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The insertion site of the internal tandem duplications (ITDs) in the FLT3 gene affects the sensitivity to tyrosine kinase inhibitors
(TKIs) therapy in acute myeloid leukemia (AML). Patients with the ITD in the tyrosine kinase domain lack effective therapeutic
options. Here, to identify genotype-driven strategies increasing the TKI therapy efficacy, we developed SignalingProfiler, a strategy
supporting the integration of high-sensitive mass spectrometry-based (phospho)proteomics, RNA sequencing datasets with
literature-derived signaling networks. The approach generated FLT3-ITD genotype-specific predictive models and revealed a
conserved role of the WEE1-CDK1 axis in TKIs resistance. Remarkably, pharmacological inhibition of the WEE1 kinase synergizes and
strengthens the pro-apoptotic effect of TKIs therapy in cell lines and patient-derived primary blasts. Finally, we propose a new
molecular mechanism of TKIs resistance in AML and suggest the combination of WEE1 inhibitor and TKI as a therapeutic option to
improve patients clinical outcome.
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INTRODUCTION
Internal tandem duplications (ITDs) of the FLT3 gene are observed
in about 25% of young adults with newly diagnosed acute
myeloid leukemia (AML) [1, 2]. The FLT3 gene encodes a receptor
tyrosine kinase, consisting of an extracellular immunolike-domain,
a transmembrane region, a cytoplasmic juxtamembrane domain
(JMD) followed by two tyrosine kinase domains (TKD1 and TKD2)
[3]. FLT3-ITD mutations always occur in exons 15 and 16, encoding
the JMD and TKD1 regions, and cause its constitutive activation
[4]. In 2017, the CALGB 10603/RATIFY trial demonstrated a
significantly improved outcome in a cohort of 717 patients
carrying genetic alterations in the FLT3 gene when treated with
the multikinase inhibitor midostaurin (PKC412) combined with
standard frontline chemotherapy [5]. At the beginning of 2022, a
retrospective analysis of the same trial evaluated role of different
insertion sites of ITD mutations in predicting response to
midostaurin treatment. Interestingly, the analysis revealed that
midostaurin treatment exerted a significant beneficial effect only
in patients carrying the ITDs in the JMD domain, whereas no
beneficial effect was observed in patients carrying ITDs in the TKD
region. In addition, multivariate analysis showed that the ITD-TKD

localization is an unfavorable prognostic factor for overall survival
and incidence of relapse [6].
In accordance with these clinical observations, previous in vitro

studies showed that ITDs-TKD confer resistance to chemotherapy
and are associated with a significantly worse outcome. Briefly, ITD-
TKD positive cell lines and primary mouse bone marrow cells
showed reduced apoptosis when compared to ITDs-JMD, upon
exposure to FLT3 inhibitors, namely midostaurin and quizartinib (a
highly-specific second-generation FLT3 inhibitor) [7–9].
Interestingly, the enzymatic activity of ITD-TKD and ITD-JMD is

equally suppressed by kinase inhibitors[7], suggesting that the
different TKI sensitivity may be caused by an extensive rewiring of
cell signaling network. We, therefore, performed a system-level
analysis of the state of FLT3-ITD cells induced by TKIs treatment.
To obtain FLT3-ITD cell-specific models, we developed “Signaling-
Profiler”, a novel, generally applicable, computational strategy
supporting the integration of these large “omic” datasets with
literature-derived causal networks. This strategy highlighted the
novel and crucial role of the WEE1-CDK1 axis in TKI therapy failure
in FLT3ITD-TKD patients. Remarkably, pharmacological inhibition of
WEE1 completely rescued the ability of patient-derived primary
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blasts, carrying the ITD-TKD mutation to undergo apoptosis in
response to midostaurin treatment. Our strategy is generally
applicable to the study of drug resistance and mechanism of
action, and can lead to the identification of novel therapeutic
targets for combination therapy.

MATERIALS AND METHODS
Cell lines, MS-based (phospho)proteomic and deep sequencing workflow,
bioinformatic and statistical data analysis, cell viability assay, western blotting,
flow cytometry analyses and patient-derived primary blasts experiments are
described in Supplementary Materials and Methods section.

