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Abstract

The primary objective of this work is to examine, present, and suggest phase-field dam-
age models that are suitable for simulating the fracture behavior of soft materials, with a
specific focus on rubbers. To achieve this, it is essential to comprehend the various ways
in which fracture occurs in rubbers through different case studies, such as simple ten-
sion tests or tests with pre-etched specimens subjected to quasi-static loading conditions.
Along with the specimen shape and testing mode, it is crucial to understand how the
material’s viscosity influences the rate and mode of fracture and the propagation of frac-
ture. Next, this study will concentrate on three specific phenomena, aiming to replicate
them numerically using the proposed models. To illustrate brittle fracture phenomena,
the experiments detailed in Hocine et al. [2002], investigating the behavior of pre-incised
specimens, will be replicated. The investigation into cohesive fracture phenomena will
draw from the findings in Millereau et al. [2018], which explored double network elas-
tomers and their pseudo ductility. Finally, the examination of dynamic fracture behavior
will reference experiments from Corre et al. [2020], emphasizing the pivotal role of frac-
ture propagation.
After analyzing the experimental data, it will be necessary to introduce finite elastic
and viscoelastic models for soft materials, like rubber, hydrogels, biological tissues and
others that are able to undergo significant deformations (even up to 700%) under low
stresses. Additionally, phase-field models of damage will be incorporated. The existing
literature on finite elasticity models will be explored, including well-known models sum-
marized in Dal et al. [2021], as well as less known models such as the one proposed by
Lopez-Pamies [2010], which will also be utilized in the proposed models. The utilization
of these models will contribute to formulating a Maxwell rheological scheme, as outlined
in Reese and Govindjee [1998], Holzapfel [1996], and Kumar and Lopez-Pamies [2016],
in order to depict viscoelastic characteristics. Subsequently, a damage state variable will
be introduced to create a viscoelastic phase field model. In these phase-field models,
the material’s characteristics, affecting its elastic parameters, are represented by fields of
state variables. In the case of damage models, the state variable considered is damage,
which progressively degrades the material parameters until failure. A literature review
of damage models, including the works of Pham et al. [2011], Lancioni and Corinaldesi
[2018], Wu [2017], and others, will also be conducted.
Following the introduction and literature review, an elastic rate independent model ca-
pable of reproducing both brittle (Hocine et al. [2002]) and pseudo-ductile (Millereau
et al. [2018]) behaviors, by incorporating a cohesive damage model into the Ogden’s
(Ogden [2003]) finite elastic model will be proposed. By this way, an interpretation of
failure phenomena at large damage displacements will be proposed. This model will be
thoroughly explained from theoretical and numerical perspectives, elucidating the role
of different constitutive parameters. In this scenario, three parameters within the degra-
dation function (representing the impact of damage on the material’s elastic moduli)
will hold significant importance. These parameters will respectively define the fracture’s
onset, the progression during the initial post-elastic phase, and the material’s behavior
at the point of complete failure. Numerical simulations will be performed to replicate the
actual behavior observed in experimental tests. The model’s potential and limitations,
particularly the absence of viscosity, will be analyzed and discussed.

To address the influence of viscosity on fracture propagation and failure modes, a
second rate-dependent formulation will be proposed, utilizing a generalized Maxwell



rheological model similar to the works of Reese and Govindjee [1998] and Kumar and
Lopez-Pamies [2016]. In this theory, a damage model representing brittle fracture will be
considered. In this formulation, a parameter will be introduced to assess the energy dis-
sipation resulting from the rate of damage and, thus, associated with crack propagation,
as Loew et al. [2019], Levitas et al. [2010], Hakim and Karma [2009]. This parameter will
serve as a characteristic time of the damage variable and it plays a crucial role in repro-
ducing experiments of Corre et al. [2020]. This damage characteristic time will interact
with the material characteristic time, which is the ratio between the viscous parameter
and the stiffness. The complete model, along with the interpretation of constituent pa-
rameters, will be presented. Furthermore, considering the extreme scenarios of infinite
and infinitesimal material characteristic times, pertaining to the damage characteristic
time, as well as finite viscosity, will be investigated to understand their effects. The rate
dependence will enable the study of loading rate influence on rupture and crack propa-
gation in soft materials. The model will be properly calibrate to reproduce the behavior
of Corre’s material, to replicate crack propagation findings. Finite element modeling will
be employed to examine the material’s state around the fracture tip in terms of energies
involved, dissipations, and stresses, observing the local response to crack formation.
Subsequently, these two models will be analyzed to highlight their strengths and weak-
nesses regarding their ability to reproduce experimental results and their numerical com-
plexities. The conclusions will summarize the potential of the presented models, the
applicability of phase-field damage models to finite viscoelasticity, and the limitations
of the proposed approaches. Future developments will be suggested, considering the
limitations discussed and taking into account existing models in the literature.
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Chapter 1

Introduction

1.1 Background and motivations

The broader category of soft materials encompasses elastomers, hydrogels, biological
tissues, and more. Within this context, rubber materials find applications in tires, vi-
bration dampeners, and various components in industries such as valve membranes and
elastomeric wave energy harvesting. Due to their diverse applications and unique char-
acteristics, these materials have been extensively researched for the past 70 years. The
current research work aligns with this context, aiming specifically to investigate and pro-
pose finite elastic and viscoelastic models capable of depicting their failure behavior using
a phase-field approach to damage.

One distinctive characteristic of these materials is their remarkable capacity for sig-
nificant deformation, also over 700%. Additionally, viscosity plays a crucial role in their
overall behavior, particularly in fracture scenarios where large pre-existing strains result
in substantial deformation rates during and after crack formation.

Moreover, the viscous dissipation indirectly influences the fracture yield condition, by
its connection with the energetic part. While numerous elastic models effectively simulate
rubber behavior under pseudo-static conditions, they struggle to capture rate-dependent
phenomena. Notably, a comprehensive review of these elastic models for soft materials
can be found in the review of Dal et al. [2021].

Conversely, modeling rate-dependent phenomena, which encompass temperature de-
pendence, the Payne and Mullins effects, as well as hysteresis, poses greater challenges.
While this study will offer insights into these effects, supported by empirical data, it will
exclusively focus on hysteresis phenomena due to the assumption of a constant temper-
ature and the negligible impact of Mullins and Payne effects in the crack propagation
problem. Using these assumption, the prominent sources on viscoelastic models at large
strain encompass the works of Holzapfel [1996], Reese and Govindjee [1998], and Kumar
and Lopez-Pamies [2016].

Concerning the correlation between fracture problems and rate-dependent phenom-
ena, existing models are scarce and often complex to apply and fit with experimental
data. Some of the earlier models, such as those by Hakim and Karma [2009] from an
anisotropic perspective and Levitas et al. [2010], are among the earliest contributions.
More recent studies by Loew et al. [2019], Yin and Kaliske [2020], Dammaß et al. [2021]
and Dammaß et al. [2023] have also explored this domain.

Understanding the viscoelastic and fracture behavior of a material significantly en-
hances its potential applications and product performance. Precise modeling of fracture
behavior and the interaction between viscous properties and material failure streamlines
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the design process, enabling the development of new applications under non-quasi-static
conditions and with deformations approaching crack strains.

In addition to the rate dependent phenomena, many peculiar behaviors of these ma-
terials can be caught using a rate independent approach. In particular, in recent years,
substantial efforts have been directed towards addressing a fundamental limitation of
elastomers, namely, their inherent tendency to undergo brittle failure. Notably, by
customizing the microscopic characteristics of elastomers, a novel category of materi-
als known as double-network elastomers has emerged (Millereau et al. [2018]). These
elastomers demonstrate a pseudo-ductile failure mode, which arises from the deliberate
control of crack propagation within their internal structure. The modeling aspects re-
lated to this distinctive behavior represent a noteworthy area of investigation, and these
will be one of the aspects investigated in this study.

The aforementioned aspects outlines a significant challenge in elastomer fracture mod-
els, particularly concerning the integration of fracture models with the viscous properties
of rubber materials, specifically focusing on crack propagation. The process of crack prop-
agation within pre-stretched elastomer samples, while interacting with high deformation
ratios, poses a complex problem. Understanding how the crack evolves and behaves under
these conditions, taking into account the rate-dependent aspects of fracture phenomena,
represents an ongoing and intricate challenge in the field.

It’s worth noting that these models can also be adapted for other soft materials, such
as hydrogels and biological materials, extending their applicability beyond rubber-based
materials.

1.2 Outlines

Given the previously outlined objectives, we distinguish experimental and modeling works
from literature. In the initial phase (experimental part), the primary objective is to
comprehensively examine and gain insights into the underlying phenomena related to
the failure of rubber materials. In this context, following a comprehensive overview of
the subject through sources such as Knauss [2015], Persson et al. [2005] and Yin et al.
[2021], the subsequent emphasis will be placed on three following experiments:

- Hocine et al. [2002], shown in fig. 1.1, a double notched sample is subjected to a
tensile test with different values of a. In this situation, the non regularity of the
geometry is crucial to catch the experimental results. In this framework the more
interesting part will be the caching of the role played by the notched and the high
stretching regime.

- The experiment of Millereau et al. [2018], studies the behavior of the double network
elastomers. In fig. 1.2, a tensile test of these particular rubbers can be observed.
The peculiarity of this material is its pseudo ductility. This characteristic behavior
is due to a particular damage pattern. In a tensile test, after the elastic branch,
a localized damaged neck appears in a little region of the bar. This neck propa-
gates during the test in a quasi constant stress regime, until the damaged zone is
extended for all the bar. When the propagation is completed, the material exhibits
a little hardening branch until the rupture.

- For what concerns the rate dependent phenomena, the crack propagation in a pre-
stretched sample will be studied, by the experimental results of Corre et al. [2020].

4



(a) Double notched sample
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Figure 1.1: Experimental set up 1.1a and results 1.1b of Hocine et al. [2002] for SBR
rubber. In this case a double pre-notched sample is subjected to a tensile test with
different values of a. The initiation of damage phenomena are highlighted by red points.

Figure 1.2: Double network elastomer’s behavior in Millereau et al. [2018]. In this
material, firstly a localized damage part can be observed and, during the constant stress
part, it propagates over the bar.
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Figure 1.3: In this experiment of Corre et al. [2020], a rubber sample is pre-stretched
and, after, a crack is made to observing the propagation.

This experiment can be divided in three phases. In the first the sample is pre-
stretched in pseudo-static conditions until a certain pre-stretch deformation. After
this, in the second phase, a little cut is instantly made by a blade in the center of
the stretched side. The last phase consists simply in the observation of the crack
propagation along the bar. This experiment will be considered the main data set
to study the interactions between the viscosity and the fracture behavior. These
two aspects will be summarized in the present work, by the analysis of two distinct
characteristic times, one linked to the viscosity of the material (the ratio between
the viscous coefficient and the stiffness), and the other associated with the damage
field. Notably, the relationship between these two time scales plays a pivotal role
in determining the speed at which cracks propagate.

After a general study of fracture phenomenology, the focus of the study will shift to these
three experiments, that will be simulated for their positive relationship between ease of
modeling by finite element and relevance of the results.

The second portion of the outlined analysis pertains to the modeling aspects encom-
passing finite elasticity, finite viscoelasticity, and phase-field damage. In this work, the
finite elastic models that will be used are the model in Ogden [2003], where the elastic
energy density depends to the eigenvalue of the right Cauchy strain tensor (C), and the
model in Lopez-Pamies [2010], where it depends on the first invariant of C. Both of these
energy densities are appropriate for characterizing the diverse behaviors exhibited by soft
materials. Specifically, Ogden’s energy density tends to better fit with the experimental
findings in pseudo-static loading conditions, albeit presenting challenges when coupled
with viscous models compared to the Lopez-Pamiez energy density. Indeed, when using
the Ogden’s model to derive the stress tensor, the requirement to obtain the eigenvectors
of C arises. This necessity, however, precludes the possibility of deriving the evolu-
tion equation for viscoelastic deformation in a closed and simple, form. Instead, in the
Lopez-Pamiez model, it is possible to determine the stress tensor without the need for
eigenvector calculations. As a result, the evolution equation for viscoelastic deformation
can be assessed in a straightforward and analytical form.

For what concerns the viscous problem, it presents a more intricate challenge com-
pared to the pseudo-static one. However, there are numerous contributions in the liter-
ature that can be explored to gain a deeper understanding of this issue. In particular,
the foundational works that will serve as the cornerstone for the rate-dependent compo-
nent of this research include Reese and Govindjee [1998], which introduces a viscoelastic
model incorporating a Generalized Maxwell rheological model. Another important work

6



is Holzapfel [1996], where the volumetric contribution assumes a significant role in the
modeling process. Additionally, Kumar and Lopez-Pamies [2016], extends the ground-
work laid by Reese and Govindjee, both theoretically, by accommodating anisotropic
conditions, and comprehensively, by incorporating nonlinear viscous modeling from the-
oretical, numerical, and experimental perspectives. While constructing the viscous part
of the model in this study, Kumar’s model will predominantly serve as the framework,
while drawing supplementary insights from Reese and Govindjee [1998].

The last aspect that is considered consists in the modeling of fracture by following a
phase-field approach. This kind of approach is commonly applied to the linear elasticity
and its basis can be found in the work of Pham et al. [2011] or (for a more thermo-
dynamics study) in Marigo [2006]. For an application to a real material, the work of
Lancioni and Corinaldesi [2018] can be read. In this kind of model, the fracture/dam-
age of the material is modeled as an internal scalar field that goes from zero (for the
virgin material) to one (for the fully damaged material) named "damage" that can only
increase. This internal variable is connected to the elastic parameters by the degradation
function that is a decreasing function of the damage and it degrades the elastic moduli
when the damage increase. Another significant component within these models includes
the nominal energy release, which quantifies a localized energy release associated with
fracture development. Additionally, there is a non-local energy term, which facilitates a
seamless transition between the fractured region of the material and its intact part. In
both the original contribution, the representation in Wu [2017] will be used, because it is
an enough general treatment of the damage problem to include all the behaviors that we
need (from brittle to pseudo-ductile or only brittle). For what concerns the pseudo-static
application of the damage models, we can consider the work of Miehe and Schänzel [2014]
as one of the first applications of the damage phase-field model to the finite elasticity.
In this work, the experiments in Hocine et al. [2002] (see fig. 1.1) are simulated. Thus,
our first aim will be to develop a model that are able to reproduce both the behavior in
fig. 1.1 (brittle) and in fig. 1.2 (pseudo-ductile) by the coupling of the Ogden’s and the
phase field approaches.

After the development of a rate independent phase field damage model in the context
of finite elasticity, the further development will become the study of the interactions
between the fracture and the viscous propriety, through the analysis of the crack prop-
agation. To achieve this goal, the experiment of Corre et al. [2020] (see fig. 1.3) will
be the main point and the viscous models like Kumar and Lopez-Pamies [2016] will be
coupled with the damage phase field models to reproduce that phenomenology.

1.3 Original Contribution

The main original contributions can be categorized into two main research endeavors:
the first has been published in Ciambella et al. [2022] and is centered on quasi-static
applications, while the second is currently ongoing and focuses on dynamic fracture in
viscoelastic elastomers.

In the initial work, the objective is to accurately replicate the intricacies of crack
phenomenology under pseudo-static conditions, accommodating a wide spectrum of be-
haviors from brittle to pseudo-ductile. Specifically, the study will encompass brittle
behavior analysis, drawing insights from the experiments of Hocine et al. [2002], as also
investigated in prior research by Miehe and Schänzel [2014], and Talamini et al. [2018].
This endeavor involves adapting the model to five distinct tensile tests, each featuring
varying notch lengths, while also addressing irregularities that manifest in the vicinity
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of these notches. Additionally, the investigation delves into pseudo-ductile phenomena,
which are associated with the behavior of double network elastomers, as detailed in
Millereau et al. [2018]. In this case, complexity arises from the post-elastic behavior ex-
hibited by these materials. Specifically, a localized damage portion is observed initially,
and during the constant stress phase, it propagates across the material until complete
sample’s damaging. After this phase a stress hardening phase is observed before the
rupture.

In the second work, the focus will be the interaction between viscous effects and
crack propagation. This study will be done by the analysis and the modeling of the
experiment in Corre et al. [2020] (see fig. 1.3). In the formulation of a model able to re-
produce this kind of experiment, in addition to the material’s characteristic time τm (the
ratio between the viscous coefficient and the stiffness), a damage characteristic time τd
will be introduced using a dissipative viscous micro-stress to account the energy released
by the material by the crack velocity. The interaction between these two characteristic
times will be the first focus of this study and, after, the role played by other material’s
parameters or numerical choices will be analyzed. The formulation of this model will
consists in the combination of a viscous model like Kumar and Lopez-Pamies [2016] or
Reese and Govindjee [1998], with a brittle damage phase-field approach and, after this
investigation, the model will be fitted with the experimental results.

1.4 Structure of the thesis

The structure of the thesis is the following:

• Phenomenology and modeling of elastomers’ behavior This chapter will
delve into the behavior of rubbers, initially exploring their viscoelastic proper-
ties through an analysis of the micro-mechanical structure, drawing insights from
sources such as Baumard [2017], Persson et al. [2005], and other references. The aim
is to illuminate the material’s peculiarities as thoroughly as possible. Subsequently,
the focus will shift to fracture analysis, investigating references like Persson et al.
[2005] and Knauss [2015] to examine all contributing factors to material fracture.
Following this phenomenological analysis, the study will progress to explore models
present in the literature. Beginning with pseudo static elastic models, the review
will encompass references such as Dal et al. [2021] and significant treatises in the
field of viscoelasticity (Reese and Govindjee [1998], Holzapfel [1996], Kumar and
Lopez-Pamies [2016]). Subsequent sections will introduce phase-field modeling, ini-
tially delving into damage modeling utilizing the Lancioni and Corinaldesi [2018]
model, followed by the presentation of the Wu [2017] model.
After introducing phase-field models for damage in linear elasticity, the exploration
will advance to nonlinear elasticity (leveraging Miehe and Schänzel [2014] and Ta-
lamini et al. [2018]), preceding an introduction to the primary formulations in finite
viscoelasticity and damage, drawing from sources such as Loew et al. [2019], Yin
and Kaliske [2020], Dammaß et al. [2021] e Dammaß et al. [2023].

• A cohesive phase-field model The objective of this chapter is to introduce
the model as presented in Ciambella et al. [2022]. The first section will provide
a comprehensive overview, highlighting the model’s adaptability as an exemplary
illustration. It demonstrates a highly versatile formulation capable of simulating
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both brittle and pseudo-ductile fracture behaviors.

• Rate dependent phase-field model This chapter will introduce a finite vis-
coelastic model coupled with a damage phase-field approach, with the goal of repli-
cating crack propagation as observed in the experiment conducted by Corre et al.
[2020]. Through this model, we will assess the impact of different material parame-
ters on crack propagation, with particular attention to the material’s characteristic
time (τm) and the damage characteristic time (τd), as well as their interplay.

• Conclusion In this section, we will summarize the capabilities of the two formu-
lations. Following that, we will underscore the constraints and limitations of these
models. Starting from these limits, we will put forth suggestions for potential future
advancements and developments.

1.5 Notation

For what concerns the notation, distinct conventions will be applied for matrices, vectors,
and versors. Matrices will be represented by capital bold letters (M), vectors typically
denoted by lowercase letters and underlined (u), and versors (unit modulus vectors)
indicated by a hat over them (n̂).

The scalar product, applicable to both vectors and tensors, will be denoted using a
central dot, illustrated as follows:

M ·N = MijNij u · v = uivi, (1.1)

where the components of vectors and matrices are identified by subscripts (for matrices
first row, then column). In equations where there’s a generic index, the summation
symbol (e.g.,

P
i) is excluded unless explicitly stated, following the convention used in

preceding equations.
For what concerns the derivation, the over dot indicates the time derivative (•̇ =

d • /dt), while the former indicates the partial derivative with respect to the variable on
which the function depends (e.g. g′(d) = ∂g(d)/∂d), also when the variable is omitted
for synthesis.

The row-column product of the tensors is represented without symbols (MN) and
the dyadic product between vectors gives a matrix as follows:

(u⊗ v)ij = uivj , (u⊗ v)(m⊗ n) = (v ·m)(u⊗m), (u⊗ v)m = (m · v)u; (1.2)

where the components, the matrix and the vector row-column products are respectively
shown. Typically, this type of multiplication yields a tensor with an order equal to the
sum of the orders of the individual factor tensors. For instance, the dyad of two vectors,
each being first-order tensors, results in a second-order tensor. Meanwhile, a dyad formed
by two second-order tensor (matrices) produces a fourth-order tensor.
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Chapter 2

Phenomenology and modeling of
elastomers’ behavior

This chapter encompasses a literature review on elastomer behavior and the correspond-
ing replicating models. It commences with an introduction to the phenomenology of
elastomer deformation processes, encompassing micro-mechanical observations. Follow-
ing the deformation phase, the review delves into the analysis of the phenomenology of
the fracture processes. Subsequently, the focus moves to finite elastic and viscoelastic
modeling, culminating in the introduction of phase-field models. These models will be
utilized for simulating and studying the fracture behavior of elastomers.

2.1 A microscopic perspective on elasticity and viscoelas-
ticity

Figure 2.1: Micro mechanics frame-
work of a single chain.

Rubbery materials can undergo significant defor-
mations, exceeding 700%, while experiencing rela-
tively low levels of stress. The pseudo-static behav-
ior of these materials has been extensively inves-
tigated, with a comprehensive review available in
the work by Dal et al. [2021]. This review encom-
passes both statistical and phenomenological ap-
proaches. From a microscopic perspective, rubber
materials consist of chains of monomers with freely
rotating links. These chains are interconnected by
weak chemical bonds with varying degrees of cross-
linking. In a stress-free configuration, these chains
adopt a curled-up arrangement, facilitated by the
presence of these weak interconnections. However,
when subjected to stretching from a nearly stress-
free state, as also elucidated in the study by Bau-
mard [2017], the probability (p) that the end of a
random chain resides within a given volume (dv, with its origin at the opposite end) can
be mathematically expressed using a Gaussian error function as follows

p(r)dv =
c31
π3/2

e−c21r
2
dv, s.t. P (r)dr = 4

c31
π1/2

r2e−c21r
2
dr (2.1)
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where r is the distance from the origin and c21 = 3/(2nl2) is a parameter that depends
only on the structure of the chain (n, the number of monomers and l the length of the
single linkas in fig. 2.1). This equation also involves a change of coordinates to calculate
the probability of finding the chain’s end within a spherical shell of thickness dr at a
distance r from the origin. It’s crucial to highlight that equations (2.1) are applicable
when the ratio c1r = r/l ≪ 1, thus, when the end-to-end distance significantly differs
from the fully extended length of the chain.
In such a scenario, the work (W) for a reversible deformation can be expressed as the
change in Helmholtz free energy. Due to the free rotation of the links, we can disregard
the internal energy and focus solely on the entropy component of the energy, as it follows

W = −θ∆S where S = c2 − kc21r
2, (2.2)

where θ is the absolute temperature, S the entropy and, in the entropy definition, c2 is an
arbitrary constant and k is the Boltzmann constant. The transition from the microscale
to the macroscale can be achieved by recognizing that the deformation of an individual
chain mirrors the deformation of the entire network. Now, we can focus on the principal
directions of deformation to determine the position vectors. For each principal direction
(denoted as i = 1, 2, 3), the position vector can be expressed as xi = λix0i where ’x01’ is
the initial position vector. In this context, both entropy and its change can be expressed
as follows

S = c2 − kc21(λix0i)
2; ∆S = −kc21(λ

2
i − 3)x20i. (2.3)

Given the absence of a favored direction for the principal axes (indicating isotropic be-
havior), we can contemplate the average initial position as

P
x20i = Ncr20i and it can be

assumed as constant for the chains. Hence, during an isothermal transformation, the
internal work performed by all the chains within a unit volume can be regarded as

W =
1

2
µ(λ2

1 + λ2
2 + λ2

3 − 3) =
1

2
µ(I1 − 3), (2.4)

where the constant µ includes all the constant coefficients in eqn. (2.3) and I1 represents
the first invariant of the right Cauchy strain tensor, as explained in sect. 2.4.1 and
eqn. (2.15). Equation (2.4) is commonly referred to as the Neo-Hooke strain energy
function. It’s worth noting that this model is suitable for simulating rubber behavior
primarily when deformations are relatively small compared to the maximum elongation,
as depicted in fig. 2.2. Indeed, considering as example the probability function in Kuhn
and Grün [1942]

log p(r) = CNG − n
r

nl
L−1

� r

nl

�
+ log

� L−1(r/(nl))

sinh[L−1(r/(nl))]

�
, (2.5)

where L is the Lingevin function that tends linearly (with an angular coefficient of 3) to
zero when the argument tends to zero (see Howard [2020] for more instances), we can
observe that for r/nl → 0, the last expression tends to the Gaussian distribution of eqn.
(2.1). In this range, the strain energy is predominantly entropic, as also discussed in
Puglisi and Saccomandi [2016], where the chains are not considered composed by hinged
rods, but by hinged beams, obtaining a worm-like chain model, where the deformation
of the links between the monomers gives an enthalpic contribution.

If the goal is to predict material behavior under higher levels of stretching, more
complex probability functions (such as the inverse of the Langevin function, as seen in
Treloar [1975]) and more intricate phenomenological models at the macro scale become
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Figure 2.2: In this figure, the neo-Hooke model is qualitatively compared with other
phenomenological models (Ogden [2003], Lopez-Pamies [2010] and Gent [1996]). Since
this model is based on the micro mechanical treatment outlined in eqn. (2.1), it effec-
tively accurately predicts rubber behavior within the region of low and moderate strains.
However, for high strains, employing more intricate formulations becomes imperative.
Furthermore, this graph includes a distinction of strain regimes as reported by Dal et al.
[2021], where the low stretches refer to the concave part of the stress–stretch curve, mod-
erate to the plateau region of the curve and high stretches to the stress hardening part.
These models will be exposed in sect. 2.4.1.

Figure 2.3: Viscoelastic modulus with the imaginary (loss) and real (storage) parts in fig.
(a) and their ratio (tan δ) from Persson et al. [2005] over the frequency of the dynamic
part of the deformation ω. Since tan δ is often associated with viscous dissipation, it can
be seen that the transition region has the maximum dissipation.

necessary.
For what concerns the viscoelastic behavior, as explained in Persson et al. [2005],

from a micro structure point of view, this is due to the thermally activated switching
of polymer segments between different configurations, facilitated by the stresses. If τm
represents the characteristic switching time during which these phenomena occur (also
known as material characteristic time), then, for a cycling load with frequency ω ≫ τ−1

m ,
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there is not time for thermally activated rearrangement of the polymer chain segments to
occur, and the rubber response is that of a hard glassy material. On the other hand, when
ω ≪ τ−1

m , thermally activated rearrangements of the chains occur adiabatically, resulting
in a soft rubbery response. This behavior is evident in a cyclic test (e.g., with λ =
λst+ϵdinsin(ωt) ), in which the stiffness can be described as a complex modulus summing
the contribution of the in-phase (elastic) and the out-of-phase (viscous) responses of the
material. This modulus depends on the frequency of the load and on the temperature,
in an indirect way, through τm as E = E(ω, τm(T )), such that

E = E′ + iE′′, tanδ = E′′/E′; (2.6)

where E′ and E′′ are the real and imaginary parts of E (also called storage and loss
modulus), and tan δ is the loss angle, providing an estimate of the damping in the ma-
terial. Two limit loading conditions can be identified, where τm ≫ 1/ω or τm ≪ 1/ω;
in both cases, the imaginary part of the elastic modulus becomes Im(E) → 0, signifying
that the material behavior becomes rate-independent. In the intermediate case, viscous
effects become important. In this context, understanding the temperature dependence of
τm is crucial. One possible relation is given by Williams et al. [1955], where the following
relationship is derived

τm = τm0 aT , where aT =
C1(T − Tg)

C2 + T − Tg
; (2.7)

where Tg is the glass transition temperature and C1, C2 are two constants of the rubber.
As shown in fig. 2.4, the temperature dependence of the loss modulus on the frequency
can be completely absorbed by the aT parameter in eqn. (2.7). In addition to the tem-
perature effects, another dynamic effect that can be found in the rubber behavior is the
Payne effect, shown in fig. 2.5 by the experiments of Ramier et al. [2007]. In a cyclic
loading condition, the storage modulus decreases with the amplitude of the dynamic
maximum strain of a cycling load. The loss factor presents a peak and, after, it de-
creases. This phenomenon can be found also in case of low strains and it is a non linear
viscous effect. Another non linear elastic effect that can be found in these materials is
the Mullins’ effect. It is a phenomena where for a series of loading and unloading at
the same maximum strain (also in pseudo-static load conditions), the maximum stress
measured decreases with the number of cycles as shown in fig. 2.6. The intensity of this
phenomenon normally decrease whit the number of the cycles, in fact it is relevant only
for the firsts cycles and negligible for the others. An exhaustive review concerning this
kind of behavior can be found in Diani et al. [2009]. The main physical interpretations of
this phenomenon involve microstructural ruptures as well as microstructural changes in
the interface between rubber-filler interface. These interpretations are mainly dedicated
to filled rubbers and usually do not extend to not filled materials, but the Mullins effect
is observed also in pure gums. Also for this reason, the various explanations suggested
for the Mullins’ effect show that there is still no general agreement on its origin.

