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Abstract—Given the recent increase in the availability of multi-
spectral multibeam echosounder data, this work aims to identify
suitable processing and classification methodologies for seabed
classification based on such data. We propose a complete processing
and classification pipeline and investigate the adequacy of state-of-
the-art classification algorithms to perform seabed classification
based on multispectral backscatter data alone, and when additional
data sources are considered. Starting from raw acquisition data,
we generate region-wide multispectral backscatter composite im-
ages through noise removal, inpainting/gap-filling and mosaicking.
Ground truth data from in situ seabed samples are used. We have
tried different classification methods, including random forests,
support vector machines, and multilayer perceptrons, with the
latter providing the best results. Quantitative and qualitative evalu-
ation on five surveys indicate high classification performance based
only on multispectral backscatter data, while additional features,
like bathymetry, bathymetric positional index (BPI), or positional
encoding, offer limited gains. We offer a web service for seabed
classification from multispectral multibeam echosounder data to
further support and increase interest in the topic.

Index Terms—Backscatter, data analysis, echo sounding,
machine learning, seabed classification, seafloor mapping.

I. INTRODUCTION

THE ability to map the composition of the seabed is crucial
across a wide range of applications in various sectors,

including marine geology and biology, archaeology, energy,
oil, and gas ([1], [2]). Different types of classification and
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categorization may be considered in terms of seabed classes
depending on the application at hand ([3], [4]). Notwithstanding
the major financial and scientific interest, seabed classification
poses serious challenges due to a variety of factors [4]. These
include the varying conditions in the water column that hinders
remote sensing and inaccessibility which make sampling of
ground truth data difficult and sparse.

The main means of collecting information about the seabed
are echosounders, which emit sound pulses at specific fre-
quencies and process their echoes. Compared to single-beam
echo-sounders, multibeam echosounders (MBES) offer higher
resolution and wider coverage because they use more receiver
elements, allowing for beamforming. By analyzing the collected
echoes, both the distance of the ensonified area from the sensor
and its reflectivity characteristics can be estimated, produc-
ing bathymetric and backscatter data, respectively. The latter
provide crucial information regarding the composition of the
seabed. As a result, backscatter data have been considered as the
primary feature for classifying and characterizing the seabed of
a surveyed area ([5], [6], [7], [8], [9], [10]).

MBES typically operate at a single frequency, making in-
terpretation and classification based on backscatter data chal-
lenging as different compositions can have similar responses at
the used frequency, thus, requiring the integration of other data
modalities like bathymetry and bathymetry-derived products
to help the classification process [9], [10], [11]. Multispectral
multibeam echosounder (MS-MBES) data can be collected
either by performing multiple passes over the same area, by
combining multiple units operating at different frequencies,
or by using recently developed multifrequency echosounders.
According to multispectral data collected from optical sensors,
different sediment types and materials have different acoustic
backscatter responses according to the frequency utilized, giving
rise to distinct acoustic spectral signatures, thus, providing cru-
cial information regarding the composition of the seabed ([12],
[13], [14]).

Due to the relatively recent emergence of MS-MBES acquisi-
tion methods and their limited availability, only a few works have
tackled the problem of seabed classification from multispectral
backscatter data ([3], [14], [15], [16], [17]). Most of these
methods have been proposed in the context of the R2Sonic Multi-
spectral Challenge [18], which released a number of MS-MBES
data sets acquired in the regions of Bedford Basin (CA), Patricia
Bay (CA), and Lower Portsmouth (US) to explore new ways
of using multispectral backscatter data for seabed classification
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and characterization. Each method follows a different approach
on how survey data are treated, how multispectral classes are
defined, how sediment samples are considered, and what tech-
niques are used for producing seabed classification maps.

In this work, we aim to simplify the process of seabed classi-
fication from MS-MBES data by exploiting prior knowledge in
multispectral image classification, and improve the classification
performance by employing state-of-the-art machine learning
methods. Our evaluation uses the five data sets made available
through the R2Sonic Multispectral Challenge [18], captured at
three frequencies, namely, 100, 200, and 400 kHz (more details
are provided in Section IV).