Apoptosis assay
Cells were plated at a concentration of 500.00 cells/ml and treated as
indicated. After incubation for 24 h, apoptotic cells were measured by flow
cytometry using Ebioscience™ Annexin V Apoptosis Detection Kit APC
according to the kit instruction (Cat. 88-8007-74, Thermo Fisher Scientific).
Cells positive for annexin-V were counted as apoptotic cells.

RESULTS
The experimental strategy
Here, we devised a multi-step strategy that combines system-level
and unbiased multi-omic analyses (Fig. 1A panel a and b) with
literature-derived causal networks to generate cell-specific models
(Fig. 1A panel c). We demonstrate that these models have a
translational impact and can be used as a framework to identify
and test novel drug targets abrogating TKI resistance (Fig. 1A
panel d).
Ba/F3 cells stably expressing the FLT3 gene with ITD insertions

in the JMD (aa 598) or in the TKD1 (aa 613) region (henceforth
“FLT3ITD-JMD” and “FLT3ITD-TKD” cells, respectively) were treated
with FLT3 inhibitors and cells viability and apoptosis were tested.
In agreement with previously published data [7, 8], nanomolar
concentrations (20–100 nM) of TKIs induced apoptosis in Ba/F3-
cells harboring ITD-JMD mutation in a dose dependent manner,
whereas ITD-TKD cells showed significantly decreased sensitivity
to the three inhibitors (Fig. 1B, C)
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Fig. 1 The different ITD location affects the sensitivity to TKIs therapy modulating the phosphoproteome of FLT3-ITD cell lines.
A Overview of the experimental and bioinformatic strategy. BaF3 cells expressing FLT3ITD-TKD (in orange) and FLT3ITD-JMD (in blue) were treated
with 20 nM quizartinib (AC220) for 24 h (a). mRNAs were isolated for the transcriptome analysis and the protein extracts were digested and
characterized at the proteome and phosphoproteome levels (b). Multi-omics profiles of FLT3-ITD cells were used in SignalingProfiler pipeline to
obtain cell-specific models and to identify additional druggable genes (c). Proteins of interest were further investigated through
complementary assays in patients-derived primary blasts (d). B Cell survival of BaF3 cells expressing FLT3ITD-JMD (in blue) and FLT3ITD-TKD (in
orange) after FLT3 inhibitors treatment. Cells were treated for 24 h with 20 nM quizartinib (AC220), 100 nM midostaurin (PKC412) and 50 nM
gilteritinib (ASP2215). Cell viability was assessed by MTT assay. C Induction of apoptosis in BaF3 cells expressing FLT3ITD-JMD (in blue) and
FLT3ITD-TKD (in orange) treated with increasing doses of AC220 for 24 h. The percentage of apoptotic cells was determined by Annexin-V
labeling. D Pie charts representing the percentage and the number of species characterized at the protein and the transcript levels (top) or at
the protein and the phosphosite levels (bottom). E–G Principal Component Analysis (PCA) of the analytes quantified across the transcriptome
(E), proteome (F) and phosphoproteome (G) replicates.
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Deep transcriptome, proteome and phosphoproteome
analysis of quizartinib treated FLT3-ITD cells
To investigate the molecular basis of the observed different
sensitivities to treatment with FLT3 inhibitors in ITD-TKD and ITD-
JMD expressing cells, we applied an unbiased strategy to monitor
the transcriptional, translational, and post-translational changes
induced by FLT3 inhibition. In these large-scale experiments, FLT3-
ITD cells were exposed to short (1.5 h) or long (24 h)-term
treatments with 20 nM quizartinib (Fig. 1A panel b) to capture
the TKI-dependent early and late signaling events at two time
points relevant for patient treatment [10]. Among the FLT3
inhibitors, we selected quizartinib, because of its high specificity,
and we treated cells for 24 h with 20 nM, a non-toxic concentra-
tion whereby the quizartinib-induced apoptotic response is
significantly different between FLT3-ITD cells (Fig. 1C).
RNA sequencing approach and state-of-the-art mass spectrometry

