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Abstract
We present a new approach to the problem of characterizing and choosing equivalent mar-
tingale pricing measures for a contingent claim, in a finite-state incomplete market. This
is the entropy segmentation method achieved by means of convex programming, thanks to
which we divide the claim no-arbitrage prices interval into two halves, the buyer’s and the
seller’s prices at successive entropy levels. Classical buyer’s and seller’s prices arise when
the entropy level approaches 0. Next, we apply Fenchel duality to these primal programs
to characterize the hedging positions, unifying in the same expression the cases of super
(resp. sub) replication (arising when the entropy approaches 0) and partial replication (when
entropy tends to its maximal value). We finally apply linear programming to our hedging
problem to find in a price slice of the dual feasible set an optimal partial replicating portfolio
with minimal CVaR. We apply our methodology to a cliquet style guarantee, using Heston’s
dynamic with parameters calibrated on EUROSTOXX50 index quoted prices of European
calls. This way prices and hedging positions take into account the volatility risk.

Keywords Convex programming · Fenchel duality · Entropy · Finance · Cliquet guarantee
Mathematics Subject Classification (2010) 91-10 · 97M30

1 Introduction

1.1 Scope of the Paper andMotivation

In an incompletemarket with a finite number of states and one time period [0, T ], we consider
a contingent claim with payoff X at T . The Fundamental Asset Pricing Theorem (see for
instance Avellaneda and Laurence (1999)) states the equivalence between the no-arbitrage
hypothesis and the existence of an EquivalentMartingale PricingMeasure (EMPM) such that
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the price is the claim payoff expectation discounted at the risk-free rate. In a complete market,
this pricing probability measure is unique, while in an incomplete one, there is an infinite
family of EMPM giving rise to an infinity of prices. The search for key ideas to characterize
and calculate any of those EMPM is of the utmost importance in Financial Mathematics
literature. And equally important is the research on static hedging methodologies designed
to minimize the risk supported by the claim issuer once the price has been fixed. This paper
is firstly devoted to the explanation of a new methodology for characterizing and calculating
each of these EMPM for X , and secondly, to deduce from the statement of that pricing
step an expression for the hedging positions associated with each no-arbitrage price. The
first (pricing) step is fulfilled thanks to the methodology of entropy segmentation, while the
second (hedging) step is developed by applying Fenchel duality to the former.

1.2 Literature Review

Given a contingent claim X and some benchmark assets traded in the market, the upper and
lower extremes of the interval of no-arbitrage prices of X are called seller’s and buyer’s
prices. In a one-time period and finite state market, these prices can be calculated by means
of two linear programs (see for instance Musiela and Rutkowski (2005), p. 95). The solu-
tions to their respective dual linear programs are the super and sub-replicating portfolios
made of those benchmarks (see also Luenberger (2002)). A great deal of interest has been
devoted to these positions, especially the super hedging one. In this line of research Bert-
simas and Popescu (2002) and Kahale (2017) find methods based on convex programming
in discrete time to calculate the price/hedging positions in terms of other derivatives, and
King et al. (2005) studies the hedging problem by means of stochastic programming and
conjugate duality. This problem of finding a super(sub)-hedging position has also been stud-
ied for particular options. Pennanen (2011) finds buyer’s and seller’s prices for American
options applying convex optimization, and d’Aspremont and El Ghaoui (2006) finds model-
independent upper/lower bounds for European basket options. Also, Antonelli et al. (2013)
use linear programming to calibrate buyer’s and seller’s prices forAmerican options.Unfortu-
nately, the seller’s price/super-replicating portfolio position is generally too much expensive
and remains of no practical use.

There exist also criteria to choose a specific EMPM driving to a price in the interior of
the no-arbitrage interval, for instance, the minimal variance (Follmer and Schweizer 1991),
and the minimal martingale measure (Frittelli 2000). There is also the interpretation of no-
arbitrage prices in terms ofExpectedUtility Theory,which tells that in the case of a one-period
finitemarket model, no-arbitrage prices are given by different EMPMpointed out by different
concave utility functions of investors solving portfolio optimization problems, see Carr and
Zhu (2018). This is a result of Convex Duality Theory applied to Financial Mathematics.
For any material on Convex Analysis, Convex Optimization, and Fenchel Duality Theory we
refer to Rockafellar (1970) and Mordukhovich and Nam (2013).

Entropy Pricing Theory (EPT) (Gulko 1999) is founded on the idea that the asset price
should fulfill the efficient market hypothesis to its best. The core of EPT is the calculation
of the maximum efficient price using a set of benchmarks the prices of which calibrate an
EMPM. This is done through the maximization of the entropy as in Bose and Murray (2014)
and Neri and Schneider (2012). Alternatively, the Kullback-Leibler relative entropy of the
EMPM relative to some initial probability can be minimized subject to the benchmark prices,
as in Frittelli (2000).When the market states are finite, one particular use of Kullback-Leibler
relative entropy minimization is to set the uniform probability as the initial one (Avellaneda
et al. 2001), which is known as the weighted Monte Carlo method. More generally, any
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divergence (Amari 2016, chapter 3) measuring the informational discrepancy to uniform
probability can be used as an objective tominimize, see for instance Sheraz and Preda (2015),
Vilar-Zanon and Peraita-Ezcurra (2018) and Vilar-Zanon and Peraita-Ezcurra (2019).

1.3 Contributions

Wedeliver a newmethodology to select theEMPM, named entropy segmentation, that outputs
twoEMPMfor each entropy level H ∈ [0, H∗], where themaximumentropy H∗ is calibrated
on a benchmarks set. This shows that no arbitrage prices can be clustered by pairs associated
with entropy levels. It is a generalization to convex programming of the already mentioned
Linear Programming (LP) formulation for calculating the buyer’s and seller’s prices. In the
null entropy case H = 0, we obtain the extremes of the interval (buyer’s and seller’s price)
while in the maximum case H = H∗ we obtain the most efficient price π∗ as calculated by
EPT (see for example Frittelli (2000)). An important advantage is that entropy segmentation
is an inverse method (see for instance Breeden (1978), Jackwerth and Rubinstein (1996), and
Borwein (2012)), so its use is not limited by any parametric hypothesis on the underlying
stochastic models.