The contributions of this work are the following:
1) propose a complete processing pipeline for producing

multispectral backscatter images of the seabed starting
from the survey data. The pipeline considers removal of
noisy areas, missing values completion via inpainting/gap-
filling and composition of multichannel color composite
images;

2) comprehensively evaluate seabed classification on the
R2Sonic Multispectral Challenge data sets using three
standard classifiers, Random Forests (RF), multilayer per-
ceptron (MLP), and support vector machines (SVM), con-
sidering per region classification models, model transfer-
ability, and a comprehensive ablative study;

3) propose the use of positional encoding for encouraging
local coherence of the resulting classification map;

4) through the evaluation show that MLPs perform better
with respect to the other methods, while for all methods
high classification performance can be achieved using
MS-MBES data alone, with additional features (e.g., bath-
metry and BPI) offering limited gains;

5) provide an on-line service for seabed classification based
on MS-MBES data for reproducibility and for foster-
ing further research on MS-MBES seabed classification
methods.

The rest of this article is organized as follows. Section II
discusses previous work, and Section III presents the proposed
method for seabed classification from MS-MBES data. Sec-
tion IV presents the data sets considered and discusses the
experimental evaluation of the proposed method and Section V
the corresponding web service, while Section VI concludes this
article.

II. RELATED WORK

A number of classification methods based on MBES data have
been developed in the last decades to characterize the seabed,
considering both single and multifrequency backscatter data,
bathymetry, and other data sources ([3], [5], [6], [7], [8], [14],
[15], [16], [17], [19]). Acoustic backscatter intensity together
with bathymetry and bathymetry derived products, like slope,
bathymetric position index (BPI) [20], etc., are the most common
features used in seabed classification. Backscatter depends on
the composition of the seabed, the angle of incidence, and the
acoustic frequency [9], [10], [11], [21]. In several lab and field
experiments, in which the influence of varying frequencies on the

backscatter strength has been studied, it was shown that specific
sediment types have different acoustic responses at different
frequencies ([14], [15], [19], [21]). In this work, we explore
the possibility that multispectral bacskcatter data are sufficient
to perform accurate seabed classification, without the addition
of other common data sources.

The following works used the R2Sonic Multispectral Chal-
lenge data sets [18]. In [15], the produced classification maps
were based on the Bayesian method for sediment classification
by using either single (100, 200, and 400 kHz) or multiple
frequencies. Considering the MBES data set acquired in 2017
at Bedford Basin, single frequency backscatter data at 200 and
400 kHz suggested for a maximum of five acoustic classes each,
while the multispectral approach resulted in a classification map
consisting of nine multispectral acoustic classes. The evaluation
of these methods was based on the spatial correlation of the
acoustic classes derived within each frequency and the grab
samples.

The method of [16] is based on conditional random field
(CRF) and Gaussian mixture models (GMM) which were ap-
plied on the multispectral data acquired at Patricia Bay and Bed-
ford Basin regions. The highest level of mean cross validation
accuracy was 91% using four classes for Patricia Bay and 99.5%
with three classes for Bedford Basin. For both experiments, the
training data set was 50% of the seabed observations.

The approach of [3] used spatial patterns and in particular
variable size cell (VSC) database architecture developed by
Geoconsulting Marine of Halifax, Nova Scotia. This method
has been applied on three MBES data sets, namely, Patricia Bay,
Bedford Basin 2016 and 2017 and led to three classification maps
respectively depicting nine seabed classes.

Finally, [17] used Boosted Regression and Classification
Trees. Considering the MBES data sets of Bedford Basin 2016
and 2017 combined, they characterized three substrate and bi-
ological cover types with an average accuracy of 96%, with
respect to reference sites where underwater photographs were
available.

