vice versa. It has relevant implications
on the static susceptibilities, leading to a divergence also on the
static p̂-longitudinal polarization susceptibility, �Lp̂, for k → 0
but as k−1 (40). Concerning dynamical correlation functions,
propagating Goldstone modes are still present in CT p̂T p̂(k, t)
but they are not induced in CLp̂Lp̂(k, t) by the coupling between
�PT p̂ and PLp̂ established by the constant-modulus principle.
Instead, holding the constant-modulus principle, spontaneous
fluctuations in P generate a collective mode both in CLp̂Lp̂(k, t)
and CT p̂T p̂(k, t), with the same dispersion relation. Further
details are provided in SI Appendix, section VI. Finally, if a
collective mode emerges in CLp̂Lp̂(r, t), it corresponds to a mode
in the density correlation function C��(k, t) due to the coupling
between P and �, see Eq. 3.

The predictions above find qualitative confirmation in the
analysis of MD simulations. Specifically, i) both �T p̂ and �Lp̂
in Panel A of Fig. 4 show a significant enhancement for
k → 0, approximately following k−2 and k−1 law, respectively.
ii) �PLp̂, �P2

T p̂ and �� correlate, as emphasized in Panel B of
Fig. 4. iii) Fig. 5 shows that propagating modes in CT p̂T p̂(k, t),
CLp̂Lp̂(k, t) and C��(k, t), reflecting in a their oscillatory behavior,
are present. Oscillations are significantly reduced in CPP(k, t),
showing that the constant-modulus principle is approximately
satisfied. The presence of a propagating mode in both CT p̂T p̂(k, t)
and CLp̂Lp̂(k, t), from a preliminary assessment, having in both
correlation functions the same dispersion relation, linear in k,
suggests that the observed propagating mode may originate from
fluctuations in P. Since polarization is conserved, the dispersion
relation of Goldstone modes is indeed expected to follow the k2

law, at least in the k → 0 limit, as in SI Appendix, section VI.
However, our qualitative analysis and the k-range accessible with
current MD simulations do not allow us to exclude the possibility
of coexistence between Higgs-like and Goldstone-like modes. As
shown in SI Appendix, section VII, where different points of the
(T , p) plane are analyzed, in HDL propagating modes vanish,
and correlation functions decay to zero on a timescale much
shorter than μs.

A B

Fig. 4. (A) Static susceptibilities �T p̂(Lp̂)(k), in LDL as a function of k. Both �T p̂ and �Lp̂ show significant enhancement as k → 0, following trends approximately
proportional to k−2 and k−1, respectively, as indicated by the dashed lines. This behavior is consistent with predictions for a ferroelectric phase characterized
by the spontaneous breaking of the O(3) symmetry group. (B) The Upper graph shows the static correlation between �PLp̂ and �P2

T p̂, represented by �T p̂Lp̂, over

�Lp̂(k) in the LDL phase. The Lower graph depicts the static correlation between �� and �PLp̂, ��Lp̂(k) over S(k) in LDL. A correlation between �PLp̂, �P2
T p̂ and ��

emerges, in particular, at moderately small ks.
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Fig. 5. From Left to Right: CT p̂T p̂(k, t), CLp̂Lp̂(k, t), CPP(k, t), C��(k, t) at different k values. All quantities are normalized to their value at t = 0, being C̄(k, t) =

C(k, t)/C(k,0). The oscillatory behavior inCLp̂Lp̂(k, t) andCT p̂T p̂(k, t), with characteristic frequency varying with k, indicates the presence of a collective propagating
mode, consistent with the existence of a ferroelectric phase leading to the spontaneous breaking of the O(3) symmetry group. Oscillations are significantly
reduced in CPP(k, t), suggesting that the constant modulus principle is approximately satisfied. The appearance of a propagating collective mode in C��(k, t)
highlights an existing correlation between P and �, as also emphasized in Panel B of Fig. 4.