A fundamental aspect of rubber response is hysteresis, which is manifested by the
non-vanishing area between stress-strain curves in a cyclic experiment, as illustrated in
fig. 2.7. The amount of energy dissipation is intricately connected to the rubber’s com-
position and microscopic-scale phenomena that lead to energy dissipation, encompassing
factors such as the friction between polymer chains and the degradation of the filler
structure. This phenomenon has been explored in studies like Mark et al. [1994], where
it is inferred that crosslinks reduce hysteresis as the elasticity of the rubber network
increases. Additionally, in Lindley [1974], the investigation into the role played by fillers
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Figure 2.4: Effect of the temperature on the storage modulus (real part of the elastic
modulus) from Gent and Walter [2006]. In this graphs the role played by aT in eqn. (2.7)
is shown. In particular, if ω is normalized with ω aT , the relation between the frequency
and the storage modulus becomes temperature dependent only through aT .

deduces that fillers contribute to increased energy loss. This phenomenon can be utilized
to assess viscous dissipation during a viscous deformation process.
In the upcoming section, we will delve into the fracture propagation process, with a
particular focus on the inelastic zone surrounding the fracture process area near its tip.
Within this zone, viscous deformations significantly impact viscoelastic deformation, es-
tablishing parallels to the concept of hysteresis.

2.2 Phenomenology of fracture in elastomers

To understand the fracture behavior of a material, it is necessary to analyze its general
behavior (as in the previous section), and then focus on the phenomena that occur around
the fracture tip. In figs. 2.8 (Yin et al. [2021] and Persson et al. [2005]), both authors
delineate two distinct regions surrounding the crack tip. In the nearer region, denoted as
fracture process zone (FPZ) from Yin et al. [2021], the released energy is a consequence
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Figure 2.5: Example of Payne effect from Ramier et al. [2007] for SBR rubber with
only silica filler (MPi) and different intensity of filler-matrix interface treatment (Ac-x).
The storage modulus decreases with the amplitude of the dynamic maximum strain of a
cycling load. The loss factor presents a peak and, after, it decreases.

of rupture phenomena (as cavitation and recrystallization in glassy micro-structure),
whereas in the further region, energy is liberated due to viscoelastic deformations. In
Persson et al. [2005], the total energy released per unit area during crack propagation is
described as follows

G = G0(1 + f(v, T )) where limv→0f(v, T ) = 0, (2.8)

where v is the crack tip velocity and G0 represents the energy released for a quasi-
static propagation. The energy released changes with the function f(v, T ), that is an
increasing function of v and a decreasing function of the temperature as shown also in
many works in literature. Furthermore, in Persson et al. [2005], the extent of the inelastic
zone is correlated with both the peak frequency of the loss function (see fig. 2.3) and
the velocity of crack propagation. A similar distinction is also addressed in Yin et al.
[2021], where they divided the total work of fracture into the two contribution of essential
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Figure 2.6: Example of Mullins’ effect from
the review Diani et al. [2009]

Figure 2.7: Viscous Hysteresis example
from Baumard [2017] with the energy dis-
sipated over the load-unload cycle.

(a) crack tip in Yin et al. [2021] (b) crack tip in Persson et al. [2005]

Figure 2.8: In this figure, both authors divide the energy dissipation at the crack tip
into two distinct regions. The first region, depicted as the fracture process zone (dark
grey), experiences dissipation primarily attributed to the fracture process and it can be
assimilated to the cohesive zone of Knauss [2015]. In the inelastic zone, the predomi-
nant source of dissipation arises from viscous phenomena resulting from the significant
deformations in the FPZ due to the crack propagation process.

work of fracture, expired by the FPZ and due to the fracture-related phenomena, and
the non-essential fracture work expired by the inelastic zone and due to the viscoelastic
dissipation. These considerations are done within the framework of fatigue analysis.
Specifically, these two components of the work of fracture, are determined by testing
double notched speciments, increasing the length of the incisions more and more, until
the inelastic zones and, subsequently, the FPZs of the two tips overlap. The essential
work is evaluated as the work required to break the specimens where the FPZs near to
overlap, while the nonessential contribution as residual.

By analyzing the deformation state of the FPZ during the crack transition, it can
be observed that an increase in deformations brings the deformation state into a high
stretch regime (see stress hardening zone in fig. 2.2), leading to an increase in stiffness. A
further rise in stiffness is attributed to the high strain rate condition (glassy region in fig.
2.3), wherein this increase predominantly affects the storage modulus. Concurrently, the
loss modulus, which assesses effective viscous dissipation, tends to decrease. Dissipation
at this stage will, therefore, primarily be attributed to the phenomena of rupture, as said
before.
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In contrast, beyond both the FPZ and the viscoelastic region, the stiffness resembles
what seen in quasi-static loading conditions. This contrast in stiffness conditions is
depicted in fig. 2.8b, with stiffness represented for simplicity by the Young modulus as
in linear elasticity. This difference in deformation regimes also affects the parameter G
as demonstrated in eqn. (2.8). This influence is mediated by the function f(v, T ) within
the viscoelastic regime, serving to smooth the transition between E0 and E∞. In Persson
et al. [2005], this relationship is employed to link energy release with the elastic modulus,
akin to the crack criterion outlined by Griffith [1920], where the stress intensity factor
(K) is expressed as follows

G = K2/E → { G0 = K2/E∞ ; G∞ = K2/E0 = G0E∞/E0 }, (2.9)

where G0 is valid in the region close to the crack tip and G∞ in the outer regions and
E∞ and E0 are respectively the Young moduli of the FPZ and of the elastic zone (see
fig.2.8b). It’s worth emphasizing that the ratio E∞/E0 can also be on the order of 103.
This significant difference in orders of magnitude highlights the crucial role of viscous
dissipation phenomena in the energy dynamics during fracture propagation.
The intricate nature of material behavior necessitates a redefinition of energy dissipation
(eqn. (2.8)), as outlined below

G(v, T ) = G0
s(v, T )

s0
where G0 = G∗

0k(v, T ), s0 = s(0, T ). (2.10)

Figure 2.9: A qualitative picture of
the effect of the flash temperature
in Carbone and Persson [2005].

Where s(v, T ) represents the crack-tip radius
for a crack propagating at velocity v and k(v, T )
accounts the variation of the stresses in the crack
tip, that depends on the velocity of the deformation
process.
The influence of the temperature and of the crack

velocity into the energy released are summarized
in figs. 2.10, where several rubber compounds give
similar qualitative results. In particular it’s clear
that G(v, T ) is a increasing function of v and a de-
creasing function of T as expected.

The temperature’s impact can be notably pro-
nounced in the immediate vicinity of the crack tip,
where the energy liberated by the crack is converted
into heat. In Carbone and Persson [2005] is shown
that this phenomenon takes importance especially
during high-velocity propagation. In this scenario,
the flash temperature not only affects the elastic
properties but also the crystalline microstructure
of the rubber, as shown in fig. 2.9, where a slow
crack propagation ( (a), cold propagation regime)
is compared with a fast propagation ( (b), hot propagation regime). In the first case, the
glassy region expands considerably, resulting in decreased viscoelastic dissipation, which
primarily occurs within the transition region. Conversely, in the second case, the hot
propagation reduces the size of the glassy region in favor of the transition region, which
exhibits higher dissipation.

This glassy region appears in some kind of rubber (e.g. natural rubber) and it is
due to the large strain regime, induced by the crack propagation. This crystallization
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Figure 2.10: Influence of temperature and crack velocity into the dissipated energy for
different rubbers from Persson et al. [2005]. In particular styrene–butadiene rubber
without (up-left) and with carbon black filler (up-right), and for a pressure sensitive
adhesive (PEHA-AA, on bottom).
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enhances the rubber’s wear resistance. Indeed, rubbers that do not undergo crystal-
lization under extreme deformation, such as styrene-butadiene (SB), exhibit lower wear
resistance compared to other materials.

This phenomenon is illustrated in fig. 2.12, which qualitatively depicts the bond-

Figure 2.11: Cavitation phenomena become more
conspicuous in instances of adhesive failure, as
examined in Creton and Ciccotti [2016].

Figure 2.12: The bond-breaking process
without(a) or with strain crystallization
(Persson et al. [2005]).

breaking process in the presence of strain crystallization and in its absence. In this last
case, due to the inhomogeneous characteristics of material, the various polymer chains
at the crack tip will reach their breaking limits at different times. Indeed, in presence of
strain crystallization, the chains near a fully stretched chain will adhere to it, reinforcing
the weakest link. This leads to a significant increase in the average stress at the crack tip,
which is crucial for initiating crack propagation. This rearrangement of macromolecules
promotes the manifestation of cavitation, a phenomenon that holds exceptional impor-
tance, especially within adhesive applications, as extensively detailed in the work by
Creton and Ciccotti [2016]. Cavitation, at its core, involves the formation of voids or
empty spaces within the material. The presence of these voids is visually represented in
fig. 2.11.

After this phenomenological analisys of the elastic, viscoelastic and fracture behavior,
the focus moves on three experiments that are simulated during the formulation of the
original models in chps. 3 and 4, where, using a phase field damage variable, these
three experiments are studied.

2.3 Experiments

The experiments shown in this section concern two tensile tests are considered to describe
the brittle behavior of rubber and the pseudo-ductile response of double-network elas-
tomeric composites and the experimental set up and results of the experiments in Corre
et al. [2020], where the dynamic of crack propagation in brittle elastomers is studied.
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2.3.1 Tensile tests in double notches specimen (Hocine et al. [2002])

This first experiment is shown in Hocine et al. [2002] (see fig. 1.1) and it consists in a
simple tensile test of a pre-etched sample. The experimental campaign was conducted
using synthetic elastomers, specifically polybutadiene (PB) and styrene-butadiene rub-
ber (SBR).

The elongation ratio (λ) was determined by measuring changes in the distance (l0 in
fig. 2.13) between two fine ink marks applied to the specimen’s surface, to avoid errors
arising from boundary effects. These elongation measurements were obtained through
photographs taken during specimen loading. A camera connected to a thermal printer
allowed for the instant recording of the deformed structure.

Fracture tests were carried out using the Double Edge Notch in Tension (DENT)

Figure 2.13: Tensile test specimen in Hocine et al. [2002].

geometry. Specimens, measuring 80mm in width (w) and 200mm in length (h), were
created from a larger rubber sheet with a thickness of 3mm for SBR and 4.5mm for
PB. Initial cracks were introduced using razor blades, with sizes ranging from 0 to 0.7,
normalized by the ratio a/w (see 1.1). This paper presents also a dissipation analisys
based on the J-integral, introduced by Rice [1968].
While these experiments may appear straightforward, they reveal intriguing phenomena
due to the presence of highly irregular incisions and complex geometries at those loca-
tions, as shown by the circles in fig. 1.1, that denote the crack initiation points. For
these reasons, this set of experiment has gained significant importance to the extent that
it serves as a reference in works by Miehe and Schänzel [2014], where a phase field model
of damage limited to brittle fracture is introduced, and in Talamini et al. [2018], where
the elastic problem is approached from a more micro-mechanical perspective.

2.3.2 Tensile tests in double network elastomers (Millereau et al. [2018])

One of the most significant limitations associated with rubber materials is their propen-
sity for brittle fracture behavior, which restricts their utility to strain levels considerably
below their actual potential. In response to this challenge, extensive research has been
conducted within the fields of chemical and materials engineering. One promising so-
lution involves the utilization of multi-network elastomers, as explored in the study by
Millereau et al. [2018]. A schematic representation of their fabrication process is illus-
trated in fig. 2.14. This process involves the integration of multiple networks at an
intermediate pre-stretching value (λ0) in the following manner: after the initial network
is synthesized, it undergoes pre-deformation and is immersed in a solution containing a
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Figure 2.14: Integration of several networks
at an intermediate pre-stretching (λ0) oc-
curs in the following manner: After the ini-
tial network is synthesized, it undergoes pre-
deformation and is submerged in a solution
containing a solvent and monomer, which
subsequently polymerizes. Once the second
elastomer has dried, the strains readjust,
resulting in the attainment of a configura-
tion with zero total stresses Millereau et al.
[2018]).

Figure 2.15: During a tension test on
double network elastomers (Millereau
et al. [2018]), the process of crack prop-
agation unfolds (by the red mechano-
luminescent signal). Following the ini-
tial elastic phase, a localized zone of
damage emerges. As the test progresses,
this damaged area spreads along the en-
tire specimen with minimal alterations
in stress levels. Subsequently, the ma-
terial undergoes hardening until failure
occurs.

solvent and monomer, which subsequently undergoes polymerization. Once the second
elastomer has dried, the material’s strains reconfigure, leading to the achievement of a
state with zero total stresses. The mechanical characteristics of these materials exhibit
a high degree of variability, contingent upon factors such as the composition of elas-
tomer layers, their proportion, the presence of additional fillers and more. Notably, the
material’s pseudo-ductility in a simple tension test can vary, and fig. 2.15 provides a
comprehensive illustration. Within this test, the process of crack propagation is evident
through the red mechano-luminescent signal. After the initial elastic phase, a localized
damage zone appears. As the test proceeds, this damaged area extends throughout the
entire specimen with minimal changes in stress levels. Subsequently, the material un-
dergoes a hardening process until it ultimately fails.In Millereau et al. [2018] , various
other experiments involving different mixtures are documented. However, the experi-
ment depicted in fig. 2.15 is selected for the model fitting in chp. 3 for two reasons. The
first is the presence of the photographs of the damage evolution and the second one is
the presence of both the damage onset phase (with the initial stress drop), the damage
propagation phase (where the stress is constant) and the final stress hardening. For these
reasons it is one of the most complex to reproduce.

Specifically, these advancements in technology underscore the necessity, from a mod-
eling standpoint, for a comprehensive model capable of simulating brittle fracture phe-
nomena (refer to fig. 1.1) even in scenarios involving significant geometric irregularities,
and pseudo-ductile behavior, with the aim of accurately representing the behavior of
double network elastomers.
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2.3.3 Pure shear tests to determine crack tip speed in elastomeric
membranes (Corre et al. [2020])

Following the establishment of the rate-independent model for pseudo-static simulations,
the investigation into the failure of rubber materials will progress to a phase-field damage
model that considers rate-dependent effects. This phase of the study will center on crack
propagation, encompassing the interplay between viscoelasticity and fracture behavior.
To achieve this goal, the experiment in Corre et al. [2020] (see fig. 1.3), made on a
commercial polyurethane composed of toluene diisocyanate and polyether material, will
be studied and reproduced. The experiments involve the use of "pure shear" specimens,
commonly utilized for studying dynamic crack growth. These samples have the benefit
of providing a means to derive an analytical expression for the energy release rate. Addi-
tionally, they offer a generous area characterized by a uniform strain field, enabling the
continuous observation of crack growth in a steady state over a significant distance. These
"pure shear" specimens are elongated and narrow pieces of material, with dimensions of
200 × 40 × 3 mm³. To prevent slippage during testing, they feature cylindrical bulges
(diameter 15 mm) at the edges of their long sides, designed to fit into specialized grips.
The "working area" of the specimens refers to the thin section between these bulges.
The width-to-height ratio of the working area is 5, which satisfies pure shear conditions,
meaning there is neither stretching nor compression in the width direction at the center
of the specimen (Yeoh [2001]). The material itself is a commercial polyurethane com-
posed of toluene diisocyanate and polyether. It is considered homogeneous, isotropic,
and incompressible. The test procedure primarily involves the following three steps (see
fig. 1.3 for a geometrical scheme of the experiment):

• Initially the specimen is stretched up to a specific value of λy. This stretch is
executed at a very slow rate (20 mm/min) and is captured by a high-resolution,
low-frequency camera (denoted as ’HR’ in Figure 222). The camera offers a spatial
resolution of approximately 0.04 mm per pixel and operates at a frame rate of 0.5
Hz.

• In the second phase, a crack is made in the center of the deformed specimen us-
ing a blade. This step is essentially instantaneous and is not rigorously documented.

• During the final phase, crack propagate, and its advancements are filmed by using
a high-frequency camera (at 40000 Hz) with a relatively lower resolution (0.2 mm
per pixel), denoted as ’HS’ in fig. 1.3.

The article encompasses an examination of shear wave propagation attributed to the
fracture’s own propagation, alongside an analysis of energy components around the frac-
ture tip using the J-integral method. This method highlights the negligible nature of the
inertial energy component. Nonetheless, the most significant outcomes of Corre et al.
[2020] for the present work, are visible in fig. 2.16, which displays the crack propagation
velocity for various pre-stretch values throughout the evolution of the phenomena.

To describe such a behavior, it is required a model that can effectively integrate both
viscoelastic and fracture components. The objective of the fourth chapter is to establish
a model capable of capturing these characteristics and aligning with the experimental
findings.
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Figure 2.16: Results about crack propagation in Corre et al. [2020]. In particular in
(a) the time evolution of crack length is shown for a pre-stretch of 2 and in (b) crack
speed vs the crack length, normalized respect the total length of the sample, for different
pre-stretches (λy).

2.4 Mechanics formulations

In this section, an overview of the models capable of describing the elastic and viscoelastic
behavior of elastomers is presented. The overview begins with finite elasticity, including
kinematic introduction, stress and energetic analysis, and the presentation of the main
models in the literature. Following this examination, the focus shifts to viscoelastic
formulations with thee main contribution to the formulation of a viscoelastic model
(Reese and Govindjee [1998], Holzapfel [1996] and Kumar and Lopez-Pamies [2016]).

2.4.1 Finite elasticity

Kinematics

In the following, the kinematics ingredients of finite elasticity are presented. We consider
a reference configuration (Ω0) as the part of the three dimensional euclidean space occu-
pied by the body under consideration at certain time instant t = t0. In this configuration,
the position vector is denoted by X . The deformation function, denoted by f(X), which
maps points from the reference configuration to the current configuration Ωt, will exhibit
the following gradient

F = Grad(f(X)) =
∂f(X)

∂X
=

∂x

∂X
; C = FTF; B = FFT , (2.11)

where, by a slight abuse of notation, the points in the current configuration (x) are
treated as the map function (f(X)), while the right (C) and left (B) Cauchy-Green
deformation tensors are defined in accordance with the polar decomposition theorem, as
described in references such as Rubin [2020], Ogden [2003] or Gurtin [1982]. Drawing
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from the same references, we can also refer to the following tensor definitions

L = grad(ẋ) =
∂ẋ

∂x
= ḞF−1; D = sym(L)| {z }

stretch rate

; W = skw(L)| {z }
spin rate

, (2.12)

where, the time derivative of an element is indicated with a dot. In this equation, the
gradient of velocity (with respect to the current configuration, distinct from eqn. (2.11))
is defined along with its symmetric and antisymmetric components. It’s also useful to
underline that only D represents the stretch rate, while W is only a rigid rotation velocity
(spin rate).

Strain energy and stresses

Shifting our focus to the energy aspect of the problem, the strain energy density (ψ) can
be expressed as a function of C according to frame invariance. In the case of an isotropic
material, this dependency reduces to the invariants or eigenvalues of C alone, as it’s
done in eqn. (2.4). Stress tensors can be derived directly from strain energy density as
it follows

P =
∂ψ

∂F
; S = 2

∂ψ

∂C
; T = J−1PFT = J−1FSFT , (2.13)

where, P represents the first Piola-Kirchhoff stress tensor. When P is applied to a
infinitesimal oriented surface of Ω0 (da0 n̂0, where da0 is the area extension and n̂0 is the
normal area versor), it gives the surface forces vector in Ωt (tt = P(da0 n̂0)). Similarly,
the second Piola stress tensor S, can be applied to an infinitesimal oriented area in
Ω0 to obtain the surface forces vector in Ω0 (t0 = S(da0 n̂0)). In the same way, the
Cauchy stress tensor T can be applied to an infinitesimal oriented area in Ωt to obtain
the surface forces vector in Ωt (tt = T(dat n̂t)). Last term in eqn. (2.13) is J = detF.
The third condition expressed in that equation, can be established by considering that
vectors, such as stresses, can be transferred from the reference configuration (t 0) to the
current configuration (t t) through the application of F (with the inverse transformation
achievable using F−1). In contrast, oriented area vectors undergo a transformation from
the reference (da0 n̂0) to the current configuration (dat n̂t) through the cofactor of F,
denoted as JF−T (and the inverse transformation by J−1FT ). This perspective allows
us to make the following assessments (where the extensions of the areas are omitted for
brevity)

Tn̂t = t t, s. t. JTF−T
| {z }

P

J−1FT n̂t| {z }
n̂0

= t t, s. t. JF−1TF−T
| {z }

S

n̂0 = F−1t t = t 0 . (2.14)

The simpler way to define a strain energy density for an isotropic material is to establish
a function that depends on the following orthogonal invariants of C:

I1 =trC = F · F = λ2
1 + λ2

2 + λ2
3;

I2 =
1

2
(I21 − tr(CC)) = λ2

2λ
2
3 + λ2

1λ
2
2 + λ2

1λ
2
3;

I3 =detC = J2 = λ2
1λ

2
2λ

2
3,

(2.15)

where λi, with i = 1; 2; 3 are the eigenvalue of F. Due to the significantly higher shear
deformability compared to volumetric one, it is common practice to separate these two
contributions, often disregarding the material’s volumetric deformability. In such cases,
one can express it as follows

ψ(I1, I2, J) = ψD(I1, I2) + ψV (J), (2.16)
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where ψD is the distorsional part of the strain energy density and ψV the volumetric. By
this way, following eqn. (2.13), the first Piola-Kirchhoff stress tensor can be rewrite as

P =
∂ψD

∂I1

∂I1
∂F

+
∂ψD

∂I2

∂I2
∂F

+
∂ψV

∂J

∂J

∂F
= r1F+ r2(I1F− FC) + pJF−T , (2.17)

where the stiffness coefficients r1 = ∂ψ/∂I1, r2 = ∂ψ/∂I2 and the hydrostatic pressure
p = ∂ψ/∂J . By the same procedure, also the second Piola stress tensor can be evaluated
as

S = r1I+ r2(I1I−C) + pJC−1. (2.18)

Using eqns. (2.17) and (2.18), the third eqn. of (2.13) can be checked and it can be used
to evaluate the Cauchy stress tensor as

T = r1J
−1B+ r2J

−1(I1B−B2) + pI. (2.19)

From this concise introduction, it is evident that the selection of ψ dictates constitu-
tive relation of the model. The subsequent section introduces a selection of the most
frequently encountered finite elasticity models based also in the results presented in the
review of Dal et al. [2021]. In this context, only the distorsional part ψD of the energy
will be discussed.

Finite elastic models

The models presented in this study are phenomenological. Such models rely on mathe-
matical expressions based on invariants or principal stretches for the free energy function,
effectively matching stress-strain curves and other experimental observations. Although
these models are restricted to describing the material’s macroscopic behavior, as demon-
strated in eqn. (2.4), they are typically derived from observations in statistical mechanics,
as material behavior originates from its micro-mechanical structure.
One of the initial and most straightforward models is the neo-Hooke model, as shown
in eqn. (2.4), which has been discussed previously. In this model, the parameters are
set as r1 = µ/2 and r2 = 0. As we further explore models that link the elastic energy
density to the invariants of the right Cauchy-Green deformation tensor C, one of the
early proposals is presented in Rivlin [1948] (also called Mooney-Rivlin model). In this
model, the energy is expressed as a function of the first two invariants, as follows

ψD = r1(I1 − 3) + r2(I2 − 3), (2.20)

Figure 2.17: 2D Simple shear test.

with constant r1; r2. In a simple shear test,
as depicted in fig. 2.17, we use the deforma-
tion gradient tensor F = I + kê1 ⊗ ê2 where
k represents the amount of shear, and êi with
i = 1, 2, 3 denote the canonical base compo-
nents of R3. Employing eqn. (2.17) and consid-
ering the surface with ê2 as the normal versor,
the shear stress in the ê1 direction is found to
be a linear function of k, with r2 representing
the stiffness. Consequently, many models, such
as those in Isihara et al. [1951] and Biderman
[1958], which also take into account the invari-
ant I2, incorporate it linearly in the expression
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for the elastic energy density

ψD = C10(I1 − 3) + C20(I1 − 3)2 + C01(I2 − 3)2 Isihara et al. [1951]

(2.21)

ψD = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 + C01(I2 − 3)2 Biderman [1958]
(2.22)

This phenomenon is significant in a simple shear test but can be disregarded in other
types of experiments. Furthermore, the neo-Hooke and Mooney-Rivlin models exhibit
limitations at high levels of stretch.

Another approach for invariant-based phenomenological models involves formulating
the strain energy density solely as a function of I1. An intriguing model in this regard is
the one proposed by Gent [1996], which incorporates the concept of chain extensibility
limit (Jm). This model effectively simulates the material’s behavior under high-stretch
loading conditions through the following expression

ψD =
µ

2
Jmln(1− I1 − 3

Jm
), s. t. r1 =

µ

2

Jm
Jm − (I1 − 3)

. (2.23)

It’s clear that, for I1−3 → 0 , indicating low levels of deformation, the stiffness r1 → µ/2
as observed in the neo-Hooke model. However, as I1 − 3 → J−

m, r1 → ∞ capturing the
increasing stresses. This property allows the model to effectively simulate the material’s
behavior even under high levels of deformation. This approach for achieving asymptotic
behavior at high deformations is also employed in other models, such as Gent and Thomas
[1958], where the logarithm is applied to I2, and in Pucci and Saccomandi [2002], where
it is applied to both the invariants. However, this behavior can be also approximated
with a polynomial function of I1 as in Yeoh [1990]. One of the more general way to
express the strain energy density as a polynomial function of I1, is the Lopez-Pamies
[2010] as it follows

ψD =
31−αi

2αi
µi(I

αi
1 − 3αi). (2.24)

These models prove to be highly versatile in capturing the characteristics of various
materials, as evident in the comparisons between this model and Gent [1996] model in
figs. 2.18 and 2.19. Notably, while the performance of both models is quite similar
in the experiments presented in fig. 2.18, in fig. 2.19, the Lopez-Pamies [2010] model
exhibits significantly superior performance (see fig. 2.19). This model is inspired by
the model in Ogden [2003], where a model based on principal deformations is presented.
While this method enhances its versatility in capturing the behavior of diverse materials,
formulating the strain energy density in terms of principal stretches introduces greater
complexity in both theoretical and numerical treatment. Indeed, while the eqns. in
(2.17), (2.18), and (2.19) are adequate for calculating the stress tensors in the case of
ψ(I1, I2, J), when dealing with ψ(λi), the determination of the first Piola tensor can be
achieved through the following expression

P = ti bi ⊗ ci, with ti =
∂ψ

∂λi
, (2.25)

where ci and bi are respectively the eigenvectors of C and B, related to the eigenvalue λi.
This expression of P implies the resolution of a eigenvalue problem and the determination
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Figure 2.18: Lopez-Pamies [2010] and Gent [1996] models adapted to a vulcanized rubber
behavior from the experiments of Treloar [1944]. In particular, uniaxial tension (a) and
biaxial tension and pure shear (b) tests.

Figure 2.19: Lopez-Pamies [2010] and Gent [1996] models adapted to a commercial
rubber behavior from Michelin in the experiments of Lahellec et al. [2004]. In particular,
uniaxial tension (a) and simple shear (b) tests.

of the eigenvectors, thus the complexity of the problem increase significantly. In
recent years, numerous models based on principal strains have been put forth, and a
comprehensive review of this topic can be found in Dal et al. [2021]. In the model
presented in chp. 3, the model in Ogden [2003] will be emploied (refer to fig. 2.20) to
develop a rate-independent damage phase field model. In this model, the following form
of strain energy density is proposed

ψD =
µi

αi
(λαi

1 + λαi
2 + λαi

3 − 3). (2.26)
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Figure 2.20: Experimental findings involve the assessment of vulcanized rubber in a
uniaxial elongation test, where one principal direction experiences imposed deformation
while the other remains unchanged. The x-axis represents strain in the principal direc-
tion, and the y-axis depicts the difference between the stresses in the two directions. The
applied deformations are λ2 = 1 (blue), λ2 = 1.5 (red), λ2 = 2 (violet), λ2 = 2.3 (green).
In dot lines the Neo-Hooke fit, in dash line the Mooney [1940] fit and in continuous line
the Ogden [2003] fit.