III. MULTISPECTRAL BACKSCATTER

PROCESSING AND CLASSIFICATION

In this section, we present a complete MS-MBES data pro-
cessing pipeline for seabed classification and characterization.
The pipeline for producing seabed classification maps based on
multispectral images, starting from GSF files containing data for
individual scanlines, is summarized in Fig. 1.

A. Data Processing

We define first the preliminary processing steps utilized for
converting the MS-MBES data sets from their raw data format
to georeferenced multichannel raster data, which are used to
produce highly accurate seabed classification maps for each
study site [22]. The main processing steps are the following:
1) preprocessing and extraction of survey line data from raw
survey data; 2) inpainting of noisy segments per survey line;
3) composition of multispectral raster images; 4) multispectral
image normalization.
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Fig. 1. Developed seabed classification methodology; starting from GSF multispectral multibeam data to the produced seafloor classification map for three
frequencies (f1, f2, and f3).

1) Preprocessing and Extraction of Survey Line Data: The
first step is the preprocessing and extraction of the bathymetric
and backscatter data of the MS-MBES surveys from the GSF
files. First, all GSF files corresponding to a survey were imported
to the MB-System open-source software ([23], [24], [25]) for
initial processing. Both bathymetric and backscatter informa-
tion are extracted from the survey data. Regarding bathymetry,
rasters have been produced with a spatial resolution of 0.20 m
based on all the data acquisition frequencies.

Regarding backscatter data, based on the additional data pro-
vided in the raw data files, all necessary corrections have been
applied ([1], [4], [26], [27]). Data were processed separately
for each acquisition frequency, namely, 100, 200, and 400 kHz,
and Georeferenced rasters were produced for each survey line,
considering the same spatial resolution as the bathymetry raster
(0.20 m). The backscatter data had speckle in an area within
±12◦ from the nadir (approximately 7% of total swath) [27], as
shown in Fig. 2. As this type of noise correlates with the beams’
grazing angle, we have removed the data within a grazing angle
of ±12◦.

2) Inpainting of Noisy Areas: After removing the noisy area
from each survey line, gaps may remain in the mosaic even after
combining all the survey lines, as shown in Fig. 3, despite the
fact that the overlap between successive survey lines is typically
close to 50%.

To obtain a gap-free mosaic, gaps in each survey line are
filled via inpainting/gap-filling. Inpainting techniques aim to fill
missing pixels in an image realistically, following the available
context ([28], [29], [30]). We tried a range of method includ-
ing [29], [30], and the angular dependence removal method of
MB-System, however, they all produced unsatisfying results,
with oversmoothed areas, and/or artefacts. Results from fast
marching inpainting (FMI) [28] were more satisfying, as they

Fig. 2. Detail of noisy area of a survey line in the backscatter data.

followed better the distribution of the values surrounding the
affected areas.

FMI starts from the boundary of the segment to be filled and
proceeds to the inside. Each pixel to be inpainted is replaced
by the normalized weighted sum of all the pixels with valid
values in the neighborhood. The process is influenced heavily
by the weights. Thus, more weight is given to the pixels close
to the pixel being inpainted, close to the normal of the gap
boundary and the pixels lying on boundary contours. Once a
pixel is inpainted, the method moves to the nearest pixel using
the fast marching method. FMI ensures that missing values close
to known pixels are inpainted first, simulating a manual heuristic
operation. An example of inpainting is presented on Fig. 4.
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Fig. 3. Backscatter mosaic from multiple survey lines at 100 kHz from Bedford
Basin 2016 after noise removal. Note that there are missing areas in the mosaic
even though the overlap is close to 50%.

Fig. 4. Backscatter data mosaic at 100 kHz from the Lower Portsmouth Harbor
before noise removal (left), and after removal and inpainting of the noisy area
(right).

The above technique has been applied to each frequency
separately for each survey line of a data set. After inpainting
the noisy areas of each scanline, a mosaic is produced for all the
survey lines of each frequency. These mosaics (here, for 100,
200, and 400 kHz frequencies) are then combined producing a
georeferenced color composite image.