Applying Fenchel duality we also deliver the dual of the primal-pricing step. By strong duality,
the optimal values of the primal and dual programs are equal to the no-arbitrage price calcu-
lated at the primal-pricing stage. Depending on the entropy value we use, the dual program
changes its appearance. When H = 0 it adopts the form of the LPs we find in Musiela and
Rutkowski (2005), the output will be the super-replicating (resp. sub-replicating) portfolio.
When H �= 0 this dual feasible set consists of all the partial replicating portfolios. We show
how we can cut this feasible dual set by any no-arbitrage price to obtain a slice where we can
minimize the remaining risk, looking for the optimal hedging position at that fixed price.

This is a way of defining another program to complete the claim pricing and hedging
process, and we show how this can be achieved through LP, minimizing the CVaR of that
remaining risk following the work of Rockafellar and Uryasev (2000).

To exemplify this process we choose a cliquet-style guarantee that is widely sold in
financial markets although its risk hedging is considered of the utmost difficulty. These kinds
of guarantees are important because they are widely sold by insurance companies issuing
participating life insurance policies.

1.4 Organization

The rest of the paper is organized as follows. In Section 2 we set the notation used throughout
the paper. In Section 3 we set up the entropy segmentation method by explaining the primal
pricing programs and discussing their properties. In Section 4 we apply the Fenchel duality,
discuss partial and super (resp. sub) replication, and write down the linear program for CVaR
minimization. Technical details about the calculations of the Fenchel conjugates, support,
and perspective functions are reported in Appendix A. In Section 5 we introduce the cliquet
style guarantee and exemplify our methodology. Section 6 reports our conclusions.

2 Notation

We denote random variables and processes with capital letters. Random variable samples are
vectors written as lowercase bold letters whose components (realizations) are indexed by the
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time t and the trajectory j . A bold number stands for a vector with the same value in all its
coordinates. We account for losses with a positive sign.

We work in one time period [0, T ]. As in the example we will use forward start options
as benchmarks, we shall divide it by yearly periods t = 1, . . . , T to be able to sample
their payoffs. We consider the continuous stochastic process S = {St }t∈[0,T ] modeling an
underlying portfolio over several yearly periods whose initial value is s0. The yearly values
of the underlying portfolio will be needed to sample the claim and benchmark payoffs, and
they are given by the random variables S1, S2, . . . , ST . Using the natural probability P of
the stochastic model we simulate m trajectories of the process S and obtain sample vectors
st = (s j

t )m
j=1 with t = 1, 2, . . . T years. The random payoff X at expiry T depends on the

yearly evolution of the underlying S. By the yearly samples st we calculate the payoff sample
x = (x j )m

j=1 ∈ R
m+ (we omit the time index as the payoff is paid at the expiry T ). Looking at

the time interval [0, T ] as one time period, we thus reduce the continuous setting to a discrete
one (both in time and states), �m being the set of the scenarios (market states) at the expiry
T and P(�m) the σ − algebra power set of �m . The probability measureQm is an EMPM
on (�m, P(�m)) and its mass function is noted by q = (q j

)m
j=1 ∈ Sm , where Sm stands for

the m-simplex and q j > 0 for at least one j .
We will work with n benchmarks with random payoffs (Gi )

n
i=1 (with maturities t =

1, . . . , T in our application), paid at the expiry T depending on the evolution of the process
S. They are also sampled by n payoff vectors gi = (g j

i )m
j=1 ∈ R

m with i = 1, . . . , n. The
benchmark prices are noted with vector c = (ci ) ∈ R

n∗, and a benchmarks portfolio with
θ = (θi ) ∈ R

n . Short and long positions are noted with negative and positive coordinates,
respectively. A portfolio payoff at maturity T is given by G =∑n

i=1 θi Gi , thus the sampled
portfolio payoff is g =∑n

i=1 θi gi with price θ ′.c =∑n
i=1 θi ci .

We suppose a constant yearly risk-free interest rate R, thus r = log(1 + R) is the instan-
taneous forward rate and the discounting factor is e−rT . The risk free zero coupon bond that
costs b0 = 1 at t = 0 has a sampled payoff

(
erT , ..., erT

)′ ∈ R
m at expiry T . The notation

x � 0 means that the inequality ≥ is satisfied by all the vector components.
Finally, Shanon’s entropy will be noted by:

H (q) = −
m∑

j=1

q j log
(

q j
)

. (1)

We consider H continuously prolonged by setting 0 log(0) = 0.

3 Pricing by Entropy Segmentation

We can calibrate an EMPM by maximum entropy H∗ to the benchmark prices c by solving
the following mathematical program, that is related to those we can find in Avellaneda et al.
(2001), Frittelli (2000) and Borwein (2012):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
q∈IRm+

H (q)

s.t.: e−rT q ′ · gi − ci = 0, i = 1, 2, . . . , n (Benchmark price constraints)

e−rT q ′ · sT − s0 = 0 (Martingale constraint)

q ′ · 1 = 1 (Probability constraint).

(2)
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Program (2) reaches its global maximal value H∗ = H(q∗) at a unique optimum q∗
which is the mass function of a pricing measure Qm∗ that correctly prices the benchmarks
(benchmark price constraints) and the underlying (martingale constraint). The claim x is then
priced using the Fundamental Asset Pricing Theorem:

π∗ = e−rT
E
Qm∗ [x] = e−rT q∗′ · x. (3)

This is the maximum efficient price belonging to the interval of no-arbitrage prices, as calcu-
lated by EPT.

The method of entropy segmentation consists of two primal programs sharing the same
feasible set. Firstly, we set the pricing formula as the objective function:

π (q) = e−rT
E
Qm [x] = e−rT q ′ · x. (4)

Secondly, to define the feasible set we need to replace each equality constraint of Eq. 2
with an equivalent couple of inequality constraints. This is because Fenchel duality has to
be applied to a standard program with inequalities. Therefore, we substitute the benchmark
price constraints with two inequalities:

fk (q) = e−rT q ′ · gk − ck ≤ 0, k = 1, 2, . . . , n

fk (q) = ck−n − e−rT q ′ · gk−n ≤ 0, k = n + 1, . . . , 2n.
(5)

A benchmark price ck , ck−n in Eq. 5 is mark-to-market if it is quoted by the market in which
case the decision maker will choose among bid/ask prices. Or it is mark-to-model when the
benchmark is not traded and it is calculated using a model calibrated on market data.

