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ABSTRACT 

The determination of minimum-propellant-consumption trajectories represents a crucial issue 
for the purpose of planning robotic and human missions to the Moon in the near future. This 
work addresses the problem of identifying minimum-fuel orbit transfers from a specified low 
Earth orbit (LEO) to a low Moon orbit (LMO), under the assumption of employing high-
thrust propulsion. The problem at hand is solved in the dynamical framework of the circular 
restricted three-body problem. First, the optimal two-dimensional LEO-to-LMO transfer is 
determined. Second, three-dimensional transfers are considered, in a dynamical model that 
includes the Cassini’s laws of lunar motion. The propellant consumption associated with 
three-dimensional transfers turns out to be relatively insensitive to the final orbit inclination 
and exceeds only marginally the value of the globally optimal two-dimensional orbit transfer. 
 
Keywords: Earth-Moon missions, Circular restricted three-body problem, lunar orbit 
dynamics, spacecraft trajectory optimization. 

1 INTRODUCTION 
In recent years, lunar missions are attracting an increasing interest, in the clear perspective of 
planning and completing robotic and human missions in the near future. In this context, 
identifying minimum-propellant-consumption paths represents a crucial issue. Earth-Moon 
orbit transfers have been investigated by many researchers in the last decades. Most studies 
employed the planar circular restricted three-body problem [1] as a reasonably accurate model 
to investigate orbital motion under the simultaneous gravitational attraction of Earth and 
Moon. A variety of transfer options have been proposed, also using space manifold dynamics 
[2] or low-thrust propulsion [3,4]. 
This work is aimed at identifying minimum-fuel two- and three-dimensional orbit transfers 
from a specified low Earth orbit (LEO) to a low Moon orbit (LMO), under the assumption of 
employing high-thrust propulsion. The impulsive thrust approximation is adopted to model 
short-duration powered arcs. The problem at hand is solved in the dynamical framework of 
the circular restricted three-body problem, which guarantees more satisfactory accuracy in 
preliminary mission analysis than the patched conic approximation. First, a formulation of the 
optimal two-dimensional orbit transfer from LEO to LMO is being presented, aimed at 
defining and investigating all the feasible paths, with the final intent of finding the globally 
optimal solution. As a second step, three-dimensional transfers are being considered, in a 
dynamical framework that includes also the Cassini’s laws of lunar motion. 
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2 THE CIRCULAR RESTRICTED THREE-BODY PROBLEM 
In the circular restricted three-body problem (CR3BP), two primary bodies (i.e., Earth and 
Moon in this study) describe counterclockwise circular orbits around the center of mass of the 
system, with constant angular speed 𝜔 = #𝐺(𝑚' +𝑚))/𝑅')-  [1], where G is the universal 
gravitation constant,  is the constant distance between the two primaries, whereas 
𝑚'	and	𝑚) represent the masses of Earth and Moon, respectively. They attract a third body 
(the spacecraft) without being attracted by it. This means that the masses 𝑚', 𝑚), and 𝑚 
fulfill the inequalities 𝑚' > 𝑚)>> 𝑚 ≈ 0. Moreover, canonical units are employed, i.e. the 
time unit (TU) and the distance unit DU defined as 1 DU =   and 1 TU . For the 
Earth-Moon system 1 TU = 375190 s and 1 DU = 384400 km. Moreover, the parameter 𝜇 ≔
𝑚)/(𝑚) +𝑚') (= 0.012155 for the system at hand) is introduced, and the gravitational 
parameters of the two primaries can be written as 𝜇' = 1 − 	𝜇  and 𝜇) = 𝜇 (in DU3/TU2). 
Their position along the x-axis is given by 𝑥' = −𝜇 and 𝑥) = (1 − 𝜇) (DU). 
The synodic reference frame, associated with unit vectors  rotates together with the 

Earth-Moon system, and the spacecraft is subject to the following dynamics equations: 
 

   (1) 

 
where (x,y,z) are the position coordinates in the synodic frame, whereas  and  denote the 
instantaneous spacecraft distance from the center of Moon and Earth, respectively. The 
inertial frame, aligned with the right-hand sequence of unit vectors , is such that 

 and  at a reference time, set to 0. This circumstance allows 

expressing the components of the inertial velocity v along  as  

 
   (2) 
 
Moreover, in the CR3BP an integral exists [1], i.e. the Jacobi integral, whose expression is  
 
   (3) 
 
If the Jacobi integral equals 𝐶;	(= 3.1883 ), then the zero velocity curves contain the 
interior collinear libration point. This means that 𝐶 = 𝐶; represents a limit for feasibility of 
the transfer from the Earth to the Moon [1], and the minimum initial speed is 

. 