3) Normalization of Multispectral Images: To reduce bias
introduced during backscatter raster generation, on one hand,
and increase numerical stability of the classification methods, on
the other, we normalize each channel of the multispectral raster
data corresponding to a specific data acquisition frequency.
We applied standardization, where the mean intensity value of
the channel is subtracted and the difference is divided by the
variance of the values. Specifically, letting Ω denote the image
domain, N the set of no-data locations, \ the set difference
operator, and Iijc be the value of the multispectral image I at
(i, j) ∈ [0, 1]Ω and c ∈ F with F the set of the image channels

Istdijc =
Iijc − μc

σ2
c

(1)

Fig. 5. Histogram of multispectral mosaic of Bedford Basin in 2017 before
and after normalization. In particular, top: No normalization, and bottom: Std.
Normalization.

with

μc =

∑
i,j∈Ω\N Iijc

|Ω \ N | , σ2
c =

∑
i,j∈Ω\N (Iijc − μc)

2

|Ω \ N | . (2)

We note here that to avoid leakage of information from
training to validation/test data, normalization parameters (μc and
σc) are computed based solely on the subset of data constituting
the training set. An example of Bedford Basin 2017 survey
histograms, before and after the standardization, is shown in
Fig. 5.
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B. Seabed Classification

1) Classification Models: We compute seabed classification
maps by performing classification based on the generated multi-
spectral images of the seabed. In particular, three main classifi-
cation models were considered, namely, RF [31], MLP with two
hidden layers [32], and linear SVM [33]. The intensity values
(after normalization) of all frequency channels are provided as
input to the models, which are trained to predict the correspond-
ing seabed class.

We build ground truth data considering that pixels within
a given radius from an in situ sample belong to the same
seabed class as the sample. Additionally, to avoid spatial auto-
correlation ([11], [34], [35]), we considered the annotated pixels
to be grouped together based on the corresponding sample’s
ID. Then, to produce spatially disjoint training and validation
sets, we perform splitting based on these IDs, ensuring that the
resulting sets contain data from different samples. The training
set is used to train the classification model and the validation
set is used to evaluate the performance of the model. The
classification models are compared based on their performance
in Section IV, considering different splitting ratios.

Besides training classification models for each region sepa-
rately, we examine how well the results of a model trained on the
data of a specific survey can be transferred to a different survey,
without retraining the model.

2) Additional Information: We also examine additional in-
formation that can be used to further increase the accuracy of
the classification models. The most prominent is the bathymetry
of the region as well as the BPI, which can be obtained from the
survey data.

We also consider augmenting the input data with positional
encoding to increase spatial coherence of the classification re-
sults. Positional encoding [36] captures the information regard-
ing the relative position of a data sample with respect to the rest.
LettingX ∈ Rd×N the input data withd the encoding dimension
andN the number of samples,u ∈ R2×N denotes the 2-D image
coordinates of the input data and σ a base encoding frequency,
we can enrich the data with positional encoding as follows:

XPE = X + cos(2πBu) + sin(2πBu) (3)

with B ∈ Rd×2 where each value is sampled from N (0, σ2).
The value of σ affects the degree of spatial coherence of the
resulting classification map [37]. A suitable value can be found
with a hyperparameter sweep.

Recently, positional encoding has gained a lot of attention due
to its central role in Transformer networks [36], as well as its
use in reconstructing high-frequency signals using MLPs [37].
Though typically used in the context of neural networks, posi-
tional encoding can assume analogous functionality when used
with other machine learning models. Hence, here, we apply it to
all types of models considered.

IV. EXPERIMENTAL EVALUATION

In this section, we provide a comprehensive evaluation of the
proposed seabed classification method based on multispectral
images of the seabed. First, the data sets considered are described

TABLE I
DETAILS OF SURVEYS CONSIDERED

TABLE II
SEABED CLASSES CONSIDERED ACCORDING TO EMODNET

FOLK 5 TAXONOMY

and, then, results of the quantitative and qualitative evaluation
are provided. The quantitative evaluation is based on the stan-
dard metrics of Overall Accuracy (OA), User’s Accuracy (UA),
Producer’s Accuracy (PA), and F1-score. Model transferability
is also evaluated.