Incompressibility constraint The impact of volumetric deformability on rubber
tends to be insignificant when compared to shear deformability. To prevent compu-
tational issues related to locking and for the sake of convenience, it’s common practice
to enforce the condition J = 1 upfront and treat the pressure p as a Lagrangian multi-
plier, to be established through equilibrium equations outlined in Ogden [2003]. Under
this approach, particularly when employing the strain energy formulation dependent on
invariants, the resulting expression is as follows

ψ =
µi

αi
(λαi

1 + λαi
2 + λαi

3 − 3)− p(J − 1). (2.27)
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Using this approach, the first Piola stress tensor becomes

P =
∂ψD

∂λi
b̂i ⊗ ĉi + pJF−T , (2.28)

where the summation symbol is omitted. The Cauchy stress tensor (considering F =
λi b̂i ⊗ ĉi) becomes

T =
1

J
λi

∂ψD

∂λi
b̂i ⊗ b̂i + pI, (2.29)

from which the coaxiality of B and T is also evident. Referring back to the earlier discus-
sion, the determination of hydrostatic pressure necessitates solving equilibrium equations
and considering boundary conditions. Hypothesis of 2D plane stress or Uniaxial tension
allow to determine explicitly the reactive pressure p. These hypothesis are described in
the following:

2D plane stress: This strain state pertains to a body where one of the three axes
(typically the third) is considerably smaller compared to the other two, resulting in a
strain state described as follows

F = λ1 ê1 ⊗ ê1 + λ2 ê2 ⊗ ê2 + (λ1λ2)
−1ê3 ⊗ ê3, (2.30)

where the versors êi are the components of the canonical base of the three dimensional
euclidean space. In this stress state, when the surface with normal ê3 is considered
unloaded, the component of Cauchy stress tensor T33 = 0, leading to the determination
of the hydrostatic pressure as

p = −λi

J

�
∂ψD

∂λi
b̂i ⊗ b̂i

�
· (ê3 ⊗ ê3) = −λ3

J

∂ψD

∂λ3
(2.31)

that, for the model in Ogden [2003] and recalling J = 1, it becomes

p = −µiλ
αi
3 = −µi(λ1λ2)

−αi , (2.32)

thus, from eqn. (2.31)

T = λi
∂ψD

∂λi
b̂i ⊗ b̂i − λ3

∂ψD

∂λ3
I, (2.33)

Where I is the second order identity tensor. Considering now the strain energy density
as

ψ(λ1,λ2,λ3) = ψ(λ1,λ2, (λ1λ2)
−1) = ψ̂D(λ1,λ2) + ψ̂V ((λ1,λ2)

−1) = ψ̂(λ1,λ2), (2.34)

the evaluation of the in-plane submatrix P and T (where the third row and column of
P and T are omitted) become

P =
∂ψ̂D

∂λ1
b̂1 ⊗ ĉ1 +

∂ψ̂D

∂λ2
b̂2 ⊗ ĉ2 +

∂ψ̂V

∂((λ1λ2)−1)

∂((λ1λ2)
−1)

∂(λ1λ2)

∂(λ1λ2)

∂F

=
∂ψ̂D

∂λ1
b̂1 ⊗ ĉ1 +

∂ψ̂D

∂λ2
b̂2 ⊗ ĉ2

| {z }
∂ψD/∂F

+(− ∂ψ̂V

∂((λ1λ2)−1)
)(λ1λ2)

−1

| {z }
p

F
−T

T =λ1
∂ψ̂D

∂λ1
b̂1 ⊗ b̂1 + λ2

∂ψ̂D

∂λ2
b̂2 ⊗ b̂2 +

∂ψ̂(λ3)

∂λ3
λ3I =

∂ψ̂(λ1,λ2)

∂F
F
T
,

(2.35)
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where the overline notation on matrices indicates the in-plane submatrix obtained by
excluding the third row and column. The determinant of F is denoted as detF = λ3 =
(λ1λ2)

−1 = J , and this substitution is applied multiple times. Employing this approach
yields results consistent with those obtained in three dimensions, effectively allowing the
projection of the 3D problem onto a 2D plane. A similar process can be implemented
for ψD(I1, I2) or under uniaxial tensile loading conditions, as outlined in the subsequent
paragraph.

Uniaxial stress condition This load condition considers a body where one of the three
length (normally ê1 is so higher than the others two. In this case F = λê1 ⊗ ê1 +
(λ1)

−1/2(ê2 ⊗ ê2 + ê3 ⊗ ê3), where the axial deformation is renamed λ1 = λ, and the
stress components T33 = T22 = 0. From which

p = λ−1/2∂ψ
D(λ1,λ2,λ3)

∂λ2
, (2.36)

where λ2 and λ3 can be substitute with λ−1/2. According to the previous rewriting of
the strain energy density, the first components of the stress tensors can be evaluated as

P =
∂ψ̂D

∂λ
+

∂2ψ̂V

∂(λ−1/2)

∂λ−1/2

∂λ
=

∂ψ̂D

∂λ
− ∂2ψ̂V

∂(λ−1/2)
λ−3/2

T =λ
∂ψ̂D

∂λ
− ∂2ψ̂V

∂(λ−1/2)
λ−1/2 =

∂ψ̂(λ)

∂λ
λ,

(2.37)

whit the same conclusion of the previous paragraph.

2.4.2 Finite viscoelasticity

Kinematics

Figure 2.21: Decomposition of total deformation (F) in viscous (Fv) and elastic (Fe)
deformation. This decomposition, used by Lee [1964] in the context of elastoplasticity,
was used in Sidoroff [1974] for the non linear viscoelasticity.

In this study, the multiplicative strain decomposition in fig. 2.21 (also employed in
Reese and Govindjee [1998], Holzapfel [1996], Kumar and Lopez-Pamies [2016], Sidoroff
[1974] and others), is utilized. This decomposition postulates the existence of an inter-
mediate body configuration known as the ’natural configuration’ (Ωn), which represents
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the state of the body deformed only by the viscous component of deformation (Fv).
The overall deformation is subsequently described as the combination of the viscous and
elastic deformations (Fe), expressed as F = FeFv. The definition of this intermediate
configuration changes the kinematic of the problem and, in order to consider as internal
variable the displacement u = X − x and the viscous deformation Fv, the elastic part of
deformation can be write as

F = FeFv, s.t. Fe = FF−1
v . (2.38)

In addition, the right and the left Cauchy strain tensors become

C = FT
v CeFv, s.t. Ce = F−T

v CF−1
v ; Be = (FF−1

v )(F−T
v FT ) = FC−1

v FT . (2.39)

Following the same idea, the velocity gradients becomes

L = ḞeF
−1
e + FeḞvF

−1
v F−1

e = Le + FeLvF
−1
e , s.t. Le = L− FF−1

v LvFvF
−1. (2.40)

For what concerns the symmetric part of the velocity gradient, the first observation that
can be don is

Ċ = ḞTF+ FT Ḟ = FT (F−T ḞT + ḞF−1)F = 2FTDF, (2.41)

and, by the same way
Ċv = 2FT

v DvFv. (2.42)

For what concerns Ċe, using eqn. (2.39) and 0 =
˙

FvF
−1
v such that

˙
F−1
v = −F−1

v Lv, it
can be write as

Ċe = −LT
v F

−T
v CF−1

v − F−T
v CF−1

v Lv + F−T
v (2FTDF)F−1

v

= 2FT
e DFe − 2sym(CeLv)

= F−T
v ĊF−1

v − 2sym(F−T
v CF−1

v Lv),

(2.43)

and, to evaluate De, both eqns. (2.43) and (2.40) can be used to derive

De = D− sym(FeLvF
−1
e ) = D− sym(FF−1

v LvFvF
−1). (2.44)

Following this kinematic overview, based on fig. 2.21, the subsequent sections will provide
an introduction to viscoelastic models found in literature. The discussion will commence
with an exploration of the linear viscoelastic model described in Reese and Govindjee
[1998]. Subsequently, we will delve into the model presented by Holzapfel [1996], which
includes a specific analysis of volumetric deformation. Finally, the presentation will
conclude with a discussion of the model outlined in Kumar and Lopez-Pamies [2016],
which offers a generalized extension of the linear model proposed by Reese and Govindjee
[1998].

Viscoelastic model

In this model, the generalization of the Maxwell rheological model in fig. 2.22 is applied
to the decomposition in 2.21. In this model, an "equilibrium spring" (associated with
the total deformation F) is connected in parallel with a "non-equilibrium" system. This
system consists of a "non-equilibrium" spring (associated with the elastic deformation Fe)
in series with a dash-pot (related to the velocity of viscous deformation Lv). In the work
presented by Reese and Govindjee [1998], the presence of numerous "non-equilibrium"
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Figure 2.22: Maxwell rheological model used in Reese and Govindjee [1998] and Kumar
and Lopez-Pamies [2016].In this model, an "equilibrium spring" (associated with the total
deformation F in fig. 2.21) is connected in parallel with a "non-equilibrium" system. This
system consists of a "non-equilibrium" spring (associated with the elastic deformation
Fe) in series with a dash-pot (related to the velocity of viscous deformation Lv).

systems are examined. However, for the sake of simplicity, we will focus on just one
system in this context. Within this system, the constitutive relationships associated
with the dash-pots are treated as linear. The total elastic strain energy density can be
expressed as follows

ψ(C,Fv) = ψeq(C) + ψneq(Ce(C,Fv)) = ψeq(C) + ψneq(F
−T
v CF−1

v ), (2.45)

where, we make use of eqn. (2.39). By employing the expressions for Ċe in eqn. (2.43)
and taking advantage of the symmetry of the second Piola stress tensor, we can evaluate
the rate of strain energy density as follows

ψ̇ = (
∂ψeq

∂C
+ F−1

v

∂ψneq

∂Ce
F−T
v ) · Ċ− 2

∂ψneq

∂Ce
·CeLv, (2.46)

where, for the sake of brevity, the explicit mention of the dependencies of the energy
terms are omitted. Using this form of ψ̇, the Clasius-Duhem inequality can be evaluated
as

0 ≤ 1

2
S · Ċ− ψ̇ = (

1

2
S− ∂ψeq

∂C
− F−1

v

∂ψneq

∂Ce
F−T
v ) · Ċ+ 2Ce

∂ψneq

∂Ce
· Lv. (2.47)

From the last equation, the second Piola stress tensor is determined as follows

S = 2
∂ψeq

∂C
+ 2F−1

v

∂ψneq

∂Ce
F−T
v = Seq + F−1

v ŜneqF
−T
v = Seq + Sneq, (2.48)

where Ŝneq serves as a connector between the surface normal and stress vectors within
the domain Ωn functioning as a second Piola stress tensor. When we apply F−T

v to
the normal vectors and F−1

v to the stress vectors, they are transformed to the reference
configuration vectors. The second part of eqn. (2.47) gives

Ŝneq · FT
e FeLv = FeŜneqF

T
e · FeLv(F

T
e F

−T
e )F−1

e = JeTneqB
−1
e · FeLvF

T
e ≥ 0, (2.49)

where Tneq = FeŜneqF
T
e is used. In order to agree with last inequality, the following

form of the non equilibrium Cauchy stress tensor Tneq is defined

V−1[Tneq] =
1

2
FeLvF

−1
e , (2.50)
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where V is a linear fourth order tensor that can be expressed as follows

V−1 =
1

2ηD
(I− 1

3
I⊗ I) +

1

9ηV
I⊗ I =

1

2ηD
D+

1

3ηV
J, (2.51)

where J is a fourth order tensor that gives the spherical part of a second order tensor,
I is the identity fourth order tensor and, thus, D = I − J gives the deviatoric part of a
second order tensor. For these reasons, ηD; ηV ≥ 0 are the viscous coefficients related to
the deviatoric and the spherical part of the stresses. By this definition, eqn. (2.50) can
be rewritten as

FeLvF
−1
e =

1

ηD
D[Tneq] +

2

3ηV
J[Tneq]. (2.52)

The inversion of this relation can be done as

Tneq = ηDD[FeLvF
−1
e ] +

3ηV
2

J[FeLvF
−1
e ] = ηD[FeLvF

−1
e − 1

3
Dv · I] +

ηV
2
Dv · I. (2.53)

Further insights can be gleaned by focusing on linearized scenarios. The initial lin-
earization revolves around the assumption that Be ≈ I. This condition means that the
non-equilibrium spring in fig. 2.22 is near the zero stresses condition and it implies
C ≈ Cv. This implies that the non-equilibrium spring in fig. (2.22) is close to a state
of zero stresses, indicating that C ≈ Cv that means that the total deformation is pre-
dominantly absorbed by the dash-pot, or in simpler terms, the non-equilibrium system is
discharging. Consequently, these conditions correspond to cases of slow deformation, as
elaborated in sect. (2.1). The smallness of the elastic deformation allows to approximate
the non equilibrium spring behavior as neo-Hooke (eqn. (2.4)) as shown in Fig. 2.2 for
low strain regime, through which (for an incompressible material)

Tneq = 2Fe
∂[(µe/2)(Ce · I− 3)]

∂Ce
FT
e + pneqI = µeBe + pneqI, (2.54)

where J−1
e FeŜneqF

T
e = Tneq is used. In an incompressible material FeLvF

−1
e ·I = Lv ·I =

0 from which devLv = Lv, thus eqn. (2.52) becomes

FeLvF
−1
e = devTneq =

1

ηD
µe(Be−

1

3
(FeF

T
e ·I) I), from which Lv =

µe

ηD
(Ce−

1

3
(Ce·I) I)

(2.55)
that, for the symmetry of Ce and eqn. (2.41), becomes

Dv =
µe

ηD
(Ce −

1

3
(Ce · I) I) from which Ċv =

µe

ηD
(C− 1

3
(Ce · I)Cv). (2.56)

For an incompressible material in small deformation, the incompressibility constraint
can be allied also with Ce · I = 3, thus, in such instances, the evolution equation for the
viscous deformation can be reformulated from equation (2.50) as follows

Ċv =
1

τm
(C−Cv), (2.57)

where τm = ηD/µe is the characteristic time of the material. This parameter is the
ratio between the viscosity and the stiffness (it can be related to the shear ηD/µe or
the volumetric ηV /Ke stiffness) of the material. The product between this time and
the deformation ratio can be used to determine if the deformation condition are slow,
medium or fast. Another linearization can be done from eqn. (2.57) by considering
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Figure 2.23: Decomposition of total deformation in Holzapfel [1996]. In contrast to
the decomposition method presented in Reese and Govindjee [1998] (see fig 2.21), in
this case, an extra intermediate configuration, referred to as the isochore, is introduced.
The treatment of volumetric deformation occurs at the final stage of the viscoelastic
transformation represented by F̃.

infinitesimal also the total deformations. In this case, by C = I+2sym∇u+o(||∇u||2) =
I+ 2E (and the same for Cv), eqn. (2.57) can be rewritten as

Ėv =
1

τm
(E−Ev), (2.58)

that represents the solution of the infinitesimal model of 2.22. The results of a comparison
between the finite viscoelastic formulation of eqn. (2.50), and its linearized counterpart
in eqn. (2.57) is shown in Reese and Govindjee [1998] (in the third figure) where the
results of four cyclical shear test are presented. This comparison involved varying shear
deformation values, with a fixed load frequency of ω = 0.3 s−1 and a characteristic time
of τm = 17.5 s. The results of these simulations, as reported in Reese and Govindjee
[1998], indicate that the linearized equation remains valid only for infinitesimal defor-
mations. All these simulations have been conducted with the omission of the volumetric
component of deformation. Consequently, in the upcoming section, we will introduce the
model proposed by Holzapfel [1996], which places specific emphasis on the volumetric
deformation.

The volumetric deformation

The volumetric stiffness of rubber is often much higher than shear modulus. As a re-
sult, many models tend to disregard volumetric deformation. In the work presented by
Holzapfel [1996], they separate this volumetric deformation from the isochoric deforma-
tion using a further spherical deformation step (see fig. 2.23) with the aim to avoid,
during the numerical evaluation locking phenomena and to consider only the ishocoric
deformation in the viscoelastic contribution. This step transforms the reference configu-
ration into the isochoric configuration, and then it continues with the processes of viscous
deformation and elastic deformation in the following manner

F = FjF̃; where Fj = J1/3I; F̃ = FeFv = J−1/3F. (2.59)

By this way detFj = J and detF̃ = 1 and the deformation is split in the volumetric
deformation (Fj) and the isochoric deformation (F̃) that follows the viscoelastic decom-
position of fig. 2.21. In this context, the energy density in eqn. (2.45), can be rewritten
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as
ψ(J, C̃,Fv) = ψV (J) + ψeq(C̃) + ψneq(F

−T
v C̃F−1

v ), (2.60)

where ψD = ψeq +ψneq and eqn. (2.39) is used. By this definition of the energy density,
the second Piola stress tensor can be split as

S = SV + Seq + Sneq, (2.61)

where, using (2.13), the single components can be evaluated as

SV =2
∂ψV

∂J

∂(J2)1/2

∂J2

∂J2

∂C
= pJC−1

Seq =2
∂ψeq

∂C
=

∂C̃

∂C

T

[2
∂ψeq

∂C̃
] = J−2/3P[S̃eq] = J−2/3(S̃eq − (1/3)(S̃eq ·C)C−1)

Sneq =2
∂ψneq

∂C
=

∂C̃

∂C

T

[2
∂ψneq

∂C̃
] =

∂C̃

∂C

T

[2F−1
v

∂ψneq

∂Ce
F−T
v ] = J−2/3P[S̃neq],

(2.62)

where the fourth order tensor P = I − (1/3)C−1 ⊗ C is a projection tensor where C
operating as a metric tensor. Indeed, by means of this operator, the stress tensors defined
on the isochoric configuration (S̃eq, S̃neq) are mapped into the current configuration
(Seq, Sneq). The evolution problem is solved in Holzapfel [1996] with respect to the non
equilibrium second Piola stress tensor following the constitutive equation in eqn. (2.50),
the definition of material characteristic time (τm) and a procedure as in the previous
chapter, by the following reformulation

(
Ṡneq +

1
τm

Sneq=
d
dt

�
J−2/3P

h
2
∂ψneq

∂C̃

i�

Sneq|t=t0=S0
neq

. (2.63)

This evolution problem can be solved by

Sneq = S0
neq e

−∆t/τm

Z t

t0

β e−(t−s)/τm d
dt

�
J−2/3P

�
2
∂ψeq

∂C̃

��
ds, (2.64)

where the non equilibrium energy is considered as a fraction of the equilibrium energy
as ψneq = βψeq. This modeling approach provides the flexibility to treat volumetric
deformation independently, uncoupled from the viscoelastic properties of the material.
This separation is effective in addressing numerical challenges like locking. However, it’s
important to acknowledge that this approach substantially amplifies the complexity of
both numerical implementation and theoretical comprehension. Therefore, it is prudent
to use this modeling technique selectively, applying it in situations where the evaluation of
volumetric alterations is necessary, even when those alterations are minor. In the present
context, there are various approaches available for disregarding volumetric deformation.

A generalized viscoelastic model

In the work presented by Kumar and Lopez-Pamies [2016], a viscoelastic model is intro-
duced, which incorporates the strain rate as an internal variable and embeds it within
a viscous dissipative potential. The model’s most significant developments relevant to
the present work primarily consist of two key aspects. Firstly, it extends and generalizes
the model outlined in Reese and Govindjee [1998]. Secondly, it introduces an interesting
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approach to solving the evolution equation for the viscous variable. The viscous consti-
tutive relationship is employed with regard to the first Piola-Kirchhoff or Cauchy stress
tensors as follows

PneqF
T = JTneq = A(F,Fe)[FeLvF

−1
e ], (2.65)

where the relation with eqn. (2.50) is clear. In the context of this paper, the model
proposed by Reese and Govindjee [1998], is initially expanded to encompass not isotropic
non equilibrium springs scenarios by means of the following generalization of the matrix
A

Aijkl(F,Fe) =2ηK(I1, I2,Ce,Bv)Kijkl+

+ 2νK(I1, I2,Ce,Bv)(F
−1
e )mi(Fe)jnKmnpq(F

−1
e )pk(Fe)lq+

+ θK(I1, I2,Ce,Bv)Kijmn(Fe)mp(Fe)lp(F
−1
e )qn(F

−1
e )qk + 3ηJJijkl,

(2.66)

where the subscripts select the tensors’ components, the summation symbols (Σ) are
omitted and K = S− J with S[M] = sym(M). By this definition of A, many viscoelastic
models (as Le Tallec et al. [1993], Bergström and Boyce [1998], Reese and Govindjee
[1998] and others) can be included. The application of the model introduced in Kumar
and Lopez-Pamies [2016] involves utilizing a version of matrix A akin to the one in Reese
and Govindjee [1998]. However, in this application, the viscosity parameters are not
constant and the volumetric deformation is considered negligible. Notably, the proposed
viscosity is found to be a function that increases with the applied deformation (through
I1v = tr(Cv) and decreases with the viscous deformation rate (through Jneq

2 ), as follows

Aijkl(F,Fe) =ηK(Iv1, J
neq
2 (Ie1, Ie2))(Kijkl +Kijmn(Fe)mp(Fe)lp(F

−1
e )qn(F

−1
e )qk) + 3ηJJijkl

A =
ηK
2
K(I+BeTB−1

e ) + 3ηJJ,
(2.67)

where T[M] = MT . In this definition, ηJ → ∞ to simulate the incompressibility con-
straint, while

ηK = η∞ +
η0 − η∞ +K1(I

β1
v1 − 3β1)

1 + (K2J
neq
2 )β2

, where Jneq
2 =

1

2
||dev(Tneq)||2 = (

I2e1
3

− Ie2)rneq.

(2.68)
In the last equation, I1v accounts the amount of viscous deformation, while Jneq

2 accounts
the viscous deformation ratio through the deviatoric part of the non equilibrium stress.
The viscosity η0 represents the "initial" viscosity for Iv1 = 3 and Jneq

2 = 0, while η∞ is the
viscosity for infinitely fast viscous deformation, thus for Jneq

2 → ∞. The other parameters
that appear in the equation for ηK are all not negative parameters. For the evaluation
of Jneq

2 , the assumption that ψneq depends only on the invariant I1e = tr(Ce = C ·C−1
v )

has been made and rneq(I1e) = 2∂ψneq(I1e)/∂I1e. Last assumption allows to evaluate the
evolution equation of Ċv by the micro force balance in eqn. (2.65), through the following
procedure:
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Figure 2.24: A qualitative description of how the parameters in equation (2.68) influence
the viscosity ηK . In particular for an infinitely fast deformation process, ηK → η∞ for
any I1v, while the dependence on Jneq

2 presents a flex point in Jneq
2 = K−1

2 and it initiate
with a maximum in Jneq

2 = 0 and an horizontal asisthot in Jneq
2 → ∞.

• right side:

devA[FeLvF
−1
e ] = dev(ηKK[FeLvF

−1
e + FeF

T
e (F

−T
e F−1

e FeLvF
−1
e )T ])

= dev(
ηK
2
K[FeLvF

−1
e + FeL

T
v F

−1
e ])

=
ηK
4
[FeLvF

−1
e + FeL

T
v F

−1
e + F−T

e LT
v F

T
e + F−T

e LvF
T
e ]

=
ηK
2
[FeDvF

−1
e + F−T

e DvF
T
e ]

=
ηK
2
[FC−1

v ĊvF
−1 + F−T ĊvC

−1
v FT ]

= ηKsym(FC−1
v ĊvF

−1);

(2.69)

where in the application of K (third line), the incompressibility constrain is used
as FeLvF

−1
e · I = Lv · I = 0. in the fourt row, the definition of D in eqn. (2.12) is

used and in last line eqns. (2.38) and (2.42) are used;

• left side

dev(PneqF
T ) =dev(

∂ψneq(Ie1)

∂Ie1

∂(F · FC−1
v )

∂F
FT )

=rneqdev(FC−1
v FT )

=rneq(FC
−1
v FT − 1

3
Ie1I)

=rneqFC
−1
v (C− 1

3
Ie1Cv)F

−1;

(2.70)

where the fact that ψneq depends only on Ie1 = Ce · I = F−T
v CF−1

v · I = C ·C−1
v =

F · FC−1
v is used in the first row and, in the last one, the left multiplication for

FC−1
v CvF

−1 = I and the right multiplication for FF−1 = I is done.
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applying last procedure to eqn. (2.69) and considering Ce and Dv as coaxial tensors, the
left and the right side of eqn. (2.65) can be recomposed as follows

Ċ =
rneq
ηK

(C− 1

3
Ie1Cv) = G(t,Cv), (2.71)

that is defined also as a function of the time t and of the viscous deformation Cv. Note
that eqn. (2.71) is the same of eqn. (2.56), with µe = rneq(I1e).

In Kumar and Lopez-Pamies [2016], the evolution problem in eqn. (2.71) is solved
using the following fifth order Runge Kutta (see Lawson [1966]) routine

Cv|t+∆t = Cv|t +
∆t

90
(7K1 + 32K3 + 12K4 + 32K5 + 7K6) (2.72)

where the viscous deformation (and the other variable, the displacement u|t) at time t
(Cv|t) is considered known and, the Ki tensors are

K1 =G(t,Cv|t)

K2 =G(t+
∆t

2
,Cv|t +

∆t

2
K1)

K3 =G(t+
∆t

4
,Cv|t +

∆t

16
(3K1 +K2))

K4 =G(t+
∆t

2
,Cv|t +

∆t

2
K3)

K5 =G(t+
3∆t

4
,Cv|t +

3∆t

16
(−K2 + 2K3 + 3K4)

K6 =G(t+∆t,Cv|t +
∆t

7
(K1 + 4K2 + 6K3 − 12K4 + 8K5)).

(2.73)

Using this evolution equation, we can address the viscous problem. The solution in-
volves solving the equilibrium problem either in the reference configuration (divP+b 0 = 0
where b 0 represents the body forces in the reference configuration) or in the current con-
figuration (divT + b t = 0). This process entails a step-by-step double minimization
problem for the two internal variables (u and Cv). This viscous constitutive equation
is integrated with the finite elastic model presented in Lopez-Pamies [2010] (see eqn.
(2.24)). This combination is utilized to calibrate the resulting viscoelastic model, align-
ing it with numerous experimental outcomes, as in fig. 2.25, where the experimental data
from Bergström and Boyce [1998], particularly concerning Nitrile rubber under uniaxial
compression loading/unloading at constant stretch rates, is interpreted by this model.

The model offers a relative straightforward modeling and solution approach, with its
single limitation being the dependence of ψneq solely on Ie1 which, although it simplifies
the treatment, may not be general enough to fit the behavior of some materials. Conse-
quently, it will be coupled with phase-field damage in the model proposed in chp. 4 to
describe crack propagation phenomena.

2.5 Phase-field damage models

2.5.1 Internal variables and domain of reversibility

Damage phase-field model incorporates internal variables and a reversibility domain. A
model is considered to have internal variables when, with a given set of internal variables
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Figure 2.25: Experimental data from Bergström and Boyce [1998], concerning Nitrile
rubber under uniaxial compression loading/unloading cycles at constant stretch rates, is
interpreted by the described model in Kumar and Lopez-Pamies [2016].

a, the temporal evolution of the stress tensor can be reformulated solely in terms of the
evolution of deformations and internal variables, as follows

Ŝ(t) = S̃(C(t), a(t)). (2.74)

The reversibility domain (R(t)), is a subset of deformations wherein the internal vari-
ables remain unchanged if the deformation process (π) remains within this defined do-
main. By leveraging the principle of work non-negativity within a deformation cycle
(refer to Ilyushin [1961]) and its equivalence to the non-negativity of the dissipation rate
(see Drucker [1952]), we can establish the ensuing fundamental inequality of variational
calculus for any deformation process

−∂ψ

∂a
(C, a) · ȧ ≥ −∂ψ

∂a
(C∗, a) · ȧ ∀C∗ ∈ R(t). (2.75)

39



Figure 2.26: Deformation cycle π =
π1 ◦ πϵ ◦ π3, with πϵ out of the initial
reversibility domain R(t0).

This inequality implies that, when the material
state is about to leave its reversibility domain,
the actual release of energy (D(C, a, ȧ) =
−(∂ψ(C, a)/∂a) · ȧ), is greater or equal to any
other possible energy release due to other de-
formation in the reversibility domain. Eqn.
(2.75) can be proved by considering the de-
formation cycle in fig. 2.26, where the cycle
π = π1 ◦πϵ ◦π2, with an infinitesimal part (πϵ)
out of the initial reversibility domain R(t0) (in
blue) is shown. The evaluation of the work per-
formed in this cycle can be determined by em-
ploying the characteristics of hyperelastic ma-
terials in the following way

W(π) =

W(π1)z }| {
ψ(C1, a 0)− ψ(C0, a 0)+W(πϵ) +

W(π2)z }| {
ψ(C0, a ϵ)− ψ(Cϵ, a ϵ) ≥ 0, (2.76)

that can be rewritten as

W(π) = −[−ψ(C1, a 0)+ψ(Cϵ, a ϵ)]+

Z tϵ

t1

1

2
S · Ċ dt+ψ(C0, a ϵ)−ψ(C0, a 0) ≥ 0. (2.77)

Dividing by dt = tϵ − t1 and applying the limit dt → 0, the equation becomes

W(π) = − ∂ψ

∂C
(C1, a 0) · Ċ− ∂ψ

∂a 0

(C1, a 0) · ȧ+
1

2
S(t1) · Ċ+

∂ψ

∂a 0

(C0, a 0) · ȧ ≥ 0. (2.78)

Considering that the first term is the opposite of the third term, the resulting expression
indicates that for any deformation state into the reversibility domain (as C0), , the dissi-
pation assessed under the current deformation (in proximity to the reversibility domain,
C1), is greater, as said in eqn. (2.75). Using the fundamental inequality, the following
support function can be defined

sf (a, b) = supC∈R(t)

∂ψ

∂a
(C, a) · b = w(a) · b, (2.79)

where w(a) is defined to maximize sf (a, b). Notably, this function depends not on the
deformation itself but solely on other internal variables (a) and the velocity parameter
b. This definition allows a redefinition of the reversibility domain

R(t) = {C | − ∂ψ

∂a
(C, a) · ȧ ≤ sf (a, ȧ) }. (2.80)

Using this redefined R(t) and the fundamental inequality in equation (2.75), the dis-
sipation can respectively be considered at same time as D(C, a, ȧ) ≤ sf (a, ȧ) and
D(C, a, ȧ) ≥ sf (a, ȧ). This means that the dissipation rate can only be equal to sf (a, ȧ),
that does not depends on the deformation C. This condition allows

∆ =

Z t

t0

D dt =
Z t

t0

sf (a, ȧ) dt =
Z t

t0

w(a) · da
dt

dt =
Z a

a 0

w(a) · da = w(a)−w(a0), (2.81)

where, the dissipation potential w(a) | ∂w/∂a = w(a) is implicitly defined. If it’s possible
to define w(a, this formulation allows for the assignment of the dissipation potential (with
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w(a 0) = 0 for simplicity) as a constitutive assumption, leading to the definition of the
internal energy density as follows

ϕ = ψ(C, a) + w(a). (2.82)

Upon the addition of external works and boundary conditions, this formulation enables
the problem’s solution via minimization over the body.