(MS)-based (phospho)proteomic enabled the quantification of the
expression of more than 11,000 genes (Table S1), more than 5000
proteins (Table S2) and 16,000 phosphorylation events (class I sites,
Table S3) (Fig. S1A–C). The biological triplicates or quadruplicates
were highly correlated with Pearson correlation coefficients ranging
between 0.85 (for phospho measurements) and 0.97 (for transcrip-
tome and proteome measurements) (Fig. S1D–F).
The experimental system appeared to be efficient: for nearly all

the quantified proteins (97%), we also obtained the levels of the
corresponding transcripts (Fig. 1D top panel). Similarly, for
approximately 83% of the quantified phosphorylation sites, we
also measured protein abundance (Fig. 1D bottom panel).
Quizartinib-induced changes at the transcript level tended to
correlate with those at the proteome level in FLT3ITD-JMD and
FLT3ITD-TKD cells (PC= 0.6–0.7) (Fig. S2A, B). Finally, after normal-
izing by the protein levels, more than 70% of phosphosites were
still significantly regulated by quizartinib treatment (Fig. S2C, D).
Next, we applied a statistical t-test to narrow-down the species

that are regulated by the FLT3 inhibitor. Briefly, about one third of
the transcriptome, proteome and phosphoproteome displayed a
significant (FDR < 0.1) change in the abundance upon quizartinib
treatment (Fig. S3A–C). Comparative analysis of significantly
modulated genes, proteins or phosphosites, revealed a common
core (14% in the transcriptomics, 7% in the proteomics and 5% in
the phosphoproteomics) of canonical FLT3-ITD targets signifi-
cantly altered by 24 h quizartinib treatment, regardless of the ITD
insertion site (Fig. S3A–C). Interestingly, our data suggest that the
two different ITD localization impacts the quizartinib-dependent
remodeling of the phosphoproteome profile to a greater extent as
compared to the transcriptome and proteome profile (R
phosphoproteome= 0.58) (Fig. S3D–F).
Consistently, principal component analysis (PCA) clearly showed

that only the phosphoproteome information better stratify cells
according to both FLT3 activation status and ITD insertion site
(Fig. 1E–G). Unsupervised hierarchical clustering of our large-scale
datasets confirmed that the phosphoproteomic profile best
discriminates FLT3 cells according to their quizartinib sensitivity
(Fig. S3G–I). These observations indicate that the different
localization of the ITD mutations mostly impact the cell regulatory
network at the post-translational level, which may drive the
different sensitivity to TKI-therapy.

Pathway modulation in response to quizartinib treatment
We next assessed the effect of quizartinib treatment on previously
identified signaling pathways downstream of FLT3. By overlaying
our phosphoproteomic results with the FLT3 subnetwork, retrieved
from the signaling database SIGNOR [11], we observed that the
MAPK and AKT-mTOR pathways are equally inhibited by either
short-term and long-term exposure to quizartinib in both cell lines
(Fig. 2A). Consistently with previous reports [9], the phosphorylation
level of the FLT3-ITD mutants as well as their down-stream canonical
targets are equally decreased by TKIs treatments (Fig. 2B).

Next, we checked for biological processes altered in treated
cells (as described in Matherials and methods). Gene ontology
term enrichment analysis revealed a significant overexpression of
proteins involved in mitochondrial metabolic processes, such as
TCA cycle and OxPhos, as well as in lipid oxidation (Fig. 2C and
Fig. S4A–E).
Consistently with the different sensitivity of FLT3ITD-JMD and

FLT3ITD-TKD cells to quizartinib treatment, we found that proteins
involved in apoptosis were significantly hyperphosphorylated in
FLT3ITD-JMD cells, but not in FLT3ITD-TKD cells (Fig. 2D). Interestingly,
we observed that the quizartinib-dependent phosphorylation of
DNA replication proteins is significantly decreased only in
quizartinib treated FLT3ITD-JMD cells, but not in cells with the ITD
mutation in the TKD region (Fig. 2E).
Kinase substrate motifs analysis showed that pro-proliferative

kinases, ERK1/2, AKT, and p70S6K are significantly downregulated
(FDR < 0.05), in line with the anti-proliferative effect of quizartinib
in FLT3-ITD cells (Fig. S4F).
These observations provide a global picture of the main

changes induced by quizartinib treatment at the transcriptome,
proteome, and phosphoproteome level in both FLT3-ITD cells, but
do not clarify the molecular mechanisms underlying their different
sensitivity to quizartinib treatment.