2. Conclusions

The analysis of MD simulations from ref. 4 alongside the
construction of a classical DFT for polar liquids under mean-
field approximation highlighted the role of dipolar degrees of
freedom in the first-order LLPT and in the behavior around
the WL. Consistently with a second-order ferroelectric phase
transition, the theory predicts a � divergence at the WL. A finite-
size scaling analysis is needed to confirm the divergence of � in
MD simulations. The mean-field treatment proposed here is not
expected, however, to describe the real critical exponents (17)
properly. Remarkably, it was recently shown that anharmonicity
in the Gibbs free energy, akin to Eq. 3, in the ferroelectric
phase can lead to P fluctuations with a nonzero ensemble
average. These fluctuations could reduce P and, consequently,
suppress the divergence of � . Another hypothesis, which might
explain the possible lack of � divergence, is the occurrence
of an improper ferroelectric phase transition (27), where the
order parameter has multiple components, and the low-T phase
exhibits pyroelectric properties. An interesting choice for the
order parameter components could be classifiers of topological
order degree, introduced in ref. 13. The lower entanglement of
the hydrogen-bond network in LDL compared to HDL (13)
could favor dipole alignment. Ref. 45 suggested a two-order-
parameter description for supercooled liquids.

This study disregards the potential impact of nuclear quantum
effects on the LLPT in supercooled water. As discussed in
refs. 46 and 47, nuclear quantum effects can manifest in the
reorentational dynamics of water and in the strength of hydrogen
bond network, possibly being relevant for realistically locating the
critical lines and CP in the (p, T ) plane, providing more reliable
guidance for laboratory experiments. Since, furthermore, nuclear
quantum effects have been observed in proton dynamics of water

under electric field (48), an interesting question arising is whether
quantum fluctuations might reduce the ferroelectric order in the
LDL and smooth the classically predicted divergence of � at
the WL, giving rise to phenomena of incipient ferroelectricity.
A comparative finite-size scaling analysis between quantum and
classical MD simulations of � at the WL, in particular at high p’s
near CP, where quantum fluctuations are expected to impact the
critical behavior (49, 50), could shed light on this point. Nuclear
quantum effects can impact also the critical exponents (49).

Our analysis suggests that experimental validation of the LLPT
in water can involve analyzing dielectric properties. It can be,
furthermore, investigated whether an electric field can induce
LLPT in water (51), and its relationship with the p and T -
induced LLPT analyzed here.

Since Pauling in 1935, attributing residual entropy in hexag-
onal ice to configurational proton disorder (52), the concept
of frustration and disorder in dipole-lattice models of ice (53)
was introduced. It would be intriguing to explore whether
positional and dipolar orders compete. A phase featuring dipolar
order and structural disorder in LDL might correspond to
one with structural order and dipolar disorder in hexagonal
ice. This presumption is supported by the observation that
the vanishing of the P2 term in the free energy, as derived
from our DFT developments, results from positional disorder.
Finally, an alternative perspective worth considering is a glass
transition in the dipolar degrees of freedom, leading to the
LDL phase. This aligns with observations that UL in systems
with quenched spin disorder is comparable to that with ordered
spins (54). Nevertheless, possible existence of residual order
must be considered, given the nonzero value of Pi observed in
MD simulations. If a maximum rather than a divergence were
confirmed in � , it would further bolster this idea. The observed
propagating collective modes in the polarization correlation
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functions may be linked to the breakdown of replica symmetry,
possibly accompanying the dipole glass transition (55).

3. Materials and Methods
3.1. MD Simulations of TIP4P/Ice Water. The MD simulations analyzed here
are the same of ref. 4, where further details can be found. The MD simulations,
performed with GROMACS, employed the classical TIP4P/Ice water model (56)
withN = 1,000 molecules in NpT ensemble, using a time-step of 2 fs. This model
features rigid molecule geometry with a dipole moment of d = 2.426D. Nosé–
Hoover thermostat and the isotropic Parrinello–Rahman barostat were used
with characteristic time scale around, respectively, 10 ps and 20 ps. Electrostatic
interactions were calculated by the particle mesh Ewald method with a cutoff
distance of 0.9 nm. Van der Waals interactions has the same cutoff.