Moreover, an ablative study is presented assessing how dif-
ferent models, input data types and splitting ratios affect the
results. Based on these results, MLPs have shown improved
performance with respect to RFs and SVMs across all metrics
considered. For this reason, MLPs with two hidden layers of
512 units are used as the reference classification model in this
section.

A. Data Sets

Currently, public availability of MS-MBES data is rather
limited. Hence, we base the evaluation of our method on the
five MS-MBES survey data sets corresponding to three distinct
regions provided in the context of the R2Sonic Multispectral
Challenge 2017, captured with the R2Sonic 2026 Echosounder
in three frequencies, namely 100, 200, and 400 kHz. Further
details of the data sets considered are provided in Table I.

For the aforementioned regions the data that have been pro-
vided and utilized were either GSF files [38] or, in the case
of Bedford Basin 2018, georeferenced multispectral images, as
well as reference data and survey reports providing sediment
classification information for each region. Ground truth data are
taken within a given radius around available in situ samples.
The classes considered follow the EMODnet FOLK taxonomy
for five seabed classes [39]. Table II reports all the classes
encountered in the data sets considered.

In the following, we discuss in detail the data considered for
each region. Bathymetric and backscatter information, presented
in the form of color composite images, for all regions is shown
in Fig. 6.
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Fig. 6. Backscatter color composite images (1st column), classification results (2nd col.) and bathymetries (3rd col.) for the Bedford Basin 2016, 2017, 2018
(rows 1–3), Patricia Bay (4th row), and Lower Portsmouth (5th row) surveys.
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TABLE III
CONFUSION MATRICES OF BEDFORD BASIN SEABED CLASSIFICATION FOR THE 2016 (LEFT), 2017 (MIDDLE), AND 2018 (RIGHT) SURVEYS USING MLP

CLASSIFIER (ROWS CORRESPOND TO TRUE LABELS AND COLUMNS TO PREDICTED)

Bedford Basin, Halifax NS, Canada: Three MS-MBES data
sets have been acquired in Bedford Basin, Halifax, Nova Scotia
in April 2016, May 2017, and December 2018, respectively,
with the R2Sonic 2026 Multibeam Echosounder. The first two
surveys, performed in 2016 and 2017, consist of 151 and 13
survey lines, respectively, with an approximate coverage of 1.84
and 2.30 km2. Bathymetric maps of the surveyed sites, have been
extracted from the provided GSF files, with the deepest area
approaching 71 m. Regarding the MS-MBES data set of 2018,
this has been provided as a multispectral mosaic along with
the corresponding bathymetry and not in the form of individual
survey lines.

Reference data: Ground truth consists of in situ seabed sam-
ples and pictures of the Bedford Basin region collected during
the surveys.

Based on the analysis of these data, the following seabed
classes have been identified for the Bedford region: 1) mud,
and 2) coarse sediment. Two of the samples are of class “mixed
sediment” (sandy mud) but they were not considered as they are
insufficient for classification purposes.

Patricia Bay, North Saanich BC, Canada: The fourth survey
corresponds to Patricia Bay, Canada and has been performed in
November 2016, consisting of eight survey lines in total and a
coverage area of 0.84 km2. The water depth ranges from 25 to
75 m. According to [40] and [41], several distinct seabed types
have been classified ranging from rock to mud over a wide range
of depths in the bay.

Reference data: For the MS-MBES data set of Patricia Bay
samples from the seabed were not directly available. Instead,
we reused the seabed sample information reported in [40] based
on a survey from 2005 performed with the Kongsberg Simrad
EM300 echosounder. Specifically, ground-truth consists of point
samples whose location is based on the map of [40] (after
georeferencing), and whose classes are taken directly from the
FOLK-like sample characterization as reported on the map.
Based on these data, the seabed classes considered for the
Patricia Bay region are: 1) sand, and 2) coarse sediment.