This approach enables the incorporation of specific material characteristics impact-
ing its elastic response as phase-fields variables defined over the examined body. The
evaluation of these fields can be done, as for the displacement field, via minimization of
the total energy. Some examples of these formulation are plasticity as discussed in Miehe
et al. [2016], Lancioni and Yalçinkaya [2019] and other references, damage as explored
in Pham et al. [2011], Lancioni and Corinaldesi [2018], Wu [2017] and related works, or
other distinct phenomena. The subsequent sections will introduce and elaborate on the
modeling of material damage using the internal variable named "damage" (d).

2.5.2 Introduction of phase field damage models

The fundamental principles underlying this damage phase-field formulation were pre-
sented in Francfort and Marigo [1998], where the fracture problem was formulated as a
free-discontinuity minimum problem. The variational formulation of fracture was approx-
imated in Bourdin et al. [2000] by a regularized problem that operates on a functional
defined on continuous fields, with fracture replaced by the so-called phase-field variable.
Acting like a damage variable, the phase-field assumes values between 0 and 1, with 0
for sound material and 1 for the fractured material, with the irreversibility constrain
(ḋ ≥ 0), and its evolution describes the coalescence and propagation of cracks Bourdin
et al. [2008a], Miehe et al. [2010b], Pham et al. [2011]. As the phase-field increases,
the stiffness of the material reduces, vanishing when the damage variable reaches 1.
A non-local term, proportional to the gradient of the phase-field, is incorporated into
the internal energy functional and it plays the role of localization limiter by penalizing
abrupt damage variations Miehe and Schänzel [2014], and by promoting smooth tran-
sitions from 0 to 1 in regions of finite width. The gradient contribution automatically
introduces an internal length, that in the present formulation is a constitutive parameter,
to be calibrated through experimental data Marigo et al. [2016]. Numerous models serve
as introductions to this modeling approach (e.g., Pham et al. [2011] or Lancioni and
Corinaldesi [2018]).

Understanding the uniqueness of this model is best achieved through the analysis of
the 1D tensile test. Here, the body is depicted by its longitudinal position (represented
by the scalar value x ∈ [0;L]), and the variables are the longitudinal displacement u and
the damage d. The external forces are neglected and the boundary conditions for the
displacement are u(0) = 0 and u(L) = ut = εtL. The internal energy density (refer to
eqn. (2.82)) is

ϕ(u, d) =
1

2
E(d)(u′)2

| {z }
elastic energy

+

local dissipationz}|{
w(d) +

1

2
A(d′)2

| {z }
non local term

, (2.83)

where E(d) is the Young modulus, that depends on the damage state variable as a
strictly decreasing function and A is the constant coefficient of the non local term. The
equilibrium conditions can be deducted using the stability criterion, that consists in
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the requirement of the non negativity of the first variation of the total internal energy
(Φ(u, d) =

R L
0 ϕ(u, d)dx), made in the direction of an arbitrary perturbation [û, d̂]. This

procedure, after the integration by parts of the elastic energy and of the non local term,
gives

∂Φ(u, d)[û, d̂] =

Z L

0
−σ′(x)û + (

1

2
E′(d)(u′)2 + w′(d)−Ad′′)d̂ dx+

+ (σ(x)û)|L0 + (Ad′d̂)|L0 ≥ 0,

(2.84)

where the first equilibrium condition is that the longitudinal stress (σ(x) = E(d)u′) is
constant over the bar for the arbitrariness of the perturbation (from witch σ ′ = dσ/dx = 0
for any x ∈ [0;L]). The second condition gives the equation of the yield condition as
follows

Y =
1

2
E′(d)(u′)2 + w′(d)−Ad′′ ≥ 0, (2.85)

that, if it is satisfied as an equality, allows the damage evolution (ḋ > 0), otherwise ḋ = 0.
This condition arises from applying the energy balance, resulting in Y ḋ = 0, indicating
that either Y or ḋ must be equal zero. The yield function (Y ) can be rewritten also as

Y = −1

2
C ′(d)σ2 + w′(d)−Ad′′, (2.86)

where C(d) = 1/E(d), thus C ′(d) = −E′(d)/E2(d) and σ2 = E2(d)(u′)2.
The second line of equation (2.84) allows for the imposition of boundary conditions.

While boundary conditions for displacements are specified at x = 0; L, two different
conditions can be assigned to the damage. Dirichlet conditions (also known as hard b.c.;
d(0) = d(L) = 0) or Neumann conditions (also known as soft b.c.; d′(0) = d′(L) = 0)
can be selected. However, in subsequent parts of this thesis, only Dirichlet b.c. will be
considered, since they reproduce the conditions usually found in experiments.

Key insights into damage models can be derived from the subsequent equations gov-
erning the evolution of equilibrium conditions

(σ +∆tσ̇)′ = 0; ḋ ≥ 0; (Y +∆tẎ ) ≥ 0; (Y +∆tẎ )ḋ = 0, (2.87)

where ∆t is an infinitesimal increment of the time. These equations can be considered as
the first order Taylor series development, but a more rigorous derivation can be found in
Lancioni and Corinaldesi [2018]. Using now σ̇′ = 0, the mean value of σ̇ can be considered
equal to its value over the bar, thus

σ̇ =
1

L

Z L

0
σ̇dx =

1

L

Z L

0
(E′u′ḋ) + (Eu̇′)dx = E′u′ḋ+ E ε̇, s.t. u̇′(x) =

E′u′

E
(ḋ− ḋ) + ε̇,

(2.88)
where ḋ = (1/L)

R L
0 ḋdx, and where an evolution equation of the deformation rate u̇′(x) is

obtained. Substituting this equation in the evolution form of the yield condition (derived
from eqn. (2.85)), the following differential problem is obtained

AC ′(0)ḋ′′ − j(0)ḋ = −(C ′(0))2σσ̇, (2.89)

where
j(d) = w′′(d)C ′(d) + w′(d)C ′′(d), (2.90)

that depends only on the local damage dissipation and the effect of the damage into the
stiffness. For this reason, these two function (that are assigned as constitutive assump-
tion) will define completely the behavior of the studied material. Indeed the solution of
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the differential equation (2.89), depends on the sgn(j(0)) and on the ratio between L and
the following internal lengths

ℓi = 2π

s
AC ′(0)

abs (j(0))
; ℓc = 2

C ′2(0)w′(0)
C(0)abs (j(0))

ℓi. (2.91)

Using last definition, eqn. (2.89) and the third relation of σ̇ in eqn. (2.88), the evolution
regime after the crack initiation can be determine as follows:

• j(0) > 0. This condition is characterized by a stress hardening (σ̇) and diffuse
damage regime and the solutions for ḋ(x) and σ̇ are:

ḋ(x) =
C ′2

j
σσ̇k(x), where k(x) = 1− cosh[π(L− 2x)/ℓi]

cosh(πL/ℓi)
; σ̇ =

E

1 + (kℓc/ℓi)
ε̇.

(2.92)

• j(0) = 0 implies a quadratic form of ḋ and a stress hardening regime:

ḋ(x) =
3E

6AC ′ + E2Cw′L3
σx(L− x); σ̇ =

6EA

6A+ E2CC ′w′L3
ε̇. (2.93)

• for j < 0, the regime of the solution depends on the ratio L/ℓi. Indeed if l ≤ ℓi, the
solution is a trigonometric function of x and it remains non negative, but if L > ℓi,
the simple trigonometric solution of eqn. (2.89) gives region of the bar where ḋ < 0
and it disagree with the irreversibility condition. For this reason the solution will
be localized. For these reasons, the shape of the solution is:

- for L ≤ ℓi, the solution will be as in eqns. (2.92), but with:

k(x) = 1−cos[π(L− 2x)/ℓi]

cos(πL/ℓi)
; with k(x) =

1

L

Z L

0
k(x) = 1− ℓi

Lπ
tan(πL/ℓi).

(2.94)
Now, if if L < ℓi/2, the stress regime remains in stress hardening and if
L > ℓi/2 in stress softening.

- for L > ℓi, the full size solution doesn’t agree with the irreversibility condition,
thus the solution will be as in eqns. (2.92), but a damage localization as follows

k(x) =

�
1− cos(2πx/ℓi) if x ∈ [0; ℓi]
0 if x > ℓi

; with k = ℓi/L, (2.95)

and it gives a stress softening regime with a localization of the fracture.

This analysis serves as an introduction to understanding the predictive capabilities and
the operation of phase-field damage models and the effects of the different coefficients
and functions, such as internal lengths or local dissipation, on the damage mechanism.
The main focus of this section, as highlighted in the preceding bulleted list, pertains to
solution of the evolution problem of ḋ, σ̇, which will also be used in the formulation of the
rate-independent model discussed in chp. 3. However, for a thorough formulation of the
examined model, refer to Lancioni and Corinaldesi [2018]. The next section introduces
a model general model for cohesive fracture.
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2.5.3 A unified gradient damage model for linear elasticity (Wu [2017])

This section will introduce a general damage model that includes many model as special
cases (refer to Li et al. [2016], Simo and Ju [1987] and others) and specifically capable of
simulating different cohesive fracture mechanism. In Wu [2017], one of the more general
description of these models in case of infinitesimal deformation is shown and, in this
section, it will be presented. In this paper, the dissipation potential is written starting
from the regularization of the crack surface (as in Miehe et al. [2010a]) by

Ad =

Z

Ω
γ(d,∇d)dΩ ≈

Z

Ω
δsdΩ = As, (2.96)

where, the Dirac delta (δs) is regularized by the crack surface density γ(d,∇d), that can
be written as

γ(d,∇d) =
1

c0
(
1

b
η(d) + b∇d ·∇d), with c0 = 4

Z 1

0

p
η(d)dd. (2.97)

where the geometric function η(d) describes the uniform progression of the crack phase-
field; b stands for an internal length scale that measures the size of the localization band;
c0 > 0 is a scaling parameter ensuring the approximation in eqn. (2.97). In order to
agree with this approximation, the conditions η(0) = 0 and η(1) = 1 have also to be
satisfy. For this reason, the following form of η(d) is proposed in Wu [2017]

η(d) =

nX

i=1

ξid
i, with

nX

i=1

ξi = 1. (2.98)

The elastic energy density is multiplied by a function g(d), called degradation function,
decreasing with d, which accounts for the deterioration of the elastic proprieties where
the damage evolves. These characteristics can be summarized as

ψ(sym∇u, d) = g(d)ψel(sym∇u); g(1) = 0; g(0) = 1; g′(d) < 0, (2.99)

where g′(d) = ∂g(d)/∂d. The solution of the problem can be found by the bounded
minimization of the total energy, minus the external forces’ energy as it follows

oΦ(u, d) =

Z

Ω
ψ(sym∇u, d) +Gcγ(d,∇d)dΩ−

Z

Ω
b · udΩ−

Z

∂Ω2

s · ud∂Ω2 , (2.100)

where ∂Ω2 is the part of the boundary of the body Ω where the stresses are assigned and
b, s are the body and the surface external forces. The formulation of such as model, can
be summarized as the definition of the uniform progression of the crack function (α(d))
and the degradation function g(d).

The more general way to define the degradation function, that includes the major
part of the definition in literature, is the following

g(d) =
1

1 + ϕ(d)
=

(1− d)p

(1− d)p +Q(d)
, (2.101)

where ϕ(d) = Q(d)/(1 − d)p, the exponent p is a positive number and Q(d) > 0 is a
continuous function. Using Q(d) = 1 − (1 − d)p, and p = 1; 2 (thus g(d) = (1 − d)p),
many damage models can be included (as Simo and Ju [1987], Bourdin et al. [2008b] and
others), while using Q(d) = (1 + ρ0)

q − (1− d)q (that implies g(d) = (1− d)p/(1 + ρ0d)
q
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), models as Lorentz and Godard [2011] are included. In the context of Wu [2017], the
following polynomial function is chosen

Q(d) =
nX

i=1

[(
iY

j=1

aj)d
i], (2.102)

where the parameters ai are determines following the material’s behavior. Last constitu-
tive assumption concerns the elastic strain energy density, which, in cases of infinitesimal
deformation, is regarded as a quadratic form of the symmetric part of the displacement
gradient

ψel(sym∇u) =
1

2
C0[sym∇u] · sym∇u and T = g(d)T0 = g(d)C0[sym∇u],

(2.103)
where also the stress tensor (T) equation is shown.

Equilibrium

The equlibrium conditions can be determined by the minimization of the total energy in
eqn. (2.100), using the stability criterion as follows

∂Φ(u, d)[û, d̂] =−
Z

Ω
(divT+ b) · ûdΩ +

Z

∂Ω2

(Tn̂− s) · ûd∂Ω2+

+

Z

Ω
(g′(d)ψel(sym∇u) +

Gc

c0 b
(α′(d)− 2b2∆d) · d̂dΩ+

+ 2

Z

∂Ω

Gc

c0 b
(∇d · n̂)d̂d∂Ω ≥ 0,

(2.104)

where [û, d̂] represents the admissible perturbation set for the internal variable (u, d). The
first variation evaluation of equation (2.100) involves the application of the divergence
theorem to the terms

R
Ω g(d)C0[∇u] ·∇ûdΩ and

R
Ω 2(Gc/c0 b)b

2∇d ·∇d̂dΩ. In the third
line, ∂Ω denotes the boundary of Ω, comprising ∂Ω1 where displacements are assigned,
and ∂Ω2, which is a direct sum. The first line of the above equation, gives the following
equilibrium equations for the displacement

divT+ b = 0 in Ω, with b.c.: Tn̂ = s in ∂Ω2 and u = u 0 in ∂Ω1. (2.105)

The second line of eqn. (2.104), gives the following yield condition:

Y (∇u, d) = g′(d)ψel(sym∇u) +
Gc

c0 b
(η′(d)− 2b2∆d) ≥ 0, (2.106)

that, considering g′(d) ≤ 0, for a fixed d, Y (sym∇u, d) is a decreasing function of sym∇u.
In all damage models, this condition suggests that as deformation increases from an un-
deformed state, the elastic energy increases. This increment is then diminished by mul-
tiplication with g′(d) < 0 in Y (sym∇u, d) until the point where the positive component
(η′(d)) of Y (sym∇u, d) = 0 is attained, leading to material damage initiation. In this
context, the sole contribution to the dissipation rate arises from the damage dissipa-
tion, as stated by in equation (2.82). This can be evaluated through both the damage
dissipation density potential or the function in Drucker [1952] definition as follows

Gc

c0 b
γ̇(d,∇d) = Dd = T · sym∇u̇− ψ̇(sym∇u̇, d). (2.107)
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After the divergence theorem application to the left side of this equation, it gives:

Y (sym∇u, d)ḋ = 0, (2.108)

that means that one of the two terms (Y or ḋ) must be equal to zero. From a physical
point of view, this condition implies that the damage can change only when the yield
condition in eqn. (2.106) is satisfy as equality. Last equation with eqn. (2.106) and the
irreversibility condition (ḋ ≥ 0) are also known as Kuhun-Tucker condition.

In the third line of eqn. (2.104), two potential boundary condition for the damage
can be inferred. The first scenario suggests the Neumann b.c. that meas ∇d · n̂ = 0 in
∂Ω and the second scenario is the Dirichlet boundary condition, where d = 0 in ∂Ω. In
all of the next analysis, the Dirichlet boundary condition will be considered.

The characteristics of this model will be detailed in the next section, specifically fo-
cusing on a 1D tensile test. This study will be done following the constitutive assumption
in Wu [2017] about η(d) and g(d) as follows

η(d) = ξd+ (1− ξ)d2; Q(d) = a1d+ a1a2d
2 + a1a2a3d

3, (2.109)

where respectively with ξ = 1 and ξ = 0 the AT-1 and AT-2 models described in Ambrosio
and Tortorelli [1990] can be included.

1D tensile test

Figure 2.27: 1D tensile test scheme. The
boundary displacement (uL) is applied to
x = L and x = −L equal. The center of
the sample is considered as the origin of the
position scalar x.

We consider the 1D tensile problem
schematized in fig. 2.27. Here, the po-
sition vector (x) and displacement vector
(u(x)) are scalar quantities. In this con-
text, neglecting surfaces and body forces,
the equilibrium conditions of eqn. (2.105)
becomes:

dσ
dx

= σ′ = 0; u(−L) = u(L) = uL,

(2.110)
where σ is the longitudinal stress over the bar and it assumes the following form:

σ = g(d)E0u
′. (2.111)

Using last equation, and considering that (by eqn. (2.110)) σ is constant over the bar,
the deformation u′(x) can be rewritten ad function of d(x) as it follows

u′ =
σ

E0
g−1(d) =

σ

E0
(1 + ϕ(d)), (2.112)

where the function ϕ(d) is defined in eq. (2.101). Using now the symmetry of the problem
(see fig. 2.27), the deformation can be integrated between x = 0 and x = L as it follows

uL =
σ

E0
L+

σ

E0

Z L

0
ϕ(d)dx =

σ

E0
L+

σ

E0

Z lf/2

0
ϕ(d)dx = ue + wd, (2.113)

where the localization of the damage in a internal length (lf ) is considered and the
damage displacement jump (wd) is defined. The specification of the yield function in
eqn. (2.106) involves in

Y (u′, d) =
g′(d)

2g2(d)E0
σ2 +

Gc

c0 b
(η′(d)− 2bd′′) =

−ϕ′(d)
2E0

σ2 +
Gc

c0 b
(η′(d)− 2b2d′′), (2.114)
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Figure 2.28: Damage profile along the di-
mensionless position (x/b) for different val-
ues of ξ from Wu [2017].

Figure 2.29: cohesive curve for different p
from Wu [2017].

where g′(d) = −g2(d)ϕ′(d) is used. The crack onset will be given by the equality in
(2.106) with d = 0; ∆d = 0 as follows

ϕ′(0)σ2
e =

2E0Gc

c0 b
η(0), s. t. σe =

r
2E0Gcξ

c0 b a1
→ a1 =

2E0Gc

c0 bσ2
e

, (2.115)

where also a parameter of Q(d) (a1) is determined and σe is the elastic limit of the stress.
Considering now the following equation

Y = σ2ϕ(d)− 2E0Gc

c0 b
(η(d)− b2(d′)2), (2.116)

by its derivation with respect to x, the yield condition (multiplied for −2E0) can be found.
For this reason, during the damage evolution, Y = 0 will be verified. Now, focusing on
the point x = 0, which is where the damage reaches its maximum value (d = dm), the
non-local term can be deemed negligible due to the symmetry of the problem (d′ = 0).
From these considerations, the following expression for σ can be derived

σ(dm) = σe

s
a1
ξ

η(dm)

ϕ(dm)
. (2.117)

From eqn. (2.116), an expression for d′ can be derived as follows:

|d′| = 1

b

s
η(d)− σ2

σ2
e

ξ

a1
ϕ(d) =

1

b

s
η(d)− η(dm)

ϕ(dm)
ϕ(d), (2.118)

where eqn. (2.117) is used. This expression can be applied in eqn. (2.113) to explicitly
establish an equation for wd(dm). These expressions, along with eqn. (2.117), allows
the plotting of the cohesive curve, as illustrated in fig. 2.29. This plot illustrates the
relationship between the damage-induced displacement jump and the stress presented.
Such a curve holds crucial significance in the forthcoming finite elastic model detailed
in chapter 3. In the model by Wu [2017], the initial slope of this curve is utilized to
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Figure 2.30: Influence of ξ (a) and of the initial slope of the cohesive curve (ko) on the
half bandwidths of the damage at the crack initiation (Do) and at the failure (Du = lf/2)
of the sample from Wu [2017].

(a) b/hmesh = 5 (b) b/hmesh = 200

Figure 2.31: Influence of the mesh size hmesh on the precision of the results. In particular
the numerical results (also for different values of b) of a 2D uniaxial tensile test are related
with the analytical results from Wu [2017].

determine a2, while a3 can be determined using wd(1).
Another significant insight drawn from these equations pertains to the damage pro-

file, allowing for observation of damage localization (refer to fig. 2.28). The localization
of damage bands during crack progression heavily relies on the uniform advancement of
the crack phase-field (thus, on ξ) and the initial slope of the cohesive curve (ko) depicted
in fig. 2.29. These relationships are depicted in fig. 2.30, highlighting that the extent of
localized damage is inversely related to ξ. Furthermore, this length primarily depends
on ko solely during the initial phase of crack evolution. Indeed, applying eqn. (2.118)
in the last instant of the crack (when dm = 1 and σ = 0), the following expression (for
x > 0) can be deduced

dd
dx

= −1

b

p
η(d), s. t. − b

Z 0

dm=1

1p
η(d)

dd =

Z Du

0
dx, s. t. b =

DuR 1
0 η−1/2(d)dd

;

(2.119)
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where Du can be measured in the broken sample and the only other parameter that affect
the ratio Du/b is ξ.

One of the final noteworthy features of this model (and, generally, of damage phase-
field models) involves the correlation between the maximum mesh size (hmesh), providing
numerically accurate results, and the internal length b. This linear relationship is depicted
in fig. 2.31, where he fact that changing b, maintaining constant b/hmesh doesn’t affect
the results, but the variation of b/hmesh moves numerical results away from the analytical.

In the work by Wu [2017], the model described above is extensively compared with
various other damage models, proving its high adaptability and generality. Therefore, it
serves as a foundational framework for developing a phase-field damage model applicable
to finite elasticity. This model will be extended to accommodate both brittle (as in sect.
2.3.1) and pseudo-ductile (as in sect. 2.3.2) rupture types.

2.5.4 Phase field damage model in finite elasticity

One of the first application of the damage phase-field model in finite elasticity can be
seen in Miehe and Schänzel [2014]. Here, a damage phase-field model with ξ = 0 is
merged with a compressible micro mechanical based finite elastic model. The aim is to
replicate crack formation in a penny-shaped tension test, involving a simple shear sample
(L = 2mm and H = 0.4mm) with a horizontal notch parallel to the longer side in the
middle of the sample. The sample is stretched in the direction of the shorter side, al-
lowing observation of damage evolution within the horizontal notch. Additionally, these
simulations predict the experiments summarized in sect. 2.3.1 and presented in Hocine
et al. [2002]. The assumption of ξ = 0 implies that the linear term in η(d) disappears
and, thus its derivative becomes a linear function of the damage such that η′(d = 0) = 0,
while the degradation function is g(d) = (1− d)2. For this reason, the only one possible
deformation that allows d = 0 is C = I. However, in the supposed elastic phase of the
material, damage is expected to be minimal, while the rupture phase becomes sudden
owing to damage and deformation becoming localized.
The shift from infinitesimal to finite elasticity presents several challenges. These diffi-

Figure 2.32: 2D tensile test simulation with Lopez-Pamies [2010] model and damage
phase-field variable. On bottom the simulation set up, on right the engineer stress-strain
curve and on left the x component of the displacement over x axis in the middle of the
sample for the two time instant before and after the crack.
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culties begin with the nonlinear nature of the models, discussed in chapters 2.4, which
necessitate more intricate elastic problem-solving step by step algorithms like Newton-
Raphson, more complex than the linear methods used in preceding chapters. These
procedures present convergence problems when the solutions of two close instants are
very different, as happens in the case of brittle fracture during a tensile test (as shown
in fig. 2.32). Also if this phenomenology is welcomed to reproduce the brittle materials’
behavior, it makes the incremental resolutions of the elastic problem unstable. For this
reason, given the following energy functional

Φ(u, d) =

Z

Ω0

(1− d)2| {z }
g(d)

ψel(∇u) +
Gc

c0 b
( d2|{z}
α(d)

+b2(∇d)2)dΩ0, (2.120)

a viscous regularization is added in the yield condition as it follows

Y (∇u, d) = g′(d)ψel(∇u) + 2
Gc

c0 b
(d− b2∆d) + κḋ ≥ 0, (2.121)

where κ is a damage viscosity that regularize the damage growth. The significance of

(a) Sample and test set up.
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(b) Influence of viscous regularization.

Figure 2.33: Tension test using a penny-shaped geometry incorporates the impact of
viscous damage regularization. Specifically, it’s evident that the regularization’s effect on
the solution diminishes as κ approaches zero, indeed the simulation results for κ = 0.0001
and κ = 0.001 are not distinguishable. However, it remains significant during the phase
characterized by extensive damage growth.

this regularization is depicted in fig. 2.33, illustrating its substantial impact during the
phase marked by extensive damage growth. As the rate-dependent model evolves, a key
question emerges: is this viscosity merely a form of regularization, or does it represent
an inherent material property? This question is analyzed in the fourth chapter, using the
rate dependent model. The numerical results presented in this chapter underscore the
significant influence of this term, leading to the definition of the damage characteristic
time τd = (κ c0 b)/Gc. This parameter assesses the characteristic time of the micro-
scale damage-related deformation phenomena e.g. strain crystallization (see fig. 2.12)
or cavitation (see fig. 2.11), occurring in the fracture process zone (see fig. 2.8), which
cannot be evaluated by Fv, as it measures the macro-scale deformations.

In fig. 2.34, the model in Miehe and Schänzel [2014] and the model in Talamini
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Figure 2.34: Numerical results of model in Miehe and Schänzel [2014] (blue) and Talamini
et al. [2018] (red) for the experiments of Hocine et al. [2002] (dot line).

et al. [2018] are fitted to the experiments of Hocine et al. [2002]. In particular the model
of Talamini et al. [2018] consists in a micro-mechanical based approach, that derived the
elastic strain energy density, the damage dissipation and the other components of the
internal energy, from the structure and the interaction of rubber macro-molecules (see
sect. 2.1). The main difference between this two models are:

• the inclusion of an effective bond stretch in Talamini et al. [2018], an additional
internal variable, which governs the deformation of the individual link within the
longer macro-molecule,

• the interpretation of the gradient term in γ(d,∇d) as an energy-related factor
(Miehe and Schänzel [2014]) rather than a contribution to dissipation (Talamini
et al. [2018]),

• the assumption, micro-mechanical based, of ξ = 1 → η(d) = d done in Talamini
et al. [2018], that, with g(d) = (1− d)2, implies a brittle fracture behavior.

Specifically, when observing the propagation of a damage front (e.g., in double-network
elastomers as described in Millereau et al. [2018], see sec. 2.3.2), the area of maximum
damage will extend from a localized point to encompass the entire bar. Throughout this
progression, the undamaged section and the region with maximal damage will exhibit
∇d = 0, whereas in the transitional region, ∇d ̸= 0. As this region is in motion, it appears
more appropriate to regard the gradient term as energetic, although this remains a topic
of ongoing debate. For what concerns the assumption of ξ = 1 → η(d) = d, it results
in a brittle fracture model and consequently a less gradual rupture of the sample. This
distinct behavior is evident in the comparison shown in fig. 2.34, where the stress drop
is consistently smoother for the model presented in Miehe and Schänzel [2014] compared
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to that in Talamini et al. [2018].
Building upon these two investigations, the upcoming chapter will introduce a rate-

independent model. This model will incorporate a damage geometric function capable of
ensuring both a fully elastic phase for the material and a gradual fracture, employing ξ =
2 → η(d) = 2d− d2. Additionally, it will integrate a suitable degradation function aimed
at capturing the different post-fracture behavior of materials as observed in Millereau
et al. [2018] and Hocine et al. [2002] by a proper calibration of the model parameters.

2.5.5 Phase field damage model in finite viscoelasticity

Figure 2.35: Experimental
set up for numerical simu-
lation in Yin and Kaliske
[2020].

Numerous theories have included rate dependent contribu-
tion into the formulation. The approach proposed in Farrahi
et al. [2020], in the context of linear elasticity, includes a
kinematic coefficient as in Miehe and Schänzel [2014]), that
allows an explicit evaluation of the damage growth rate, as
done in eqn. (4.15). The existence of a damage evolution
equation allows the overrun of the eventual elastic stress
limit, when the loading rate was high enough to exceed
the damage rate. By managing and regulating this rate, a
consequential implication emerges: the definition of fracture
stress remains pertinent predominantly within quasi-static
contexts. This circumstance allows for its validity, especially
in the proximity of the fracture tip.

Furthermore, in the work of Hakim and Karma [2009],
introducing a dependence in the non local energetic term
on the direction of the crack surface, the crack propagation
is studied in a linear elastic and anisotropic context. This
incorporation introduces a pivotal control mechanism gov-
erning the direction of fracture propagation.

Phase-field damage models have only recently been intro-
duced within a finite viscoelastic models, and one of the ear-
liest examples in the literature is that in Loew et al. [2019],
where the behavior of EPDM rubber is reproduced. This
work combines the generalized Maxwell rheological model,
utilizing the volumetric deformation decomposition method
from Holzapfel [1996] (see sect. 2.4.2 and fig. 2.22), with a
damage phase-field model as in Miehe et al. [2010b]. Specifi-
cally, it employs functions g(d) = (1−d)2 and η(d) = d2 and
as elastic strain energy density, the model detailed in Yeoh
[1993] is chosen, with ψel = Ci(I1 − 3)i. In this context,
the damage viscosity, introduced in eq. 2.121 by Miehe and
Schänzel [2014] is treated as a material’s parameter and the
solution for the viscous stresses is evaluated as in Holzapfel
[1996] by eqn. (2.64). This model’s primary drawbacks stem
from its initial assumption, ψneq = βψeq, which restricts the range of energy forms avail-
able (as opposed to the model in Kumar and Lopez-Pamies [2016], exposed in sect.
2.4.2, where it isn’t necessary). Additionally, it doesn’t account the characteristic time
of damage as a crucial determinant parameter that governs the fracture propagation
rates. Indeed, this parameter goes to limit the speed of damage formation, not allowing
properly brittle failure mechanisms, unless a temporal discretization is chosen in which
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damage formation is not caught. Moreover, this parameter has also numerical implica-
tions that will be shown in the analysis in 4.3.2. Despite these limitations, its significance
remains noteworthy as one of the pioneering models of its type. In addition to the model
formulation, the article proposes a method for the parameter fitting through various
tests like uniaxial tensile, single-edge notch tensile (SENT), and double-edge notch ten-
sile (DENT), all made at different deformation rates, to catch the peculiarity of the rate
dependent material’s behavior.