From FLT3 to transcription factors through SignalingProfiler
Here we implemented “SignalingProfiler” (https://github.com/
SaccoPerfettoLab/SignalingProfiler/), a generally applicable mod-
eling strategy that takes advantage of previously developed
computational approaches [12] to integrate transcriptomics and
phosphoproteomics datasets with prior knowledge annotated in
public databases such as SIGNOR [13] and PhosphoSitePlus [14]
(Fig. 3A and Fig. S5). Briefly:

1. We combined the footprint-based analysis with our newly
developed method “Phosphoscore” novel [12] to infer the
activity of key proteins: transcription factors (from the
transcriptome data) and kinases and phosphatases (from
phosphoproteomics data) (Fig. 3A, step 1).

2. We used the causal relations annotated in SIGNOR and
PhosphoSitePlus, to build a naïve network connecting (i) FLT3,
(ii) inferred kinases and phosphatases, (iii) their substrates and
(iv) inferred transcription factors. This network connects
proteins through every possible causal path with minimal
length, among all possible ones (Fig. 3A, step 2).

3. To retain only causal paths coherent with experimentally-
derived proteins’ activities, we exploited CARNIVAL software
[15], and we derived FLT3ITD-JMD and FLT3ITD-TKD specific
mechanistic models (Fig. 3A, step 3).

4. To in silico validate the results, we inferred the activity of key
apoptotic markers as a proxy for the behavior of the two
models (Fig. 3A, step 4).

The first step of the SignalingProfiler pipeline allowed us to
compute the activity of 101 kinases, 22 phosphatases and 70
transcription factors (Fig. 3B, C, Fig. S6 and Table S4). As displayed
in Fig. 3C, there is a high correlation between protein activities
predicted in the two cell lines (R= 0.85–0.87), with a few
exceptions: WEE1, WEE2 and PKMYT1 kinases are predicted to
be inactive in the FLT3ITD-JMD and active in the FLT3ITD-TKD cells.
Protein activities of key signaling proteins are then used to feed

the CARNIVAL tool together with causal networks (Fig. 3A steps 2
and 3), to obtain two cell-specific models (Figs. S7, S8).
These two graphs are static representations of the remodeling of

the signal transduction cascade induced by 24 h of quizartinib
treatment. The comparison between sensitive and resistant signal-
ing networks has the potential to reveal potential mechanisms of
drug resistance and new therapeutic targets. To this aim, we
compared the activity of the nodes inferred by CARNIVAL within the
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two models. Our analysis revealed that most of the nodes display
similar regulation, independently from the ITD insertion site
(R= 0.91), whereas few crucial nodes (eg. WEE1, BUB1, RCC1,
PLK1) are oppositely regulated or FLT3 ITD-TKD specific (Fig. S9A).
We next decided to monitor differences of the two FLT3-ITD

specific signaling network models at a more granular level (Fig. 3A,
step 4). Briefly, we checked whether the two models display
differential modulation of a subset of text-mining derived pro-
survival and pro-apoptotic proteins (see Methods), in agreement
with the phenotypes observed in the two experimental systems.
As shown in Supplementary Fig. 9B, FLT3ITD-TKD cells display a

stronger activation of pro-survival proteins (especially, MCL1 and
BCL2) and inhibition of apoptotic proteins (in particular, BAD and
BIM/BCL2L11) compared to FLT3ITD-JMD cells. Interestingly, CDK1
resulted to be the key upstream regulator of four out of five pro-
apoptotic and anti-apoptotic proteins (Fig. S9B).

FLT3-ITD insertion site impacts the WEE1-CDK1 axis and
impairs cell cycle progression in TKIs treated cells
Given the promising role of CDK1 in mediating TKI resistance, we
extracted the sub-cascade that leads to its deregulation in both
FLT3-ITD models (Fig. 4A, Fig. S10A). As displayed in the diagram
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(in orange) upon quizartinib (AC220) treatment.
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in Fig. 4A, CDK1 regulation downstream of FLT3 involves p27/
CDKN1B, the kinase WEE1 and the phosphatase CDC25B.
Interestingly, the activity of WEE1, a crucial component of the
G2-M cell cycle checkpoint [16], is oppositely regulated in the two
cell lines (Fig. 3C, Fig. 4A and Fig. S10A) and the inhibitory
interaction between WEE1 and CDK1 is FLT3ITD-TKD specific
(Figs. S7, S8, S10A). We, therefore, speculate that the WEE1-CDK1
path might play a pivotal role in the FLT3ITD-TKD cells TKI resistance.