Portsmouth Harbor, NH, USA: The last survey has been
conducted in the Portsmouth Harbor, New Hampshire, USA,
with nine survey lines with a total covering area of approximately
0.5 km2. Seabed backscatter observations at 100, 200, and
400 kHz were collected as the vessel made passage through

1One survey line had to be discarded due to data conversion problems to the
GSF format.

the mouth of Portsmouth Harbor in water depths ranging from
5 to 25 m. Strong tidal currents, periodic storm waves, and a
heterogeneous seafloor compose the area and a range of sedi-
ments from muddy fine sands to pebble and cobble gravels and
bedrock outcrops ([42], [43]).

Reference data: As in the case of Patricia Bay, samples
collected in a previous survey were used. In particular, ground
truth data were based on a preceding survey performed with
a singlebeam Simrad ES200-7CD SBES in 2013 [42] where
seafloor imagery was also captured. Based on the grain size
analysis provided in [42] for the samples collected in six sites,
the classes considered are: 1) sand; and 2) mixed sediment.

B. Intraregion Classification

We first consider seabed classification maps obtained by
training a classification model separately for each region. For
each region, the reference data were taken within a radius of
4 m around the in situ samples and the were subsequently split
randomly according to the sample ID taking 70% as training and
30% as validation data. To account for randomization effects,
each experiment is performed three times and the average value
from these runs is reported. Training of MLPs is performed
on the training set and classification maps are generated by
predicting the labels of the entire multispectral image (except
nonvalid areas). Quantitative evaluation is performed on the
validation set.

Fig. 6 presents the classification map obtained for each re-
gion, along with the color composite backscatter image and the
bathymetry of the region, while Tables III and IV present the
corresponding confusion matrices. We observe that in all cases
classification accuracy is above 95%, while F1-score is higher
than 84%. Qualitative assessment, suggests that classification
results are in good agreement with the corresponding backscatter
images. In particular, in the case of Patricia Bay, the classification
map obtained is in good agreement with the classification map
provided in [40], as can be seen in Fig. 7.

C. Model Transferability

We examine now the ability to use a model trained on the data
of a specific survey to produce a classification map for a different
survey. In particular, we examine the case of Bedford Basin
surveys, taking all the labeled pixels of a specific survey/year
for training and using the trained model to produce classification
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Fig. 7. Comparison of Patricia Bay Seabed Classification Map (right) with the aligned classification map provided in [40] (left).

TABLE IV
CONFUSION MATRIX FOR PATRICIA BAY 2016 SURVEY (TOP) AND LOWER

PORTSMOUTH HARBOR 2017 SURVEY (BOTTOM) USING MLP CLASSIFIER

(ROWS CORRESPOND TO TRUE LABELS AND COLUMNS TO PREDICTED)

maps of the remaining two surveys. It should be noted that as
these three regions share the same sample points, we fix the
IDs of the samples that act as training set and those that act
as validation set. Training is performed on all train samples of
the source region, and evaluation on all validation samples of
the target region. Table V presents the evaluation results for all
possible combinations. We see that the classification accuracy is
above 80% in all cases while F1 scores are in the range of 62%
to 88%.

TABLE V
MODEL TRANSFERABILITY ASSESSMENT ON THE BEDFORD REGION USING

MLP MODELS (ROWS INDICATE THE TRAINING DATA SET AND COLUMNS

THE EVALUATION DATA SET

Table VI presents the confusion matrices when training is
performed on the 2018 survey data (most recent) and evaluation
on the 2016 and 2017 survey data. Fig. 8 presents the corre-
sponding classification maps. We note that in the 2016 results
most errors regard the misclassification of some muddy areas as
coarse sediment ones.