The martingale and the probability constraints are also rewritten as two inequalities:

f2n+1 (q) = e−rT q ′ · sT − s0 ≤ 0, f2n+2 (q) = s0 − e−rT q ′ · sT ≤ 0. (6)

f2n+3 (q) = q ′ · 1 − 1 ≤ 0, f2n+4 (q) = 1 − q ′ · 1 ≤ 0. (7)

Let us note Q for the set of mass distributions satisfying the constraints f1, . . . , f2n+4. We
can now express (2) as q∗ = argmaxQ H (q).

We include an inequality constraining the feasible solutions to have an entropy level H (q)

greater than some fixed H ≤ H∗,

f2n+5 (q) = −H (q) + H ≤ 0, (8)

and finally, make explicit the nonnegativity constraints:

f2n+6 (q) = q � 0. (9)

We define our primal feasible set QH = {q ∈ Q : f2n+5 (q) ≤ 0, f2n+6 (q) � 0} ⊂ R
m .

QH is convex ((5), (6) and (7) define closed half-spaces ofRm , and f2n+5 is a strictly convex
function), and compact (it is defined through the intersection with them-simplex). Therefore,
as the objective function (4) is linear, the two programs

minq∈QH
π(q) (10)

maxq∈QH
π(q) (11)

reach their optimums qmin
H = argminq∈QH

, qmax
H = argmaxq∈QH

, with global minimal and
maximal values satisfying:

πmin
H ≤ π∗ ≤ πmax

H , ∀H ∈ [0, H∗]. (12)
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We name the prices πmin
H , πmax

H as the buyer’s price and seller’s price at entropy level
H ≤ H∗. In the case H = H∗, we get QH = {q∗} and the equality in Eq. 12 is reached:

πmin
H∗ = π∗ = πmax

H∗ . (13)

Therefore, while programs (10) and (11) satisfy the Slater condition for any H < H∗,
where strong duality applies, this is not true for H = H∗.

4 Fenchel Duality and Hedging

Wewill only consider the seller’s primal program (11) as the buyer’s case (10) can be treated
in a similar way.

4.1 Fenchel Dual Programs

We follow the general procedure explained in Roos et al. (2020). The feasible set F of the
program Eq. 11 is:

F =
2n+6⋂

k=1

Fk, (14)

where

Fk = {q ∈ R
m : fk(q) ≤ 0

}
, k = 1, . . . , 2n + 5, (15)

F2n+6 = {q � 0} = R
m+. (16)

Program (11) can be rewritten as:

Sup {π (q) : q ∈ F} = −Inf {−π(q) : q ∈ F} . (17)

Let δF be the indicator function of the feasible set F (see Mordukhovich and Nam (2013),
p. 34):

∀q ∈ R
m : δF (q) =

2n+6∑

k=1

δFk (q) =
{
0 , q ∈ F

∞ , otherwise.
(18)

Then calling g(q) = −π(q) + δF (q), we can write (17) as an unconstrained program:

− Inf {−π (q) : q ∈ F} = −Infq {g (q)} . (19)

The Fenchel conjugate g∗ of a function g with domain dom g = {q ∈ R
m : g(q) < ∞}

is given by (see Mordukhovich and Nam (2013), p. 77):

g∗ ( y) = supq∈dom g

{
y′ · q − g (q)

} ∀ y ∈ R
m,

thus we obtain program (19) by substituting y = 0:

g∗ (0) = supq∈dom g {−g (q)} = −infq∈dom g {g (q)} . (20)

Now, it remains to calculate g∗ (0). As g is the sum of two functions, we can write its
Fenchel conjugate as:

g∗ ( y) = min
y0 , y1

{
(−π)∗ ( y0) + δ∗

F ( y1) : y0 + y1 = y ∈ R
m} ∀ y0, y1 ∈ R

m, (21)
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thus:
g∗ (0) = min

y0

{
(−π)∗ ( y0) + δ∗

F (− y0)
}
. (22)

Applying the same argument as in Eq. 21, the Fenchel conjugate of the indicator function
δF in Eq. 18 is:

δ∗
F (− y0) = min

( yk )2n+6
k=1 ∈Rm

{
2n+6∑

k=1

δ∗
Fk

( yk) :
2n+6∑

k=1

yk = − y0

}

. (23)

As each conjugate δ∗
Fk

(k = 1, 2, . . . , 2n + 5 ) is equal to its perspective function (uk fk)
∗

(see Eq. A3) and δ∗
F2n+6

is equal to Eq. A18, we write (23) as:

δ∗
F (− y0) = min

( yk )2n+6
k=1 ,u�0

{
2n+5∑

k=1

(uk fk)
∗ ( yk) :

2n+6∑

k=0

yk = 0, y2n+6 � 0

}

. (24)

Thus g∗(0) in Eq. 21 can be rewritten as:

min
( yk )2n+6

k=0 ,u�0

{

(−π)∗ ( y0) +
2n+5∑

k=1

(uk fk)
∗ ( yk) :

2n+6∑

k=0

yk = 0, y2n+6 � 0

}

, (25)

where (uk)
2n+5
k=1 and ( yk)

2n+6
k=0 are dual variables and vectors, respectively. Expression (22)

is the dual program of Eq. 11 containing as particular cases super replication and partial
replication, as we are just going to show.

Looking at the perspective function for k = 2n + 5 (see Eqs. A17a and A17b), we must
distinguish between two cases consisting of what happens at the interior of the no-arbitrage
prices interval or at its upper endpoint (i.e. the seller’s price).

When u2n+5 > 0 , we substitute (u2n+5 f2n+5)
∗ by Eq. A17a, (−π)∗ by Eq. A6, the per-

spective functions (uk fk)
∗ and dual vectors yk by Eqs. A8, A11, A13 and A15, respectively.