3.2. Analysis of MD Simulations. The vectorPat each configuration, identified
by a given t, is obtained from MD simulations as follows:

P =

N∑
i=1

di, di =
∑
�

q�r�i, [7]

where � identifies the atoms of the i-th molecule, i.e., the two hydrogen (H),
one oxygen (O) atom, and the M-site particle (56). The charge of the particles is
q� with qH = −qM/2〉0 and qO = 0. r�i is the unwrapped coordinate of the
�-th particle of the i-th molecule. It has been verified that di = d, ∀i at each
configuration. � and KT are, respectively, obtained as

� =
〈P2
〉 − 〈P〉2

3e0〈V〉 KBT
; [8]

KT =
〈V2
〉 − 〈V〉2

〈V〉 KBT
. [9]

KB is the Boltzmann constant and e0 the vacuum permittivity. The ensemble
average is obtained from MD simulations by making use of the ergodicity
hypothesis, thus, 〈O〉 = t̄−1 ∑t̄

t=0 O(t), whereO is a generic observable, t =
nΔt with n ∈ N,Δt is the time step and t̄ is the time-length of MD simulations.
In the present case,Δt ∼ 8 10−2ps for all the probed points in the (p, T ) plane.
The value ofUL in a paraelectric and ferroelectric phase are established following
the observations below, in analogy with the corresponding magnetic cases. In
the paraelectric phase, stochastic Gaussian fluctuations centered around a zero

P value result inUL →
2(n−1)

3n as L→∞ forO(n) model (34). In the present

case with n = 3, UL →
4
9 . In the ferroelectric phase, where a nonzero P set in,

UL →
2
3 , ∀n (33, 34).

The static structure factor is obtained from MD simulations as

S(k) = 〈��∗(k)��(k)〉, [10]

where the �-fluctuations ��(k) = 1√
N

∑N
i=1 e

ik·ri . The vector ri is the vector

position of the center of mass of the i-th particle. The symbol ∗ states for complex
conjugate. The components of k are derived from the expression ki = 2�

L n,
with i = x, y, z and n ∈ N. L is the time-averaged simulation box size at a
given thermodynamic point. Using instantaneous values of L does not induce
any substantial change. It is L ∼ 3.2 nm, thus, Δki = 2�/L ∼ 1.9 nm−1. To
obtainS(k) inSI Appendix, section III and Fig. S6, averages have been taken over
different k. Further averaging within a±Δk, with Δk = 1.8 nm−1, k-interval
centered around a specific k has been done to enhance the visual examination
without altering the overall trends of the quantities represented. The same
averaging procedure is applied to all the static and dynamic correlation functions.

The nonlocal static susceptibilities, transverse and longitudinal to k, are
obtained from MD simulations as

�
T k̂(Lk̂)

(k) =

〈�P∗
T k̂(Lk̂)

(k) · �P
T k̂(Lk̂)

(k)〉

e0〈V〉KBT
, [11]

where the symbol “·” represents scalar product. It is

�P
T k̂

(k) = k̂ × �P(k), [12]

�P(k) =

N∑
i=1

eik·ri(di − 〈di〉), [13]

�P
Lk̂

(k) =
��c
k

k̂, [14]

where ��c =
∑N

i=1
∑

� e
ik·r�iq� . The definition of �P

Lk̂
(k) above is

preferred to �P
Lk̂

(k) = k̂ · �P(k) k̂, because the latter yields less accurate
results at finite k due to the approximation of extended molecular dipoles as
point dipoles (38). As for the definitions given above, �

T k̂(Lk̂)
(k) are related to

the space-dependent P fluctuations. �T(L)(k) are obtained from �
T k̂(Lk̂)

(k) as

follows: �T (k) = 1 + �
T k̂

(k) and �L(k) = 1/(1− �
Lk̂

(k)) (38, 57).
The nonlocal static susceptibilities �Tp̂(Lp̂)(k) are obtained from MD

simulations as

�Tp̂(Lp̂)(k) =
〈�P∗Tp̂(Lp̂)(k) · �PTp̂(Lp̂)(k)〉

e0〈V〉KBT
. [15]

It is

�PTp̂(k) = p̂× �P̄(k), [16]

�PLp̂(k) = p̂ · �P̄(k) p̂, [17]

�P̄(k) =

N∑
i=1

eik·ri(di − d̄). [18]

Strictly, it holds that d̄ = Peq/N and p̂ = Peq/Peq. In finite-size systems we
approximate Peq as 〈P〉. It follows that the value of �Tp̂(Lp̂)(k = 0) cannot be

obtained from MD simulations. Instead, we have �P̄(k = 0) = �P(k = 0)
defined above. Consequently, �Tp̂(k = 0) + �Lp̂(k = 0) = � . The electric
susceptibility � remains finite in the ferroelectric phase.