D. Ablative Study

A comprehensive ablative study has been performed consid-
ering various aspects of the seabed classification method based
on the MS-MBES data sets presented. In all cases, to account for
randomization effects, we report the average of three consecutive
runs. Moreover, to guarantee fair comparisons and repeatability,
random seeds are fixed.

First, we examine the performance of the three types of clas-
sifiers considered, namely the Random Forest, multilayer per-
ceptron, and the linear support vector machine classifiers, across
all available regions and surveys by using 70% of the samples as
training data set. Additionally, we study how the classification
performance is affected by considering bathymetry, BPI and
positional encoding2 as additional data. The results are provided
in Table VII, while the corresponding classification maps for the

2parameters σ are selected with hyperparameter sweep
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Fig. 8. Left: Classifications maps of Bedford Basin 2016 (top) and 2017 (bottom) surveys, with model trained on the 2018 survey data. Middle: Reference
classification maps from models trained on the same survey data. Right: Differences.

TABLE VI
PREDICTION ON BEDFORD BASIN 2016 (TOP) AND 2017 (BOTTOM) WITH

MODEL TRAINED ON 2018 DATA USING MLP CLASSIFIER (ROWS

CORRESPOND TO TRUE LABELS AND COLUMNS TO PREDICTED)

Bedford Basin 2016 survey are presented in Fig. 9. We observe
that all models have similar performance with MLP slightly out-
performing the other two methods both with respect to accuracy

and F1 score. We also observe that both the bathymetry and
the use of positional encoding in some cases improve while in
others negatively affect the classification performance. This is
also the case for BPI, however in the case of Portsmouth it did not
provide valid results as it was always constant. The qualitative
evaluation shows that in the case of RF classifiers, additional
data sources introduce pronounced artifacts in the classification
maps, which are not evident from the quantitative results. MLP
on the other hand, seems to handle better these additional data
sources. Even when backscatter alone are considered, MLP
produces more spatially coherent results with respect to the RF
model. This is also one of the reasons MLP has been considered
as the reference model, besides its marginally better quantitative
results.

In Table VIII, we examine how the classification performance
is affected (in terms of OA and F1) as the training/validation
split proportion changes, for MLP classifier. We note that the
performance is not heavily affected by the splitting ratio. This
is encouraging as it suggests that fewer reference data can
be used for training without largely affecting the performance
accuracy.

Regarding data normalization, we consider the case of model
transferability where the effect of performing normalization
is more evident. Considering the transferability of the model
trained on Bedford Basin 2016, Table IX shows how classifica-
tion performance is affected for different types of data normal-
ization. We note that normalization increases the classification
performance in all cases.
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TABLE VII
EFFECT OF BATHYMETRY AND POSITIONAL ENCODING FOR DIFFERENT CLASSIFIERS (BEST VALUES APPEAR IN BOLD)

Fig. 9. Comparison of classification maps on the Bedford Basin 2016 survey data considering different data sources. 1st column: Only backscatter, 2nd col.:
positional encoding, 3rd col.: bathymetry, 4th col.: BPI. The 1st row shows the results of the MLP model and the 2nd row from the RF model.

TABLE VIII
EFFECT OF DIFFERENT TRAINING/VALIDATION SPLIT PERCENTAGES (BEST VALUES APPEAR IN BOLD)

We also study the effect on the results of the size of the disk
around the samples where ground truth is defined, as well as
the size of the MLP hidden layers. The top panel of Fig. 10
shows how the size of the disk affects the classification accuracy.
We see that for most regions a disk of size 4 m gives the best

results. Nevertheless, the accuracy is relatively insensitive to the
size of the disk, for the range considered. The right panel of
Fig. 10 shows how the size of the neural network (number of
neurons in the hidden layer) affects the classification accuracy.
We note that a size of 512 gives the best results, which are
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TABLE IX
DATA NORMALIZATION EFFECT USING BEDFORD 2016 AS TRAINING SET

Fig. 10. Ablation with respect to the size of the disks defining ground truth
top and the size of the MLP hidden layers bottom.

only marginally better though with respect to a network with
size 256.

