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Abstract: Background: Glaucoma is a leading cause of irreversible blindness worldwide, necessitating
precise management strategies tailored to individual patient characteristics. Artificial intelligence
(AI) holds promise in revolutionizing the approach to glaucoma care by providing personalized
interventions. Aim: This review explores the current landscape of AI applications in the personalized
management of glaucoma patients, highlighting advancements, challenges, and future directions.
Methods: A systematic search of electronic databases, including PubMed, Scopus, and Web of
Science, was conducted to identify relevant studies published up to 2024. Studies exploring the
use of AI techniques in personalized management strategies for glaucoma patients were included.
Results: The review identified diverse AI applications in glaucoma management, ranging from
early detection and diagnosis to treatment optimization and prognosis prediction. Machine learning
algorithms, particularly deep learning models, demonstrated high accuracy in diagnosing glaucoma
from various imaging modalities such as optical coherence tomography (OCT) and visual field tests.
AI-driven risk stratification tools facilitated personalized treatment decisions by integrating patient-
specific data with predictive analytics, enhancing therapeutic outcomes while minimizing adverse
effects. Moreover, AI-based teleophthalmology platforms enabled remote monitoring and timely
intervention, improving patient access to specialized care. Conclusions: Integrating AI technologies
in the personalized management of glaucoma patients holds immense potential for optimizing
clinical decision-making, enhancing treatment efficacy, and mitigating disease progression. However,
challenges such as data heterogeneity, model interpretability, and regulatory concerns warrant further
investigation. Future research should focus on refining AI algorithms, validating their clinical utility
through large-scale prospective studies, and ensuring seamless integration into routine clinical
practice to realize the full benefits of personalized glaucoma care.

Keywords: glaucoma; ocular hypertension; artificial intelligence; personalized medicine; machine
learning; deep learning

1. Introduction

Artificial intelligence (AI) has started completely transforming ophthalmology in
recent years, significantly improving the identification and treatment of a wide range of eye
disorders. The application of AI, especially deep learning methods, has demonstrated con-
siderable potential in analyzing fundus imaging, optical coherence tomography (OCT), and
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visual field (VF) test data. These sophisticated algorithms provide increased accuracy and
speed in identifying and diagnosing ocular diseases, ranging from corneal and choroidal
problems to retinal and macular disorders [1].

AI in ophthalmology has a bright future ahead of it. Current research aims to improve
these instruments further, augmenting their capacity to identify diseases in their early
stages, predict the course of diseases, and support medical judgment. This review further-
more aims to provide an overview of the current state of the art regarding the use of AI in
glaucoma. These developments potentially represent a huge step forward in ophthalmic
treatment by improving clinical results and patient quality of life.

2. Materials and Methods

In order to give a thorough evaluation of artificial intelligence’s (AI) present application
in glaucoma therapy, this review will concentrate on diagnosis, treatment optimization,
and result prediction. A systematic approach to methodology ensured that high-quality
and pertinent papers on AI applications in glaucoma were included.

Three main databases—PubMed, Scopus, and Web of Science—were searched ex-
tensively for relevant material. The goal of the search method was to find articles up to
January 2024. The following set of Medical Subject Headings (MeSH) terms and keywords
was employed: “machine learning”, “deep learning”, “glaucoma”, “diagnosis”, “artificial
intelligence”, and “treatment”. To hone the search, the terms (AND/OR) were applied.
The inclusion criteria were based on peer-reviewed original research articles, systematic re-
views, and meta-analyses from January 1990 to September 2024. Glaucoma was diagnosed
in human subjects. Research on AI-based methods used (machine learning, deep learning,
neural networks) for glaucoma diagnosis, treating, or forecasting results was included. The
exclusion criteria included papers that used animal models, studies that did not use AI or
were solely concerned with using conventional diagnostic techniques, and certain article
categories (letters, editorials, and case reports).

All articles found were imported into EndNote for de-duplication following the first
search. The abstracts and titles were vetted for appropriateness by two separate reviewers
using the inclusion criteria. Discussions with a third reviewer helped to settle disagree-
ments. We gathered full-text publications of possibly pertinent studies and evaluated their
eligibility. Articles that satisfied all requirements and offered adequate information on AI
applications in glaucoma management were included in the final collection. The main goals
of the study were how well AI models performed in glaucoma diagnosis, illness progression
prediction, and treatment strategy optimization. Difficulties with model generalizability,
interpretability, and clinical integration were among the secondary outcomes.

Despite the extensive availability of scientific studies, our research revealed a limited
number of studies with substantial scientific evidence, with only 12 systematic reviews and
meta-analyses (Tables 1 and 2).

Table 1. Systematic reviews related to AI and glaucoma.

Title Authors Year Journal Purpose

Artificial Intelligence in Anterior
Chamber Evaluation: A
Systematic Review and

Meta-analysis

Olyntho MAC Jr
et al. [2] 2024 J Glaucoma

To compare the accuracy of deep
learning algorithms (DLA) applied

to anterior segment optical
coherence tomography images

(AS-OCT) against gonioscopy in
detecting angle closure in patients

with glaucoma.