We obtain the first particular case of Eq. 22, ∀u2n+5 > 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
y2n+5, y2n+6,u

n∑

k=1

(uk − un+k) ck + (u2n+1 − u2n+2) s0 + (u2n+3 − u2n+4)+

+ u2n+5

⎛

⎝
m∑

j=1

e
y

j
2n+5

u2n+5
−1 − H

⎞

⎠

s.t.:
n∑

k=1

(uk − un+k) gk + (u2n+1 − u2n+2) sT + erT (u2n+3 − u2n+4) 1+

+ erT ( y2n+5 + y2n+6) = x

y2n+5 � 0 , y2n+6 � 0 , u � 0.
(26)
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When u2n+5 = 0 we make the same substitutions except for (u2n+5 f2n+5)
∗, now replaced

by Eq. A17b. This is the second case of Eq. 22, u2n+5 = 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
y2n+6,u

n∑

k=1

(uk − un+k) ck + (u2n+1 − u2n+2) s0 + (u2n+3 − u2n+4)

s.t.:
n∑

k=1

(uk − un+k) gk + (u2n+1 − u2n+2) sT + erT (u2n+3 − u2n+4) 1+

+ erT y2n+6 = x

y2n+6 � 0 , u � 0.

(27)

The linear program (27) outputs the super-hedging portfolio with a price equal to the upper
bound of the no-arbitrage price interval. This portfolio is made of benchmarks, underlying
assets, and bonds. The excess vector erT y2n+6 in Eq. 27 depicts the issuer’s gains over the
scenarios at expiry T .

Referring now to the program (26), we know by strong duality that its optimal value is
equal to πmax

H , the optimal value of the primal (11). Furthermore, the sensitivity of πmax
H with

respect to the entropy level H is given by the optimal value of the dual variable u2n+5 > 0.
Let us focus now on the dual feasible set in Eq. 26. The equality constraint is valued at T

and makes the sum of three vectors equal to the claim payoff x. These vectors are:

• The payoff of a partial replicating portfolio u = {u1, u2, . . . , u2n, u2n+1, . . . , u2n+4} ∈
R
2n+4+ ,made of benchmarks, underlying asset, and bonds, where the dual variables stand

for short/long positions. The benchmark portfolio is θ where θi = ui − un+i is the net
short/long position on asset i = 1, 2, . . . , n. The quantities uS = u2n+1 − u2n+2 and
ub = u2n+3 − u2n+4 are the net positions on underlying assets and bonds, respectively.
Observe that the bond value and weights in the dual come from the probability constraint
in the primal (11), and the underlying asset value and weights come from the martingale
constraint.

• The vector erT y2n+5 � 0, coming from the entropy constraint in the primal program,
quantifying the part of the claim x not replicated by the portfolio u. We call it the
remaining claim describing the losses over the scenarios.

• The vector erT y2n+6 � 0, depicting the gains over the scenarios that we call excess
vector. It comes from the non-negativity constraints in the primal program.

The vector erT ( y2n+5 + y2n+6) quantifies the mismatch over the scenarios between the
claim and the partial replicating portfolio payoffs. Observe that both y2n+5 and y2n+6 are
calculated by programs (26) and (27) at t = 0.

In summary, the feasible set in Eq. 26 consists of all the portfolios partially replicating
the claim x, at any no-arbitrage price. We also conclude that the primal pricing program (11)
contains all the elements to build, by means of Fenchel duality, both the feasible set of all
the partial replicating portfolios and a pricing formula.
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4.2 Optimal Partial Replicating Portfolio

To calculate an optimal portfolio, it is natural to ask for its price to be equal to the claim price.
This is done by introducing one additional constraint fixing the price, for any H ≤ H∗:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

k=1

(uk − un+k) ck + (u2n+1 − u2n+2) s0 + (u2n+3 − u2n+4) = πmax
H

n∑

k=1

(uk − un+k) gk + (u2n+1 − u2n+2) sT + erT (u2n+3 − u2n+4) 1+

+ erT ( y2n+5 + y2n+6) = x

y2n+5 � 0 , y2n+6 � 0 , u � 0.

(28)

Ifwewant to calculate an optimal solution in the set (28), sampling all the randomvariables by
means of the natural probability measureP is very important, because all the risk calculations
must be done in the natural world in order to be meaningful, and not in the risk-neutral one.

At this final step, we minimize the CVaR of the remaining claim. This is achieved through
a linear program with a fast resolution, applying the methodology we find in Rockafellar and
Uryasev (2000). We consider the continuous case where capital letters denote continuous
random variables. We focus on the seller’s case. Let us consider the decision vector made of
the dual variables:

u = {u1, u2, . . . , u2n, u2n+1, . . . , u2n+4} ∈ R
2n+4+ ,

defining aportfoliomadeof benchmarks, underlying, andbonds,with their short/longposition
interpretation as given by the signs in the formula 29. We define the loss associated with the
decision u ∈ R

2n+4+ (consisting of the chosen portfolio of benchmarks) as the following
random variable which is a generalization of the vector constraint in Eq. 28 to the continuous
case :

Y (u, X , ST ) =e−rT
[

X −
n∑

k=1

(uk − un+k) Gk − (u2n+1 − u2n+2)ST −

− erT (u2n+3 − u2n+4)
]

= Y +(u, X , ST ) + Y −(u, X , ST ). (29)

In Eq. 29 Y is a random variable because it depends on the random variable ST and the
claim payoff X at t = T which is also a random variable depending on the underlying yearly
dynamic. By a slight abuse of notation, let us note Y (u) ≡ Y (u, X , ST ), decomposed in
Eq. 29 as a sum of two random variables Y +(u) (≥ 0 (a.s.)) and Y −(u) (≤ 0 (a.s.)).

For each decision u ∈ R
2n+4+ , the random variable Y (u) has a distribution that we can

suppose to be absolutely continuous. Let us note ϕ and p for its cumulative distribution and
density functions:

P{Y (u) ≤ α} = ϕ(α, u) =
∫

Y (u)≤α

p(y, u)dy. (30)

The VaRβ and CVaRβ of Y are defined respectively as :

αβ(u) = min{α ∈ R : ϕ(α, u) ≥ β}, φβ(u) = (1 − β)−1
∫

Y≥αβ

yp(y, u)dy. (31)
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αβ(u) is the left endpoint of the non-empty interval consisting of the values α such that
ϕ(α, u) = β.