In the work of Yin and Kaliske [2020], a model similar to that in Loew et al. [2019]
is introduced, featuring an extensive thermodynamic formulation, following Holzapfel
[1996], and simulations employing intricate test configurations, exemplified by the sce-
nario depicted in Fig. 2.35, among other tear test setups (in plane and out plane tear
test). This model employs a neo-Hooke strain energy density for both the equilibrium
and non equilibrium springs, with the following form of volumetric strain energy density

ψvol = K(J − log(J)− 1), (2.122)

where K is the bulk modulus, treated as in Holzapfel [1996] (see sec. 2.4.2). It explores
also the application of the subsequent degradation function

g(d) = 1− sin
�
dπ

2

�
. (2.123)

The simulation outcomes demonstrate a strong alignment of the model with the mate-
rial’s behavior, while the article emphasizes the correlation between the material’s failure
point and the strain rate. While the utilization of the neo-Hooke strain energy density
might appear restrictive, the incorporation of various test configurations and model fit-
tings (including those in Loew et al. [2019], the experiments in Hocine et al. [2002] and
the in-plane and out plane shear fracture set up) renders the study highly intriguing.

Further compelling insights into the utilization of phase-field variables for finite vis-
coelasticity are presented in Dammaß et al. [2021] and Dammaß et al. [2023]. These
studies delve into not only the mechanical characteristics of EPDM rubber (through ex-
periments detailed in Loew et al. [2019]) but also explore the mechanical behavior of
HTPB, a binder employed in solid rocket motor propellants, where the SENT speciment
is used to calibrate the parameters and the DENT speciment for the model validation and
the analysis. In Dammaß et al. [2023], the energy release rate is considered as dependent
on the deformation rate (Gc = Gc(D)) to control the dependence of the fracture onset
on the strain rate

Across these studies employ the form η(d) = d2 (AT-2 in Ambrosio and Tortorelli
[1990]), that precludes a purely elastic phase. They also do not consider the viscous
term of the damage with its characteristic time, which would help to analyze fracture
propagation over time and its development on the various experimental set up. These
inquiries will be addressed in the fourth chapter of this thesis, through the development
of a viscoelastic phase-field damage model. This numerical study aims to scrutinize the
interaction between this characteristic times with the material’s characteristic time.
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Chapter 3

A cohesive phase field model

The forthcoming chapter introduces a rate-independent model able to replicate material
behavior under two distinct conditions: pseudo-static loading (where, at low deformation
ratios, the dash-pot in fig.2.22 remains fully relaxed and the non-equilibrium spring re-
mains unloaded) and high strain rates. Under high strain rates, the dash-pot in fig.2.22
lacks the time to relax and it becomes a rigid link. This transformation causes the two
springs to function in parallel without any viscous effect. This model is proposed in
Ciambella et al. [2022], published in the special issue "The Ogden model of rubber me-
chanics: Fifty years of impact on nonlinear elasticity".

The proposed model combines the elastic strain energy of Ogden [2003] for the incom-
pressible materials (see eqn. (2.27) or fig. 2.20), with the damage phase field model of
Wu [2017], summarized in sect. 2.5.3. The distorsional part of the strain energy density
of Ogden [2003], can be seen as a set of n non linear elastic springs as follows

ψD
el (u) = [

X

i

(
µi

αi

3X

j=1

(λαi
j − 1))] = ψ̃i(λ1,λ2,λ3), (3.1)

where the dependence on the displacement field (u) of the eigenvalues of F = I + ∇u,
(λi(u)) is omitted for synthesis and ψ̃j means the single spring that compose the system
of non linear spring included by the Ogden’s formulation. To catch the versatility of this
split, that adherent to the so-called Valanis–Landel split in Valanis [2022], it offers the
opportunity to simulate the material’s behavior across various strain ranges as depicted
in fig. 2.2. For instance, in the context of a tensile test, incorporating a spring with
an exponent αi ∈ (0; 2] and a shear modulus comparable to the mean stress of the test
allows replication of behavior in low and moderate strain ranges. However, to model high
strains, introducing a spring with a significantly higher exponent and considerably lower
shear modulus becomes adequate. While the latter spring’s impact remains minimal
during Gaussian regimes, it introduces a hardening effect in the high strain regime. An
instance illustrating the application of this model is presented in fig. 3.1, demonstrating
the modeling of the material examined in the experiments conducted by Corre et al.
[2020] (commercial polyurethane), using two ψ̃j , as outlined earlier. These remarkable
properties are exploited to formulate a theory for the cohesive failure of elastomeric
materials at large strain. The inclusion of the damage into the hyperelastic energy in
eqn. (3.1) is formulated in according to the proposal in Wu [2017] and described in
sec. 2.5.3, that is a formulation capable of describing brittle and quasi-brittle failure
modes. In particular, for the cohesive phenomena, the damage propagation along the
bar is simulated.
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Figure 3.1: Adaptation of the Ogden [2003] model to the material studied in the Corre
et al. [2020] experiments by the use of two springs in parallel with α1, µ1 = 0.7, 7.3 and
α2, µ2 = 4.7, 0.0055. This engineer stress-strain curve is obtained by a 1D tensile test
simulation.

From this point, the chapter reports the formulation and the results of Ciambella
et al. [2022].

3.1 Model formulation

The aim of this section is the formulation of the nonlinear damage phase-field elastic
model in a three-dimensional plane stress settings, before carrying out in Sec. 3.2 a sen-
sitivity analysis by considering the response of a bar under traction with the assumption
analyzed a the end of sec. 2.4.1. The approach adopted to equilibrium is based on a
unilateral minimality principle under the condition of irreversibility of the damage field.
The same approach has been widely adopted in plasticity Marigo [1989], Del Piero et al.
[2007], Lancioni [2015], plasticity with damage Alessi et al. [2014], Lancioni and Alessi
[2020] and cohesive damage Wu [2017, 2018].

Throughout the paper we will assume that all fields are sufficiently smooth so that
all the calculations can be performed. For a precise definition of the functional spaces
needed the reader is referred to Mielke and Roubíček [2015].

3.1.1 State variables

We identify a body with a region Ω0 of the three-dimensional Euclidean space E , that
occupies at some time instant t = 0, which we denote as the reference configuration. The
external boundary ∂Ω0 is divided into a subset ∂Ω0 1 in which displacement is applied, and
a complementary boundary ∂Ω0 2 in which surface forces are present. The deformation
of the body is the bijective orientation-preserving map P : Ω0 × [0, t] → E which assigns
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at each point X ∈ Ω0 a point x = P (X, t) in the deformed configuration; accordingly we
set Ωt = P (Ω0, t) as the deformed configuration of the body.

At each material point X , the state of the continuum is identified by the displacement
field u(X, t) and by the damage scalar phase-field variable d(X, t). In this formulation, d
is a Lagrangean parameter defined on the reference configuration Ω0. We further denote
by U the space of kinematically admissible displacement field

u(X, t) ∈ U := {u : u(X, t) = u∗ ∀X ∈ ∂Ωu
0}, (3.2)

and with D the set of the admissible damage field

d(X, t) ∈ D := {d : d(X, t) ∈ [0, 1]}.

We denote the deformation gradient by F = I + ∇u, where ∇ is the gradient operator
defined with respect to the reference coordinates X .

The variations ũ and d̃ will be used in the application of the minimality principle
to derive the governing equations of the problem. These have to satisfy homogeneous
boundary conditions, and as such belong to the following sets

ũ(X, t) ∈ fU := {ũ(X, t) = 0 ∀X ∈ ∂Ω0 1}, (3.3)

d̃(X, t) ∈ eD := {d̃ : d̃(X, t) ≥ 0 for almost all X ∈ Ω0}, (3.4)

the latter being the convex cone of positive damage rate. As it will be apparent in
the following sections, in the present formulation the damage variable can only increase
(no–healing).

For the sake of conciseness the explicit dependence on the position X and time t will
be omitted from all variables, except when needed.

3.1.2 Energy functional

The behavior of the continuum is characterized at each material point X and at each
time instant t by two state variables {u, d} in U × D , and by a state function φ, which
gives the energy density at each material point; φ depends on the local strain F(X), on
the value of the damage variable d(X) and on the local value of damage gradient ∇d(X),
with the following functional form

φ(∇u, d,∇d) =

Elastic energyz }| {
ψ(I+∇u, d)+

Fracture energyz }| {
Gc

c0 b
η(d) + b

Gc

c0
|∇d|2, (3.5)

composed by three terms:

• ψ(I+∇u, d) is the elastic energy in the damage state d;

• Gcη(d)/(c0 b) can be interpreted as the fracture dissipation potential during a ho-
mogeneous damage process with ∇d = 0;

• bGc|∇d|2/c0 is the nonlocal term which limits the possibility of damage localization
in an infinitesimal region of the body (see for instance Pham et al. [2011]); such
a term introduces an intrinsic length scale which controls the size of the damage
localization zone.
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The second and third terms in Eq. (3.5) constitute the non-local fracture energy density, in
which the constitutive parameter Gc is the critical elastic energy release rate, b represents
an internal length that regularizes the sharp crack and c0 := 4

R 1
0

p
η(d) dd is a scaling

parameter in according with the previous sec. 2.5.3.
We further assume that the elastic strain energy density ψ can be multiplicative

decomposed as
ψ(I+∇u, d) = g(d) ψel(I+∇u) , (3.6)

in which ψel(I + ∇u) is the elastic energy density of the neat material, and g(d) is
the degradation function describing the degradation of the stored energy with evolving
damage. The bulk strain energy density ψel is a continuous isotropic function such that
ψel(·) is frame indifferent. Such a requirement, as mentioned in sec. 2.4, implies that,
for any given deformation F, one has ψel(Q

TFQ) = ψel(F) (isotropic response) and
ψel(Q

TF) = ψel(F) (frame indifference) for every rotation matrix Q.
The energetic degradation function g(d) plays an important role in determining the

properties of the material during the onset of the fracture and in the post-elastic regime
as explained in secs. 2.5.2 and 2.5.3.1 Motivated by the analysis presented in Wu [2017],
the following form for the degradation function g is considered

g(d) :=
(1− d)2

(1− d)2 + a1 d(1 + a2 d+ a2a3 d
2)| {z }

Q(d)

, (3.7)

where a1, a2 and a3 are constitutive parameters, whose calibration allows the description
of different fracture modes from brittle to pseudo-ductile as shown in Sec. 3.2 with uniax-
ial numerical tests. The chosen form of g heavily affect the softening behavior once crack
is initiated. Specifically, the function Q(d) can be interpreted as a Taylor expansion of a
certain function of d around d = 0 (integer material). This explains why, as discussed in
sect. 3.2.5, the different parameters ai influence the material’s behavior after the dam-
age initiation based on their respective index i. Indeed, a1 solely determines the onset
of fracture, a2 affects the slope of the cohesive curve at the onset, and a3 reflects the
material’s behavior upon complete fracture. For this reason, as the complexity of the ma-
terial’s behavior post-fracture onset increases, additional parameters (a4, a5, etc.) could
be included to improve the correspondence between the simulations and the material’s
response, whereas in the case of brittle materials, parameter a3 becomes superfluous.

The dissipated energy density plays a significant role in the evolution of the damage as
well. As said in sec. 2.5.4, ξ = 1 will be assumed and the following quadratic expression
of η is obtained:

η(d) = 2 d− d2, (3.8)

in a way that η(0) = 0 and η(1) = 1. With this assumption, the scaling parameter c0
becomes c0 = 4

R 1
0

√
2d− d2 dd = π. It’s important to point out that different choices of

ξ can be made for the function η(d), as exposed in sect. 2.5.3.
With the definition eqn. (3.5) of the state variable φ, we are in the position of

defining the total energy stored in the material during the deformation process. For each
admissible pair (u, d) ∈ U × D , the total energy of the continuum is

I(u, d) =
Z

Ω0

φ(∇u, d,∇d)dΩ0 −
Z

Ω0

b0 · udΩ0 −
Z

∂Ω0 2

s0 · ud∂Ω0 2, (3.9)

1In the numerical examples carried out in Sec. 3.3 a small positive value of the degradation function is
assumed when the material is fully broken. This is a standard technique to guarantee that the numerical
problem remains well-posed for broken specimen.
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b0 and s0 being the forces per unit of reference volume and area respectively, the latter
applied on the part of the boundary ∂Ω0 2. These latter terms represent (minus) the
work expended by the external forces.

3.1.3 Governing equations

The derivation of the governing equations of the problem, including the damage evolution,
is carried out following the classical variational approach to fracture mechanics (as in sec.
2.5.2, see for instance Pham et al. [2011] or Marigo et al. [2016]) which consists of:

1. the damage irreversibility condition ḋ(X, t) ≥ 0 and d(X, 0) = 0,

2. a stability criterion, which is indeed a necessary condition for the unilateral mini-
mality condition on the functional eqn. (3.9),

3. the energy balance principle, that states that the total energy at time t is equal to
the work of the external forces up to time t.

A posteriori it is shown that, under the imposed constitutive assumptions, the dissipation
inequality, that is the second principle of thermodynamics, is also satisfied, as shown in
sec. 2.5.

Stability condition. Starting from an undamaged state at t = 0, we say that the
process evolves through stable equilibrium configurations if and only if at each time
instant the system attains a local minimum of the total energy (3.9). This leads us on
introducing the following stability condition:

For each t > 0 , {u, d} ∈ U × D is stable iff

∀{ũ, d̃} ∈ fU × eD , ∃h̄ > 0 : ∀h ∈ [0, h̄], I(u, d) ≤ I(u+ hũ, d+ hd̃),
(3.10)

with the initial condition d(X, 0) = 0.
The variational inequality in eqn. (3.10) is satisfied if the Gâteaux derivative of the

functional I at {u, d} is positive for each set of test functions, in particular d̃ being in
the convex cone defined by eD . Formally we write

∂I(u, d)[ũ, d̃] ≥ 0, ∀{ũ, d̃} ∈ fU × eD , (3.11)

with

∂I(u, d)[ũ, d̃] =
Z

Ω0

P ·∇ũ− Σ d̃+ q ·∇d̃dΩ0 −
Z

Ω0

b0 · ũ+

Z

Ω0 2

s0 · ũd∂Ω0 2, (3.12)

where the dual quantities P, Σ and q are obtained from the energy density (3.5) as

P =
∂ψ

∂F
= g(d)

2X

i=1

∂ψel

∂λi
b̂i ⊗ ĉi (Piola stress tensor) (3.13)

Σ = −∂φ

∂d
= −g′ψel −

Gc

πb
η′ (Energy release rate density) (3.14)

q =
∂φ

∂∇d
=

2Gcb

π
∇d (Damage flux vector) (3.15)

where the Piola stress P being given whit the Plane stress state as described at the end
of sec. 2.4.1 with the strain energy density in terms of the principal stretches λ1, λ2.
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Upon substitution of eqns. (3.13)-(3.14)-(3.15) into eqn. (3.12) and integration by
parts, the variational inequality in eqn. (3.11) gives

Z

Ω0

�
DivP+ b0

�
· ũdΩ0 +

Z

∂Ω0 2

�
s0 −Pn̂0

�
· ũdΩ0 = 0, (3.16)

−
Z

Ω0

�
Divq + Σ

�
d̃dΩ0 +

Z

∂Ω0

�
q · n̂0

�
d̃d∂Ω0 ≥ 0, (3.17)

where latter is evaluated as inequality since d̃ belongs to the convex cone eD .
By the classical localization argument, we obtain from eqn. (3.16) the standard

macroscopic balance equation with boundary conditions

DivP+ b0 = 0, on Ω0,

Pn̂0 = s0, on ∂Ω0 2,
(3.18)

and from eqn. (3.17) the damage threshold condition

Divq + Σ ≤ 0, on Ω0,

q · n̂0 ≥ 0, on ∂Ω0,
(3.19)

with the corresponding flux condition on the boundary.
On using the definition of the energy release rate eqn. (3.14) and of the damage flux

vector eqn. (3.15), we can rewrite the damage threshold condition eqn. (3.19)1 as

Y (∇u, d,∆d) := g′(d)ψel(I+∇u) +
Gc

π

�1
b
η′(d)− 2 b∆d

�
≥ 0, (3.20)

where we have defined the so-called damage yield function Y . In the interior region where
damage has yet to occur one has g′(0)ψel(I + ∇u) < Gc

π bη
′(0) and since g′(d) < 0 the

elastic energy density ψel is bounded.
We should remark once more that the damage threshold condition eqn. (3.20) is indeed
a necessary condition for the state {u, d} to be stable. Indeed if eqn. (3.20) is satisfied
everywhere in the domain as a strict inequality, then the derivative eqn. (3.11) is strictly
positive, and {u, d} is a stable state; on the other hand, if there are points in which
the damage yield function is zero, then the stability of the state is given by the second
derivative of the functional I. This latter case will be discussed in Sec. 3.2 for the
one-dimensional problem of a bar under traction.

Energy balance. On assuming that the evolution is smooth in time, the energy balance
principle requires that the rate of the internal energy equals the working of external forces
at each time instant, that is

d

dt

Z

Ω0

φ(∇u, d,∇d)dΩ0 =

Z

Ω0

b0 · u̇dΩ0 +

Z

∂Ω0 2

s0 · u̇d∂Ω0 2, (3.21)

which, upon using the macroscopic balance eqn. (3.18), gives
Z

Ω0

−
�
Divq + Σ

�
ḋdΩ0 +

Z

∂Ω0

�
q · n̂0

�
ḋd∂Ω0 = 0. (3.22)

Since each integrand is non negative by the balance equation (3.19), and the damage
irreversibility condition requires that ḋ ≥ 0, the above energy balance equation is satisfied
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if its integrands vanish. These requests give the Kuhn-Tucker conditions for the threshold
function eqn. (3.20): 



Y (∇u, d,∆d) = 0, if ḋ > 0,

Y (∇u, d,∆d) > 0, if ḋ = 0,
(3.23)

supplemented by Neumann-type boundary condition ∇d · n̂0 = 0 on ∂Ω0.

Remark 1 (Evolution problem). The evolution problem arising from stability con-
dition and energy balance is usually solved numerically in an incremental form. The
problem is discretized in time, and at each time step the rates {u̇, ḋ} are computed
through a staggered minimization scheme obtained by alternating the minimization be-
tween u̇ and ḋ, keeping the other variable constant. This numerical procedure is indeed
a standard approach to solve variational problems like the present one (see for instance
Farrell and Maurini [2017]).

Remark 2 (Energy dissipation). The second principle of thermodynamics requires
that, for each admissible state {u, d}, the external working be equal to or larger than the
rate of the free energy, i.e.,

δ =

Z

Ω0

b0 · u̇dΩ0 +

Z

Ω0 2

s0 · u̇− d
dt

Z

Ω0

FdΩ0 ≥ 0, (3.24)

where F = F(∇u, d,∇d) is the free energy density. On using the energy balance equation
(3.21) and the definitions in eqns. (3.5) and (3.13)-(3.15), the dissipation inequality (3.24)
is satisfied if

�
P− ∂F

∂F

�
·∇u̇−

�
Σ+

∂F
∂d

�
ḋ+

�
q − ∂F

∂∇d

�
·∇ḋ ≥ 0. (3.25)

If we assume that P and q are energetic

P =
∂F
∂F

, q =
∂F
∂∇d

, (3.26)

and that Σ is made of elastic and dissipative terms

Σ = Σel + Σdiss, with Σel = −∂F
∂d

and Σdiss = −Gc

πb
η′, (3.27)

inequality eqn. (3.25) reduces to
Gc

πb
η′ḋ ≥ 0, (3.28)

that is satisfied since η′ = 2(1− d) ≥ 0 from the definition in Eqn. (3.8). By comparing
eqns. (3.26) and (3.27) with eqns. (3.13)-(3.15), we obtain the expression of the free-
energy density

F(u, d,∇d) = ψ(I+∇u, d) +
1

π
Gc b|∇d|2. (3.29)

Here, by following the approach in Talamini et al. [2018], we have assumed that the
damage non-local energy is stored. However, its thermodynamic nature is still debated.
In Miehe and Schänzel [2014], Marigo et al. [2016], Wu [2018], it is assumed that is a
dissipative term. This assumption is motivated by the fact that the sum of the second
and third term in eqn. (3.5) tends to the fracture energy when the internal length b goes
to zero.
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Remark 3 (Internal length). The internal length b in eqn. (3.5) can be related to the
damage bandwidth lf at complete fracture, that is the support of the damage function
when max {d} = 1, by solving the equilibrium problem of a fractured bar with a passing-
through transversal crack. In this case, strains vanish because the bar is broken into
two parts, and the strain energy density ϕ nullifies. Thus the balance equation (3.23)1
reduces to 2 b∆d − 1

bη
′(d) = 0. On integrating it over a line orthogonal to the crack

surface (see Pham et al. [2011] or Wu [2017] for details on the calculation), it gives

b =
lf

2
R 1
0

1√
η(d)

dd
,

that, by assuming the quadratic expression of η(d) in (3.8), reduces to

b =
lf
π
. (3.30)

3.1.4 Recap of all modelling equations

By following the classical approach to variational fracture mechanics enunciated in the
three principles (1)., (2). and (3). of Sec. 3.1.3 we have arrived at the following equations
governing the macroscopic balance

Macroscopic balance: DivP+ b0 = 0 on Ω0

Pn̂0 = s0 on ∂Ω0

(3.31)

together with Kuhn-Tucker conditions for the damage evolution problem

Damage irreversibility: ḋ(X, t) ≥ 0

Damage threshold: Y (∇u, d,∆d) ≥ 0

Energy balance: Y (∇u, d,∆d)ḋ = 0

(3.32)

with initial condition d(X, 0) = 0. The Piola stress tensor P and the damage threshold
function Y are

P = g(d)
2X

i=1

∂ψ̂

∂λi
b̂i ⊗ ĉi ,

Y = g′(d)ψel +Gc

� 1
lf
η′ − 2

π2
lf ∆d

�
, ,

(3.33)

with b̂i and ĉi eigenvectors of the left and right Cauchy–Green strain tensors (see sec.
2.4, and

ψel =
µn

αn
(λαn

1 + λαn
2 + (λ1λ2)

−αn − 3) ,

g(d) =
(1− d)2

(1− d)2 + a1 d(1 + a2 d+ a2a3 d2)
,

η = 2 d− d2 .

(3.34)

The constitutive parameters included into the formulation are the elastic moduli µn

and exponents αn of the strain energy density ψel, the fracture energy release rate Gc,
the internal length lf , and the polynomial coefficients a1, a2 and a3 of the degradation
function g. In the next Sect. 3.2.5, strategies to calibrate the constitutive parameters
are discussed.
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3.2 1D tension test

In order to fully exploit the capabilities of the proposed model, the uniaxial problem of
a bar under tension is going to be studied in this section. Such a simplified example will
allows us to solve the governing equations in semi-analytical form, and assess thoroughly
the role of the different constitutive coefficients that appears in the model.

3.2.1 Problem definition

We consider a bar of length L and cross-section area A0. The reference configuration is
described through a triad of orthonormal vector {ê1, ê2, ê3}, with ê1 being the main axis
of the bar and ê3 and ê2 the thickness direction, i.e.,

Ω0 = {X : X = x1 ê1 + x2 ê2 + x3 ê3, x1 ∈ (0, ℓ),
�
x2, x3) ∈ A0}.

The equilibrium problem can be solved as in sect. 2.4.1 for the Uniaxial stress condition,
where the following form of deformation gradient is considered:

F(x1) = λ(x1) ê1 ⊗ ê1 +
1p
λ(x1)

�
ê2 ⊗ ê2 + ê3 ⊗ ê3

�
, (3.35)

such that the principal stretches are λ1 = λ(x1), λ2 = λ3 = (λ(x1))
−1/2, J = 1, and

all fields depend only on the longitudinal coordinate x1, which, from now on, we call x
without the risk of confusion.

The displacement of the bar axis is u(x), and the longitudinal stretch λ(x) can be
computed from the latter via

λ(x) = 1 + u′(x) , (3.36)

with the boundary conditions

u(0) = 0, u(L) = εL, (3.37)

with ε ≥ 0 a control parameter, that represents the dimensionless displacement applied
at the right end side of the bar.

We assume the damage field to be constant within the bar cross-section, so that
it depends only on the abscissa x, i.e., d = d(x) and satisfies homogeneous boundary
conditions at both ends, i.e.,

d(0) = d(L) = 0, (3.38)

meaning that no crack can appear at the extremities. Indeed, cracks near the clamping
are avoided in the experiments by using dog-bone shaped specimen.

In this 1D-setting, the energy density of the bar takes the following form

φ(λ, d, d′) = g(d)ϕel(λ) +Gc

� 1
lf
η(d) +

lf
π2

d′ 2
�
, (3.39)

where we have indicated by ϕel assumes the form shown in sect. 2.4.1 for the Uniaxial
stress condition as a function of the only variable λ.

The only non zero component of the Piola stress is the one directed along the bar
main axis, i.e., P = P ê1 · ê1, with

P = g(d)ψ′
el(λ), (3.40)
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that, by applying the definition of the Ogden’s strain energy density, gives

P = g(d)

NX

n=1

µn

λ

�
λαn − λ−αn

2
�
.

The macroscopic balance equation (3.18) can be rewritten as

P ′(x) = 0, (3.41)

meaning that the stress is constant along the bar. The reduced damage threshold con-
dition eqn. (3.32)2 with the deformation eqn. (3.35) yields the following form of the
one-dimensional threshold function

Y (λ, d, d′′) = g′(d)ψel +Gc

� 1

ℓf
η′(d)− 2ℓf

π2
d′′
�
≥ 0. (3.42)

3.2.2 Incremental Evolution

Following the analysis in Lancioni and Yalçinkaya [2019], we now solve the incremental
evolution problem for both displacement and damage variables starting from a known
solution {u, d} achieved at a certain time instant t. In doing so, we assume a uniform
discretization of the time axis, we call ∆t the time step, and we expand both displacement
and damage fields at the first order in ∆t:

u(x, t+∆t) = u(x, t) +∆t u̇(x, t), d(x, t+∆t) = d(x, t) +∆t ḋ(x, t), (3.43)

such that
u̇(0, t) = 0, u̇(L, t) = ε̇L, ḋ(0, t) = 0, ḋ(L, t) = 0. (3.44)

with ε̇ the rate of the applied displacement at the right end of the bar.
At each time instant the solution of the incremental problem requires the evaluation

of the unknown rates {u̇, ḋ} obtained by imposing the stability condition in eqn. (3.11)
and the energy balance condition in eqn. (3.23) for the solution {u+ τ u̇, d+ τ ḋ}.

The total energy functional in eqn. (3.9), with null volume forces, is expanded at the
second order as

I(u+∆tu̇, d+∆tḋ) ≃ I(u, d)+∆t İ(u, d, u̇, ḋ)+1

2
∆t2 Ï(u, d, u̇, ḋ) = I(u, d)+∆t J (u̇, ḋ),

(3.45)
in which we have defined the following functional of the displacement and damage rates

J (u̇, ḋ) = A0

Z L

0

�
g(d)ψ′

elu̇
′ + (g′(d)ψel +

Gc

lf
η′)ḋ+

2

π2
Gclfd

′ḋ′
�
dx

+
1

2
∆tA0

Z L

0

�
ωψ′′

elu̇
′2 + (g′′(d)ψel +

Gc

lf
η′′)ḋ2 + 2g′(d)ψ′

elu̇
′ḋ+

2

π2
Gclf ḋ

′2� dx.

(3.46)
Stability and energy balance, expressed by relations (3.11) and (3.21) in the three-

dimensional formulation of Sec. 3.1, are rewritten in the following form

∂J (u̇, ḋ)[˜̇u,
˜̇
d] ≥ 0, for any {˜̇u, ˜̇d} such that ˜̇u =

˜̇
d = 0 at x = 0, L, and

˜̇
d ≥ 0,

d

d∆t
I(u+∆tu̇, d+∆tḋ) =

d

d∆t

�
∆t J (u̇, ḋ)

�
= 0.

(3.47)
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By performing calculations analogous to those followed in Sect. 3.1.3 to deduce the
governing equations (3.18) and (3.19) from the stability condition in eqn. (3.11), and the
evolution relations in eqns.(3.23) from the energy balance in eqn. (3.21), we obtain the
following macroscopic evolution equation

P ′ +∆tṖ ′ =
d

dx
(ψ′

el) +∆t
d

dx
(g ψ′′

elu̇
′ + g′ψ′

elḋ ) = 0, (3.48)

together with the set of Kuhn-Tucker conditions that govern the evolution of the damage
field

ḋ ≥ 0, Y +∆tẎ ≥ 0, (Y +∆tẎ ) ḋ = 0, (3.49)

with Ẏ computed from (3.42) as

Ẏ = g′ψ′
elλ̇+

�Gc

ℓf
η′′ + ω′′ψel

�
ḋ− 2

π2
Gcℓf ḋ

′′ . (3.50)

These conditions state that, at each point, the damage can increase only if the yield
function f +∆tẎ is equal to zero.

3.2.3 Damage onset

At the beginning of the loading process the damage is zero, and the bar is stretched
elastically. The balance equation (3.41) shows that the stress and the corresponding
deformation are homogeneous along the bar. In this initial phase the damage yield
condition in eqn. (3.42) is not satisfied, i.e., Y > 0.