E. Discussion

Based on the ablative study performed, we note that all models
achieve similar accuracy, with MLP being marginally better in
average. Between RF and MLP, RFs require much less time both
for training and inference with respect to MLPs, hence, they may
be preferred in applications where classification efficiency is

important. Still the qualitative differences in the produced maps
(see Fig. 9) should be also taken into account. It is worth noting
that the in the context of the literature on seabed classification
from single-frequency MBES data, RF models are often found
to perform better than other methods.

Moreover, it is interesting to see that the bathymetry does
not always lead to improvement in the classification accuracy.
This is probably because spatially disjoint training and vali-
dation sets were considered, hence the models appear to not
be able to exploit the spatial correlation between backscatter
data and bathymetry. We have also considered positional en-
coding for explicitly adding information regarding the relative
location of the input data. The results confirm that positional
encoding is also able to increase the model performance to a
similar extent as bathymetry does, while being region-agnostic.
Caution is needed though, as these additional data layers can
result into artifacts in the classification map, as it can be seen
in Fig. 9.

As far as comparison with other seabed classification meth-
ods based on MS-MBES survey data is concerned, we note
that the methods largely diverge in the assumptions made and
the way the available data are interpreted to form the seabed
classes. This is reflected also on how reference data are collected
and grouped as to be used for the classification process. This
makes it nearly impossible to directly compare the results of
these methods. The work of [16] is probably one of the few
we can compare with. In these regards, although the classes
considered for the Patricia Bay and Bedford Basin regions
are not exactly the same, comparison of the overall accuracy
results suggest that both methods can achieve very high clas-
sification performance. In fact, our method achieves higher
OA for Patricia Bay 100% with respect to 91%, though not
sharing the same training and validation sets, and comparable
OA for the 2016 survey of Bedford Basin (98.7% with respect to
99.5%).

V. UW-MAP SERVICE

Based on the quite promising experimental results regarding
the models’ transferability, we have developed three models of-
fered via a freely accessible web service available at https://uw-
map.neanias.eu. Fig. 11 presents the user interface of the web
service. To test the models, the service offers the multispectral
images corresponding to the Lower Portsmouth Harbor 2017, the
Patricia Bay 2016, and the Bedford Basin 2017 surveys. Most
importantly though, the user can upload his/her own MS-MBES
data to test the available models.

The models offered in the current version of the service are:
1) a model trained on all classes of the Bedford Basin regions;
2) a model trained on the classes of the Portsmouth Harbor;
3) a model trained on the classes of Patricia Bay; and 4) a model
based on all classes considered here. Fig. 12 shows the results
view presented to the user after running an indicative classifica-
tion task on the Patricia Bay data with the three classes model.
The service offers the possibility to download the georeferenced
classification map in GeoTiff format.

https://uw-map.neanias.eu
https://uw-map.neanias.eu
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Fig. 11. User interface of the developed UW-MAP service.

Fig. 12. Indicative UW-MAP service results view.

VI. CONCLUSION

We presented an end-to-end methodology for seabed classifi-
cation from multispectral multibeam echosounder data. Consid-
ering five surveys made available by the R2Sonic Multispectral
Challenge 2017 we show that the proposed method produces
high quality classification maps, based on the backscatter data
alone. Classification is performed using standard classifier mod-
els acting on region-wide multispectral images build from the
per survey line acquisition data and we define reference data
based on seabed grab samples. We also assess the effect of
additional information provided from bathymetry and other
bathymetry derived products, and propose positional encod-
ing as an alternative way to increase spatial coherence of the
result.

We make available the source code used for seabed classifi-
cation on GitHub3 together with the multispectral images and
the ground-truth data used in this work. Additionally, we offer a
web service building on the proposed method,4 serving different
seabed classification models for the community to assess and
build upon.

3[Online]. Available: https://github.com/mdouskos/seabed-classification
4[Online]. Available: https://uw-map.neanias.eu/
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