φβ(u) is the conditional expectation of the loss associated with the decision u ∈ R
2n+4+ ,

relative to the loss being αβ(u) or greater.
For each decision u the following function is defined:

Fβ : R × R
2n+4 −→ R (32)

(α, u) −→ α + (1 − β)−1
∫

y∈R
[y − α]+ p(y, u)dy.

In theorem 1 of Rockafellar and Uryasev (2000) p.5, it is shown that Eq. 32 is convex and
continuously differentiable, and the CVaRβ of the loss Y (u) associated with each u ∈ R

2n+4+
can be determined by ϕβ(u) = minα∈R Fβ(α, u). Calling Aβ(u) = argminα∈R Fβ(α, u),
the VaRβ of the loss Y (u) is given by αβ(u), the left endpoint of Aβ(u). Moreover, one
always has:

αβ(u) ∈ argmin
α∈R Fβ(α, u) and φβ(u) = Fβ(αβ(u), u). (33)

Also in theorem 2 of Rockafellar and Uryasev (2000) p.5, it is shown that for each decision
u, minimizing the CVaRβ is equivalent to minimizing

min
u∈R2n+4+

φβ(u) = min
(α,u)∈R×R

2n+4+
Fβ(α, u). (34)

Moreover, the pair (α∗, u∗) achieves the secondminimum in Eq. 34 if and only if u∗ achieves
the first minimum and u∗ ∈ Aβ(u∗). When the interval Aβ(u∗) reduces to a single point, the
minimization of F(α, u) produces a pair such that u∗ minimizes the CVaRβ(Y (u∗)) and α∗
gives the corresponding VaRβ(Y (u∗)).

Therefore, the problem is how to approximate the integral in Eq. 32. As suggested in
the cited reference, we can generate samples of Y +(u) ∈ R

m+, Y −(u) ∈ R
m−, and Y (u) =

Y +(u)+Y −(u) ∈ R
m . To connectwith the previous sections, let us name them respectively as

y2n+5, y2n+6. Through the sampling process, we also obtain the sample vectors x, sT ∈ R
m+.

Then:

F̃β(u, α) = α + [m(1 − β)]−1
m∑

j=1

[
y j
2n+5 + y j

2n+6 − α
]

+ . (35)

We finally have to solve:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α,d,u, y2n+5, y2n+6

α + [m(1 − β)]−1
m∑

j=1

[
y j
2n+1 + y j

2n+6 − α
]

+

s.t.:
n∑

k=1

(uk − un+k) ck + (u2n+1 − u2n+2) s0 + (u2n+3 − u2n+4) = πmax
H

n∑

k=1

(uk − un+k) gk + (u2n+1 − u2n+2) sT + erT (u2n+3 − u2n+4) 1+

+ erT ( y2n+5 + y2n+6) = x

y2n+5 � 0 , y2n+6 � 0 , u � 0.

(36)
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In terms of the auxiliary variables d j

∀ j = 1, . . . , m : y j
2n+5 + y j

2n+6 − α = d j ⇒ α + d j − y j
2n+5 − y j

2n+6 ≥ 0,

the following LP must be solved:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α,d,u, y2n+5, y2n+6

α + [m(1 − β)]−1
m∑

j=1

d j

s.t.: α + d j − y j
2n+5 − y j

2n+6 ≥ 0 , j = 1, . . . , m
n∑

k=1

(uk − un+k) ck + (u2n+1 − u2n+2) s0 + (u2n+3 − u2n+4) = πmax
H

n∑

k=1

(uk − un+k) gk + (u2n+1 − u2n+2) sT + erT (u2n+3 − u2n+4) 1+

+ erT ( y2n+5 + y2n+6) = x

d � 0, y2n+5 � 0 , y2n+6 � 0 , u � 0 , α ∈ R.

(37)

This outputs an optimal value, the minimal CVaRβ , attained at some α = VaRβ close (if not
equal) to the minimal value of VaRβ (see Rockafellar and Uryasev (2000)). The optimum is
the optimal partial replicating portfolio u and its corresponding remaining claim erT y2n+5
and excess vector erT y2n+6. If we fix H = H∗, we replace the price πmax

H by π∗ (3) and
we obtain the optimal partial replicating portfolio u∗ = (θ∗, u∗

S, u∗
b) corresponding to the

maximum efficient price. If we decrease the entropy level H towards 0, we obtain the super-
hedging case where y2n+5 = 0 and program (37) outputs the same solution as program
(27). For any entropy level H < H∗, we could also solve the primal program (10) finding
buyer’s prices πmin

H < π∗, and using then the analog set to Eq. 28 calculated from the dual
program of Eq. 10. Both linear programs, Eq. 37 and the one corresponding to the buyer’s
side, would give the same solution when substituting the maximum efficient price π∗ in the
price constraint.

5 Application

In this section, we exemplify through a cliquet-style guarantee. As our aim is to show how our
methodology works, we present a simple application with a maturity of three years, assuming
that the total market value of the asset portfolio follows the Heston model. We introduce the
benchmark set and finally, we present the numerical results. In order to make our application
more realistic, both the Heston parameters and the instantaneous forward rate are estimated
on market data.
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5.1 Cliquet-Style Guarantees

Cliquet-style guarantees are path-dependent contingent claims with a high financial market
risk, that arewidely used in life insurance in the context of participating life insurance policies
(PLI) (see for instance Olivieri and Pitacco (2015)). The payoff Z at time T is:

Z = C
T∏

t=1

[
1 + max {γ It , imin}

]
, (38)

where C is the capital at time t = 0, γ is the participation coefficient, It is the annual return
of the asset portfolio St and imin is the minimum guaranteed interest rate. Without loss of
generality, we fix imin = 0 and γ = 1. Thus, if It is positive, at the end of each year the
policyholder earns a positive profit kept until the maturity T . By substituting It = St

St−1
− 1

in Eq. 38, we write the payoff Z as:

Z = C
T∏

t=1

[
1 + max

{
St

St−1
− 1, 0

}]
, (39)

where we find the payoff of one European call and (T − 1) forward start call options (see
Kruse and Nogel 2005). The payoff Z can be easily decomposed into a bond component and
a path-dependent derivative component with payoff X :

Z = C + X . (40)

The total payoff Z is valued by means of:

� = Ce−rT + π, (41)

where π is the price of the payoff X at time t = 0. The problem is how to calculate a price
π together with its associated static risk hedging position over one period [0, T ].