Our experiments demonstrated that TKIs treatment differently
impacts the abundance of WEE1 in FLT3-ITD cells (Fig. 4B),
without affecting its transcript level (Fig. S10B). Consistently, in
our phosphoproteomic data, the phosphorylation level of the
serine 139, which has been demonstrated to correlate with its
degradation [17], is lower in FLT3ITD-TKD cells as compared to
FLT3ITD-JMD cells (Fig. S10C and Table S3). In FLT3ITD-TKD cells
treated with midostaurin for 24 h, the increased WEE1 protein
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level determines the hyperphosphorylation of the Tyr15 of
CDK1, which is also more phosphorylated on the Thr161 (Fig. 4C).
In this triply phosphorylated form, CDK1 is significantly more
associated with cyclin B1 (Fig. 4E). Thus, midostaurin treatment
in FLT3ITD-TKD cells induces the accumulation of the inactive
stockpiled pre-M-phase Promoting Factor (or MPF), the universal
mitotic inducer in eukaryotic cells, constituted by the CDK1-
Cyclin B1 complex. The formation of this complex is associated
with a significant accumulation of proliferating FLT3ITD-TKD cells
in the G2-M phase as compared to midostaurin treated FLT3ITD-
JMD cells (Fig. 4G–I). By contrast, in FLT3ITD-JMD cells midostaurin
treatment for 24 h induces (i) the dephosphorylation of CDK1 at
both the tyr15 and thr161 (Fig. 4C); (ii) the accumulation of the
p27 inhibitor (Fig. 4D); and the consequent cyclin B1 degrada-
tion (Fig. 4D). These data indicate that midostaurin treatment
induces a cell state wherein CDK1 is inactive and monomeric
(Fig. 4E), and consequently, FLT3ITD-JMD cells accumulate in the
G1 phase (Fig. 4F–H).
Taken together, our data indicate that the WEE1-CDK1 axis

plays a pivotal role in the TKI sensitivity of FLT3-ITD cells. The
FLT3ITD-TKD specific upregulation of WEE1 protects cells against
the midostaurin-mediated cell cycle arrest. Indeed, we observed
that midostaurin significantly reduces cell proliferation only in
FLT3ITD-JMD cells, as revealed by the EdU assay (Fig. 4G).
Accordingly, phosphoH3 staining revealed that the percentage
of mitotic cells is significantly lower in FLT3ITD-JMD as compared
to FLT3ITD-TKD cells upon midostaurin exposure (Fig. 4H). At the
molecular level, we observed that cyclin D2, E2, and B1, involved
in G1-, S- and G2/M progression, respectively, are significantly
down-regulated by midostaurin treatment only in FLT3ITD-JMD

cells (Fig. 4D).
Altogether our observations indicate that midostaurin has

opposite effects on cell cycle progression in sensitive FLT3ITD-JMD

and resistant FLT3ITD-TKD cells (Fig. 4I): TKI treated FLT3ITD-JMD are
stacked in the G1 phase through the accumulation of a
monomeric, inactive pool of CDK1, whereas TKI treated
FLT3ITD-TKD cells can progress through the cell cycle thanks to
the accumulation of the CDK1-Cyclin B complex.

WEE1 kinase inhibition reverts the TKI-therapy resistance of
FLT3ITD-TKD cells
Prompted by our observations, we next investigated whether
pharmacological inhibition of WEE1 and consequent hyperactiva-
tion of CDK1 would potentiate the pro-apoptotic effect of TKIs in
FLT3ITD-TKD cells.
Briefly, we treated FLT3ITD-JMD and FLT3ITD-TKD cells with

adavosertib (MK1775), a highly selective WEE1 inhibitor [18],
separately or in combination with midostaurin. As previously
described, adavosertib treatment induces S and/or G2/M cell
cycle checkpoints override (Fig. S11A), depending on cancer
types [19]. Consistently, we observed that WEE1 inhibition
results in a significant accumulation of both FLT3-ITD cells in the
S phase (Fig. S11B), wherein CDK1 is dephosphorylated and
inactive (Fig. S11C). Apoptotic and cell survival assays showed
that WEE1 inhibitor synergizes with midostaurin to trigger cell

