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Abstract: The incorporation of hysteresis models in computational electromagnetic software is of
paramount importance for the accurate prediction of the ferromagnetic devices’ performance. The
Preisach and Jiles-Atherton (J-A) models are frequently used for this purpose. The former is more
accurate and can represent a broad range of magnetic materials, but it is computationally expensive.
The latter is more efficient but can accurately model only soft ferromagnetic materials. In this paper, a
recently proposed hysteresis model, referred to as the D’Aloia-Di Francesco-De Santis (D-D-D) model,
is shown to have the best trade-off between accuracy and computational burden. For the first time, a
numerical comparison between the Preisach, J-A and D-D-D models is provided for a large class of
hysteresis loops including soft, semi-hard and hard ferromagnetic materials.

Keywords: computational electromagnetics; curve fitting; ferromagnetic materials; hysteresis
modeling; Jiles-Atherton model; Preisach model

1. Introduction

Ferromagnetic materials, both soft and hard, are widely used as magnetic cores or
permanent magnets in electrical devices, such as inductors, transformers, generators and
motors, due to their high permeabilities or magnetization properties [1]. When designing
such devices, the knowledge and characterization of their hysteretic behavior are therefore
of paramount importance, and having a good mathematical model capable of reproducing
this behavior is important as well [2,3]. However, to achieve an efficient design procedure,
the used models have to be accurate and fast. Satisfying these two criteria simultaneously
is not easy; therefore, a compromise has to be made.

During the past century, a large number of hysteresis models have been proposed and
applied in computational electromagnetics [4–10]. Based on their application level, they can
be classified into scalar and vector models, depending on whether or not the field remains
collinear at all times, as well as between static and dynamic models, depending on whether
or not the constitutive relationships are indifferent to rates. Another classification is based
on their accuracy and distinguishes between mathematical or physical models. The former
are generally faster but less accurate [4,5], as they ignore the underlying physics of the
material behavior, whereas the latter can describe the complex magnetization process more
faithfully and are thus more applicable to engineering problems. The physical models can
be further classified into physics-based and phenomenological models, depending on whether
they are based or not on the actual physical processes occurring in the matter subjected to
magnetic fields.

Among the former are the Stoner-Wohlfarth (S-W) [6] and Jiles-Atherton (J-A) [7]
models, while the Preisach [8], Play [9] and neural network-based [10] models are usually
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considered as phenomenological ones. The implementation of the S-W model requires
the knowledge of the distribution of the particles in the ferromagnetic material. However,
the statistical distribution function is difficult to determine. In order to achieve sufficient
accuracy, a complex identification process is needed based on a vast number of experimental
measurements, which limits its practical application [11]. The J-A model is therefore the
only physics-based hysteretic model that can be easily implemented into the finite element
method (FEM) and hence finds a wide use in the design of electromagnetic devices. The
original J-A model was a static scalar model, but an extension to dynamic and vector
hysteresis models has been proposed in [12,13], respectively.

Phenomenological models are widely used and can be incorporated into FEM simula-
tions as well. The classical Preisach model (CPM) was born as a static scalar model; however,
many extensions and modification attempts have been made over the years [14–17]. For
instance, Della Torre included the dynamic effect and proposed a moving Preisach model
(MPM) [14], while Cardelli provided an extension to the vector Preisach model (VPM) [15].
Attempts to reduce the computational efforts for either CPM and VPM have been made
in [16,17], respectively. Even the Play model and neural network-based models have
been improved to account for the vectorization or numerical speed-up of the hysteresis
models [18–25].

In this study, only the CPM and original J-A models have been considered, as they are
the most popular ones. A numerical comparison between these two models can be found
in [26,27]. The static J-A model is considered to be more efficient in terms of computational
time and memory requirements. On the other hand, the CPM model is not only more
accurate but can represent a wider class of materials because of the arbitrariness of the
material function [27]. Besides these, a novel phenomenological model has been proposed
by the authors in [28], referred to as the D’Aloia-Di Francesco-De Santis (D-D-D) model. In
that paper, only the mathematical background of a scalar model for hard magnetic materials
was described, while in this paper, a numerical comparison with the CPM and J-A models
will be provided for a large class of ferromagnetic materials. From this comparison, it will
be shown that the D-D-D model is the best solution, being as accurate and generic as the
CPM and even faster than the J-A model.