As the payoff (39) consists of the product of one European call and (T − 1) forward start
call options, this is our choice for the benchmark assets. Consequently, before the cliquet
maturity is fixed at t = T , we need to consider a set of yearly maturities t = 1, . . . , T to be
able to sample the benchmark payoffs at their respective maturities.

5.2 Stochastic UnderlyingModel: the HestonModel

For our exemplification, we need to implement a yearly dynamic for the underlying to sample
the benchmarks and cliquet payoffs and substitute them into the programs Eqs. 2, 11, 26,
27 and 37. We choose the Heston model Eq. Heston (1993) for the underlying process S,
because its dynamic depends on a stochastic variance process V = {Vt }t∈[0,T ]:

d St = μS St dt +√Vt St dW S
t , (42)

dVt = kV (μV − Vt )dt + σV

√
Vt dW V

t , (43)

where the initial conditions are s0 and v0, and μS is the expected return. The process V is
modeled as a mean reverting square root process where kV is the convergence speed to the
long-term mean μV , and σV is the volatility of the variance process. These parameters are
assumed to be positive so that the process is well-defined. Notably, if the Feller condition is
enforced, i.e., 2kV μV > σ 2

V , the variance process is positive for any t . The standardBrownian
motions W V = {W V

t }t∈[0,T ] and W S = {W S
t }t∈[0,T ] are correlated with quadratic variation
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satisfying d[W S, W V ] = ρdt for some constant correlation coefficient ρ ∈ [−1, 1]. We
generate claim and benchmark payoff samples x and gi by simulating yearly values of the
processes V , S under the real-world probability measure P given by the natural parameters
(μS, kV , μV , σV , ρ). This is done by applying the Euler-Maruyama discretization scheme,
fixing the problem of a negative value for the variance thanks to the full truncation scheme
proposed by Lord et al. (2010).

We also briefly introduce the risk-neutral dynamics of the underlying asset portfolio S and
the stochastic variance V . We use it to calculate mark-to-model prices (45) for the bench-
marks. The risk-neutral dynamic is obtained by substituting in Eq. 42, (μS, kV , μV , σV , ρ)

by the risk-neutral parameters (r , k̃V , μ̃V , σV , ρ). The prices of equity and volatility risk are:

qS = μS − r√
Vt

and qV = λ
√

Vt

σV
, (44)

with λ ∈ R a constant parameter. The risk-neutral drifts f̃S and f̃V are given by the relation
f̃ = f − qg, where f is the natural drift and g is the diffusion coefficient (see Eqs. 42 and
43). Imposing the Feller condition, process V never reaches zero. Given the value μV , the

convergence speed is kV = k̃V μ̃V
μV

and the risk premium is λ = k̃V − kV (see Heston (1993),
p. 335).

5.3 Numerical Results

We fix the cliquet guarantee maturity at T = 3 years and the initial value s0 = 100. The
risk-free instantaneous forward rate r is obtained by calibrating the Smith-Wilson method on
the quoted swap rates at the date 2020/11/04 1. From the estimated risk-free term structure
of interest rates, we calculate R = i(0, T ). The value of the instantaneous forward rate is
r = −0.00629 years−1.

We need the natural Heston parameters to sample the scenarios and payoffs so that our
risk calculations give us meaningful results, that is, reserved capital figures calculated with
respect to the natural world and not with respect to the risk-neutral one. We need the risk-
neutral Heston parameters to calculate the benchmark prices as given by amodel calibrated on
market data so that our methodology can qualify as mark-to-model. Therefore, we calculate
the natural Heston parameters in Eqs. 42 and 43 with the estimation of the so-called risk-
neutral parameters (̃kV , μ̃V , σV , ρ). These are calibrated on the quoted prices of 15 European
calls on the same date 2020/11/04 with a maturity of 2023/12/15, whose underlying is the
EUROSTOXX50 index. We choose these calls as their maturities are close to 3 years; the
strike prices are between 3,000 and 4,350 euros. The observed value of the index on the
date 2020/11/04 is 3,161.07. We minimize the sum of the squared errors between the model
prices and the observed prices. We use the R function nmkb from the package dfoptim
which implements the Nelder-Mead algorithm for derivative-free optimization (see Nelder
and Mead (1965)). The minimization problem is solved by imposing appropriate lower and
upper bounds on the parameters, in particular, the parameter k̃V is estimated by enforcing
the Feller condition. The solution gives a mean absolute error equal to 0.524. The long-term
mean level and the speed of mean-reversion are estimated as μ̃V = 0.0246 and k̃V = 3.7340
with a standard deviation σV = 0.4252. The estimated initial value is v0 = 0.0184 and the

1 The ultimate forward rate is equal to 3.75%. We have estimated the parameter α = 0.137 controlling
the speed to the convergence point of 60 years. Technical details can be found in European Insurance and
Occupational Pensions Authority (2018).
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Table 1 Buyer’s and seller’s
prices calculated by entropy
segmentation solving programs
(10), (11), simulation number
m = 60, 000, risk premium
λ = 0. Extremes of the
no-arbitrage interval in bold
characters

Price
Entropy H Buyer’s Seller’s

H → 0 16.873 24.029

8.002 16.873 24.009

10.002 16.882 21.319

10.502 17.012 19.924

10.852 17.339 18.571

10.9531 17.792 17.792

1 Maximum entropy H∗ calibrated to the benchmark set

correlation coefficient is ρ = −0.3638. Without loss of generality, we set μV = 0.0246 and
μS = 0.02. Therefore, the risk premium is λ = 0 (as done by Gatzert (2008)).