Artificial intelligence for the
detection of glaucoma with

SD-OCT images: a systematic
review and Meta-analysis

Shi NN et al. [3] 2024 Int J Ophthalmol

To quantify the performance of
artificial intelligence (AI) in

detecting glaucoma with spectral
domain optical coherence

tomography (SD-OCT) images
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Table 1. Cont.

Title Authors Year Journal Purpose

A systematic review of economic
evaluation of artificial

intelligence-based screening for
eye diseases: From possibility to

reality

Wu H et al. [4] 2024 Surv Ophthalmol Quantitative analysis of health
economics concerning AI

Clinical applications of anterior
segment swept-source optical

coherence tomography: A
systematic review

Mirzayev I et al. [5] 2023 Photodiagnosis
Photodyn Ther

Utilization of AS SS-OCT in
various conditions, including

glaucoma, ocular surface
pathologies, iris tumors, refractive

surgery, cataract surgery, scleral
diseases, and AI

Anterior segment optical
coherence tomography (AS-OCT)

image analysis methods and
applications: A systematic review

Garcia Marin YF
et al. [6] 2022 Comput Biol Med

To provide an in-depth summary
and to classify image analysis

techniques found in the literature
applied to AS-OCT images

(including AI)

Performances of Machine
Learning in Detecting Glaucoma

Using Fundus and Retinal Optical
Coherence Tomography Images: A

Meta-Analysis

Wu JH et al. [7] 2022 Am J Ophthalmol

To evaluate the performance of
machine learning (ML) in

detecting glaucoma using fundus
and retinal optical coherence
tomography (OCT) images

Deep learning versus
ophthalmologists for screening for
glaucoma on fundus examination:

A systematic review and
meta-analysis

Buisson M et al. [8] 2021 Clin Exp
Ophthalmol

To compare deep learning versus
ophthalmologists in glaucoma

diagnosis on fundus examinations

Accuracy of Using Generative
Adversarial Networks for

Glaucoma Detection: Systematic
Review and Bibliometric Analysis

Saeed AQ et al. [9] 2021 J Med Internet Res

To illustrate deep adversarial
learning as a potential diagnostic

tool and the challenges involved in
its implementation

Diagnostic accuracy of deep
learning in medical imaging: a

systematic review and
meta-analysis

Aggarwal R et al.
[10] 2021 NPJ Digit Med

To evaluate the diagnostic
accuracy of using DL algorithms

to identify pathology (like
glaucoma) in medical imaging

Applications of deep learning in
the detection of glaucoma: A

systematic review

Mirzania D et al.
[11] 2021 Eur J Ophthalmol

DL methods to detect glaucoma
using color fundus photographs,

optical coherence tomography
(OCT), or standard automated

perimetry (SAP)

Deep Learning for Accurate
Diagnosis of Glaucomatous Optic
Neuropathy Using Digital Fundus

Image: A Meta-Analysis

Islam M et al. [12] 2020 Stud Health
Technol Inform

To investigate the performance of
deep learning algorithms for the
detection of GON (glaucomatous

optic neuropathy)

Current applications of machine
learning in the screening and

diagnosis of glaucoma: a
systematic review and

meta-analysis

Murtagh P et al.
[13] 2020 Int J Ophthalmol

To compare the effectiveness of
two well-described machine
learning modalities, ocular

coherence tomography (OCT) and
fundal photography, in terms of

diagnostic accuracy in the
screening and diagnosis of

glaucoma
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Table 2. Literature review on deep learning/machine learning and glaucoma *.

Study Purpose AI Technique Data Used Key Findings Publication

Wu et al.
(2022) [7]

Evaluate AI in
glaucoma detection. Machine Learning Fundus and OCT

images
High diagnostic

accuracy Am J Ophthalmol

Ran et al.
(2021) [14]

Review of DL
models in glaucoma Deep Learning OCT images

Strengths and
limitations of DL in

diagnosis
Eye

Akter et al.
(2022) [15]

Glaucoma diagnosis
using deep learning Deep Learning Retinal images Improved diagnostic

performance Scientific Reports

Zhang et al.
(2022) [16]

Predict glaucoma
progression Deep Learning Fundus

photographs
AUROC 0.90 for

incidence prediction Ophthalmology

Muhammad
et al. (2017) [17]

Classify glaucoma
suspects

Hybrid Deep
Learning Wide-field OCT Accurate suspect

classification
Journal of
Glaucoma

Andersson et al.
(2013) [18]

Compare AI vs.
clinicians in

diagnosis
ANN ** Visual field data

Comparable
accuracy with

clinicians

Acta
Ophthalmologica

Ran et al.
(2022) [19]

DL for glaucoma
using OCT Deep Learning OCT Images

High accuracy in
detecting

progression
Eye

Barella et al.
(2013) [20]

Evaluate ML
classifiers for

glaucoma
Machine Learning Retinal nerve fiber

layer data
High diagnostic

accuracy J Ophthalmol

Yousefi et al.
(2016) [21]

Detect glaucomatous
progression

Gaussian Mixture
Model Visual fields

Effective in
progression

detection

Transl Vis Sci
Technol

Zhang et al.
(2021) [22]

DL for glaucoma risk
prediction Deep Learning Fundus

photographs
Effective risk
stratification Ophthalmology

Wagner et al.
(2022) [23]

Updates on AI in
glaucoma diagnosis Systematic Review Various AI models Summarized recent

advances

Mayo Clin Proc
Innov Qual
Outcomes

Seker et al.
(2022) [24]

Address bias in AI
healthcare data Data Preprocessing Various datasets Recommendations

for bias mitigation
Stud Health

Technol Inform
* Each study evaluates different aspects of AI’s role in glaucoma ** Artificial neural network.