The static correlations �Tp̂Lp̂(k), ��Lp̂(k), computed to unveil static

correlation between ��, �PLp̂, �P2
Tp̂ are obtained from MD simulations as

�Tp̂Lp̂(k) =
|〈p̂ · �P∗Lp̂(k)�PTp̂(k)

2
〉|

[e0〈V〉KBT]3/2
; [19]

��Lp̂(k) =
|〈�∗(k)p̂ · �PLp̂(k)〉|

[e0〈V〉KBT]1/2
. [20]

The dynamic correlation functions are obtained from the expressions:

CTp̂T p̂(Lp̂Lp̂)(k, t) =
〈�P∗Tp̂(Lp̂)(k, 0) · �PTp̂(Lp̂)(k, t)〉

e0〈V〉KBT
; [21]

CPP(k, t) =
〈�P∗(k, 0) · �P(k, t)〉

e0〈V〉KBT
; [22]

C��(k, t) = 〈��∗(k, 0)��(k, t)〉. [23]

They are computed with a time interval Δt ∼ 8 10−2μs.

3.3. Setting the DFT of Ferroelectric LLPT. The free energy of a reference
system without dipole interaction, F0, and the extra free energy term, F ,
accounting for dipole interaction in mean-field approximation, i.e., neglecting
contribution of �̃(r, d̂) correlations (39) are, respectively,

F0 = �0 + T
∫

dr d �(r)�(r,) ln[4��(r,)]; [24]

F =
1
2

∫ ∫
dr d dr′ d′ �(r)�(r,)wp(r, r′,,′)�(r′)�(r′,′),

[25]
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where d is the infinitesimal element of solid angle. The integral is extended
to the whole solid angle. To streamline the notation, we assume here KB = 1.
�0 arises from the internal energy of the reference system along with the
entropy term of the positional degrees of freedom. The second term on the right-
hand side of Eq. 24 represents the dipole orientational entropy (30). Though
noninteracting, dipoles are still present in the reference system. The dipole
interaction in Eq. 25 is

wp(r, r′,,′) = −
d2

R3
[3(d̂(r) · R̂)(d̂(r′) · R̂)− d̂(r) · d̂(r′)], [26]

where R = RR̂ = r− r′, d̂(r) is a unit vector at the point r. Because of spatial
homogeneity assumption, �̃(r, d̂) = �̃(d̂). To solve the mean-field DFT model,
specifically, to find the equilibrium value of �̃ through a variational principle,
we use the ansatz in Eq. 2 for the dipole orientation distribution,

�(, r) = �() =
1 + �d̂

4�
.

� = ��̂ satisfies
∫
d d̂()�() = �. If � 6= 0, the polar liquid

show a nonzero total polarization P = d
∫
dr�(r)

∫
d̂()d�() = dN�,

otherwise the system is isotropic and �() is the uniform distribution. � is
assumed to be small, i.e., small deviations from system’s isotropy are considered.
The �-Taylor expansion around zero of F0 in Eq. 24 and the computation of F
in Eq. 25 yield, respectively:

F0 = �0(�) + TN[A�2 + B�4 + B′�6]; [27]

F = −N�(�)��2. [28]