death of FLT3ITD-TKD cells and to a lesser extent of FLT3ITD-JMD

cells (Fig. 5B, C).
Pharmacological inhibition of WEE1 kinase activity and the

consequent removal of the G2–M checkpoint through the CDK1
hyperactivation represents an attractive strategy to drive cancer
cells to enter into unscheduled mitosis and, arguably, to undergo
cell death via alternative mechanisms such as the mitotic
catastrophe [20]. In line with this hypothesis, the combined
treatment of midostaurin and adavosertib, exclusively, induces the
accumulation of cells in the S phase as well as to a lesser extent in
the G2-M phase, synergically triggering mitotic cell death in
FLT3ITD-TKD cells (Fig. 5D, Fig. S11B).
We next investigated whether FLT3-ITD primary blasts, derived

from 9 patients with de novo AML diagnosis, could benefit from
the combined treatment of midostaurin and WEE1 inhibitor. First,
blasts were isolated from peripheral blood of ITD-positive AML
patients (Fig. S12). As expected, the molecular landscape of FLT3-
ITD mutation is heterogeneous (Fig. 5E). We excluded one patient
carrying an atypical insertion sequence in the JMD domain. Then,
we classified our cohort of FLT3-ITD patients in two main groups
according to the ITD insertion site (Fig. 5E and Fig. S13). This
approach enabled us to obtain two subgroups: 4 FLT3ITD-TKD

patients (carrying the ITD in the TKD domain), 4 FLT3ITD-JMD+ITD-TKD

patients (carrying the ITD in both the JMD and TKD domain). We
considered only patients with a single insertion, reaching three
patient per subgroup. Unexpectedly, in our cohort, no patient
carrying the ITD only in the JMD domain was found. Remarkably,
genetic stratification based on the ITD localization reflected the
drug-response phenotype (Fig. S13): midostaurin alone signifi-
cantly triggers apoptosis only in FLT3ITD-JMD+ITD-TKD blasts (Fig. 5F),
while no beneficial effects were observed in FLT3ITD-TKD blasts
(Fig. 5G). This result suggests that the pro-apoptotic effect of the
ITD insertion within the JM domain is dominant over the ITD-TKD
counterpart. This observation is consistent with the retrospective
analyses of the CALGB 10603/RATIFY trial showing that patients
with insertions in JMDsole and/or JMD/TKD1 had a significantly
improved overall survival and a lower cumulative incidence of
relapse compared to patients with insertion sites in TKD1sole [6].
Remarkably, both the pharmacological inhibition of WEE1 alone

and the combined treatment with midostaurin trigger apoptosis
of FLT3ITD-TKD positive blasts, restoring their sensitivity to TKI
therapy (Fig. 5G).
Our results provide novel evidence that the WEE1-CDK1 axis

represents a promising therapeutic target to revert drug
resistance in patients carrying the ITD mutation in the TKD of
FLT3 that currently cannot benefit from midostaurin treatment.

DISCUSSION
The insertion site of the ITD mutations significantly impacts the
ability of FLT3 inhibitors, including midostaurin, to trigger cell
death in both cell lines and primary blasts [7, 9, 21–23].
Consistently with previous observations, here we show that the
beneficial effect of TKIs is restricted to FLT3-ITDs located in the
juxtamembrane domain (JMD), but not to FLT3-ITD in the TKD

Fig. 3 SignalingProfiler strategy predicted an opposite regulation of the WEE1 protein family kinases activity between FLT3ITD-JMD and
FLT3ITD-TKD cells. A Schematic representation of the SignalingProfiler workflow. Step 1. Protein activity of transcription factors, kinases and
phosphatases was computed from experimental data using the footprint-based analysis and the “phosphoSCORE”method. When needed, the
two scores were averaged. Step 2. Proteins derived from step 1 were linked to FLT3 and to each other’s via paths of causal interactions
extracted from PhosphoSitePlus and SIGNOR databases to build a naïve network. Step 3. CARNIVAL was used to search in the naïve network
causal circuits coherent with protein activity. More specifically, in the first run we retrieved paths between FLT3 and kinases, phosphatases and
substrates, whereas the second run connected all the proteins obtained from the first run with transcription factors. Eventually, the two
networks were merged together. Step 4. The activity of protein markers of phenotypes (e.g., apoptosis) were predicted integrating the signal
from upstream nodes in each cell-specific optimized network. B, C Protein activity prediction results. Scatterplots showing the comparison
between protein activity predicted from FLT3ITD-JMD (x-axis) and FLT3ITD-TKD (y-axis) datasets for transcription factors (B) and kinases and
phosphatases (C). Each dot represents a gene/protein, and the color indicates whether the prediction is statistically significant in both cell
lines (green) or exclusively in one cell line: ITD-JMD (blue) or ITD-TKD (orange). R indicates Pearson correlation.
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region. Indeed, ITDs in the TKD alone predispose to chemoresis-
tance and relapse, necessitating a clearer understanding of
the mechanisms underlying TKI sensitivity toward the develop-
ment of more effective and targeted treatments. Although the
upregulation of the anti-apoptotic myeloid cell leukemia 1
protein (MCL-1) has been proposed to be involved in TKI
resistance in cells carrying the insertion in the TKD domain [9],
novel, complementary, genotype-specific therapeutic approaches
are still missing.