3. Machine Learning Models

Deep learning (DL) and machine learning (ML) are essential to AI-guided ophthalmic
treatment transformation. ML algorithms, such as Support Vector Machine (SVM) and
Random Forest (RF), are used to classify and interpret clinical data and imaging results,
aiding in detecting disease patterns and anomalies. SVM is used for classification tasks
to identify a boundary separating different data classes [25]. RF creates multiple decision
trees and combines their outputs to improve prediction accuracy and robustness. DL, a
more sophisticated subset of ML, leverages deep artificial neural networks to process large
and multidimensional data. Convolutional Neural Networks (CNNs) excel in processing
retinal and OCT images by automatically learning hierarchical features from raw pixel data
through layers that detect patterns such as edges and textures. Other DL architectures,
like Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks,
are well-suited for processing sequential and temporal data [26]. RNNs use their ability
to maintain information over time to handle tasks like predicting sequences or analyzing
time-series data. LSTM networks, a specialized type of RNN, enhance this capability by
managing long-term dependencies in sequential data, making them ideal for complex
temporal tasks. Meanwhile, generative adversarial networks (GANs) are employed to
generate augmented datasets [7]. GANs consist of two neural networks (a generator and
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a discriminator) that work together to create and evaluate synthetic images, which helps
generate realistic data to increase the existing datasets [27].

AI applications extend beyond mere image analysis; they include automatic image
segmentation and enhancement, extracting detailed information that may be challenging
to discern through traditional methods.

ML has emerged as a transformative tool in the medical field, enabling significant
advancements in diagnostics, treatment planning, and patient management [27–29]. Its
ability to analyze complex datasets and recognize patterns has led to enhanced predictive
models that can improve clinical decision-making and outcomes. In ophthalmology, ML
algorithms have been particularly impactful in detecting and classifying ocular diseases
such as diabetic retinopathy, glaucoma, and age-related macular degeneration. These mod-
els, often based on deep learning architectures, have demonstrated accuracy comparable to
or exceeding that of human experts, offering the potential for widespread deployment in
screening programs and routine clinical practice [30].

For example, in glaucoma management, AI aids in interpreting intricate structural and
functional data of the eye, optimizing diagnostic accuracy and treatment planning. Despite
these advancements, challenges remain, such as ensuring high-quality data, managing
biases, and improving model generalizability and interpretability.

ML and DL methods are revolutionizing glaucoma diagnosis and monitoring by
providing cutting-edge instruments that can greatly increase the precision and effectiveness
of clinical evaluations [31].

4. Results
4.1. Artificial Intelligence (AI) in Glaucoma

Our comprehensive search turned up about 400 articles about the use of artificial intel-
ligence (AI) in the treatment of glaucoma. Based on the inclusion criteria, 60 papers were
chosen for in-depth analysis after duplicates were eliminated and relevance was checked.
The analysis focused on AI techniques in glaucoma diagnosis, therapy optimization, and
outcome prediction. The papers under consideration examined a range of AI methods,
with a particular emphasis on deep learning (DL) and machine learning (ML) models.
Convolutional neural networks (CNNs) were the most widely used models for image
analysis, particularly for fundus imaging and optical coherence tomography (OCT). The
models exhibited encouraging precision in discerning glaucomatous damage, frequently
matching the diagnostic precision of seasoned medical professionals. Nonetheless, there
was a noticeable disparity in performance between the investigations, which was mostly
related to variations in imaging technologies, population variety, and data quality.

Of the 60 papers, 35 mostly addressed the use of AI in glaucoma diagnosis. Analysis
of structural alterations in the optic nerve head and retinal nerve fiber layer was commonly
done using CNN-based models. Across a range of imaging datasets, these models demon-
strated high sensitivity (from 83% to 96%) and specificity (from 80% to 92%). Most of
these diagnostic investigations highlighted how AI could help with large-scale glaucoma
screening programs, especially in impoverished areas where access to ophthalmologists
is limited. Nevertheless, a few difficulties were identified as major constraints, including
dataset biases and variations in image quality. According to a number of studies, in order
to increase AI models’ generalizability across various populations, they must be trained on
a variety of datasets.