A, B, B′, which are independent of both T and p as �() is assumed to be so,
are positive constants. We expanded F0 up to sixth order in P since lower-order
coefficients can be zero. To obtain Eq. 28, due to positional disorder, a uniform
distribution of the angle between �̂ and R̂ is assumed. This leads to a negative
integral in Eq. 25, thus setting �(�)〉0. There is no Taylor series truncation
because, given the functional form of the dipolar interaction, higher-order terms
in �-powers are zero. Implicitly, R 6= 0 due to the repulsive short-range term
in the reference system’s interaction potential, ensuring the integral over R to
be finite. Note that it is the dependence of wp on R to generate the density
dependence of F . Otherwise the double space integration in Eq. 25 would
simply have resulted in an N2 coefficient in Eq. 28. � slightly deviates from the
reference system’s density, �̄, due to the slight influence of dipole interactions
on it. Consequently, �(�) and F(�) in Eqs. 27 and 28, respectively, can be
given by a Taylor series in �. The �-Taylor expansion around �̄ of F0 and F ,
truncated to lowest order, leads to

F0 = N�0(�̄) + MNΔ�2 + TN[A�2 + B�4 + B′�6]; [29]

F = F(�̄) +
∂F
∂�
|�̄Δ� = −N�0(�̄)�̄�

2 + N�1(�̄)�̄�
2Δ�. [30]

It is Δ� = � − �̄. Since �̄ is the equilibrium density of the reference
system, �′(�̄) = 0, and M = 1

2N�
′′(�̄)〉0. The single and double prime

notation denotes, respectively, the first and second derivatives of � in �. It is
�0(�̄), �1(�̄) > 0. ∂F

∂� |�̄ > 0 because an increase in �, resulting in a V
decrease, leads to an increment of the integral in Eq. 25, given Eqs. 2 and 26,
and the assumption of a uniform angle distribution between �̂ and R̂ endorsed
above. Finally, considering that � ∝ P,

F = �0(�̄) + MΔ�2 + [TA− �0(�̄)�̄]P
2 + TBP4 + TB′P6

+ �1(�̄)P
2Δ�. [31]

The constants in Eq. 31 have been redefined, retaining, however, the same
names as before. The thermodynamic potential in the NpT ensemble (39), we
want to use here, is the Gibbs free energy G = F0 +F + pN/�. � changes are
induced by V variations, yielding �̄ = N/V̄ andΔ� = −�̄ΔV/V̄ . Featuring an

external electric field E conjugate to P, we obtain Eq. 3. The term 
0(V̄) in Eq. 3
includes the additive termpV̄ . Furthermore, it has been assumed that for a given
p, there exists a value of T ≡ Tc : TcA−�0�̄(Tc , p) = 0, see Eq.31. We neglect
the p dependence of Tc for sake of simplicity. Since at Tc , the coefficient in front
of P2 becomes zero, for T near Tc , we neglect the T dependence of all the other
coefficients. The p dependence ofM is also irrelevant to our aim. Consequently,
a, B, B′, and M are positive constants. �1(�̄) in Eq. 31 still depends on p. For
sake of simplicity, we assume �1 = �p with � > 0. In Eq. 3, the factors like
1/2 in front of a have been introduced for convenience.

3.4. The Variational Principle Solution for the DFT Mean Field Model.
With the thermodynamic potential provided in Eq. 3, the equilibrium values of
P and ΔV , Peq and ΔVeq respectively, are determined through the variational
principle, establishing that at equilibrium the thermodynamic potential must
be minimized, leading to Eqs. 4 and 5. Eq. 6 further outlines the link between
Peq and ΔVeq. By inserting the value of ΔVeq, Eq. 6, into Eq. 4 it is obtained

a
(
T − Tc +

2�
aM

p2
)
Peq +

(
B−

2�2

M
p2

)
P3
eq + B′P5

eq − E = 0. [32]

It is convenient to define

T∗c (p) = Tc − 2
�
aM

p2; [33]

B∗(p) = B−
2�2

M
p2. [34]

T∗c is the temperature at which the term proportional toPeq in Eq.32disappears.
There exists a p at which B∗ = 0, causing, instead, the term proportional to P3

eq
to become zero in Eq. 32. We further define

p̄c : B∗(p̄c) = 0; [35]

T̄c = T∗c (p̄c). [36]

The solutions of Eqs. 4 and 5 are stable if for P = Peq and ΔV = ΔVeq,
� and KT are positive, i.e.,