3 OPTIMAL TWO-DIMENSIONAL EARTH-MOON TRANSFERS 
This section is devoted to identifying the optimal transfer from a circular LEO to a circular 
coplanar LMO, with altitudes of 463 km and 100 km, respectively. The LEO-LMO orbit 
transfer problem is investigated under the following assumptions: 
 
 

EMR

EMR
1w-=

( )ˆˆˆ, ,j ki

( )2 2

2      2      ,      :
2

M E
x yU U Ux y y x z U

x y z
w µ µw w

s r

+¶ ¶ ¶
- = + = = = + +

¶ ¶ ¶
!! ! !! ! !!

s r

( )1 2 3ˆ ˆ ˆ, ,c c c

3
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(a) the spacecraft trajectory lies entirely on the Moon orbital plane; 
(b) the third body perturbations in LEO and LMO are neglected; 
(c) the transfer trajectory includes two impulsive changes of velocity: 

o a tangential velocity change 𝛥𝒗A'B for translunar orbit injection, and 
o a second velocity change 𝛥𝒗A)B for insertion into the desired LMO. 

The optimization problem consists of minimizing the total velocity variation, 
 

𝐽 = 𝛥𝑣A'B + 𝛥𝑣A)B     where                  (4) 

3.1 Formulation of the problem 
This subsection demonstrates that two parameters are sufficient to identify a two-dimensional 
LEO-LMO orbit transfer, i.e. (a) magnitude of the first velocity change , and (b) the 
angle 𝛿 that separates  from the position vector of the spacecraft relative to the Earth center 
at the initial time. After the first velocity change, the coordinates of the spacecraft position 
and velocity (relative to the synodic frame) are  
 

                                              (5) 
 

   (6) 

 
These values represent the initial conditions for Eq. (1), written in the form of four first-order 
differential equations and governing the translunar transfer arc. Intersection with the final 
LMO occurs at 𝑡G, when the spacecraft has coordinates  and position relative to the 
Moon denoted with 𝒓G,). The angle 𝜃 between 𝒓G,) and  is given by 
 

   (7) 

 
The desired velocity components  after the second velocity change correspond to the 
velocity along a circular LMO,  
 

           (8) 
 
where for the symbols ∓ e ± the first and second option correspond respectively to 
counterclockwise and clockwise lunar orbits. Therefore, if  denote the components 

before the second velocity change, then .  

In the end, the Earth-Moon transfer is proven to be identified by a pair of parameters, i.e. 
. They are sought in the following intervals: 

 
3.025 km

s
≤ 𝛥𝑣A'B ≤ 3.162 km

s
      0 ≤ 𝛿 ≤ 2                                  (9) 

 

     and     LEO LEO LMO LMOv vD = D D = Dv v

LEOvD
î

0 0cos      and     sin  E LEO LEOx x R y Rd d= + =

( ) ( ) ( )0 0 0 0 0sin      and     cos      LEO LEO E LEO LEOx R v y v R v R vw d w d µ+ += - = - = +D! !

( ),f fx y
î
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where the lower bound for 𝛥𝑣A'B is obtained using the condition 𝐶 = 𝐶; (cf. Section 2), while 
the upper bound corresponds to the escape velocity from the Earth gravitational field. 

3.2 Method of solution and numerical results 
A preliminary graphical study was performed in order to determine a proper range for the 
parameters around the globally optimal solution. Figure 1 depicts the contour plot of the 
objective function in the plane (𝛥𝑣A'B, 𝛿). First of all, a region of values of 𝛥𝑣A'B and 𝛿 that 
allow the intersection with the desired final orbit can be identified. The values located outside 
this region yield trajectories that do not intersect the LMO (and the objective function is not 
defined as a result). Moreover, it is apparent that the region where the objective function 
assumes higher values (highlighted in yellow) is surrounded by two neighboring regions with 
lower values (in blue). Each of these two regions corresponds to a different direction of the 
angular momentum of the LMO, that is, counterclockwise or clockwise orbits, associated 
respectively with the lower and upper bound. The fact that the optimal paths lie on the 
boundary of feasible trajectories implies that injection into LMO is performed tangentially, 
analogously to what occurs for the Hohmann transfer in the restricted two-body problem. 
 

 
 Figure 1: Contour plot of the objective function 𝑱(𝜟𝒗𝑳𝑬𝑶, 𝜹) 

As a final step, for either clockwise or counterclockwise LMO, the globally optimal solution, 
corresponding to the minimum propellant consumption, is determined, using the particle 
swarm algorithm [5]. The solution is located around the lowest values of 𝛥𝑣A'B and the 
highest values of 𝛿. It is worth remarking that in this region extremely close values of the 
objective function correspond to relatively different values of 𝛿. This reduced sensitivity of 
the objective function has practical implications, because relatively different directions can be 
chosen at departure, with modest effects on the overall propellant consumption.  
Table 1 collects the results of the optimization process. These are extremely close to those 
found by Miele and Mancuso [6] in terms of 𝛥𝑣A'B, although they differ with respect to the 
departure angle 𝛿. However, these results are slightly more accurate than those in Ref. 6, 
where the authors identified the center of the Earth with the center of the entire system. Figure 
2 portrays the transfer trajectory for both counterclockwise and clockwise arrival at LMO. 
 