Once we have calibrated Heston’s risk-neutral parameters onmarket data, we calculate the
forward starting call option prices using the formula in Kruse and Nogel (2005). We adjust
the formula of the first two benchmarks to take into account that the payment is made at the
maturity T . The benchmark prices are:

c1 = 0.055139, c2 = 0.056772, c3 = 0.056817. (45)

In Table 1 we give the buyer’s and seller’s prices at successive entropy levels, from 0 to the
maximum H∗, corresponding to m = 60, 000 simulations.

In Table 2 we summarize the numerical results. We apply the hedging methodology using
m = 60, 000 simulations 2in the seller’s case H ∈ [0, H∗]. In each case, we write down the
maximum efficient price π∗ (3) corresponding to the maximum entropy level H∗ calculated
through the program (2). We solve the linear program (37) with β = 99.5%, finding the
optimal partial replicating portfolio u∗ and its components θ∗, u∗

S , and u∗
b, corresponding to

the price π∗. We have also reported its CVaR0.995 and VaR0.995. We repeat these calculations
for decreasing entropy levels until we obtain the seller’s prices πmax

H as solutions of the
program (11). The last row is the super-hedging case (noted in bold), i.e., the solution of the
dual program (27) (or Eq. 37 for an enough low entropy level H ). The corresponding price
is the upper bound of the no-arbitrage price interval, as explained in Section 3.

This information is very important for the claim issuer. We find all the available combina-
tions among prices, partial replicating portfolios, and minimal CVaRs hedging the remaining
claim risk. Themaximumefficient priceπ∗ is the lower bound for those prices, with a remain-
ing claim CVaR reaching its highest value. The upper bound of the prices is the seller’s price
with its associated super-hedging portfolio, its remaining claim being the null vector with
CVaR equal to zero (the lowest one).

We have also applied our methodology for m = 60, 000 simulations choosing μV =
1.20μ̃V , so the risk premium is λ = −0.622, and have reported the results in Table 3. We
see that either the seller’s prices or the VaR and CVaR have increased compared to the case
λ = 0.

Our solutions to the risk-minimizing program Eq. 37 are optimal in the sense of the
CVaR, which is a coherent risk measure, and also with respect to the VaR (at least nearly, as
explained by Rockafellar and Uryasev (2000)) which is the risk measure that must be used
following the European insurance Solvency II Directive. This is an important advantage of

2 Results of Table 2 for other simulation numbers to a maximum of m = 100, 000 are available under request
to the authors.
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Table 2 Seller’s prices and CVaR minimization at entropy levels H ≤ H∗

Entropy Price1 Portfolio
H πmax

H θ1 θ2 θ3 uS ub VaRβ CVaRβ

H∗ 10.953 17.792 129.693 131.044 130.519 0.000 −4.214 4.214 4.866

10.852 18.571 129.693 131.044 130.519 0.000 −3.435 3.435 4.087

10.502 19.924 129.693 131.044 130.519 0.000 −2.082 2.082 2.734

10.002 21.319 129.693 131.044 130.519 0.000 −0.688 0.688 1.340

8.002 24.009 159.297 140.352 127.730 0.000 0.000 0.000 0.001

H → 0 24.029 160.050 140.207 127.492 0.000 0.000 0.000 0.000

VaRβ and CVaRβ of the remaining claim, β = 99.5%. Super replicating case is reported in bold characters.
Simulation number m = 60, 000, risk premium λ = 0
1∀H ≤ H∗ : θ c+ uSs0 + ubb0 = πmax

H and πmax
H∗ = π∗

our methodology with respect to other risk-minimizing strategies that may be founded on
some variation of L2 or L1 distances.

Finally, let us point out that we ran calculations on an i-9, 2.30 GHz, 64GB RAM, intel
laptop. We used the Generalized Algebraic Modeling System (GAMS) inside an R language
environment. GAMS in turn called CONOPT for non-linear optimization and CPLEX for
linear programming. The execution times in the case of a simulation number m = 60, 000
were 4.5min for the program (2), 1.4min for the program (11), and 0.13 sec for the linear
program (37).

6 Conclusions

In this article,we have given a newkey idea to calculate EMPMs resulting in each no-arbitrage
price of a contingent claim. This is the method of entropy segmentation consisting of two
convex programs.

Table 3 Risk premium λ = −0.622, simulation number m = 60, 000

Entropy Price1 Portfolio
H πmax

H θ1 θ2 θ3 uS ub VaRβ CVaRβ

H∗ 10.937 17.823 131.732 132.616 136.449 0.000 −4.723 4.634 5.349

10.852 18.596 131.732 132.616 136.449 0.000 −3.949 3.875 4.590

10.502 20.198 131.732 132.616 136.449 0.000 −2.347 2.303 2.684

10.002 21.816 131.732 132.616 136.449 0.000 −0.730 0.716 1.430

8.002 24.687 157.692 149.767 131.809 0.000 0.000 0.000 0.000

24.695 157.987 149.708 131.728 0.000 0.000 0.000 0.000

Seller’s prices and CVaR minimization at entropy levels H ≤ H∗. VaRβ and CVaRβ , β = 99.5%. The super
replicating case is reported in bold characters
1 ∀H ≤ H∗ : θ c+ uSs0 + ubb0 = πmax

H and πmax
H∗ = π∗
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We have also applied Fenchel duality to get the dual programs interpreting them in terms
of risk hedging. The cases of super replication and partial replication are now unified as
particular cases of the same formula 25.

We have adapted the LP methodology from Rockafellar and Uryasev (2000) to calculate
an optimal partial replicating portfolio at a given no arbitrage claim price whose remaining
claim has minimal CVaR. This last amount will have to be reserved by the cliquet guarantee
issuer to cover his risk. Then the hedging position of the claim issuer is defined by these three
elements: seller’s price at an entropy level, partial replicating portfolio, and minimal CVaR.

Finally, we have exemplified considering as a contingent claim a Cliquet-style guarantee.
Our methodology is quite general for it belongs to the family of inverse methods (see for

instance Borwein (2012)), which can be applied to any underlying stochastic dynamic. In
this regard, in our application, we have chosen Heston’s dynamic with parameters calibrated
on quoted prices of European calls estimated with real data. This way prices and hedging
positions take into account the volatility risk.