� =
∂P
∂E
|N,T,p > 0; KT = −

1
V

∂V
∂p
|N,T,E > 0. [37]

We are interested to the possible appearance of spontaneous polarization
when E = 0. From Eqs. 4, 5, and 37, it is found

� =
1

a(T − T∗c ) + 3B∗P2
eq + 5B′P4

eq
; [38]

KT = K̄T + ΔKT = −
1
V

∂ V̄
∂p

+
1
VM

a(T − T∗c ) + 3B∗P2
eq + 5B′P4

eq + 4 (�p)2

M P2
eq

a(T − T∗c ) + 3B∗P2
eq + 5B′P4

eq
. [39]

K̄T andΔK̄T are implicitly defined in Eq.39. It is K̄T > 0 because V̄ is by definition
the equilibrium volume of the reference system. The values of Peq, satisfying

Table 1. Equilibrium values ofP for the thermodynamic
potential given by Eq. 3 for p > p̄c, i.e., B∗ < 0

p > p̄c P2
eq = − B∗

2B′ + 1
2B′

√
B∗2 − 4a(T − T ∗c )B′ P2

eq = 0

T < T ∗c stable –
T ∗c < T < T̂c stable metastable
T̂c < T < T̄ metastable stable
T > T̄ – stable
A dash indicates that the solution is not stable.
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Table 2. Equilibrium values ofP for the thermodynamic
potential given by Eq. 3 for p < p̄c, i.e., B∗ > 0

p < p̄c P2
eq = − B∗

2B′ + 1
2B′

√
B∗2 − 4a(T − T ∗c )B′ P2

eq = 0

T > T ∗c – stable
T < T ∗c stable –
A dash indicates that the solution is not stable.

the stability conditions Eq. 37, are reported in Tables 1 and 2 for p, respectively,
larger and smaller than p̄c . The corresponding value of ΔVeq can be obtained
from Eq.6. Forp > p̄c , two stable solutions are found in the T ranges specified in
Table 1, one of which is metastable as deduced by calculatingG for each solution.
For p < p̄c only one stable solution exists for both T > T∗c and T < T∗c . At
a given T < T̄c , the difference ΔP2

eq = P2
eq(p > p̄c) − P2

eq(p < p̄c) 6= 0

unless p = p̄c , where B∗ = 0. The values of T̂c(p) and T̄(p) in Table 1 are

T̂c(p) =
3

16
B∗(p)2

aB′
+ T∗c (p); [40]

T̄(p) =
1
4
B∗(p)2

aB′
+ T∗c (p). [41]

Further details are reported in SI Appendix, section V. In defining a state as
stable, we overlook the fact that the liquid state itself is metastable for T ’s below
the melting point. The behavior of KT at and along the WL is obtained in the

following. For T → T∗c
−, P2

eq '
a(T∗c −T)

B∗ . From Eq. 39, it is

ΔKT |T→T∗c
− =

1
VM

[
1 +

4(�p)2

MB∗
1

2 + 5 aB′
B∗ (T∗c − T)

]
. [42]

As T → T∗c
+, from Eq. 39, we find ΔKT = 1

VM , indicating an increase in
ΔKT due to the V reduction caused by the temperature decrease. As T → T∗c

−,
according to Eq. 42, ΔKT also increases. Furthermore, Eq. 42 demonstrates
that ΔKT remains finite at T∗c , where it reaches a maximum, as inferred from
the observations above. Along the curve T = T∗c , where ΔKT is maximum,

ΔKT |T=T∗c = 1
VM [1 +

4(�p)2

MB∗ ]. Considering the definition of B∗ in Eq. 34
and of p̄c in Eq. 35, it emerges that ΔKT |T=T∗c increases by moving along the
curve T = T∗c (p) by increasing p until it diverges at p̄c . We can assume K̄T to
be constant in a sufficiently small neighborhood of T∗c .

Data, Materials, and Software Availability. Molecular dynamics (MD)
simulations data utilized in this study are the same of ref. 4. The codes used for
the analysis of MD simulation data will be deposited on GitHub repository upon
acceptance.
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