AI was mostly employed to evaluate illness development and to optimize treatment
options based on patient-specific data in the 25 studies that were primarily concerned with
therapy and outcome prediction. Measurements of intraocular pressure (IOP), outcomes of
visual field tests, and OCT scans were all part of the longitudinal data that machine learning
models like Random Forest and Support Vector Machine (SVM) were applied to. These
models demonstrated the ability to identify patients who were more likely to experience a
rapid course of their condition, enabling earlier and more intensive management. Concerns
were raised by several researchers on the shortcomings of the AI models used today to treat
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glaucoma. The absence of sizable, varied, and thoroughly annotated datasets remained a
persistent problem, limiting the applicability of AI models to various patient populations
and imaging technologies. Moreover, before many models can be safely incorporated into
standard practice, they still need to be prospectively validated in actual clinical settings.
It has also been common to debate ethical concerns about algorithmic transparency and
data privacy, underscoring the necessity of strong regulatory frameworks prior to the
widespread use of AI in clinical care.

Artificial intelligence (AI) has great promise for enhancing glaucoma care through
better diagnosis, treatment, and outcome prediction. Even while the majority of AI models
showed encouraging predictive and diagnostic accuracy, there are still many obstacles to
overcome, especially when it comes to diverse data, validating models, and integrating
AI into clinical workflows. In order to confirm the therapeutic efficacy of AI technologies
in glaucoma therapy, future research should concentrate on resolving these constraints,
especially by utilizing larger and more representative data. The current literature reports
important trends, knowledge gaps, and future prospects for glaucoma research by com-
bining the results of the included papers. These discoveries will play a pivotal role in
steering the creation of resilient, broadly applicable, and therapeutically useful artificial
intelligence systems.

The advent of AI is considered a medical revolution, including in ophthalmology [32].
Glaucoma is a leading cause of irreversible blindness worldwide, characterized by the pro-
gressive loss of retinal ganglion cells and corresponding visual field deficits. Early detection
and consistent monitoring are crucial to prevent severe vision loss, yet the asymptomatic
nature of early glaucoma makes it challenging to diagnose in its initial stages [33–35]. The
first example of AI application in glaucoma dates to 1994, when Goldbaum et al. evaluated
the reliability of trained neural networks in distinguishing between normal visual fields
and those of glaucomatous eyes [36]. Later, in 1996, a study published in the American
Journal of Ophthalmology by Brigatti et al. used various neural network algorithms to
differentiate between normal and glaucomatous eyes using both structural data (cup/disk
ratio, rim area, cup volume, and nerve fiber layer height) and functional data (visual field
loss) [35]. From the 2000s onward, the application of increasingly sophisticated levels of
AI to glaucoma has been on the rise, yielding progressively encouraging results and the
development of numerous databases for training.

4.2. AI for Screening and Detection of Glaucoma

There is an increasing disparity between the demand for eye care and the availabil-
ity of specialists. A 2010 international survey highlighted that, in developed nations,
the population is rapidly aging, and there is a significant consequent shortage of well-
trained ophthalmologists [37,38]. Integrating artificial intelligence into medical practice
has shown the potential to enhance diagnostic capabilities, offering time-efficient and
effective solutions to mitigate this gap. AI has shown important results in image-based
diagnostics in ophthalmology, such as in the diagnosis of diabetic retinopathy [28,29]. AI
has been widely applied in glaucoma diagnostics to achieve more accurate image segmen-
tation/classification, enhance image quality, and support image interpretation [39,40]. In
2021, a meta-analysis by Buisson et al. demonstrated that even in a pessimistic model com-
paring the worst deep learning algorithms with the best ophthalmologists, the performance
of deep learning in assessing the optic nerve head in fundus images is comparable to that
of an ophthalmologist. This study included a total of 1.392 eyes from ophthalmic centers or
datasets [41–45], with training datasets sourced from publicly available online retinal fun-
dus image databases for glaucoma analysis and research (ORIGA), EyePacs, Inoveon, the
Age-Related Eye Disease Study, and the United Kingdom Biobank [46–48]. This finding is
consistent with the literature, and recent studies increasingly show that AI may outperform
humans in evaluating optic nerve parameters in fundus examinations [49–51], partly due
to the meticulous selection of high-quality images [52].
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The performance of AI in evaluating the optic nerve from fundus images may be
affected by several limitations, including the presence of optic nerve comorbidities (e.g.,
myopia), ethnic diversity in the sample, variations in image quality, differences between
cropped and non-cropped optic disc images, and inconsistencies in comparisons between
AI and human grading versus OCT or other objective data [53,54]. Regarding the latter
point, some studies have shown that deep learning models trained with human grading
make the same errors as a specialist, suggesting that comparisons with OCT data might be
more effective [55,56].

On the other hand, the study by Phene et al. demonstrated that algorithms using more
objective data achieved a worse AUC (receiver operating characteristic curve) compared to
other groups [57].

A spectral domain (SD-OCT) is a crucial tool for the early diagnosis of glaucoma
(before any visual field damage occurs) [43]. Integrating SD-OCT with AI would be
extremely useful, as it is a widely available, not time-consuming, and highly repeatable
examination [57,58]. The reliability of this diagnostic examination is closely dependent on
the segmentation of the circumpapillary retinal layers. AI is currently being examined to
better integrate OCT data into clinical practice and achieve the most accurate segmentation
and analysis of OCT images.