We have reported here the first unbiased, large-scale, multi-
layered analysis aimed at describing the molecular mechanisms
underlying the different sensitivity to TKI therapy of cells carrying
FLT3-ITD mutations in the TKD or JMD domains. The main
objective of this study is the identification of new potential
therapeutic targets increasing the efficacy of TKI therapy in
FLT3ITD-TKD patients.
Our quantitative transcriptome, proteome and phosphopro-

teome analysis provide an integrated picture of TKIs-dependent
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blot showing the phosphorylation level of CDK1 on Tyr15 and the protein level of WEE1 kinase in FLT3ITD-JMD and FLT3ITD-TKD BaF3 cells treated
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blot showing the phosphorylation level of CDK1 on Tyr15, Thr161 and the protein level of WEE1 kinase in
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and FLT3ITD-TKD Ba/F3 cells treated for 24 h with 100 nM midostaurin (PKC412). F Cell cycle analysis. Boxplots displaying the percentage of
FLT3ITD-JMD (in blue) and FLT3ITD-TKD (in orange) cells in the different phases of the cell cycle as determined by flow cytometry using DAPI
labeling, after treatment for 24 h with 20 nM quizartinib (AC220), 100 nM midostaurin (PKC412) and 50 nM gilteritinib (ASP2215). G Effect of
midostaurin on cell division. FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) BaF3 cells were treated with 100 nM midostaurin (PKC412) for 24 h.
Percentage of cells in division was assessed by EdU labeling and flow cytometry analysis. H Bar plot representing the percentage of cells in
mitosis. FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) BaF3 cells were treated with 100 nM PKC412 for 24 h. Cells expressing phospho-H3 (S10)
were identified by flow cytometry analysis. WEE1 – CDK1 mechanistic model. I Cartoon representing the potential molecular mechanism of
chemoresistance suggested by the SignalingProfiler analysis. TKI treated FLT3ITD-JMD are stacked in the G1 phase through the accumulation of a
monomeric, inactive pool of CDK1, whereas TKI treated FLT3ITD-TKD cells can progress through the cell cycle thanks to the accumulation of the
CDK1-Cyclin B complex.
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molecular events. We speculate that a complex rewiring of
signaling pathways may be the cause of the different sensitivity of
FLT3-ITD cells to TKIs treatments. To address this point, we
implemented a computational pipeline dubbed SignalingProfiler,
that integrates readouts of transcriptome and phosphoproteome
studies, with prior evidence annotated in public repositories to
produce cell-specific networks representing the remodeling of
signal transduction cascade at the PTM-resolution level induced
by quizartinib. The observed inhibition of canonical pathways
immediately downstream of FLT3 [24] as well as the presence of
well-characterized gene products whose mutation are involved in
AML progression or relapse (e.g., NPM1, CEBPA, KRAS, PTPN11)
[25], confirm the clinical relevance of our models.
Although based on previously developed tools such as

CARNIVAL [15] and VIPER [26], SignalingProfiler incorporates novel
features such as the PhosphoSCORE calculation method, enabling
for a comprehensive integration of the phosphoproteomic data;

and the simulation of apoptosis biomarkers, which provide the in-
silico validation of the results.
This approach revealed a novel mechanism of resistance relying