The elastic stage terminates when damage appears, meaning that Y = 0 somewhere
along the bar. The stretch λo corresponding to the damage onset is evaluated from eqn.
3.42 as

ψel(λo) = −Gc

lf

η′(0)
g′(0)

. (3.51)

At this time instant, say to, one can solve the incremental evolution problem of
Sec. 3.2.2 by assuming the following form of the series expansion in eqn. (3.43)

u(x, to +∆t) = ε(to)x+∆t u̇o(x), d(x, to +∆t) = ∆t ḋo(x), (3.52)

since the stretch at the onset is homogeneous, λo = 1 + ε(to), and the damage is null,
d(x, to) = 0; in addition, u̇o and ḋo satisfy the boundary conditions of eqn. (3.44).
At the step to + ∆t, the stretch becomes λ(x, to + ∆t) = 1 + εo + ∆t λ̇o(x), such that
λ̇o(x) = u̇′o(x), which is a function of x due to the varying damage profile. A subscript
"o" is used to indicate, here and henceforth, that the corresponding variable is evaluated
at time to.

The incremental stress in the bar is approximated at the first order in ∆t from the
definition of the one-dimensional Piola stress (3.40)

P = g(∆tḋo) ψ
′
el(λo +∆tλ̇o) ≃ Po +∆t Ṗo, (3.53)

with
Po = ψ′

el o, and Ṗo = go ψ
′
el o ḋo + ψ′′

el o λ̇o. (3.54)

Since the zero order stress Po is constant along the bar, the macroscopic balance in eqn.
(3.48) yields (Ṗo)

′ = 0, meaning that also Ṗo is homogeneous. The damage threshold
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condition Y = 0 is verified both at t = to and t = to+∆t, thus the incremental threshold
in eqn. (3.49) is zero at both zero-th and first orders; the latter gives

2

π2
Gc lf ḋo

′′
(x)−

�
g′′oψel o +

Gc

lf
η′′o
�
ḋo(x) = ψ′

el o λ̇o(x) (3.55)

which is, indeed, a second order differential equation for the damage rates {λ̇o, ḋo}. The
rhs of eqn. (3.55) can be transformed by using the definition of Ṗo in eqn. (3.54); after
some manipulations we arrive at a differential equation in terms of the variable ḋo:

2

π2
Gc ℓf ḋo

′′(x)− j ḋo(x) =
g′oψ

′
el o

ψ′′
el o

Ṗo, with j = g′′oψel o −
g′2o ψ

′2
el o

ψ′′
el o

+
Gc

ℓf
η′′o . (3.56)

where the rhs is now independent of x. If we introduce the internal lengths

ℓi = 2

s
2Gc lf
|j| , ℓs =

g′2o ψ
′2
el o

ψ′′
el o|j|

ℓi, (3.57)

Eqn. (3.56) can be rewritten in the following form

ḋo
′′
(x)− sign(j)

�2π
ℓi

�2
ḋo(x) =

�2π
ℓi

�2
r

ℓs
ℓi

Ṗop
ψ′′
el o|j|

, (3.58)

which is a second order differential equation in the variable x of the unknown rate ḋo to
be solved with the boundary conditions ḋo(0) = 0 and ḋo(L) = 0. A similar equation was
already studied in Lancioni and Corinaldesi [2018] for a small strain model (see equation
(31) in Lancioni and Corinaldesi [2018]). The solution strategy exploited there can be
equally applied to the large strain analysis carried out in this work. In particular, the
following steps allows us to calculate the unknown rates {u̇o, ḋo}: (i) first ḋo is determined
in terms of Ṗo by solving eqn. (3.58); thereafter (ii) Ṗo is determined by evaluating the
mean value, i.e., < · >= 1

L

R L
0 ·dx, of both the sides of Eqn. 3.542, that gives

Ṗo = g′o ψ
′
el o <ḋo> +ψ′′

el o ε̇o, (3.59)

where we made use of the fact that Ṗo is constant along the bar and < λ̇o>= ε̇o by the
boundary condition i eqn. (3.44); finally, (iii) u is determined by integration of 3.542
expressed in terms of λ̇o = u̇′o. Different solutions are found depending on the sign of j
and on the ratio between length L and the internal lengths ℓi and ℓs (as in sect. 2.5.2).
Their analytical expressions are itemized in the following.

a. For j ≥ 0, the solution obtained by applying the procedure (i), (ii) and (iii) is

ḋo(x) = − g′oψ
′
el o

j(1+ <k> ℓs/ℓi)
ε̇o g(x), and Ṗo =

ϕ′′

1+ <k> ℓs/ℓi
ε̇o, (3.60)

with

k(x) = 1− cosh
�
π(L− 2x)/ℓi

�

cosh(πL/ℓi)
, and <k>= 1− ℓi

πL
tanh

�πL
ℓi

�
. (3.61)

Damage evolution is full-size in a regime of stress-hardening.
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b. For j < 0 and ℓi ≥ L, the solution is

ḋo(x) = − g′ϕ′

j(1− <k> ℓs/ℓi)
ε̇ok(x), and Ṗo =

gψ′′
el o

1− <k> ℓs/ℓi
ε̇o (3.62)

with

k(x) = 1− cos
�
π(L− 2x)/ℓi)

cos(πL/ℓi)
, and <k>= 1− ℓi

πL
tan

�πL
ℓi

�
. (3.63)

Solution ḋo is full-size and two evolution regimes are obtained:

b.1. if ℓi > 2L, the regime is stress-hardening, since <k> < 0;

b.2. if L < ℓi ≤ 2ℓ, the regime is stress-softening, being <k> > 0. In this case,
the condition

<k> ≥ ℓi/ℓs (3.64)

must be satisfied to have ḋo ≥ 0 everywhere.

c. For j < 0 and ℓi < L, the solution has the expression 3.62, with

k(x) =

�
1− cos(2πx/ℓi), if 0 < x < ℓi,
0, if x ≥ ℓi,

and <k>= ℓi/ℓ. (3.65)

and so is localized in a portion of length ℓi (localized solution), and the evolution
regime is stress-softening. Even in this case, the inequality

L ≤ ℓs (3.66)

has to be fulfilled to have ḋo ≥ 0.

It can be proved that inequalities (3.64) and (3.66) are necessary conditions for stabil-
ity of the evolution problem (see Lancioni and Corinaldesi [2018]); indeed they guarantee
non-negativeness of the second variation of the functional in eqn. (3.46). If stability con-
ditions are not satisfied, the bar fails catastrophically at the time instant to, experiencing
brittle fracture.

According to the sign of j, and, in case of j < 0, to the ratios L/ℓi and L/ℓs, different
solutions are found. A schematic representation of the different regimes is given in Fig.
3.2. It is possible to distinguish full-size and localized fracture initiations, depending on
whether the support of ḋo is the entire bar or a sub-region of length ℓi < L. Moreover,
the evolution regime can be stress-hardening if Ṗo > 0, or stress-softening if Ṗo < 0. As
shown in Fig. 3.2, for j < 0, four different regions are found in the plane (L/ℓi, ℓ/ℓs),
each characterized by a different damage evolution.

In case of localized solution (region c.), the bar must be longer than ℓi to have damage
localization in a sub-region of length ℓi, and smaller than ℓs to avoid brittle failure. These
requirements express the size sensitivity of the model: as the size of the bar increases,
the response moves from pseudo-ductile to brittle. If we suppose damage localization at
to, the slope ko of the curve S = S(ε) is obtained from Eq. (3.62)2

ko =
dP

dε

����
to

=
Ṗo

ε̇o
=

goψ
′′
el o

1− ℓs/L
, (3.67)

that has a negative value and decreases as L increases; in particular ko → −∞ for L → ℓs.
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Figure 3.2: Different damage evolution regimes obtained from Eq. 3.58 for j ≥ 0 (left)
and j < 0 (right).

On integrating eqn. (3.59) over (0, L) and rearranging the terms, we obtain the
displacement rate at the end-section

u̇o(L) = Lε̇o = v̇o + ẇo with v̇o = L
Ṗo

ψ′′
el o

, and ẇo = −g′oψ
′
el o

ψ′′
el o

Z L

0
ḋodx, (3.68)

which is the sum of two contributions: v̇o is the displacement rate due to elastic stretching,
and ẇo is the displacement rate induced by the fracture opening. In case of localized ḋo
(case c., with ℓi ≤ ℓ ≤ ℓs), the fracture opening rate is

ẇo =
ℓs

1− ℓs/ℓ
ε̇o. (3.69)

Let w = w(t) be the displacement accounting for fracture opening in a fracture evolution
process. Using (3.62)2 and (3.69), we can evaluate the derivative of S with respect to w
at fracture initiation as

k̂o =
dS

dw

����
to

=
Ṡo

ẇo
= −ψ′′

el o
ℓs

. (3.70)

The coefficient k̂o represents the initial slope of the so-called cohesive curve S = S(w),
which describes the specific failure mode of the material. Since the cohesive law S = S(w)
is an intrinsic property of the material, k̂o does not depend on the length ℓ, differently
from eqn. 3.67.

3.2.4 Cohesive fracture

In this section we define a strategy to estimate the cohesive curve P = P (w), that
characterizes the fracture opening process. The function P (w) is usually assigned a-
priori in standard formulations of cohesive fracture mechanics Nonato Da Silva et al.

67



[2019], Da Silva et al. [2020]), whereas in the proposed variational approach is obtained
from the peculiar form of the fracture energy.

We suppose that, at a certain time instant of the evolution process, damage is lo-
calized in a sub-region (0, 2x∗), with x∗ < L/2 the half-bandwidth length, and that it
has attained the maximum value d∗ at x = x∗. The proposed procedure allows us to
determine the length x∗, the stress S, the functions d and λ, the fracture opening w, as
well as the corresponding strain ε in terms of d∗ by integrating the balance equations
(3.41) and (3.42).

We suppose that, at each material point, the stretch λ is the superposition of an
elastic λe and fracture λf stretches

λ = λf λe, (3.71)

where λe would be the homogeneous stretch obtained from P if d were zero; as such, it
can be evaluated from the constitutive equation of the undamaged material by

ψ′
el(λe) = P. (3.72)

The fracture opening w, that is the displacement at x = ℓ produced by the damage
occurrence is

w =

Z λeL

0

�
λf(xe)− 1

�
dxe =

Z L

0
(λ− λe) dx = (1 + ε)L− Lλe. (3.73)

Within the damage region (0, 2x∗), the damage threshold condition in eqn. (3.42) is
evaluated as an equality and

g′ψel +Gc

�
1

lf
η′ − 2lf

π2
d′′
�

= 0, (3.74)

On multiplying all terms by d′ and on integrating over (0, x), with x ≤ x∗, previous
equation gives

Gc

�
1

lf
η − 2lf

π2
d′2

�
+

Z x

0

dg
dx̂

ψel dx̂ = 0. (3.75)

where the latter term is rewritten by integration by parts as
Z x

0

dg
dx̂

ψel dx̂ = gψel − ψel(λe)−
Z x

0
gψ′

el

dλ
dx̂

dx̂ = gψel − ψel(λe)− (λ− λe)P, (3.76)

since P = gψ′
el is constant along the bar. Equation (3.75) becomes

Gc

�
1

lf
η − 2lf

π2
d′2

�
+ gψel − ψel(λe)− (λ− λe)P = 0. (3.77)

At x = x∗, where the maximum damage is attained, d′(x∗) = 0 and previous equation
further simplifies into

Gc

lf
η(d∗) + g(d∗)ψel(λ

∗)− ψel(λe)− (λ∗ − λe)P
∗ = 0, (3.78)

where quantities evaluated at x = x∗ are labelled by an asterisk. In eqn. (3.78), the
stretches λ∗ and λe are worked out by inversion of the constitutive equations

g(d∗)ψ′
el(λ

∗)− P ∗ = 0, ψ′
el(λe)− P ∗ = 0. (3.79)
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For any assigned value of d∗ ∈ [0, 1], the triplet {λ∗,λe, S
∗} solves the set of equations

(3.78) and (3.79). Once P ∗ is determined, the profiles of d and λ at points x ∈ [0, x∗]
can be evaluated from eqn. (3.77), here rewritten in the following form

d′ =
1

lf
h(d, d∗), with h(d, d∗) := π

s
lf
Gc

[g(d)ψel(λ)− ψel(λe)− f∗(λ− λe)] + η,

(3.80)
where λ is the solution of the equation

g(d)ψ′
el(λ)− P ∗ = 0. (3.81)

Upon inversion of Eq. 3.80, one obtains the expression of x in terms of the damage profile
and of the maximum damage d∗,

x(d, d∗) =
Z d

0

lf

h(d̂, d∗)
dd̂, (3.82)

and the stretch λ at x is the solution of eqn. (3.81). The half-bandwidth length is
obtained from the above relation by assigning d = d∗

x∗ =
Z d∗

0

lf

h(d̂, d∗)
dd̂, (3.83)

and the fracture opening w is determined from eqn. (3.73), once λ, λe and x∗ are known.
Upon inversion of the equation, also the assigned stretch can be computed

ε = λe +
w

L
− 1. (3.84)

To conclude, the above procedure can be implemented numerically through the fol-
lowing steps:

i. Assign the value d∗ of the maximum damage.

ii. Solve equations (3.78) and (3.79) to determine P ∗, λ∗ and λe.

iii. Discretize the damage range [0, d∗], and, for any di of the discretized set, determine
the position xi from (3.82). The discrete profile of d = d(x) is given by the pairs
(xi, di).

iv. Determine λi at point xi from (3.81). The discrete profile of λ = λ(x) is drawn by
points (xi,λi). At points x > 2x∗ the stretch is equal to λe.

v. Determine w from (3.73).

Previous algorithm allows the cohesive curve P = P (w) to be evaluated at discrete
points, by iterating the scheme for different d∗ ∈ [0, 1]. The damage evolution determined
through this procedure is based on the balance equations (3.41) and (3.42). It is pointed
out that the numerical simulations of Sec. 3.3 are indeed obtained by solving the full
evolution problem of Sec. 3.2.2 by finite elements. Although the approaches are different,
the estimate of the cohesive curve obtained through steps (i)− (v) gave accurate enough
results to catch the qualitative behaviour of the model. As such, the proposed numerical
scheme represents an useful tool to explore the variety of damage mechanisms. In the
next section, these results are used to assess the effects of the different constitutive
parameters on the damage evolution modes. Criteria for parameters calibration will be
also discussed.
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3.2.5 Physical interpretation of the cohesive parameters

The constitutive coefficients a1, a2 and a3 that appear in the energy degradation function
g(d), as defined in eqn. (3.7), are put in relation to specific properties of cohesive fracture
evolution, to give them a clear physical meanings and to allow their robust evaluation
from the experimental data. In the following calculations, the elastic coefficients µn and
αn, the fracture energy release rate Gc, and the internal length lf are supposed to be
known.

The coefficients a1, a2 in eqn. (3.7) can be tailored from the model response at the
damage onset. At this time instant λf = 1, λe = λo and the stress Po is known. Since
do = 0, the functions g and η at to are

η(0) = 0, g(0) = 1, η′(0) = 2, g′(0) = −a1,

η′′(0) = −2, g′′(0) = 2a1(a1 − a2 − 2).

Therefore, one has:

1. a1 is determined by the limit elastic stretch λo through relation 3.51, which, once
inverted, gives

a1 = 2
Gc

ψel o lf
. (3.85)

2. a2, that appears in g′′(0), is made dependent on the slope k̂o of the cohesive curve
of eqn. 3.70 at the damage onset, i.e.,

k̂o = − ψ′′2
el o

2a21P
2
o

s
|j|3

2Gc lf
, with j = 2a1(a1 − a2 − 2)ψel o −

a21P
2
o

ψ′′
el o

− 2Gc

lf
, (3.86)

where j is negative, as the formula is evaluated for the localized damage case (case
c. in Sec. 3.2.3). From eqn. (3.86), a2 has the following expression

a2 =
1

2a1ψel o

"�
−2a21P

2
o

ψ′′2
el o

p
2Gc lf k̂o

�2/3

+ 2a1(a1 − 2)ψel o −
a21P

2
o

ψ′′
el o

+
2Gc

lf

#
.

(3.87)

3. a3 multiplies the third-order term in the polynomial (3.7), thus it mainly influences
states with a large damage. In Wu [2017], indeed, a3 was related to the displacement
jump w̃ at complete fracture of the specimen through the formula

a3 =
1

a2

"
1

2

�
w̃Po

2Gc

�2

− (1 + a2)

#
. (3.88)

Since this relation was derived within the context of linear elasticity, it cannot be
straightforwardly extended to the finite strain case. Accordingly, it is just used to
obtain an estimate of the parameter a3. For damage occurring at small strains,
formula (3.88) provides the exact value to assign to a3 in order for the fracture
jump to be w̃. On the contrary, for damage onset at large strains it gives only an
approximate value. Further insights can indeed be gained by the drawing of the
cohesive curve, as discussed in the following.
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Figure 3.3: First Piola stress S versus (elastic) stretch λ for the two strain energies ϕA

and ϕB .

To better highlight the role of the different cohesive parameters we now consider two
different forms of the Ogden elastic strain energy density with different elastic parameters:
one with N = 1 in the series 3.343 and µ1 = 2.2 MPa, α1 = 2, that we call quadratic
energy ϕA , the other with N = 2 and {µ1, µ2} = {4.8, 0.01} Mpa and {α1,α2} =
{1.2, 5.1}, say ϕB . As shown in Fig. 3.3, such a choice of the elastic coefficients represents
two plausible elastic response of a rubbery material, the former has a linear Piola stress
at large stretches, whereas the latter shows the stress hardening at large stretches typical
of elastomers.

The cohesive curves P = P (w) corresponding to these elastic energies are shown in
Figs. 3.4 for lf = 5 mm and different values of the parameters Gc, k̂o and a3. For a given
Gc, the values of k̂o and w̃ are assigned by supposing that the cohesive law is linear with
the fracture opening P = − P 2

o
2Gc

w + Po, an expression which is the simplest triangular

cohesive curve. Accordingly, k̂o = − P 2
o

2Gc
and w̃ = 2Gc

Po
. The coefficients a1, a2 and a3

are derived from eqns. (3.85), (3.87) and (3.88). For low values of Gc, the cohesive
curves recover the linear law when the energy density ϕA is used, whereas they deviate
from linearity as Gc is increased. When the two terms energy density ϕB is considered,
linearity is lost, as shown by the dashed curves of Fig. 3.4a. In this case, the curves
initially decrease with lower slope, attaining larger values of stress. Then, they exhibit
snap-back branches that are more pronounced for increasing values of Gc. The initial
raising of the curve and the presence of a snap-back tail, indicated with a star in the
figure, depends on the specific shape of ϕB , that has a convex branch where stiffness
grows as stretches increase (see Fig. 3.3). This determines the fracture properties of
the material. Indeed the softening process of fracture requires a larger stress for crack
opening in the initial stage, and, when the snap-back branch is encountered, it stops due
to the complete rupture of the specimen. As a consequence the recovery in the elastic
stiffness for large stretches induces an increased stiffness in the initial phase of crack
opening and a brittle response in the final stage of the fracture evolution.
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A way to reduce the snap-back tails in the cohesive curves is to increase the initial
slope k̂o. This is shown in Fig. 3.4(b), where cohesive curves for different values of k̂o are
plotted by keeping the fracture toughness Gc = 60 MPa mm and a3 = −0.6851 constant.

It is noted that also the parameter a3 influences the softening process, as shown in
Fig. 3.4(c,d). By scrutinizing the curves of Fig. 3.4(c), one can notice that a decrease
of a3 < 0 has two distinct effects: (i) the negative slope of the curve is increased in its
initial part, and (ii.) the displacement w at the snap-back is increased, with the final
stage of brittle failure being reduced. The curves in Fig. 3.4(d) are drawn for a fixed
value of k̂o which is ten times larger than that of curves of Fig. 3.4(c). In this case, the
coefficient a3 influences the final part of the cohesive curves: large negative values of a3
raise the curve tail, reducing the snap-back up to its complete disappearance. It turns
out that the final catastrophic fracture is replaced by a recovery of stiffness that allows
the material to further bear stresses.

As a result, coefficients a1 and a2 can be assigned through formulas (3.85) and (3.87),
which relate them to the limit elastic stretch λo and to the initial slope of the cohesive
curve k̂o, respectively. The calibration of a3 is more troublesome. The estimate in
Eq. (3.88) gives an initial value of the paramter, yet the choice of a more appropriate
value can be obtained only after having numerically examined the cohesive curves, as
those in Figs. 3.4(c,d). The qualitative behaviour observed for increasing value of a3 is
a stretching of the cohesive curve with the consequent reduction or even removal of the
final brittle fracture.

We finally remark that the model proposed in Wu [2017] is indeed size-independent as
shown in Wu and Nguyen [2018]. However, in the proposed extension to finite elasticity,
this independence is only partially maintained: the fracture activation stress Po and the
initial slope k̂o of the cohesive curve still do not dependent on lf , but the shape of the
softening cohesive curve P = P (w) does. As a result, the convergence of the model to
the cohesive fracture is lost, meaning that the model should be interpreted as a damage
model in which the internal length is a constitutive parameter representing the length of
the transition zone (process zone). Such a parameter may be directly calibrated through
ad-hoc experiments as the one reported in Yin et al. [2021].

3.3 Numerical Examples

The variational model in eqns. (3.31)-(3.32) was implemented in the finite element open-
source framework FEniCS®Logg et al. [2012].

The displacement and damage fields were projected over a piecewise affine finite
element space (Lagrange elements) by using the same mesh domain. As the energy
functional I defined in eqn. (3.9) for the general formulation and in eqn. (3.45) for the
simple tension incremental problem is separately convex in each variable, an alternate
minimization algorithm in the variables u and d was implemented. At a given time step,
the solution of the iterative evolution of Sect. 3.2.2 was achieved iterating on the following
subproblems until convergence:

1. The minimization of I with respect to u at fixed d is an unconstrained optimiza-
tion problem solved as a nonlinear elastic problem with the prescribed boundary
conditions through the Newton-Raphson method;

2. The minimization of I with respect to d at fixed u is a unilateral constrained
optimization problem, which was solved through TAO (Tool-kit for Advanced Op-
timization).
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Figure 3.4: Cohesive curves for: (a) different values of the parameter Gc in case of energy
densities ϕA (solid-line) and ϕB (dashed-line);(b) different k̂o and fixed Gc = 60 MPa and
a3 = −0.6851; (b,c) different a3 and fixed Gc = 60 MPa and k̂o = −0.2058 MPa/mm in
(b) and k̂o = −2.0580 MPa/mm in (c).

Further details on the numerical implementation can be found in Farrell and Maurini
[2017]. Simulations on both 1D or 2D geometries were carried out, although the results
shown in the paper refer to the latter.

Two numerical examples are discussed in the following. As a first benchmark prob-
lem, we consider a rectangular test specimen subjected to tensile loadings. This example
has twofold purpose: assessing the sensitivity of the model with respect to the different
constitutive parameters and demonstrating the ability of the proposed modelling frame-
work of capturing the large-strain behaviour of double network elastomers Millereau et al.
[2018], (see sect. 2.3.2). Afterwards, we use a double edge notched specimen in tension to
validate the model prediction up to the specimen rupture with respect to the experiments
on conventional elastomers reported in Hocine et al. [2002] (see sect. 2.3.1).

The rectangular specimen used to carry out the sensitivity analysis is shown in Fig.
3.5 together with boundary conditions and details of the mesh. This latter was made
up of 12.000 Lagrange triangular elements. The height of the specimen was kept fixed
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Figure 3.5: Geometry of the rectangular specimen with details of the mesh made of about
12.000 Lagrange triangular elements. The height of the specimen was kept fixed in all
numerical tests, whereas different lengths ℓ = {6, 13, 20} mm were considered.

Table 3.1: C̊onstitutive parameters used in the numerical examples.

Elastic
ϕA : µ1 = 2.2 MPa α1 = 2
ϕB : {µ1, µ2} = {4.8, 0.01} MPa {α1,α2} = {1.2, 5.1}

Fracture
lf = 5 mm, Gc = 60 MPa mm, λo = 2.4, k̂o = −0.21 MPa/mm
ϕA : a3 = −0.57, ϕB : a3 = −0.68

at 4 mm, whereas three different lengths were considered L = {6, 13, 20} mm. In all
simulations two different sets of elastic parameters were used to assess the effects of the
particular form of the Ogden energy on the fracture properties of the material, that
correspond to the energies ϕA and ϕB in Fig. 3.3; the other constitutive parameters are
the ones in Tab. 3.1 except where stated. We point out that the coefficients a1, a2 and
a3 were obtained from Gc, k̂o and w̃ by using the formulas 3.85, 3.87 and 3.88.

The Piola stress P in terms of overall strain ε as well as the damage profiles along
the mean axis of the bar are plotted in Figs. 3.6 and 3.7 for the two energy densities ϕA

and ϕB and different values of the energy release rate Gc.
By increasing values of Gc, the maximum strain attained at rupture grows with a

larger region in which a pseudo-ductile response is achieved. With the energy ϕA , the
response with Gc = 20 MPa mm (green curve in Fig. 3.6) shows a sudden drop in the
stress caused by an abrupt damage growth at the end of the elastic stage, that almost
immediately reaches values close to 1 as shown by the green damage profiles in the figure.
The resulting overall behaviour is brittle. For larger values of Gc, the drop in the stress
is smoothed out with cohesive-like softening curves; in terms of damage this behaviour
is produced by the phase field variable progressively growing and enlarging.

For the elastic coefficients in the energy ϕB , brittle and cohesive responses are ob-
tained for Gc = 20 and 40 MPa mm, respectively. For Gc = 60 MPa mm, the specimen
exhibits a pseudo-ductile behaviour in which two response stages are clearly observed:
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Figure 3.6: Influence of the energy release rate Gc in the case of elastic energy ϕA . Piola
stress S versus overall strain ε for Gc = {20, 40, 60} MPa mm. The insets show the
damage profiles d evaluated on the mean axis of the bar at the different stretch levels
indicated by dots on each curve.

a softening branch with a low slope, followed by a sudden drop in the stress. As the
damage profiles show, in the first stage of moderate softening, the damage grows slowly
whilst expanding trough the bar. At the end of this phase, the damage has covered the
entire domain and has reached its maximum value of 0.3. Thereafter damage immedi-
ately increases producing the rupture of the specimen with the resulting stress rapidly
decreasing to zero.

Since the gradient term in the fracture energy make the model size dependent, the
effect of specimen length is analysed in Fig. 3.8 for L = {6, 13, 20} mm. The results
indicates that when L is comparable with the internal length lf = 5 mm the response is
cohesive, whereas sufficiently long bars displays a brittle or quasi-brittle failure for both
the energies ϕA (Fig. 3.8a) and ϕB (Fig. 3.8b).

In Fig. 3.9, the dependency of the material response on the slope of the cohesive curve
k̂o is also investigated. This constitutive parameter is directly related through Eq. (3.87)
to a2. As the results show, k̂o controls the stress decrease at the damage onset, and
regulates the softening branch with moderate slope, that is associated to a process of
damage propagation over the whole domain. Large value of k̂o may induce snap-back of
the cohesive curve, with a subsequent discontinuous drop in the stress. Simulations start
with values of k̂o in Tab. 3.1 (blue curve in the figure), with a cohesive–like behaviour
for both the energies ϕA (Fig. 3.9a) and ϕB (Fig. 3.9b).

Finally, the influence of coefficient a3 is analysed in Fig. 3.10. The green curve
corresponds to the value of a3 = −0.68 in Fig. 3.9(b) (with k̂o = −2 MPa/mm), whereas
the others are obtained by increasing a3 by a factor of 2 and 4, respectively, such that
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Figure 3.7: Influence of the energy release rate Gc in the case of elastic energy ϕB . Piola
stress S versus overall strain ε for Gc = {20, 40, 60} MPa mm. The insets show the
damage profiles d evaluated on the mean axis of the bar at the different stretch levels
indicated by dots on each curve.

a3 = {−0.68,−1.36,−2.72}. As pointed out in Sec. 3.2.5, increasing values of a3 lead
to a recovery of the material stiffness, with a consequent transition from a softening
(green curve) to a hardening responses (orange and blue curves). In all cases, it is seen
a significant stress drop at the end of the elastic phase, that corresponds to the sudden
occurrence of a localized damage in the central part of the specimen, with the phase
field variable reaching 0.2. Thereafter different damage evolution regimes are seen: for
the green curve (a3 = −0.68) the damage increases sharply in the central part of the
specimen until it reaches the value of 1 meaning that the specimen is completely broken;
on the contrary, the orange and blue curves show a rather limited increase in the damage
intensity, d < 0.4, yet the support of the phase field variable enlarges, up to the point
where the damage occupies the entire bar. This type of evolution resembles a sort of
"plastic-wave" that propagates inside the bar (damage-wave in this case) and has indeed
been observed in double-network elastomers.

As a general remark for the model behaviour, in all simulations it was observed
that the rate of damage growth is proportional to the slope of the softening branch.
Furthermore, a broadening of the damage localization zone is observed when the softening
branch is convex, whereas a concave softening branch produces damage localization is
narrow regions.

Having shown the main features of the proposed model, we are now in the position of
comparing the model prediction against the experimental data on double network elas-
tomers. The experiments used to calibrate the model are the ones reported in Millereau
et al. [2018] (see sect. 2.3.2, where a cross-linked elastomer was first swollen in monomer
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Figure 3.8: Size dependency of the model. Piola stress vs. strain curves for different bar
lengths ℓ = {6, 13, 20} mm and elastic energies ϕA (a) and ϕB (b).

Table 3.2: Constitutive parameters used for the fitting of the experimental data in
Fig. 3.11.