2. Materials and Methods
2.1. Materials

A broad range of ferromagnetic materials have been considered for the numerical
and experimental comparison in order to challenge the fitting capabilities of the several
hysteresis models. Specifically, the measurements of MnZn ferrite provided in [29] and
of Fe-Si taken from the TEAM benchmark 32 [30] have been selected as representative of
soft materials, while the NdFeB at two different temperatures (80 ◦C and 27 ◦C) [28] has
been deemed to be representative of semi-hard and hard materials, respectively. Note that
only major loops were treated in the fitting procedure, as the interest has been in finding
challenging shapes rather than the physical meaning of the hysteresis models.

2.2. Hysteresis Models

In this section, the CPM, J–A and D-D-D models are presented. In their original form,
they give a relationship between the magnetic field vector H and the magnetization M
of the ferromagnetic material. The magnetic flux density B is then obtained from the
constitutive equation given by:

B(H) = µ0(H + M) (1)

where µ0 is the vacuum permeability.
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2.2.1. CPM Model

The CPM is a phenomenological model that presumes a ferromagnetic material to be
composed of a large number of rectangular switches, similar to a Barkhausen jump [8]. The
scalar output M(t) of the CPM is calculated from the scalar input H(t) as follows [3]:

M(t) =
x

T
µ(h1, h2)m(h1, h2, H(t))dh1dh2 (2)

where T denotes the Preisach triangle, µ(h1, h2) is the Preisach distribution function and
m(h1, h2, H(t)) represents the elementary relay operators which can take the values +1 or−1.
Depending on the history of the applied magnetic field, two domains can be distinguished
on the Preisach triangle: one where the operators are switched down (h1) and one where
the operators are switched up (h2). The boundary between domains is called staircase line.

Given its vertices, the magnetization can be determined at any instant with the aid of
the Everett function:

E(x, y) =
∫ y

x

∫ h2

x
µ(h1, h2)dh1dh2 (3)

where x, y is a vertex of the staircase line. The Everett function can be measured; however,
it is common to approximate the Preisach function analytically and perform the double
integration (3) numerically. Compared to the original Preisach model, this way can greatly
accelerate the computation by avoiding the double integration in (2). A closed form of the
Everett function (3) was provided in [31]:

E(x, y) =
a2

b2

(
c2 − 1

)(
−ebx + eby

)
−
(

c + eby
)(

1 + cebx
)

log (1+ceby)(c+ebx)
(1+cebx)(c+eby)

(c2 − 1)2(c + eby
)(

1 + cebx
) (4)

where a, b and c are the parameters of the inverse cosine hyperbolic type Preisach distribu-
tion function, as explained in [32].

The reversible component can be considered as Mr = dH, where d is a constant and
added to the magnetization produced by the Preisach model. It should be noted that an
improved closed form with additional polynomials was proposed in [32], but for the sake
of comparison, the original version was hereby adopted to reduce the parameter numbers.

The Matlab implementation of the above-described CPM is provided by Szabó in [33],
where a nonlinear least-squares (NLS) algorithm based on the Levenberg–Marquardt
method was used for the identification of the parameters.

2.2.2. J-A Model

The scalar J-A model [7] is one of the most famous physics-based hysteresis models that
takes domain wall motion into account. The two modes of domain wall transitions (both
its bending and translational motions) result in a reversible and an irreversible component
of magnetization, respectively. The mutual coupling of the domains, i.e., the pinning of
domain walls at impurity sites during the motion and flexibility of the domain walls, is also
taken into account. The energy dissipated in overcoming these pinning sites contributes to
hysteresis loss. The total magnetization inside a material is computed using an ordinary
differential equation (ODE) and is given by [34]:

dM(t)
dH

=
cJ

1 + cJ

dMan
(

Ms, aJ
)

dH
+

1
1 + cJ

Man
(

Ms, aJ
)
−M(t)

sign
(

dH
dt

)
k− αJ

(
Man

(
Ms, aJ

)
−M(t)

) (5)

where Man is the anhysteretic magnetization that is computed using Langevin’s polyno-
mial [7], while Ms, αJ, aJ, k and cJ are the five J-A model parameters, which represent the
saturation magnetization, the inter-domain coupling coefficient, the effective domain den-
sity, the energy-dissipative features in the microstructure and the reversibility coefficient,
respectively [35].
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The MATLAB code of the J-A model is provided by Szewczyk in [29], where the ode23
function was used to solve (5) and an NLS method based on the Nelder and Mead Simplex
algorithm was employed to identify the five parameters.