According to the literature, the most recent innovations in SD-OCT image segmen-
tation were proposed in 2023 by Gende M. et al. and in 2024 by Song Y et al. [59,60].
Gende et al. introduced the use of multiple view-specific modules to segment each scan
pattern (circumpapillary circle scans, macular cube scans, and optic disc (OD) radial scans).
This approach achieved better results for the cube and circle scan patterns compared to
those obtained with state-of-the-art segmentation modules. Song et al. aimed to develop
a segmentation method that is more efficient and less time-consuming. They studied a
lightweight deep learning architecture for the simultaneous segmentation of the OC and
OD, employing fuzzy learning and a multi-layer perceptron. This approach simplified
learning complexity, improved image analysis accuracy, and demonstrated superiority over
state-of-the-art methods. DL algorithms may outperform both traditional automated seg-
mentation parameters and conventional machine learning classifiers (MLCs) in diagnosing
glaucoma using OCT data. The authors developed a deep learning algorithm using OCT
macular data from an 8 × 8 grid [61]. They employed transfer learning, first training the
model on a pre-training dataset of 4.316 OCT images and then fine-tuning it with a smaller
dataset of 178 images. The resulting DL model achieved an AUC of 0.937, with 83.3% sensi-
tivity at 80% specificity, significantly surpassing the performance of both SVM (AUC = 0.82,
sensitivity—39.5%, specificity—80%) and RF models (AUC = 0.674, sensitivity—35.1%,
specificity—80%). In a prior 2017 study, Asaoka et al. had already developed an RF model
incorporating circumpapillary retinal nerve fiber layer (RNFL) thickness data, achieving
a comparable AUC of 0.93 [62]. A key finding is that their DL model maintained high
diagnostic accuracy even when trained and tested on images from different OCT scanners,
highlighting its robustness across various imaging devices. Segmentation-free approaches
have also been proposed. For example, Thompson et al. demonstrated that using a DL
algorithm trained on SDOCT circle B-scans without segmentation lines can effectively
distinguish glaucomatous optic discs from healthy ones. In this case, the AUC for de-
tecting glaucoma was significantly higher compared to global RNFL or sectoral RNFL
obtained through automated segmentation (0.96 vs. 0.87; difference = 0.08 (95% CI: 0.04,
0.12), p < 0.001). Additionally, the performance was even better in discriminating cases of
pre-perimetric or early glaucoma [63]. In 2019, Maetschke et al. developed a DL algorithm
using unsegmented OCT volumes of the optic nerve head, achieving an AUC of 0.94, which
significantly outperformed various MLCs (SVM 0.88; RF 0.86; extra trees 0.86; Naïve Bayes
0.86; LR 0.89; gradient boosting 0.82). It demonstrates that DL algorithms are superior to
MLCs in detecting glaucoma on OCT [54]. The limitations of current studies on OCT and
AI mainly involve segmentation errors, the limited ethnic diversity in the datasets, and the
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exclusion of cases of secondary glaucoma or angle-closure glaucoma [64–67]. Addressing
these issues would improve the generalizability of the findings.

4.3. AI and Assessment of SAP (Standard Automated Perimetry)

Standard Automated Perimetry (SAP) is a cornerstone in the functional assessment of
glaucoma, providing critical information about visual field defects that are indicative of
disease progression. However, the interpretation of SAP results can be challenging due to
variability in patient responses, the subtle nature of early defects, and the complexity of the
data generated. AI has been increasingly applied to enhance the accuracy and reliability of
SAP assessments by automating the analysis of visual field data and identifying patterns
that may elude traditional statistical methods. AI models, particularly those based on
ML and DL, have demonstrated significant potential in improving the interpretation of
SAP data [68,69]. These models can be trained to recognize complex visual field patterns
associated with glaucomatous damage, including both localized and diffuse loss, which
may not be immediately apparent to human observers. By leveraging large datasets of
SAP results, AI can provide a more consistent and objective assessment of visual field
progression, reducing the subjectivity inherent in manual interpretation [70]. Moreover,
AI-driven approaches have been developed to predict future visual field deterioration by
analyzing trends in SAP data over time. This predictive capability is especially valuable
for personalized glaucoma management, allowing clinicians to tailor treatment strategies
based on the likelihood of disease progression. Additionally, AI can assist in identifying
artifacts and unreliable test results, thereby improving the overall quality and reliability of
SAP data. Despite these advancements, challenges remain in integrating AI into routine
clinical practice. These include ensuring the generalizability of AI models across diverse
populations, maintaining transparency in AI-driven decision-making, and addressing
potential biases in training data. Furthermore, developing user-friendly interfaces for AI
tools is essential to facilitate their adoption by clinicians without specialized technical
expertise. AI offers promising advancements in assessing SAP, enhancing both the accuracy
of glaucoma diagnosis and the monitoring of disease progression [71].

4.4. AI and OCT-A “New Application”

Angio-OCT (OCT-A) is a noninvasive imaging modality that provides a detailed vi-
sualization of retinal and choroidal blood vessels, offering critical insights into vascular
conditions such as diabetic retinopathy, age-related macular degeneration, and glaucoma.
However, the complexity and volume of data generated by Angio-OCT pose significant
challenges for manual interpretation. AI, particularly through DL algorithms, offers a pow-
erful solution by automating the analysis of these high-dimensional datasets, facilitating
more accurate and efficient diagnoses [72].