Elastic
{µ1, µ2} = {4.6, 0.012} MPa {α1,α2} = {1.2, 5.5}

Fracture
lf = 5 mm, Gc = 100 MPa mm, λo = 2.4, k̂o = −0.37 MPa/mm, a3 = −4.73

and subsequently polymerized to create the so-called double network. This novel class
of elastomers displays unique mechanical features due to the combined use of a stretchy
matrix with a stiff filler network, that make the compound fails in a controlled, pseudo-
ductile way, at large strain.

These peculiarities are readily seen from the data in Fig. 3.11 where the Piola stress,
P , is plotted against the normalized displacement at bar’s end, ε. The initial part of
the curve resembles the typical response of an elastomeric material with a pronounced
nonlinear elastic behaviour. The elastic phase terminates at about ε = 1.4 where a sharp
decrease in the stress appears. Microscopically this drop corresponds to the emergence
of a very localized damage region. By continuing loading, the applied force remains
constant and the stress-strain plot shows a plateau for a wide range of stretches. The
formation of a neck and its propagation along the specimen is observed in this region.
When necking has expanded all over the sample, at about ε = 4.2, the damage start
increasing uniformly, yet the overall stiffness of the sample grows. This behaviour is
a competition between the stress softening induced by the damage and the stiffening
caused by the intact polymer chains being almost completely stretched. Such a peculiar
behaviour for an elastomer was reported for the first time in Millereau et al. [2018].

Remarkably the proposed model is able to capture the main features seen in the
experimental data as the fitting in Fig. 3.11 proves. The stress-strain plot displays
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Figure 3.9: Influence of the cohesive parameters k̂o. Piola stress vs. strain for different
values of the cohesive curve slope k̂o = {−0.2,−0.5,−2} MPa/mm and elastic energies
ϕA (a) and ϕB (b).

three different curves along with the experimental points represented by open orange
circles: the continuous orange curve, is the output of the model and has all the main
characteristics of the experimental response, including the initial nonlinear elastic regime,
the stress peak with the subsequent stress plateau and the stiffness increase at large strain.
The green and orange dashed curves are indeed the elastic stresses of each of the two terms
in the Ogden model of eqn. (3.40) with the parameters {µ1,α1, µ2,α2} in Tab. 3.2: at
each material point, the elastic stress is the superposition of the response of two nonlinear
springs, one with {µ1,α1} = {4.6 MPa, 1.2}, that controls the response at low strains
(dashed orange curve), and the other with {µ2,α2} = {0.012 MPa, 5.5} is activated at
high strain and is responsible for the strain hardening seen in the experiments (dashed
green curve). In this sense the model resembles the microscopical model proposed in De
Tommasi et al. [2008] where a two-phase material model was considered. The insets in
Fig. 3.11 shows the damage field obtained from the numerical simulations at different
level of strains. At the position designated with (a) in Fig. 3.11, the sudden appearance
of a localized damage produces the drop in the stress seen in the experiments, that
corresponds to the occurrence of a necked region in the central part of the specimen, as
shown in Fig. 3.12 (see Fig. S5 in Millereau et al. [2018]). The corresponding strain level
ε = 1.4 is used to calibrate the value of the parameter λo. At increasing level of strains,
the necking enlarges with constant maximum value up to the stretch at which it has filled
the whole specimen (region (b) in the figure). Thereafter (region (c)) the damage value
starts increasing and at ε = 4.55 was d = 0.33. The hardening behaviour is achieved
in the model by taking the absolute value of a3 to be large enough (a3 = −4.73 in this
case).

In order to highlight the capability of the model to describe also the unloading process,
unloading curves at different strain levels are shown in Fig. 3.11. The unloading branches
follows a path with lower tangent stiffnesses due to the occurrence of damage, but they
follow a different path respect the data in Millereau et al. [2018]; as was also expected,
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Figure 3.10: Influence of the fracture parameter a3. Piola stress vs. strain for a3 =
{−0.68,−1.36,−2.72} with the elastic parameters in ϕB . The insets show the damage
profile at the different strain levels indicated by dots on the stress-strain curve.

no residual strains are observed at the complete unloading of the specimen. During
the subsequent loading path, the curve perfectly follows the branch with lower stiffness
up to the stress level at which damage starts increasing again. At a high strain levels,
this additional reduction of stress is compensated by the elastic energy, that produces
the stiffness increase seen at ε > 300%, corresponding to the experimental situation
of the elastomer network being completely unfolded. While this chapter successfully
demonstrates the adaptability of the proposed formulation to the characteristics of double
network elastomers, further enhancement of the model’s alignment with the experimental
data in fig. 3.11 can be improved by introducing an extra parameter to the degradation
function (as elaborated in the description of the equation (3.7)) to reproduce the post-
stress hardening failure. In addition, the unloading branches can be better fitted by
improve the calibration of the elastic energy density.

The final numerical benchmark of the model corresponds to the deformation of a dou-
ble notch tension specimen that is normally used to estimate the critical fracture energy
(see for instance Loew et al. [2019], Miehe et al. [2010a]). The dimensions of the speci-
men, boundary conditions and mesh for this configuration are displayed in Fig. 3.13a and
correspond to the experiments carried out in Hocine et al. [2002], with different lengths
of the notch as shown in the insets (the same data was used as a benchmark problem in
Miehe and Schänzel [2014], Talamini et al. [2018]). The constitutive parameters used in
the simulation are those in Tab. 3.3 with the elastic energy ϕA and fracture parameters
a1 = 1.03, a2 = 32.13 and a3 = −0.81. These parameters are indeed coherent with
those reported in Miehe and Schänzel [2014] to fit the same experimental data. Figure
3.13b shows the stress-strain curves that displays typical brittle response expected from
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Figure 3.11: Piola stress S versus overall strain ε for a double network elastomers: open
circles - experimental data from Millereau et al. [2018], orange continuous curve - model
prediction, dashed curve - response of purely elastic model. The fitting is achieved with
the model parameters in Tab. 3.2. The insets show the damage profile along the specimen
middle axis at the strain levels (a), (b) and (c) indicated in the plot. Specifically, based on
(b), it’s observed that the transition region progresses along the bar in tandem with the
nonlocal energy contribution. This proves the validity of regarding the nonlocal damage
term as energy.
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Figure 3.12: Deformed configuration of the rectangular specimen used for fitting the data
in Fig. 3.11. The plateau in the stress-strain curves corresponds to the propagation of a
necking region along the bar. The colormap represents the damage intensity, red being
the damage with higher damage. Propagation of a damage wave in the central part of
the specimen was observed in the experimental data in Millereau et al. [2018] (see Fig.
S5 therein).

Table 3.3: Constitutive parameters used for the fitting of the experimental data in
Fig. 3.13.

Elastic
µ1 = 0.23 MPa α1 = 2

Fracture
ℓf = 3.14 mm, Gc = 3.15 MPa mm, λo = 4.4, k̂o = −9.53 MPa/mm, a3 = −0.81

elastomers in this type of test. The numerical results show a very narrow cohesive region
in which the damage rapidly propagates between the notches up to the point at which it
occupies the entire width and immediately jumps to 1, leading to the catastrophic failure
of the specimen.

The corresponding deformed configurations are shown in Fig. 3.14 at different levels
of the overall strain. At ū = 63.005 mm the specimen is completely broken and, in fact,
the material in the central part of the specimen is completely broken having reached a
valued of d close to 1, with the lateral parts being almost unloaded.

3.4 Summary of rate independent model

In this work a phenomenological damage phase-field model for the cohesive failure of
elastomers at large strain is presented and described in its main aspects. The elastic
response of the model is described through an Ogden-like strain energy density, which has
the advantage of accurately matching the quasi-static response of many materials up to
significant strains. Fracture was incorporated by complementing the Ogden formulation
with a phase-field variable, whose evolution was derived in a consistent thermodynamic
framework by invoking the three principles of damage irreversibility, stability conditions
and energy balance.
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Figure 3.13: Geometry, mesh and boundary conditions of the double notch tensions spec-
imen (left). Comparison of force-displacement curves with the constitutive parameters
in Tab. 3.3 and different notch semi-lengths {12, 26, 20, 24, 28} mm from Hocine et al.
[2002].

The fracture energy was defined according to a recent proposal in Wu [2017] in terms
of 5 constitutive parameters: the energy release rate Gc, the internal length lf , that
represents the size of the fracture process zone, and 3 coefficients a1, a2 and a3 that
defines the energetic degradation function responsible of the stiffness decrease induced
by damage. Analytical and numerical results were used to establish the connection be-
tween shape of damage energy, degradation function and damage evolution modes. In
particular, a1 is related to the stretch at the damage onset in the one-dimensional test,
a2 depends on the slope of the cohesive curve, which is normally considered a material
property, and, finally, a3 influences the displacement jump at complete specimen frac-
ture. This research could benefit from further analysis involving additional constituent
parameters, such as ξ shaping η(d), and exploring the experimental perspective regarding
the roles of different internal lengths (lf , ℓi, ℓc). By properly tuning these constitutive
parameters, the model was capable of matching a variety of fracture modes including
brittle and pseudo-ductile failures, whereas most of the phase field models at large strain
currently available in the literature can only describe brittle fracture. The application
to double-network elastomers as well as conventional rubber compounds were discussed
in the paper with reference to the experiments in Hocine et al. [2002] and Millereau
et al. [2018]. The model was able to accurately capture the main features of the fracture
process, such as the necking propagation and hardening stage at large strains for dou-
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ble network elastomers, and brittle failure modes for conventional rubber compounds.
Anyway, the model is adaptable to numerous elastomeric materials and a wide array of
experiments while upholding the requirement of rate independence.

Compared to other approach in the literature (such as Lavoie et al. [2019]), the
phenomenological nature of the model does not implies any information on the material
microstructure, and so it is suitable for a large class of materials including biological
tissues.

The derivations were carried out by enforcing plane stress condition and perfect in-
compressibility of the matrix. However, experimental evidence shows that fracture may
occur due to the coalescence of voids and the subsequent propagation of the defects, that
may lead to a reduction of the apparent bulk modulus. Therefore, further development
of the model include the possibility of degrading with the phase-field variable both vol-
umetric and isochoric parts of the energy. In addition, since viscous effects may become
significant during the propagation of fractures, the incorporation of viscoelastic effects
appears of paramount importance to correctly describe the dynamic evolution of fracture
in elastomeric compounds.

Ultimately, it becomes evident that the main constraint of the current model is its
rate independence. Consequently, the forthcoming work in the following chapter will
focus on formulating and studying a phase-field model of damage applied specifically to
a viscoelastic model. The main viscoelastic models are introducted in sect. 2.1, and the
more relevant combination of viscoelasticity and damage are cited in sect. 2.5.5.

83



Figure 3.14: Deformed configuration of the double notch tension specimen used for the
numerical experiment in Fig. 3.13 with notch semi-length 12 mm. The colormap repre-
sents the intensity of the damage field; at final step, regions where d ≥ 0.99 were removed
from the plot.
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Chapter 4

A rate dependent damage phase
field model

Within this chapter, the viscoelastic model discussed in Kumar and Lopez-Pamies [2016]
(refer to sect. 2.4.2) will be augmented by incorporating a phase-field model addressing
brittle damage as formulated in Pham et al. [2011] for brittle fracture (η(d) = d of sect.
2.5.3). A related modeling approach has been briefly introduced in sect. 2.5.5.

The primary objective is to reproduce fracture propagation, as observed in the ex-
periments by Corre et al. [2020] (see figs. 1.3 and 2.16). This chapter is divided into the
introduction of the model from a thermodynamic viewpoint, the presentation of consti-
tutive relations with related equilibrium equations (sect. 4.1), where also the numeric
solution routine is presented and the specification of the model for the uniaxial tensile
load conditions from a theoretical and numerical point of view (sect. 4.2). In addition,
in sect. 4.3, the model is specialized to the plane stress state.

The main results are discussed in sect. 4.3, where the role of the different parameters
on the crack propagation are studied. Starting from the results of Hakim and Karma
[2009], who proved that the damage velocity is inversely proportional to the damage
characteristic time (in this work named τd), the role of the material characteristic time
τm (related to the material viscosity) is analyzed. From this point of view, the influence
of the ratio τm/τd will be studied with their limit cases τm/τd → ∞, i.e. (the character-
istic time of the material is significantly larger than the damage characteristic time) or
τm/τd → 0. After this analysis, the influence of the numerical discretization is discussed
in terms of ∆t and the mesh size. The proposed analysis is propedeutic to reproduce the
experimental results of Corre et al. [2020].

In the proposed approach the damage characteristic time τd is considered a material
parameter as opposed to a merely numerical one,as it is sustained in the literature. The
physical role of τd lies in accounting for the duration of all those phenomena that occur
within the FPZ (see fig. 2.8 and sect. 2.2) at the micro-scale level, such as recrystalliza-
tion, cavitation, or chain’s rupture. These phenomena cannot be captured by the viscous
deformation Fv alone, that rather represents a macroscopic parameter.

This decision is supported by the numerical findings in section 4.3.2, where the signifi-
cance of τd in determining crack propagation speed outweigh that of all other parameters,
including τm.
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4.1 Model formulation

The model is developed within the framework of finite viscoelasticity, employing the
multiplicative decomposition of the deformation gradient already introduced in sect. 2.1,
with the notation in sects. 1.5, 2.1 and 2.4.1. We recall that the total deformation F is
decomposed as F = FeFv, where the Fe is the so-called elastic deformation and Fv is
the viscous component of the deformation (see fig. 2.21). In this context, the following
form of internal energy will be considered

Eint =

Free energy (Ψ)z }| {Z

Ω0

geq(d)ψeq(C) + gneq(d)ψneq(F
−T
v CF−1

v )| {z }
Strain energy density

+
Gc

c0
b(∇d)2

| {z }
Non local damage energy

dΩ0+

+

Dissipative damage energyz }| {Z

Ω0

Gc

c0 b
η(d)dΩ0 ,

(4.1)

where ψeq is the equilibrium component of the elastic energy (given by the equilibrium
spring in fig. 2.22) assumed dependent on the right Cauchy-Green strain tensor C = FTF
(F = I + Grad(u)). ψneq is the non equilibrium component, given by the non equilib-
rium spring, dependent on the elastic right Cauchy strain tensor Ce = F−T

v CF−1
v . The

third term in eqn. (4.1) is the regularization term for the damage variable. Both of the
elastic energies are multiplied by a distinct degradation function which accounts for the
reduction of the elastic parameters for the damaged material (geq and gneq). This means
that the effect of the damage into the two springs (see fig. 2.22) may be different. The
last integral computes the local dissipation due to the damage phase-field state variable
d, which was presented and analyzed in sect. 2.5.

4.1.1 Stability criterion

To deduce the equilibrium equations, a first order stability criterion, as in sect. 3.1.3, is
invoked. Namely

∂Eint(u,Fv, d)[û, F̂v, d̂]− ∂Eext(u)[û] + ∂Wnc(Ḟv, ḋ)[F̂v, d̂] ≥ 0 ∀[û, d̂, F̂v], (4.2)

where [û, F̂v, d̂] are the perturbations of the displacement, viscous deformation and dam-
age field. ∂Eint and ∂Eext are the first variations of internal and external energies and
∂Wnc is the internal virtual work of the viscous forces. This component of the stability
criterion was absent in the rate-independent model of chp. 3 because, in that instance,
the only dissipative term (due to damage) admitted a dissipative potential. Consequently,
this potential could be incorporated into the internal energy. However, in this scenario,
the two viscous dissipations (represented by Ḟv and ḋ) do not allow a dissipative poten-
tial and hence the former alternative approach was used.

The equation for the first variation of the external energy is

∂Eext(u)[û] =
Z

Ω0

b0 · ûdΩ0 +

Z

∂Ω0 2

s0 · ûd∂Ω0 2 , (4.3)

where b0 and s0 are the body and the surface forces and ∂Ω0 2 is the part of the reference
body boundary (∂Ω0) where the forces are assigned. For what concerns the virtual work
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of viscous forces, the equation is

∂Wnc(Ḟv, ḋ)[F̂v, d̂] =

Z

Ω0

JvTvF
−T
v · F̂v +

Gc

c0 b
τdḋd̂ dΩ0 , (4.4)

where Tv = Tv(Ḟv) is the viscous stress tensor (linked with the dash-pot in fig. 2.22)
defined per unit of volume in the natural configuration and τd is the characteristic time
for the damage state variable. After these definitions, the stability criterion in eqn. (4.2)
can be evaluated, firstly with [û, F̂v, d̂] = [û,0, 0] to obtain the following macro force
balance

Div(P) + b0 = 0 in Ω0

Pn̂0 = s in ∂Ω0 2

u = u∗ in ∂Ω0 1

, (4.5)

where P is the first Piola stress tensor (see eqn. (2.13)). The second Piola stress tensor
is defined accordingly

S = 2geq
∂ψeq

∂C
+ 2gneqF

−1
v

∂ψneq

∂Ce
F−T
v = Seq + F−1

v S̃neqF
−T
v = Seq + Sneq, (4.6)

where S̃neq = 2∂ψneq/∂Ce is the stress tensor in the natural configuration. An important
observation is that, for fixed Fv and d, ∂Wnc = 0, thus the problem in eqn. (4.5), can
be solved in weak form as

∂Eint(u,Fv, d)[û,0, 0]− ∂Eext(u)[û] = 0. (4.7)

The next minimization step is the solution of eqn. (4.2) with [û, F̂v, d̂] = [0, F̂v, 0] such
that Ĉe = −2 sym(CeF̂vF

−1
v ). Using this assumption, eqn. (4.2) yields

Z

Ω0

−2gneq
∂ψneq

∂Ce
·CeF̂vF

−1
v +JvTvF

−T
v · F̂vdΩ0 ≥ 0, s. t. JvTv = gneqCe

∂ψneq

∂Ce
(4.8)

which is equal to the one obtained in Reese and Govindjee [1998] (see sect. 2.1 therein).
The minimization of eqn. (4.2) with respect to the damage variable (thus with [û, F̂v, d̂] =
[0,0, d̂]) gives

Y = g′eqψeq + g′neqψneq +
Gc

c0 b
(η′ − 2b2∆d+ τdḋ) ≥ 0, (4.9)

that represents the yield condition for the damage variable.

4.1.2 Energy balance

The energy balance principle requires that

Ėint(u,Fv, d) + Pnc(Ḟv, ḋ) = Ėext(u); (4.10)

where
Pnc =

Z

Ω0

JvTv · Lv +
Gc

c0 b
τdḋ

2 dΩ0, (4.11)

is the internal viscous power, whereas the internal power is

Ėint =
Z

Ω0

geq
∂ψeq

∂C
· Ċ+ gneq

∂ψneq

∂Ce
· Ċe + (g′eqψeq + g′neqψneq +

Gc

c0b
(η′ − 2b2∆d))ḋdΩ0+

+

Z

∂Ω0

Gc

c0b
b2∇d · n̂0 ḋd(∂Ω0).

(4.12)
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By using the Macro and the Micro force balance eqns. (4.5) and (4.8) and the identity
Ċe = F−T

v ĊF−1
v − 2sym(CeLv), eqn. (4.10) turns into

Y ḋ = 0. (4.13)

This last condition, with eqn. (4.9) and the irreversibility condition for the damage
(ḋ ≥ 0), gives the Kuhn-Tucker conditions

Y ḋ = 0; Y ≥ 0; ḋ ≥ 0. (4.14)

In this context, the evolution of the damage variable can be expressed (similar to Hakim
and Karma [2009]) by introducing the Macaulay brackets as:

ḋ =
1

τd
<

−c0 b

Gc
(g′eqψeq + g′neqψneq)− η′ + 2b2∆d >=

1

τd
< f(C,Fv, d) >, (4.15)

where < • >= max{0 , •} such that:
(
ḋ = 1

τd
f(C,Fv, d) if f(C,Fv, d) > 0

ḋ = 0 if f(C,Fv, d) < 0
. (4.16)

This set of equations can be solved as a bounded incremental minimization problem by
the backward Euler approximation of the damage rate by

ḋ ≃ dt − dt−∆t

∆t
, (4.17)

where the time dependence is reported as subscript and dt−∆t is considered to be known.
In this case, the problem for the damage field becomes

argmind∈[0,1] d≥dt−∆t
{F(d)} with F(d) = Eint(u,Fv, d)+

Gc

c0 b

Z

Ω0

τd
(d− dt−∆t)

2

2∆t
dΩ0.

(4.18)
Indeed the constrained minimization of F(d) with respect to d can be expresses in weak
form by

∂F(d)[d̂] = ∂Eint(u,Fv, d)[0,0, d̂] +
Gc

c0 b

Z

Ω0

τd
d− dt−∆t

∆t
d̂ dΩ0 ≥ 0, (4.19)

which, with the approximation in (4.17), gives eqn. (4.9).

4.1.3 Dissipation inequality

The non negativeness of the dissipation rate requires that

D = Eext − Ψ̇ ≥ 0, (4.20)

which is normally referred as Clausius-Duhem inequality. By the substitution of the
energy balance in eqn. (4.10), the dissipation inequality reduces to

JvTv · Lv ≥ 0,
Gc

c0 b
τdḋ

2 ≥ 0, (4.21)

where the former inequality requires a constitutive choice of Tv, here assumed to be linear
in Lv, thus in Dv, due to its symmetry, whereas the second inequality is automatically
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satisfied due to the positiveness of the coefficients. These definitions imply an implicit
constitutive assumption for the dual micro force of ḋ, defined as Σv = [Gc/(c0 b)]τdḋ.

In order to further exploit the implications of eqn. (4.20), it is important to observe
that, for a fixed Fv, the time derivative of ψneq is

ψ̇neq =
∂ψneq

∂Ce
· Ċe =

∂ψneq

∂Ce
· (F−T

v ĊF−1
v ) = F−1

v

∂ψneq

∂Ce
F−T
v · Ċ =

∂ψneq

∂C
· Ċ, (4.22)

where, in the last passage, ψneq is derived with respect to C for fixed Fv. From the last
equations, two alternative, but equivalent definition of the non equilibrium part of the
second Piola stress tensor are obtained

Sneq = F−1
v

∂ψneq

∂Ce
F−T
v =

∂ψneq

∂C
. (4.23)

For an isotropic material, it is required that the non equilibrium energy density
depends only on the invariants of Ce namely

ψneq = ψneq(Ie1, Ie2, Je); (4.24)

with

I1e = Ce · I = F−T
v CF−1

v = C ·C−1
v ;

I2e = cof(Ce) · I =
1

2
(I2e1 −CeCe · I) =

1

2
((C ·C−1

v )2 −C−1
v C ·CC−1

v );

I3e = detCe = J2
e = J2/J2

v ,

(4.25)

where Je = detFe; J = detF, Jv = detFv and cof(Ce) = JeC
−T
e is the cofactor of Ce.

As a consequence, Sneq assumes the following form

Sneq =
∂ψneq

∂C
=

∂ψneq

∂Ie1
C−1

v +
∂ψneq

∂Ie2
(Ie1C

−1
v −C−1

v CC−1
v )+

∂ψneq

∂J2
(J2/J2

v )C
−1. (4.26)

It is pointed out that eqns. (4.24)-(4.26) only depend on the viscous strain Cv rather on
the entire deformation Fv. This fact allows us to evaluate the viscous deformation Cv

only, that is a symmetric tensor.

4.1.4 A specific form of strain energy density

Here, a most specific choice of constitutive equations is introduced. In particular isotropic
and incompressible material will be considered, such that J = Jv = Je = 1. For what
concerns the elastic energy densities of the equilibrium and the non equilibrium springs,
they are assumed in the following form (taken from Lopez-Pamies [2010])

ψeq = ψD
eq + ψV

eq =
X

i

31−αi

2αi
µi(I

αi
1 − 3αi)− peq(J − 1)

ψneq = ψD
neq + ψV

neq =
X

i

31−ai

2ai
mi[I

ai
e1 − 3ai ]− pneq(Je − 1)

(4.27)

where volumetric and distorsional contributions are split in a way that peq and pneq are
the Lagrangian multipliers for the incompressibility constraints as already discussed at
the end of sect. 2.4.1).
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In addition, a brittle model is chosen for the damage variable as in Pham et al. [2011]
(see sect. 2.5.2). The characteristic functions are

η(d) = d; c0 =
8

3
; b =

lf
4
; geq(d) = gneq(d) = g(d) = (1− d)2. (4.28)

By using last definitions, the yield condition in eqn. (4.9) assumes the expression

Y =
3Gc

2lf
(1−

l2f
8
∆d+ τdḋ)− 2(1− d)(ψeq + ψneq) ≥ 0. (4.29)

The rate dependence is captured by the generalization of the Reese and Govindjee [1998]
model, proposed by Kumar and Lopez-Pamies [2016]. For such a model, the micro force
balance (as eqn. (4.8)) is

FSneqF
T = A(Fe,Fv)[FeLvF

−1
e ], (4.30)

where for isotropic material, the 4th order tensor A has the following form

A = ηKK(I+BeTB−1
e ) + 3ηJJ

A[A] = ηKK(A+BeA
TB−1

e ) + 3ηJJ[A]
(4.31)

with J[A] = sph(A); T[A] = AT ; K[A] = dev(A). By (4.30) and the incompressibility
constraint (J[FeLvF

−1
e ] = 0), the following evolution equation for the viscous strain is

obtained

Ċv =
rneq
ηK

(C− 1

3
Ie1Cv), where rneq = 2

∂ψneq

∂Ie1
=

X

i

31−aimiI
1−ai
e1 . (4.32)

as shown in sect. 2.4.2. In the next section, a numerical algorithm is developed to
determine the solution of the problem.

4.1.5 Numerical implementation

The evolution equations are numerically solved by means of a FE by code which iterates
the following steps, where a single variable field is determined, keeping the others fixed:

• Equation (4.5) (in the weak form (4.7)) is solved using a Newton-Raphson routine
to determine the displacement field u.

• Equation (4.18) (with constraints d ≤ 1, ḋ ≥ 0, and d ≥ 0) is minimized using a
constrained quadratic programming problem to determine the damage field d. This
problem is solved using TAO (Tool-kit for Advanced Optimization).

• The evolution equation (4.32) for the viscous strain is solved using an explicit fifth-
order Runge-Kutta scheme with an extended region of stability. This scheme has
been described in detail in Lawson [1966] and Kumar and Lopez-Pamies [2016] and
it is summarized here in sect. 2.4.2.

The problem will be tackled using the FEniCS® open-source framework for finite
elements analysis (Logg and Wells [2010]). The approach involves a step-by-step time
integration, with the variables ut, Cv t, and dt, i.e. the displacement, viscous deformation
and damage field values at time instant t, respectively assumed to be known, and ut+∆t,
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Cv t+∆t, and dt+∆t being the unknown functions. The internal iterative scheme is con-
ducted to evaluate u and Cv, denoted by the superscript i during these iterations. The
external iterative scheme will solve the problem for the couple [u;Cv] and d, denoted by
the superscript j in this case. This is carried out according to the following procedure
at each time step:

- update boundary conditions

- Initialize: i = 0; j = 0 and {uji , C i
v j , dj} = {ut,Cv t, dt}

- Start iterations for j (while errd < told):

* Start iterations for i (while errv < tolv):
→ solve Eqn. (4.7) to find ui+1

j with fixed C i
v j and dj

→ evaluate C i+1
v j by Eq. (4.32) with Runge-Kutta scheme with ui+1

j and dj ,

→ update errv = ||C i+1
v j −C i

v j ||∞
→ update i = i+ 1

* Solve eqn. (4.18) to find dj+1 with fixed uj = uij ; Cv j = C i
v j with constraint

dj+1 ≥ dt

* update errd = ||dj+1 − dj ||∞
* update j = j + 1

- assign: ut+∆t = uj ; Cv t+∆t = Cv j ; dt+∆t = dj ; dmin = dj ; t = t+∆t

In the last line dmin is also updated. This damage field is used to guarantee the irre-
versibility condition by the constrain d ≥ dmin for all of the subsequent time steps.

4.2 Uniaxial tensile test

We study the case of a 3D cylindrical body under a simple tension state in the direction
ê1 as in sects. 2.4.1 and 3.2. The problem reduces to 1D and the solution of the balance
equation and evolution equation are sought in the form

F = λ ê1⊗ ê1+
1

λ
1
2

(ê2⊗ ê2+ ê3⊗ ê3), Cv = λ2
v ê1⊗ ê1+

1

λv
(ê2⊗ ê2+ ê3⊗ ê3) (4.33)

where the unknowns of the problem are assumed as dependent on the longitudinal coor-
dinate, X ∈ [0, L] only, in a way that

λ = λ(X) = 1 + u′(X) macroscopic stretch;
λv = λv(X) viscous stretch;

d = d(X) damage field;
(4.34)

u(X) being the longitudinal displacement field (in the ê1 direction). The dependence on
X is omitted in the next part of the work for brevity.