 𝐽 (km/s) 𝛥𝑣A'B (km/s) 𝛿	(deg)	
Clockwise 3.885  3.069 -117.52 

Counterclockwise 3.878 3.066 -117.38 

Table 1: Globally optimal two-dimensional LEO-LMO orbit transfers 
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Figure 2: Plot of the 2D-trajectory in  (a) Clockwise LMO, (b) Counterclockwise LMO 

4 OPTIMAL THREE-DIMENSIONAL EARTH-MOON TRANSFERS 
This section addresses the determination of the optimal three-dimensional orbit transfer from 
an initial LEO to a final LMO, both with specified altitude and inclination. Specifically, the 
initial orbit has altitude of 463 km and inclination of 51.6 deg, whereas different final circular 
lunar orbits are considered, with common altitude of 100 km and distinct inclinations. 
Assumptions (b) and (c) of Section 3 still hold, and the optimization problem consists again of 
minimizing the cost function defined in Eq. (4). 

4.1 Reference frames 
As a first step, the Earth-centered inertial frame (ECI) and the Moon-centered inertial frame 
(MCI) are defined in relation to the heliocentric inertial frame (HCI). The latter reference 
system is associated with the unit vectors , where  is the vernal axis (corresponding 
to the intersection of the ecliptic plane with the Earth equatorial plane) and  points toward 
the Earth orbit angular momentum [7]. The ECI-frame is associated with the unit vectors 

, where  is the vernal axis and  points toward the Earth rotation axis [7]. 

The ECI-frame and the HCI-frame are related through the ecliptic obliquity angle 
, 

 
   (8) 

 
where the notation  refers to an elementary counterclockwise rotation by angle  

about axis j. According to Cassini’s laws, the Moon’s rotation axis  is coplanar with the 
Moon’s orbit angular momentum  and the normal to the ecliptic plane . The two vectors 

 and  are located at opposite sides of the ecliptic pole , and both of them are subject to 

clockwise precession due to the Sun, with a period of 18.6 years. Hence, axis  of the 
MCI-frame can be properly identified as the rotation axis  at a reference epoch , 
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. If  and  denote respectively the precession angle and the Moon equator 

obliquity (separating  from ), then 
 
   (9) 

 
where  represents the precession angle at  (set to 1 June 2029) and 

. Because the LEO-LMO transfer completes in a few days,  is assumed 
constant and equal to . Moreover, the inertial orbital frame ]𝑁_),𝑀_), ℎb)c can be 
introduced, with unit vectors 𝑁_) and ℎb) aligned with the ascending node and the angular 
momentum of the lunar orbit at . This frame is related to d�̂�;

('), �̂�g
('), �̂�-

(')h through the 
inclination and the RAAN of the lunar orbit at , 
 
   (10) 

 
Finally, the synodic frame aligned with  is related to ]𝑁_),𝑀_), ℎb)c through a single 

counterclockwise rotation about axis 3 by angle , which means that these two 

frames are aligned when , 
 
   (11) 

 
The previous definitions remove all the assumptions related to two-dimensional motion that 
were introduced in Section 3. 

4.2 Formulation of the problem 
In this study, the three-dimensional LEO-LMO transfer is formulated in terms of three 
unknown parameters: (a) magnitude of the first velocity change  𝛥𝑣A'B, (b) right ascension of 
LEO , and (c) the initial phase angle 𝛼j between the synodic reference frame  and 

the inertial frame ]𝑁_),𝑀_), ℎb)c. If  denotes the initial time, then . The initial 

orbit inclination is instead specified and denoted with . The unit vector , associated with 

the spacecraft angular momentum prior to departure, can be written in terms of , 
 
   (12) 
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( ),LEO LEOiW

[ ] ( ) ( ) ( )
1 2 3

ˆ ˆ ˆ ˆsin sin cos sin cos
TE E E

LEO LEO LEO LEO LEOh i i i c c cé ù= W - W ë û



Optimal Two- and Three-Dimensional Earth-Moon Orbit Transfers Leonardi, Pontani 

7 

   (13) 

 
Moreover, at departure from the Earth orbit, the local vertical local horizontal frame (LVLH) 
is associated with the right-hand sequence , where 

 
   (14) 
 
The initial values for the numerical integration of Eq. (1) can be obtained under the 
assumption that the initial velocity change is applied tangentially, i.e. along . As a result, if 

 denotes the inertial velocity of the Earth in the CR3BP, then the spacecraft inertial velocity 
in the CR3BP right after the first velocity change is  
 