AI algorithms applied to Angio-OCT can detect and quantify microvascular changes
with a level of precision that surpasses conventional methods. For example, deep learning
models have been trained to automatically segment retinal layers, identify regions of
non-perfusion, and detect neovascularization with high sensitivity and specificity. These
capabilities are crucial for the early diagnosis and monitoring of retinal diseases, where
punctual intervention can prevent significant vision loss [73]. Moreover, AI can integrate
Angio-OCT data with other imaging modalities and clinical information, providing a
comprehensive ocular health assessment and supporting personalized treatment strategies.
One of the most promising applications of AI in Angio-OCT is its potential for use in
population-based screening programs. By automating the detection of pathological features,
AI-driven Angio-OCT can identify individuals at risk of sight-threatening diseases in large-
scale screenings, thereby improving access to care and reducing the burden on healthcare
systems. Additionally, the ability of AI to learn and adapt from new data continually
enhances its diagnostic performance, making it a dynamic tool in clinical practice [74].
Challenges such as the need for large, annotated datasets, model generalizability, and the
integration of AI tools into clinical workflows must be addressed. Ethical considerations,
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including data privacy and the interpretability of AI decisions, are also critical to ensuring
the safe and effective use of these technologies.

The combination of AI and angio-OCT heralds a new era in retinal imaging, offering
unprecedented opportunities for the early diagnosis, monitoring, and management of
retinal diseases. Continued research and collaboration across disciplines will be key to
unlocking this technology’s full potential in clinical practice [75].

4.5. AI and Anterior Segment Evaluation (AS-OCT)

Artificial intelligence is transforming anterior segment evaluation via anterior segment
optical coherence tomography (AS-OCT). AI algorithms, especially DL models, excel in
analyzing AS-OCT images by automatically segmenting structures such as the cornea,
iris, and lens. These algorithms can accurately measure parameters like corneal thickness,
anterior chamber depth, and angle opening distance, which are critical in diagnosing
conditions like keratoconus, angle-closure glaucoma, and post-surgical assessments [76,77].

AI enhances diagnostic precision by identifying subtle anatomical changes and reduc-
ing inter-observer variability. It facilitates the early detection of pathologies and enables
personalized treatment planning. The primary challenge lies in the need for extensive,
diverse datasets to train these models effectively, ensuring they generalize well across
different populations and AS-OCT devices [78–80].

4.6. AI: Support in Treatment and Outcome Prediction

Given the progressive and often asymptomatic nature of glaucoma, personalized
treatment plans are essential for preserving vision and preventing irreversible damage.
AI-driven models, particularly those based on ML and DL, have demonstrated substantial
potential in optimizing glaucoma management by analyzing large datasets, including
clinical records, imaging data, and patient demographics [34]. The integration of AI in the
management of glaucoma has opened new avenues for enhancing treatment strategies and
predicting patient outcomes with unprecedented accuracy. Central to this advancement is
the utilization of ML algorithms, particularly DL techniques, which have demonstrated
remarkable efficacy in interpreting complex ocular data. For example, CNNs have been
employed to analyze high-resolution images from OCT and fundus photography, enabling
the early detection of glaucomatous changes in the RNFL and optic nerve head (ONH).
These algorithms can detect subtle structural alterations that may not be visible to the
human examiner, thereby facilitating earlier and more accurate diagnoses. One of the key
applications of AI in glaucoma treatment is in the stratification of patients based on their
risk of disease progression.

AI models can identify patients at higher risk of rapid progression by analyzing longi-
tudinal data from visual fields, OCT scans, and intraocular pressure (IOP) measurements.
This enables us to tailor treatment plans more effectively by intensifying therapy or schedul-
ing more frequent follow-ups for high-risk individuals. In addition to diagnostic support,
AI has shown significant promise in predictive modeling, a critical aspect of glaucoma
management. By leveraging large datasets that include longitudinal patient data, such
as IOP readings, visual field test results, and genetic factors, AI models can predict the
progression of the disease with a high degree of accuracy. Moreover, AI can predict the
response to different treatment modalities, such as medications, laser therapy, or surgical
interventions, by correlating past patient responses with various treatment outcomes. This
predictive capability allows for a more personalized approach, potentially reducing the
trial-and-error period often associated with glaucoma management. Additionally, AI tools
are continuously being developed to monitor treatment efficacy [35,69,81]. For example, AI
algorithms can automatically analyze visual field test results and OCT scans over time to
detect subtle changes that may indicate either disease progression or improvement. This
continuous monitoring is crucial for adjusting treatment plans promptly, thereby minimiz-
ing the risk of vision loss. Furthermore, AI can help predict long-term outcomes, such
as the likelihood of maintaining functional vision, based on initial presentation and early
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treatment response, thus aiding in patient counseling and expectation management [82].
This predictive capability is valuable, allowing for timely, more aggressive interventions.
For instance, AI-based models can simulate various treatment scenarios, providing insights
into the potential outcomes of different therapeutic approaches, which helps optimize
treatment plans tailored to individual patients.