on differential regulation of the WEE1-CDK1 axis. Here we
demonstrate that midostaurin has opposite effects on cell cycle
progression in FLT3-ITD cells. TKI treated FLT3ITD-JMD are blocked in
the G1 phase through the accumulation of a monomeric, inactive
pool of CDK1, resulting more sensitive to apoptosis induction. On
the other side, TKI treated FLT3ITD-TKD cells can progress through
the cell cycle thanks to the WEE1-dependent upregulation of the
CDK1-Cyclin B complex, resulting less prone to undergo to
apoptosis. Consistently, increased levels of WEE1 have been
shown to correlate with tumor progression and poor progression-
free survival [27]. Here, we demonstrated that deregulation of the
WEE1-CDK1 axis represents a crucial mechanism of resistance to
TKI therapy in FLT3-ITD positive cells and patient-derived primary
blasts. Remarkably, the ability of FLT3ITD-TKD cells to undergo
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Fig. 5 WEE1 kinase inhibition sensitizes FLT3ITD-TKD cells and primary blasts to TKI treatment. A Representative western blot showing the
effect of the WEE1 inhibitor, adavosertib, on the phosphorylation levels of CDK1 on tyrosine 15. FLT3ITD-JMD and FLT3ITD-TKD BaF3 cells were
treated with 100 nM PKC412, 500 nM adavosertib (MK1775) and the combination of both for 24 h. B FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange)
BaF3 cells were treated with 100 nM midostaurin (PKC412), 500 nM adavosertib (MK1775) and the combination of both for 24 h. Percentage of
apoptotic cells was assessed by Annexin-V labeling. C FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) BaF3 cells were treated with 100 nM
midostaurin (PKC412), 500 nM adavosertib (MK1775) and the combination of both for 24 h. Cell survival relative to control after treatment was
calculated by MTT assay. D FLT3ITD-JMD (blue) and FLT3ITD-TKD (orange) BaF3 cells were treated with 100 nM midostaurin (PKC412), 500 nM
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E Lollipop plot representing the location, amino acid sequence and length of FLT3-ITD mutations in the 9 patients analyzed. 4 patients have
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showing the percentage of treatment-induced apoptosis (100 * (dead cells after treatment – death cells in control) / viable cells in control) in
patient-derived blasts carrying FLT3-ITD in both the JM and the TK1 domains upon the indicated treatments (patients: #7, #10, #12).
Percentage of apoptotic cells was assessed by Annexin-V labeling. G Barplot showing the percentage of treatment-induced apoptosis (100 *
(dead cells after treatment – death cells in control) / viable cells in control) in patient-derived blasts carrying FLT3-ITD exclusively in the TK1 domain
upon the indicated treatments (patients: #2, #4, #19). Percentage of apoptotic cells was assessed by Annexin-V labeling.
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apoptosis in response to TKI therapy was completely rescued
by pharmacological inhibition of WEE1. This observation
provides support for WEE1 inhibitors to be used in combination
therapies with TKIs to improve the clinical outcomes of FLT3ITD-TKD

patients.
The molecular mechanisms through which the different FLT3-

ITD insertion sites may affect the activity of the WEE1-CDK1 axis in
response to TKI treatment is still under investigation. Our
hypothesis is that the different ITDs location likely impacts the
structure of the receptor tyrosine kinase FLT3, influencing its
ability to recruit different signaling proteins (data not shown). This
in turn may impinge on the WEE1-CDK1 axis, ultimately affecting
the TKI-mediated cell cycle arrest and apoptosis induction. Further
investigations will be required to confirm this hypothesis.
Interestingly, although we analyzed a small cohort of FLT3-ITD

patient-derived primary blasts, our analysis confirms that inser-
tions in the TKD sole have a significantly worse clinical outcomes
compared to blasts with insertion sites in both the JM and the TK
domains [6].
In conclusion, the results of this work highlight limitations in the

current practice toward the treatment of FLT3-ITD positive
patients affected by AML and open-up opportunities for
additional, more effective and patient-specific therapeutic strate-
gies. Here, we speculate that these pre-clinical results create the
basis of new trials that might change the clinical reality for AML
patients. We suggest that FLT3-ITD patients, at diagnosis, should
be stratified according to the ITD insertion site into prognostically
relevant FLT3-ITD subgroups. Midostaurin maintenance therapy
should be critically evaluated in case of FLT3-ITD located within
the TKD1 domain and synergistic combination therapies should
be used to rationally manipulate the WEE1-CDK1 axis, triggering
cell death, through mechanisms that are yet to be defined.
Finally, our work demonstrates how unbiased, system-level

studies have the potential to accelerate the discovery of more
granular, patient-specific mechanisms of disease and chemoresis-
tance toward the identification of more effective therapeutic
approaches.
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