By using eqn. (4.23) with the elastic energies in eqns. (4.27), one obtains the following
expression of the stress S = S · ê1 ⊗ ê1 and P = P · ê1 ⊗ ê1,

S =g req − peqλ
−2 + g rneqλ

−2
v − pneqλvλ

−2 = g req(1− λ−3) + g rneq(λ
−2
v − λv λ

−3) ,

P =g req − peqλ
−1 + g rneqλ

−2
v − pneqλvλ

−1 = g req(λ− λ−2) + g rneq(λ
−2
v λ− λv λ

−2)

(4.35)

91



in which the unknown pressure is evaluated following the procedure in sects. 3.2 and
2.4.1, with

req = 2∂ψeq(I1)/∂I1, rneq = 2∂ψneq(I1e)/∂I1e. (4.36)

In particular, the pressure is obtained by enforcing zero stress condition on the lateral
directions

Sα · ê2 ⊗ ê2 = Sα · ê3 ⊗ ê3 = 0 (4.37)

either for α = {neq, eq}. This gives

peq = req λ
−1, pneq = rneq λ

−1λv . (4.38)

that is equivalent to use the following reduced forms of energies and stresses

ψ1D(λ,λv, d) = gψD
eq(I1(λ)) + gψD

neq(I1e(λ,λv)); S = 2
∂ψ1D

∂λ2
, (4.39)

where

I1 = C · I = λ2 + 2λ−1; I1e = Ce · I = C ·C−1
v = λ2λ−2

v + 2λ−1λv. (4.40)

By eqn. (4.39) and neglecting the external forces, eqn. (4.5) becomes

∂S

∂X
= 0 on X ∈ [0;L]

u(X = 0) = u0; u(X = L) = uL,
(4.41)

Where X ∈ [0;L] is the coordinate of the point of Ω0.
Upon substitution of ((4.33).2) into (4.32) the following evolution equation is obtained

λ̇v =
rneq
3 ηK

(λ2λ−1
v − λ−1λ2

v). (4.42)

In a quasi static tensile test, the non equilibrium part of energy, can be neglected and,
therefore by eqns. (4.13) and (4.39), the yield condition at fracture onset becomes

Y |d=0;λ=λf
=

3Gc

2lf
− ψ1D

eq (I1(λf )) = 0; (4.43)

and, thus:

Gc =
4lf ψf

3
. (4.44)

where ψf = ψ1D
eq (I1(λf )) and λf is the strain at the fracture onset. Another important

parameter that can be measured in this test is the engineering stress of fracture under
pseudo-static loading conditions, and it can be evaluated by eqn. (4.35) as

Pf = req|λ=λf
(λf − λ−2

f ). (4.45)

By replacing eqns. (4.7) (for the displacement), (4.19) (for the damage) and (4.32) (for
the viscous strain) into eqns. (4.41), (4.29) (4.42), the numerical algorithm shown in the
listing of sect. 4.1.5, can be implemented to evaluate the solution of the 1D problem.,
with the following damage evolution equation:

ḋ =
1

τd
<

2c0 b

Gc
(1− d)(ψeq + ψneq)− 1 + 2b2 d′′ > . (4.46)
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Equilibrium spring
µ1 = 2.4MPa µ2 = 0.008MPa α1 = 0.5 α2 = 2.7

Non equilibrium spring
m1 = 1.2MPa m2 = 0.004MPa a1 = 0.5 a2 = 2.7

Damage parameters
λc = 7 lf = 1mm Gf = 40.652MPa/mm

Viscous parameters
τd = 0 s ηK = 1MPa s

Table 4.1: Material parameters for the commercial polyurethane used in the experiments
of Corre et al. [2020], used for the 1D simulations.
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λ̇ = 100 1/s

Figure 4.1: Engineering stress-strain curve depicts the uniaxial tensile test data from
Kamasamudram et al. [2023], utilizing material properties from Corre et al. [2020] (listed
in tab. 4.1). The curves depend on the average deformation rates (λ̇). The dashed
line represents the analytical value of the equilibrium first Piola stress. The simulations
are conducted on a sample measuring L = 10mm in length, employing a mesh size of
hmesh = L/5000.

4.2.1 Numerical results

In this section, 1D simulations are performed to explore the impact of viscosity on frac-
ture onset and examine the post-fracture behavior of the specimen.
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Regarding the opening of the fracture, in fig. 4.1, it is seen (in agreement with Yin
and Kaliske [2020]) that the deformation rate affects the fracture onset, phenomenon
independently on τd. Indeed this effect can be explained by examining the yield condi-
tion (4.9) and noting that, in a quasi static experiment, ψneq → 0 and, thus, it does not
contributes to the fracture creation. By increasing the deformation rate, ψneq comes into
play and the yield condition is achieved at a smaller strain. The data from Kamasamu-
dram et al. [2023], specifically the uniaxial and quasi-static tensile data of the commercial
polyurethane studied also in Corre et al. [2020], is used to obtain the material parameters
listed in tab. 4.1. Using these parameters, the analytical engineering stress-strain curve
is generated via eqn. (4.35) (dashes curve in fig. 4.1), excluding the non-equilibrium
component. The response curve with ˙̄λ = 0.1 1/s, that is the lowest deformation rate,
is accurately matched by the analytical (dashed) curve with 1/τm ≈ 1.2 1/s, that is an
order of magnitude greater with respect to ˙̄λ.

Figure 4.2 displays equilibrium and non equilibrium components of engineering
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t[s]

0

5

10

P
[M

P
a
]

P

Peq

Pneq

(a) ηK = 10MPa s
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P
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P
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Pneq

(b) ηK = 0.1MPa s

Figure 4.2: Average along the specimen of engineering stress versus time for uniaxial
tensile test. Numerical results for a material with parameters in tab. 4.1, average of
stretch ratio λ̇ = 1 s−1 and ηK = 10MPa s (in fig. 4.2a), ηK = 0.1MPa s (in fig.
4.2b). Here the influence of the viscocity on the post-crack phase is shown. In particular
the relaxation phenomena after the rupture have a velocity dependent on the viscous
parameter ηK .

stresses as well together with the total stress as functions of time. Immediately after the
rupture, the total stress jumps to zero. However, its equilibrium and non equilibrium
components maintain equal magnitudes but opposite sign, vanishing in a time interval
controlled by the material’s characteristic time τ≈ = ηK/rneq, where rneq is defined in
eqn. (4.36). This phenomenon, also illustrated in fig. 4.3, can be interpreted as a strain
relaxation phenomenon: at the instance of the crack formation, the bar is immediately
divided into two segments, each approximately L/2 in length that immediately tend to
come back to the stress free configuration with a duration comparable to τm. In the rate-
independent case (τm → 0), this phenomenon occurs instantaneously, as depicted in fig.
2.32. Consequently, the displacement field jumps from a linear function to a piecewise
constant function. Such an instantaneous relaxation is impeded by the viscous balance
eqn. (4.42). When the crack is formed, in fact

P = Peq + Pneq = 0 ∀ x ∈ [0;L], (4.47)
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Figure 4.3: Specific deformation states from fig. 4.2b showcase P, Peq, Pneq along the
bar for ηK = 0.1MPa s. The time steps analyzed are t = 6 s, just after fracture onset,
and t = 7 s, after nearly complete relaxation.

where Peq = g req(λ − λ−2) and Pneq = g rneq(λ
−2
v λ − λvλ

−2). In particular, since the
bar is deformed, λ > 1, thus Peq > 0 and Pneq < 0 due to the balance equation (4.47).
This phenomenon becomes crucial in analyzing fracture propagation, especially when
studying the stress fields depicted in figures 4.6, 4.8 and 4.10.

4.3 Plane stress loading condition

In this section, the problem is specialized to the case of plane stress. In this situation,
F; Fv, C and Cv become:

F =

"
F 0

0T J
−1

#
, Fv =

"
Fv 0

0T J
−1
v

#
, C =

"
C 0

0T J
−2

#
, Cv =

"
Cv 0

0T J
−2
v

#
, (4.48)

where the over line stands for the 2x2 sub-matrix and J = det(F) and Jv = det(Fv).
The first invariants become:

I1(C) = C · I+ J
−2

; I1e(C,Cv) = C ·C−1
v + (Jv/J)

2; (4.49)

and, as in eqn. (4.39) and in sect. 2.4.1 or chp. 3, the following strain energy density
will be considered:

ψ2D(C,Cv, d) = g(d)ψD
eq(I1(C)) + g(d)ψD

neq(I1(C,Cv)). (4.50)

In this case, the second Piola stress tensor can be evaluated as:

S =
∂ψ2D(C,Cv, d)

∂C
, P = FS (4.51)

thus, the macro force balance in eqn. (4.5) (as for eqn. (4.41)) becomes:

Div2(P) + b0 2 = 02 on Ω0, + b. c. (4.52)
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were the subscript 2 stands for the sub-vector 2x1.
For what concerns the viscous deformation, the evolution equation for Ċv specializes

into
Ċv =

rneq
ηK

(C− 1

3
Ie1Cv), (4.53)

where rneq = ∂ψ2D
neq(I1e(C,Cv))/∂I1e as in eqn. (4.36). The damage can still be found

by minimizing the scalar eqn. (4.19).

4.3.1 Crack propagation simulation

In this section the experiments of Corre et al. [2020] are reproduced to investigate the
influence of viscous parameters on crack tip propagation speed. In these experiments a
thin sheet of material is pre-stretched until a certain deformation and, thereafter, a cut
is made by a blade in a way that the crack immediately starts to propagate.

According to the experimental set up depicted in fig. 1.3, the numerical analysis is
divided into three phases:

⊗ A quasi-static loading phase in which the sample undergoes stretching until reaching
a specific stretch λcut. Under these conditions, the viscous deformation equals the
total deformation Cv = C (Ce = I) and the dash-pot in the rheological equivalent
model in fig. 2.22 is unloaded, leaving the non-equilibrium spring undeformed (as
observed in fig. 4.1). In the numerical procedure outlined in sect. 4.1.5, the solution
routine skips the viscous iterations (marked by "→" in the procedure in sect. 4.1.5)
by setting Cv = C. For this reason, the value of Cv is set to Cp, where Cp is the
value of the total deformation C at the end of this phase.

⊗ The second phase occurs at the instant at which the cut is introduced. Since
this event is extremely fast, we presume that the deformation is completely elastic
and the viscous component Cv maintains the value at the conclusion of the first
phase (Cv = Cp). Instantaneous changes in the displacement field would occur in
this phase, make it challenging to solve equation (4.7). Therefore, an incremental
procedure is used to increase the damage in the cut region from 0 to 1 and to
update the displacement field by eqn. (4.7).

⊗ The final phase consists in the crack propagation, in which both the characteristic
times τm and τd come into play.

Numerical results are described in the next section, and a parametric analysis is per-
formed to investigate the effects of the different model parameters on the crack propaga-
tion.

4.3.2 Numerical study

These numerical simulations are carried out with the mesh in fig. 4.4a where half of a
8 x 6 mm2 sample is considered due to the symmetry of the experimental set up. This
sample is clamped over the left-end side and pre-stretched over the right-end side during
the first phase of the simulation (see sect. 4.3.1). In the upper side vertical displacements
are blocked to simulate the symmetry condition. This boundary conditions indeed affects
the crack propagation rate close to the boundary region and, for this reason, the results
of the last part of the simulations, when the crack is close to the boundary, could not be
considered reliable. The damage will be imposed in the bottom-right part of the sample
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Figure 4.4: (a) boundary conditions and mesh. The mesh size in the refined zone is
lf/20. The contour plot in (b) and (c) displays the imposed damage field at the begin of
the third phase. The damage is approximated by a quadratic function, according to the
solution of the optimal profile (see Pham et al. [2011]).

as in figs. 4.4b and 4.4c as explained in sect. 4.3.1.
All of the simulations are carried out referring to the material in tab. 4.2 for which

the elastic energies in eqns. (4.27) are of neo-Hooke type.
The initial series of simulations aim at investigating the impact of τm/τd (and hence

ηK) on crack propagation speed. Specifically, in fig. 4.5, crack tip position versus time
(a) and crack tip velocity versus crack tip position (b) are plotted using dimensionless
quantities. The simulations show that the maximum and minimum propagation veloci-
ties are achieved when τm/τd ≈ 0 and τm/τd → ∞ respectively. In the former case, the
viscous strain develops instantaneously, with zero elastic strain for the entire duration of
the experiment. On the contrary, in the latter case, i.e. τm/τd → ∞, the viscous strain
remains fixed at the value reached at the end of the pre-stretch phase. These two limit
cases are practically reached for ratios of τm/τd ≈ 10−4 and τm/τd ≈ 1.

As shown by eqns. (4.15) and (4.29), the damage evolution (and, thus the frac-

Springs
µ = 1MPa α = 1 m = 0.75MPa a = 1

Damage parameters
λc = 2 lf = 0.5mm Gf = 0.667MPa/mm

Viscous parameters
τd = 4 · 10−4 s ηK = 4 · 10−5MPa s

Table 4.2: Parameters used in the plane stress state simulations.
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(a) Dimensionless crack length vs dimensionless time.
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Figure 4.5: Crack propagation velocity for different values of the ratio between the two
characteristic times (τm/τd), by varying τm and keeping fixed τd = 4 · 10−4 s. The pre-
stretch is assigned to λcut = 1.5. In particular (b) shows a constant crack rate in the
central part of the simulation.
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Figure 4.6: Upper figure: damage fiel; lower figure: first component of the first Piola
stress tensor (P11). Only the portion of the domain close to the crack tip is displayed.
The simulation corresponds to the blue curve in fig. 4.5 in which the non equilibrium
component of the stress vanishes.
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Figure 4.7: Component 11 of the first Piola stress tensor in an horizontal line of coordi-
nates Y = 4mm = H/2 at different time instants, in case of τm/τd = 0 and τd = 4·10−4 s
(as in fig. 4.6). This figure shows the stress trend along the specimen during the crack
tip passage.
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Figure 4.8: Damage field, P11 eq and P11neq in the case of τm/τd = 0.133 and τd =
4 · 10−4 s, corresponding to the red curve in fig. 4.5.
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Figure 4.9: Component 11 of equilibrium and non equilibrium first Piola stress tensor in
an horizontal line of coordinates Y = 4mm = H/2, in the case of τm/τd = 0.133 and
τd = 4 · 10−4 s (as in fig. 4.8).
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Damage field, compo-
nents 11 of first Pi-
ola stress tensor (equi-
librium and non equi-
librium parts) in case
of τm/τd → ∞ and
τd = 4 · 10−4 s, cor-
responding to the vio-
let curve in fig. 4.5.
In this case, the vis-
cous strain does not
evolve during the crack
propagation, thus, af-
ter the crack tip pas-
sage, P11neq remains
negative, as shown in
figs. 4.11.

Figure 4.10
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Figure 4.11: Component 11 of equilibrium and non equilibrium first Piola stress tensor in
an horizontal line of coordinates Y = 4mm = H/2 in case of τm → ∞ and τd = 4 ·10−4 s
(as in fig. 4.10). The region under strain relaxation does not relax because τm → ∞,
thus, after the passage of the crack tip, in this region P11neq < 0.
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Figure 4.12: Crack propagation velocity for different values of τd. The material charac-
teristic time is τm = 5.33 · 10−5 s and the pre-stretch is λcut = 1.5. Crack tip velocity
is made dimensionless by τm in (a) and by τd in (b) to show that the crack speed is a
decreasing function of τd in (a), but not in an inverse proportional manner. Indeed if it
was, the graphs in (b) would coincide.

ture propagation), is driven by the increment in the elastic energies, due to the sudden
increase of deformation ahead of the crack tip. To further analyze this phenomenon,
three simulations are carried out: the two limit cases with τm/τd → 0 and τm/τd → ∞,
and the intermediate case with τm/τd = 0.133. The state of the sample in these three
cases is studied using the damage field and the component P11 eq = Peq · (ê1 ⊗ ê1) and
P11neq = Pneq · (ê1 ⊗ ê1)).

The results of this analysis are shown in figs. 4.6-4.11. When τm/τd = 0 (figs. 4.6 and
4.7), Pneq = 0 and the stress at crack tip is larger then the other two cases in figs. 4.9
and 4.11 which correspond to τm/τd = 0.133 and τm/τd → ∞ respectively. This justify
the larger velocity of crack propagation achieved for τm/τd = 0.

Once the crack tip has passed, there is a strain relaxation phenomenon that increases
the strain in the crack tip zone. This effect increases as the ratio τm/τd decreases. In the
limit case of τm/τd = 0 (elastic material), the strain relaxation is instantaneous, thus the
related crack tip strains are significantly larger than the other two cases. In the other
limit case of τm/τd → ∞, the non equilibrium stress P11neq behind the crack tip remains
negative and, since Ċv = 0, there is a residual viscous strain Cv that does not allow
the complete relaxation of the broken part of the sample, with significant slower crack
propagation velocity. These results show the significant effects of viscoelasticity on the
fracture propagation.

In the intermediate scenario, i.e. τm/τd = 0.133, a distinct portion of the material
just behind the crack tip exhibits negative non equilibrium stress (the blue little regions
near the crack tip in the bottom line of fig. 4.8). This means that in that specific region,
the material is still undergoing the relaxation phase, thereby resulting in a lower total
strain compared to the τm/τd = 0 case, but larger than the τm/τd → ∞ one. This
phenomenon of strain relaxation occurs, therefore, during the passage of the crack tip,
and so both of the characteristic times play a role in determining crack velocity.

The influence of τd is shown in fig. 4.12, where three simulation are conducted with
the parameters of tab. 4.2 for different values of τd. The results show that, while the
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(b) Steady state crack tip velocity versus logarithm of the ratio τm/τd, for fixed τd = 4 · 10−4 s.
The upper (τm/τd → 0) and lower (τm/τd → ∞) bounds are shown in dashed lines. The zone of
graph (a) where these simulations can be collocated is highlighted by a red rectangle and they
can be found in fig. 4.5.

Figure 4.13: Steady state crack tip velocity for different values of τm and τd.
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Figure 4.14: Influence of pre-stretch over the crack propagation.

order of magnitude of l̇c depends on 1/τd, τm plays a secondary role in determining the
rate of fracture propagation. In addition, the steady state crack propagation velocity is
shown in fig. 4.13 for different set of simulations in which both τm and τd are varied and,
so their ratio. The figure 4.13a shows that in the limit cases represented with dashed
lines in the figures, crack propagation speed is inversely proportional to τd. In all of
the other cases, the steady state crack propagation speed stands between the two limit
values. This is confirmed in fig. 4.13b, where the crack propagation velocities are plotted
for fixed τd = 4 · 10−4 s versus the logarithm of the ratio τm/τd in order to show the
migration of l̇c form the two limit cases.

Another parameter affecting the simulation results is the pre-stretch λcut as shown
in fig. 4.14 where it is confirmed that the crack speed grows with thelevel of pre-stretch.
From a numerical point of view, in figs. 4.15 and 4.16, the values ∆t = τd/100 and
hmesh = lf/20 assure a good accuracy of the numerical results. Note that for the finite
τm case (fig. 4.15a) the convergence is not achieved for ∆t = τd/10 and in the limit
case (fig. 4.15b) it gives a different value of crack propagation rate. This means that an
appropriate choice of time step is crucial in order to achieve reliable numerical results.

The influence of the dimension of the sample is investigated in fig. 4.17. In these
graphs it is clear that while the change of the orthogonal dimension (D in fig. 4.4) has
an important influence on the propagation speed, the change of the parallel dimension
(H in fig. 4.4) does not affect the simulation as much. This due to the fact that, the
area influenced by the crack tip shifts along the specimen during the propagation phase
at a constant velocity, without significant changing its dimension; therefore any change
in H keeps the speed of the crack propagation almost unchanged.

On the other hand, by varying D, under the same pre-stretch level, the displacement
of the left edge of the specimen varies. This alteration influences the crack propagation
phase, leading to increase in the strain at the crack tip and, therefore, in the propagation
velocity. This trend can be observed through the stresses at the crack tip P tip

11 , shown
in fig. 4.18, where it is seen that their values increase with increasing D. To draw this
graph, the edge of the fracture tip where P11 is measured, is identified as the point along
the coordinate axis X = D/2 where the maximum value of P11 is reached. This value
is located at the end of the damage regularization zone, ahead of the crack tip. The
graphs in fig. 4.18 show an the initial stress peak induced by the imposition of damage
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Figure 4.15: Dimensionless crack speed vs crack length for different values of ∆t, τm
and τd to study the impact of ∆t on model convergence. In the simulation shown in (a),
employing ∆t = τd/10, convergence wasn’t achieved. However, the other two simulations
are perfectly coincident (∆t = τd/100 and ∆t = τd/1000).
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Figure 4.16: Influence of mesh size in the crack region about the convergence of the
model. From these graphs is clear that a mesh size of lf/20 is a good approximation for
the problem.
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Figure 4.17: Dimensionless crack speed vs crack length for different sample’s shapes.
While the change of the orthogonal dimension respect the crack (a) has an important
influence on the propagation speed, the change of the parallel dimension (b) does not.
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Figure 4.18: Dimensionless P11 at the tip of the fracture (respect the fracture engineering
stress in eqn. (4.45)) versus dimensionless crack length for different values of D (see fig.
4.17a). When D increases, the deformations around the crack tip also increase, thereby
intensifying the stresses.
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in the second phase of the procedure outlined in sect. 4.3.1. After this peak, the stress
maintains constant values until the rupture, where another peak in stress is observed due
to the boundary conditions.

In fig. 4.19a the influence of the internal length lf on crack propagation velocity
is studied and it is shown that as lf increases, the crack speed decreases, eventually
compromising the initiation of crack propagation as in case of lf = 1.5mm. Indeed, in
this case, crack propagation fails to initiate, and after the initial phase (attributed to the
perturbation caused by the instantaneous imposition of the damage), l̇cτd/H = 0.

This interruption is confirmed by the value of P tip
11 in fig. 4.19b, where the first com-

ponent of the engineering stress is plotted versus the crack length in dimensionless form.
In this graph, for lf = 1.5mm, the stress falls below the yield stress of fracture in eqn.
(4.45) and, thus, the crack does not propagate.

Considering that, for lf → 0, the stress in the crack tip diverges to infinity as in the
classical fracture mechanics solution, the presence of a regularization zone due to the
non local term in the internal energy (4.1), disperses damage across a broader region,
thereby regularizing deformations, and consequently, stresses. This process reduces or
even nullifies the speed of fracture propagation, as predicted in equation (4.15).

The regularization zone for different values of lf is shown in fig. 4.20, where
the damage field is plotted along a vertical line of coordinates X = D/2 and for
Y ∈ [ 4.2mm, 5.6mm] for the time instants in which lc/H ≈ 0.6, when the crack tip
passes through these points.

The damage field grows towards 1, dissipating energy during its development. There-
fore the internal length can be treated as the zone in which the phenomena related to
rupture appear (as cavitation and re-crystallization) and lf can be related to the crack
tip bond breaking (Persson et al. [2005]) or the fracture process zone (Yin et al. [2021]),
shown in fig. 2.8.

In any case, given that hmesh < lf/20, the internal length may significantly impact
the simulation duration. Consequently, its calibration necessitates a balance between the
reliability and the computational effort.

Apart from increasing lf , reduction of D or λcut can inhibit the initiation of crack.
Hence, it is proposed that the experimental determination of the internal length lf (and
consequently of the FPZ) which is an open problem from an experimental point of view,
is achieved through experiments where variations in λcut or D are implemented until the
identification of the limit values that prevent crack propagation. At this point, lf can
be estimated as the minimum length that precludes crack propagation in the numerical
simulations.
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Figure 4.19: In these graphs, we investigate the influence of the internal length on crack
propagation. Graph (a) shows that an increase in lf results in a decrease in crack
speed, until hindering the initiation of propagation altogether as in case of lf = 1.5mm.
This trend is corroborated by observations in (b), which displays stress patterns at the
fracture tip for various values of lf . For lf = 1.5mm the stress falls below the yield stress
of fracture in eqn. (4.45), for this reason the crack does not propagate.
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Figure 4.20: Regularization zone in the crack propagation direction for the coordinates
X = D/2 and Y ∈ [ 4.2mm, 5.6mm] for the time instants in which lc/H ≈ 0.6 (red
dashed line of fig. 4.19a).

112



Chapter 5

Conclusion

The thesis was organised in four chapters, each serving a distinct purpose. Chapter 2
provided a comprehensive literature review, offering insights into the phenomenological,
theoretical, and numerical modeling aspects relevant to elastomers’ behavior and failure
mechanisms. While laying the groundwork for the subsequent chapters, particularly 3
and 4, which present the original contributions of the thesis, Chapter 2 also serves as a
valuable introduction to the broader context.

In the third chapter of this thesis, we delve into the formulation of a rate independent
model, as published in Ciambella et al. [2022]. This particular model presents a dam-
age rate-independent phase-field framework with the remarkable capability to simulate
pseudo ductile failure mechanisms. Its primary objective is to accurately reproduces not
only brittle failure phenomena of SBR rubber in Hocine et al. [2002] (see sect. 2.3.1), but
also the intricate behavior observed in the newly introduced double network elastomers,
expounded upon in Millereau et al. [2018] (see sect. 2.3.2).

To comprehend these different failure behaviors, the elastic model in Ogden [2003] is
combined with the phase-field damage model in Wu [2017], in order to obtain the nec-
essary adaptability of the resulting model with respect to the considered failure mech-
anisms. Indeed the model in Ciambella et al. [2022], results capable to replicate both
brittle and pseudo ductile behaviors. In addition to the model formulation and the exper-
iments fitting, the chapter includes an in-dept analysis of the numerous parameters that
are necessary to include from brittle to pseudo ductile behaviors. This analysis arrives
to the definition of the cohesives curves in fig. 3.4, where the longitudinal component of
first Piola stress tensor versus the damage related part of the displacement is plotted,
using a semi-numerical iterative procedure outlined in sect. 3.2.4. This original contri-
bution is important due to the role played by the cohesive curve into the calibration of
the parameters and in their physical interpretation.

However, it’s crucial to note that this model relies on numerous experimentally de-
rived parameters and is only applicable under pseudo-static conditions due to its lack of
viscosity, that represent an important part of the rubber behavior as explained in sects.
2.1 and 2.2. This limitation impedes its application under dynamic or time-dependent
scenarios.

For these reasons, in the fourth chapter, a rate-dependent model is proposed. This
newly devised model integrates the formulation of Kumar and Lopez-Pamies [2016] with
a phase-field model representing brittle fracture damage as in Pham et al. [2011]. The
most relevant characteristic of this model is the ability to effectively capture and replicate
the intricate phenomena observed during fracture propagation, that implies a dynamic
deformation conditions, also introducing a new damage characteristic time τd. This pa-
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rameter assumes the role of accounting for the duration of all those phenomena that
occurring within the FPZ (see fig. 2.8 and sect. 2.2) at the micro-scale level, such as
recrystallization, cavitation, or chain’s rupture. The delays related to these phenomena
cannot be captured by the viscous deformation alone, that rather represents a macro-
scopic parameter. The damage characteristic time plays the main role during the fracture
propagation, determining the order of magnitude of the crack propagation velocity, as
shown in the initial part of sect. 4.3.2.

In the 1D specialization of the rate dependent model (sect. 4.2) the influence of the
material viscosity into the fracture initiation (see fig. 4.1) and the phenomenon of the
strain relaxation after the rupture of the sample are discussed. The important role played
by this phenomenon in the 2D simulations of sect. 4.3.2, is investigated through figs.
4.6-4.11, where also the interaction between the damage and the material characteristic
times is discussed. Other important analyses concern the pre-stretch, the dimension of
the sample and the internal length, resulting in the proposition of an experimental and
numerical routine able to measure the internal length, that represents the zone in which
the phenomena related to rupture appear (as cavitation and re-crystallization, described
in sect. 2.2). The measure of the internal length represents an open problem.

While both models achieve their goals, many improvements and developments can be
made to increase their possible uses:

• The rate dependent model can be integrated with the numerical simulations of the
experiments in literature with DENT or SENT specimen (e.g. Loew et al. [2019],
Yin and Kaliske [2020], Dammaß et al. [2023]), to improve the adaptation of the
viscoelastic parameters.

• The modeling (in 1D and 2D) can be extended to 3D to simulate more complex
failure processes (like tires, vibration absorber...).

• Models of finite viscoelasticity can be applied to the description of failure in differ-
ent materials capable of substantial large deformation, such as biological tissues,
hydrogels, among others. Exploring this possibility within the context of the mod-
els outlined in this thesis is also worth investigating.

• In Yin et al. [2021] and in Persson et al. [2005], two different zone around the crack
tip are highlighted: the fracture process zone (where the damage is growing) and
an inelastic zone around the FPZ. While the last internal length is identified in
sect. 4.3.2, the length of the inelastic zone does not. A possible investigation can
begin taking into account the zone where the magnitude of Sneq increases around
the crack tip as measure of the inelastic zone.

• The viscosity could be considered as a not constant function as in Kumar and
Lopez-Pamies [2016] (see sect. 2.4.2), in order to accurately reproduce the velocity
fields, as shown in Kamasamudram et al. [2023].

• As shown in sects. 2.1 and 2.2, the temperature plays an important role in vis-
coelastic and fracture behavior of these materials. In the presented models, the
effects of temperature are not taken into account, and this restrict the the appli-
cability of the model to the situations in which the temperature remains almost
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constant. In addition, changes of temperature due to dissipative phenomena are
not explicitly considered. For this reason the inclusion of the temperature effects in
the formulations is a possible development for the fields of the models applicability.

• The rate dependent model can be enriched by incorporating the cohesive damage
formulation of the rate independent model to reproduce also the rate dependent
behavior of that presents a pseudo-ductile fracture behavior in dynamic deforma-
tion regime.

• From a numerical perspective, the objective can be to examine the solution method
with the aim of enhancing convergence and reducing computation time. One of the
possible improvement is the formulation of the problem (or of a part of it) in up-
dated Lagrangian (e.g. Del Piero et al. [2007]) or in an Eulerian formulation (e.g.
Rubin [2020]).

• The model’s applicability can be applied to problems of interest for industry, such
as pneumatic systems, seals, seismic isolators, and other areas where elastomers
find application.

• In the formulation of the internal energy described by eqn. (4.1), the degrada-
tion functions for the equilibrium and non-equilibrium components of energy are
treated as unequal. This implies that even if the damage field is identical for both
components (because the material is homogeneous), the impact of damage on the
two systems of the Maxwell’s rheological model (refer to fig. 2.22) may differ. It
is noteworthy that if τm is assumed to be independent of damage, the degradation
functions for ηK and ψneq must be identical.
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