Moreover, AI systems have the potential to revolutionize the way clinicians manage
glaucoma by incorporating real-time data analysis and decision support into clinical prac-
tice. These systems can be used to continuously monitor patient responses to treatments,
adjusting recommendations based on the latest data and providing personalized treatment
regimens that maximize efficacy while minimizing side effects. This dynamic and data-
driven approach to glaucoma management not only enhances the precision of care, but
also promises to significantly reduce the burden of blindness associated with this condition
by enabling earlier, more effective interventions [28]. ML models have been tested for
their capacity to predict real-life trabeculectomy results using easily accessible preoperative
patient demographic, ocular, and systemic health data [83]. To predict the overall failure
and results of medical and surgical glaucoma therapy, several ML classifiers were trained,
including decision trees, Random Forests, XGBooste 2.1.0 (Xtreme Gradient Boosting),
penalized logistic regression, multi-layer perceptrons, k-nearest neighbors, Gaussian naive
bayes, and linear discriminant analysis.

Standard classification metrics were used to assess each model on the provided dataset.
These metrics included accuracy, precision (positive predictive value), negative predictive
value, recall (sensitivity), specificity, accuracy, area under the receiver operating character-
istic curve (AUROC), area under the precision–recall curve, and F1-score (the harmonic
mean of precision and recall). According to the authors, the most effective algorithms
were neural network and random forest models, which demonstrated significant predictive
power given their complexity [84].

5. Discussion

Integrating AI into clinical practice is not without challenges. Ensuring the accuracy
and generalizability of AI models across diverse patient populations and clinical settings is
essential. Additionally, the interpretability of AI-generated predictions remains a concern,
as clinicians need to understand and trust the reasoning behind AI recommendations.
Addressing these challenges requires ongoing research, large-scale validation studies, and
the development of user-friendly interfaces that seamlessly integrate AI tools into routine
clinical workflows. AI has the potential to significantly enhance the treatment and outcome
prediction of glaucoma, leading to more personalized and effective care. As AI technology
evolves, it is poised to become integral to glaucoma management, ultimately improving
patient outcomes and quality of life [81].

Despite the advancements in AI technology, clinicians remain indispensable in the
AI-driven management of glaucoma. While AI can process complex data and identify
patterns beyond human capacity, clinical expertise is required to interpret these findings in
the context of individual patient care. Clinicians are responsible for integrating AI-derived
insights with real-world considerations, such as patient-specific risk factors, preferences,
and comorbidities, ensuring that AI tools are used to support, rather than replace, clinical
decision-making. For instance, AI may identify subtle changes in ocular imaging, but it
is the clinician who must determine the appropriate course of action, such as adjusting
treatment or scheduling further follow-up. As AI continues to evolve, its integration into
routine practice will depend heavily on its ability to complement clinical workflows, with
clinicians maintaining oversight and accountability for patient outcomes.

AI in glaucoma primarily involves ML and DL algorithms that analyze large datasets,
including OCT images, fundus photographs, and visual field tests. These algorithms can
identify subtle changes in the retinal nerve fiber layer thickness, optic nerve head structure,
and visual field patterns, which may not be readily apparent to human clinicians. By
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training on labeled datasets, AI systems can achieve diagnostic accuracy comparable to
glaucoma specialists [61].

One of AI’s most significant contributions to glaucoma is its application in automated
screening. For instance, DL models have been developed to analyze OCT images and detect
glaucomatous damage with high sensitivity and specificity. These models are particularly
valuable in community-based screening programs, where access to ophthalmic specialists
may be limited. Furthermore, AI-driven tools are being used to predict the risk of glaucoma
progression by analyzing longitudinal data from visual fields and OCT scans, enabling
personalized treatment plans [85].

While AI has shown great potential in glaucoma diagnosis and treatment, AI’s incor-
poration into standard clinical practice is still in its infancy. Deep learning algorithms in
particular have shown remarkable accuracy in detecting glaucomatous alterations using
imaging modalities including fundus photos and optical coherence tomography (OCT).
Before AI is extensively employed for clinical diagnosis and treatment, there are significant
restrictions to take into account. It has been observed that the intricacy and subtleties of clin-
ical diagnosis performed by ophthalmologists are not yet matched by AI technology, and
there is still a sizable discrepancy between AI forecasts and actual clinical decision-making.

The need for more randomized controlled trials (RCTs) utilizing sizable, varied
datasets that reflect a range of people, ethnicities, and equipment brands is one of the
main obstacles. It is improbable that AI models developed on small or homogeneous
datasets will perform well in larger populations. Future research must concentrate on
collecting high-quality data from a wide range of demographic groups and imaging tech-
nologies in order for AI to be successfully integrated into the treatment of glaucoma. By
doing this, biases will be lessened, and it will be guaranteed that AI technologies are
trustworthy and fair in various clinical contexts. Furthermore, in order to evaluate AI tools’
efficacy in actual clinical settings, randomized controlled trials (RCTs) must validate them.
Currently available AI models are frequently tested in controlled contexts or retrospectively,
and these may not accurately capture the intricacies present in routine clinical practice.