   (15) 
 
In order to provide the initial conditions for the numerical integration of Eq. (1), the previous 
relation must be written in the synodic frame. To do this,  is first obtained in the ECI-frame 
using Eqs. (10) and (12)-(14). Then, Eqs. (10) and (11) are employed to project  in the 

synodic frame. Once the three components  of v along  have been 

identified, the initial conditions   can be found using Eq. (2). Moreover, the 
spacecraft position vector at departure, taken from the origin of the Earth- Moon system and 
denoted with , is given by 
 
   (16) 
 
Using steps similar to those for , also  can be projected into the synodic frame , 

and this leads to identifying the initial conditions for the position coordinates .  
The final conditions at injection correspond to intersection of the transfer arc with the sphere 
centered at the Moon and with radius equal to that of the final orbit. The related components 
in the synodic frame are denoted with . Using Eqs. (9)-(11), the 

position vector relative to the Moon center, , can be expressed in the MCI-frame as 
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Matrix A is the result of several subsequent elementary rotations, , and  
represents the flight time. The desired orbit plane has specified inclination , whereas its 

RAAN  is found by solving the equation , after writing  in terms of  

and , 
 
   (19) 

 
Using Eqs. (17) and (19), the orthogonality condition  assumes the following 
form : 
 
   (20) 
 
where the terms  depend on . In general, 
Eq. (20) yields two solutions, and the one associated with the lower value of the objective 
function is selected. Once the final orbit has been determined, the velocity components 

 can be found using steps analogous to those described at the beginning of this 

section, with  in place of . Therefore, if  denote the 

components before the second velocity change, then 
 

   (20) 

 
In the end, the Earth-Moon transfer is proven to be identified by three parameters, i.e. 

. They are sought in the following intervals: 
 

                      (12) 
 
where the lower bound for 𝛥𝑣A'B is obtained again using the condition 𝐶 = 𝐶; (cf. Section 2), 
while the upper bound corresponds to the escape velocity from the Earth gravitational field. 

4.3 Numerical results 
For the problem at hand, the particle swarm algorithm is used, with three unknown parameters 
(𝛥𝑣A'B, 𝛼j, 𝛺A'B). The optimization is repeated with different values for the inclination of the 
LMO, ranging from 10 to 90 deg. 
From inspecting the results in Table 2, it is evident that the overall velocity change is only 
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and (c) performing a final out-of-plane maneuver to change the inclination to 90 deg. Figures 
3 and 4 portray two optimal LEO-LMO transfers, associated respectively with final lunar 
polar and equatorial orbits.  
 

 
Figure 3: Plot of the 3D-trajectory in  (with arrival at polar LMO in the inset) 

 

 
Figure 4: Plot of the 3D-trajectory in  (with arrival at equatorial LMO in the inset) 

 
𝑖A)B (deg) 𝐽 (km/s) 𝛥𝑣A'B (km/s) 𝛺A'B (deg) 𝛼j	(deg)	

90 3.89445 3.06812 -12.05 121.32 
80 3.89376 3.06784 -11.44 122.42 
70 3.89278 3.06750 -12.91 119.75 
60 3.89162 3.06713 -11.15 122.48 
50 3.89028 3.06677 -12.47 119.69 
40 3.88906 3.06644 -12.60 118.78 
30 3.88802 3.06616 -12.53 117.96 
20 3.88731 3.06598 -11.32 118.89 
10 3.88713 3.06593 -12.21 115.97 
0 3.88796 3.06606 -11.59 115.16 

 

Table 2: Results for the three-dimensional LEO-LMO orbit transfer 
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5 CONCLUDING REMARKS 
This work addresses the problem of identifying minimum-fuel two- and three-dimensional 
orbit transfers from a specified low Earth orbit (LEO) to a low Moon orbit (LMO), under the 
assumption of employing high thrust-propulsion. The problem at hand is solved in the 
dynamical framework of the circular restricted problem of three bodies. First, the optimal 
two-dimensional orbit transfer from LEO to LMO is formulated in terms of two unknown 
parameters, and all the feasible transfers are identified. Then, the globally optimal two-
impulse transfer is found, and is proven to be located at the boundary of the feasible region of 
the search space associated with Earth-Moon transfers. As a second step, three-dimensional 
transfers are considered, using a dynamical model that includes also the Cassini’s laws of 
lunar motion. Several two-impulse optimal orbit transfers are identified, corresponding to 
distinct final lunar orbits. Selection of the initial optimal RAAN can benefit from precession 
of the orbit plane due to Earth oblateness. The propellant consumption associated with three-
dimensional transfers turns out to be relatively insensitive to the final orbit inclination and 
exceeds only marginally the value of the globally optimal two-dimensional orbit transfer. 
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