Appendix A: Fenchel Conjugates, Support and Perspective Functions

In this appendix, we write the Fenchel conjugates and the perspective functions necessary to
build up the dual programs Eqs. 10 and 11. The Fenchel conjugate of a convex function f
with domain dom f = {q ∈ R

m : f (q) < ∞}, is defined as:
∀ y ∈ R

m : f ∗ ( y) = sup
q∈dom f

{
y′ · q − f (q)

}
. (A1)

Consider the set F = {q ∈ R
m : f (q) ≤ 0}. The indicator function of F is:

δF (q) =
{
0 , q ∈ F

∞ , otherwise.
(A2)

The Fenchel conjugate of δF is the support function δ∗
F . It is linked to the Fenchel conjugate

f ∗ (see Roos et al. (2020) pp. 3, 27), provided that F and its relative interior are nonempty
sets, by the identity:

∀ y ∈ R
m : δ∗

F ( y) = sup
q∈F

{
y′ · q} = min

u≥0

{
(u f )∗ ( y)

}
. (A3)

The perspective function associated with F is:

(u f )∗ ( y) = sup
q∈F

{
y′ · q − u f (q)

} = u f ∗ ( y
u

)
. (A4)

When working with inequality constraints, perspective functions are key elements to the
calculation of support functions, which allow the expression of the Fenchel dual of the
primal program in a tractable way.

Objective function (4): It is the same for both primal programs (10) and (11). For any
y0, q ∈ R

m its Fenchel conjugate π∗ is:

π∗ ( y0) = sup
q

{
y0′ · q − f0 (q)

} =
{
0 , y0 = e−rT x

∞ , otherwise.
(A5)
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The Fenchel conjugate (−π0)
∗ of the opposite function is:

(−π)∗ ( y0) = sup
q

{
y0′ · q + f0 (q)

} =
{
0 , y0 = −e−rT x

∞ , otherwise.
(A6)

Benchmark price constraints (5): As Fk = {q ∈ R
m : fk (q) = e−rT q ′ · gk − ck ≤ 0

}
for

k = 1, 2, . . . , n and applying Eqs. A1 and A4, the Fenchel conjugate f ∗
k and the perspective

function (uk fk)
∗ are:

∀ yk ∈ R
m : f ∗

k ( yk) =
{

ck , yk = e−rT gk

∞ , otherwise .
(A7)

∀uk ≥ 0 : (uk fk)
∗( yk) = uk f ∗

k

(
yk

uk

)
=
{

ukck , yk = e−rT uk gk

∞ , otherwise.
(A8)

The reversed inequalities correspond to

Fk =
{
q ∈ R

m : fk (q) = ck−n − e−rT q ′ · gk−n ≤ 0
}

, k = n + 1, . . . , 2n, (A9)

thus:

∀ yk ∈ R
m : f ∗

k ( yk) =
{

−ck , yk = −e−rT gk

∞ , otherwise
(A10)

∀uk ≥ 0 : (uk fk)
∗( yk) = uk f ∗

k

(
yk

uk

)
=
{

−ukck , yk = −e−rT uk gk

∞ , otherwise.
(A11)

Martingale constraints (6): The two inequalities define the subsets:

F2n+1 =
{
q ∈ R

m : f2n+1(q) = e−rT sT · q − s0 ≤ 0
}

(A12a)

F2n+2 =
{
q ∈ R

m : f2n+2(q) = s0 − e−rT sT · q ≤ 0
}

. (A12b)

Applying Eqs. A1 and A4 we obtain:

(u2n+1 f2n+1)
∗( y2n+1) =

{
s0u2n+1 , y2n+1 = u2n+1e−rT sT

∞ , otherwise
(A13a)

(u2n+2 f2n+2)
∗( y2n+2) =

{
−s0u2n+2 , y2n+2 = −u2n+2e−rT sT

∞ , otherwise.
(A13b)

for any y2n+1, y2n+2 ∈ R
m and for any u2n+1, u2n+2 ≥ 0.

Probability constraints (7): We have two sets:

F2n+3 = {q ∈ R
m : f2n+3(q) = q ′ · 1 − 1 ≤ 0

}
(A14a)

F2n+4 = {q ∈ R
m : f2n+4(q) = 1 − q ′ · 1 ≤ 0

}
. (A14b)

The perspective functions are:

∀u2n+3 ≥ 0 : (u2n+3 f2n+3)
∗( y2n+4) =

{
u2n+3 , y2n+3 = u2n+31

∞ , otherwise
(A15a)

∀u2n+4 ≥ 0 : (u2n+4 f2n+4)
∗( y2n+4) =

{
−u2n+4 , y2n+4 = u2n+4(−1)

∞ , otherwise.
(A15b)
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Entropy constraint (9): This defines the set:

F2n+5 =
⎧
⎨

⎩
q ∈ R

m+ : f2n+5 (q) =
m∑

j=1

q j log
(

q j
)

+ H ≤ 0

⎫
⎬

⎭
.

For any y2n+5, q ∈ R
m+ we calculate the Fenchel conjugate of f2n+5:

f ∗
2n+5 ( y2n+5) = ⊂ q sup

{
y′
2n+5 · q − f2n+5 (q)

}

= ⊂ q sup

⎧
⎨

⎩

m∑

j=1

y j
2n+5q j −

m∑

j=1

q j log
(

q j
)

− H

⎫
⎬

⎭

=
m∑

j=1

ey j
2n+5−1 − H . (A16)

For any y2n+5 ∈ R
m+ the perspective function is (see Eq. A4):

u2n+5 > 0 : (u2n+5 f2n+5)
∗( y2n+5) = u2n+5

⎛

⎝
m∑

j=1

e
y

j
2n+5

u2n+5
−1 − H

⎞

⎠ (A17a)

u2n+5 = 0 : (u2n+5 f2n+5)
∗( y2n+5) =

{
0 , y2n+5 = 0

∞ , otherwise.
(A17b)

Non negativity constraints: They define the subset F2n+6 = {q � 0} = R
m+. Its support

function is Roos et al. (2020, p. 8):

δ∗
F2n+6

( y2n+6) =
{
0 , y2n+6 ∈ R

m−
∞ , otherwise.

(A18)
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