Prospective randomized controlled trials (RCTs) will offer more robust proof of the
usefulness of AI tools by contrasting diagnoses made by AI with those made by skilled
medical professionals, and establishing if AI can, in fact, enhance patient outcomes in the
treatment of glaucoma. AI-based diagnoses will not completely replace clinical expertise;
rather, they will serve as a supplement until these thorough studies are finished and the
data are polished. This thorough assessment of AI’s shortcomings emphasizes the necessity
of ongoing study and development prior to the full integration of AI in the diagnosis and
management of glaucoma. AI in ophthalmology has a bright future ahead of it, but in
order to achieve widespread clinical application, these obstacles must be overcome. This
may be done by working together, validating AI models on a large scale, and continuously
improving AI models [86].

Ongoing efforts to address this gap in evidence are reflected in the current landscape of
clinical trials. According to the Cochrane Library, several trials are underway to assess the
clinical utility of AI in glaucoma. These studies aim to evaluate AI algorithms’ diagnostic
accuracy, their ability to predict disease progression, and their effectiveness in guiding
treatment decisions [87]. However, the outcomes of these trials are awaited, and it is crucial
that they are conducted with rigorous methodologies, including adequate sample sizes,
diverse patient populations, and standardized outcome measures [88].

Moreover, future research should not only focus on the technical performance of AI
models but also their real-world applicability, considering factors such as user acceptance,
cost-effectiveness, and integration into existing healthcare infrastructures. Ethical consider-
ations, including data privacy and the transparency of AI decision-making processes, must
also be addressed to ensure AI technologies’ safe and equitable implementation. AI has
the potential to revolutionize glaucoma care. Still, there is a pressing need for high-quality,
randomized controlled trials to provide the necessary evidence for its widespread adoption
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in clinical practice. The results of ongoing and future trials will be pivotal in determining
whether AI can fulfill its promise of improving glaucoma outcomes on a broad scale [89].

Furthermore, one of the most significant challenges in applying AI to glaucoma
diagnosis and management is the quality and comprehensiveness of the datasets used to
train AI models. The performance and reliability of AI algorithms are inherently dependent
on the data they are trained on, and limitations in these datasets can lead to biases, reduced
accuracy, and the poor generalizability of AI tools in real-world clinical settings [90].

A primary concern is the issue of data diversity. Many AI models for glaucoma have
been trained on datasets that lack adequate representations of various demographic groups,
such as different ethnicities, ages, and stages of glaucoma. This lack of diversity can result
in AI models that perform well in specific populations but poorly in others, leading to
inequitable care and potential harm. For example, glaucoma manifests differently across
populations, and AI systems trained predominantly on data from one group may fail to
diagnose or predict outcomes for individuals from other groups accurately. Addressing
this requires the inclusion of diverse and representative datasets in the training process
to ensure that AI models are robust and applicable to a wide range of patients. Another
critical limitation is the size of the datasets. AI, particularly DL models, requires large
volumes of data to achieve high levels of accuracy. However, the availability of such large
datasets, especially with well-annotated, high-quality data, is often limited in the field
of ophthalmology. Small or poorly annotated datasets can lead to overfitting, where the
model performs well on the training data but fails to be generalizable to new, unseen data.
This problem highlights the need for collaborations across institutions and even countries
to aggregate large, diverse datasets that can better train AI models [91].

Moreover, the quality of data is also a significant concern. Datasets that contain
noise, inconsistencies, or errors can degrade the performance of AI models. In the context
of glaucoma, where small changes in visual field tests or imaging can have significant
clinical implications, the quality of the input data is paramount. Ensuring high-quality data
collection and curation processes and standardizing data across different imaging devices
and clinical environments is essential for developing reliable AI tools.

Lastly, there is a need to address the limitations related to the historical data used
in AI models. Many datasets may not capture recent advances in imaging technology or
treatment protocols, which could result in AI models that are out of sync with current
clinical practices. The continuous updating of AI models with new data is necessary to
maintain their relevance and accuracy over time. Addressing the limitations of datasets is
crucial when developing reliable and equitable AI models in glaucoma care. This requires
ensuring data diversity, increasing dataset sizes, improving data quality, and keeping
models updated with the latest clinical information. Overcoming these challenges will
enhance the robustness and generalizability of AI, leading to better patient outcomes across
diverse populations.

6. Conclusions

Despite these promising advancements, there are several challenges to the widespread
adoption of AI in glaucoma. These include the need for large, diverse, high-quality datasets,
model interpretability, and the integration of AI tools into clinical workflows. Moreover,
ethical considerations such as patient privacy, data security, and the potential for algo-
rithmic bias must be addressed to ensure the responsible use of AI in ophthalmology.
In conclusion, AI has the potential to revolutionize the diagnosis and management of
glaucoma by providing accurate, efficient, and scalable solutions.

Continued research and collaboration between clinicians, data scientists, and engi-
neers are essential to overcome current limitations and fully realize the benefits of AI in
glaucoma care.
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