2.2.3. D-D-D Model

The D-D-D method is a phenomenological model based on the analogy between the
change in magnetization caused by a single hysteron and the change in the velocity of
disk-shaped solids elastically colliding with each other [28]. By assuming a scalar and
time-harmonic applied field H with an angular frequency ω, a simple ODE is obtained [28]:

dM(t)
dt

= γsin(ωt + β) e−αDcos2(ωt+β) (6)

where γ, αD and β are the three D-D-D parameters. In particular, the former affects the
amplitude of the magnetization, whereas α and β influence the slope and width of the
obtained hysteresis loop, respectively. It should be noted that the proposed D-D-D model
is conceptually similar to the Preisach model but mathematically closer to the J-A model,
with an even simpler ODE to be solved and two parameters less to be identified. Since the
latter are straightforward to determine, a tentative approach has been undertaken.

3. Results

The curve fitting of the several hysteresis loops for the three considered models is
reported in Figure 1, while the coefficients obtained by the identification parameters are
summarized in Table 1. As can be observed, the CPM and D-D-D models can fit hard
materials and MnZn ferrite well but suffer to reproduce the near saturation region of the
major loop 11 in the rolling direction of the Fe-Si. It should be noted that a better fitting
for this material has been obtained with the CPM in [32], but a higher order (up to 3) of
the polynomial used to discretize (3) has been taken, bringing the number of parameters
to be identified up to nine, plus the d coefficient for the reversibility. On the other hand,
the J-A model is well suited for soft materials [29] but suffers to fit semi-hard and hard
materials. The main reason for this is the natural sigmoid-shaped hysteresis curve coming
from Langevin’s polynomial used for the anhysteretic magnetization [35], which is not
always suitable for hard materials. Therefore, modifications to the original J-A model
have been provided to overcome this issue but complicate the model and the identification
procedure, with eight parameters to be identified [36].

Table 1. Parameters of the considered hysteresis models for the several materials.

Material Model
Parameter Number 1

1 2 3 4 5

MnZn
ferrite

CPM 0.049 −8.73 17.495 0.95·10−3 -
J-A 3.178·105 1.099·10−7 12.649 12.448 0.844

D-D-D 2.74·105 5.5 0.116 - -

Fe-Si loop
11

CPM 0.044 69.12 23.212 4·10−4 -
J-A 1.23·106 1·10−4 47 66 0.99

D-D-D 1.194·106 300 0.07 - -

NdFeB at
80 ◦C

CPM 6.6·10−3 4.56·105 1.49·105 0.5·10−3 -
J-A 1.18·106 0.46 1.25·105 5.24·105 0.05

D-D-D 1.13·106 12.5 0.3 - -

NdFeB at
27 ◦C

CPM 0.016 1.24·106 5.44·104 0.2·10−4 -
J-A 0.954·106 1.1 1.45·105 1·106 1·10−6

D-D-D 0.909·106 20 1.02 - -
1 Parameter number reads as follows: CPM: a, b, c and d; J-A: Ms, αJ, aJ, k and cJ; D-D-D: γ, αD and β.
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Figure 1. Comparison between measured (solid) and calculated (dashed colored) hysteresis loops.
(a) MnZn ferrite. (b) Fe-Si loop 11. (c) NdFeB at 80 ◦C. (d) NdFeB at 27 ◦C.

3.1. Accuracy

To quantify the accuracy of the proposed models, two metrics are usually employed.
The first one is related to the core losses obtained by the area integral A of the hysteresis
loops, where the percentage error can be evaluated as:

e =
|Am − Ac|

Am
·100 (7)

Am and Ac are the measured and calculated areas, respectively. The second one is presented
to elaborate the goodness of fit of the proposed models (i.e., the Pearson correlation
coefficient), which is expressed as [24]:

r2 = 1− ∑Nm
k=1(Bm,k − Bc,k)

2

∑Nm
k=1

(
Bm,k − Bm,avg

)2 (8)

where Nm is the total number of sampled measurement points, Bm,k is the k-th measured
point, Bc,k is the k-th calculated point and Bm,avg is the average value of all measured points.
The value range of r2 is [0, 1], and the closer it is to 1, the more accurate the fitting is.
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Table 2 summarizes the accuracy values obtained by the several models for the con-
sidered materials. As can be noted, the J-A model results are the most accurate for soft
materials but suffer for semi-hard and hard materials, and vice versa for the CPM. Instead,
the proposed D-D-D model shows good accuracy for all materials with an error in the core
losses always below 5% and a Pearson coefficient higher than 0.97.

Table 2. Numerical comparison of the considered models. Bolded values are the most performant
metrics.

Material Model e
(%) r2 CT

(s)

MnZn ferrite
CPM 4.05629 0.99785 0.09182
J-A 1.51375 0.99948 0.15134

D-D-D 4.53686 0.99718 0.00685

Fe-Si loop 11
CPM 15.24575 0.91456 0.08678
J-A 5.0458 3 0.99212 0.22523

D-D-D 4.91653 0.97532 0.00976

NdFeB at 80 ◦C
CPM 0.19651 0.99927 0.07080
J-A 9.62853 0.93845 0.26254

D-D-D 2.03716 0.99921 0.00766

NdFeB at 27 ◦C
CPM 2.18167 0.99584 0.07430
J-A 31.31527 0.79565 0.35150

D-D-D 2.16800 0.99872 0.00660

3.2. Computational Time

Table 2 also shows the computational time (CT) obtained by the several hysteresis
models for the considered materials. They have been implemented in MATLAB R2021a
(©The MathWorks Inc.) and executed on a PC with an Intel Core i7-1165G7 CPU running
at a clock speed of 2.80 GHz. As can be observed, the D-D-D model is the faster method,
followed by the CPM and the J-A model.

4. Discussion

Since we used open-source codes, CTs for all the hysteresis models are evaluated for
the single iteration (the final one), without accounting for the identification procedure,
which could depend on the adopted strategy affecting the comparison. Moreover, for the
CPM, the number of sampling points for the ascending and descending branches affects
not only the accuracy but also the CT [27,31,32]. Therefore, a number of Nasc = 100 samples
for each branch has been deemed as a good trade-off between accuracy and CT.

As for the CPM, the number of sampling points Nasc is shown to affect the accuracy,
even for the D-D-D model, the number of points Nc = 2 Nasc used to discretize the phase shift
vector ωt would affect the accuracy. Indeed, it has been experienced that a number Nc < 100
yielded unclosed and asymmetric loops. This could happen with coarse measurement
points (Nm < 100) in evaluating the Pearson correlation coefficient (i.e., Nc = Nm). In such a
case, an oversampling of both measured and simulated points will avoid this issue.

To further improve the accuracy of the D-D-D model, it is also desirable to refine the
sampling step where the gradient of the magnetization is steepest and relax it where it
is smoothest, as expected from (6). Once again, this is somewhat not controllable during
measurement campaigns but could be overcome in the post-processing phase. Another
improvement that could be made is to add a reversible term, as for the CPM, which will
give a slope to the magnetization after saturation when needed, such as for Fe-Si loop 11.

Finally, we noted that a tentative approach has been undertaken for the parameter
identification of the D-D-D model, but in the future, an automated optimization procedure
could be easily afforded.
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5. Conclusions

The incorporation of hysteresis models in finite element analysis (FEA) is of utmost
importance for the accurate predictions of the ferromagnetic devices’ performance. The
Preisach and Jiles-Atherton (J-A) models are typically used for this purpose. The former is
more accurate and can represent a broad range of magnetic materials, but it is computa-
tionally expensive unless closed forms of the Everett function are used. The latter is more
efficient but can accurately model only soft ferromagnetic materials [27].

In this paper, a hysteresis model previously proposed by the authors, referred to as
the D’Aloia-Di Francesco-De Santis (D-D-D) model, is compared with the Preisach and J-A
models for a large class of hysteresis loops including soft, semi-hard and hard ferromagnetic
materials. The results of this comparison have shown that the proposed model represents
the best solution, as it is as accurate as the Preisach model and even faster than the J-A
model. This makes the D-D-D model the perfect candidate in FEA.
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