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A B S T R A C T

Several systems in nuclear fusion reactors utilize liquid metals as working fluids and the design of these systems
cannot overlook the magnetohydrodynamics effects arising from the interaction between the electrically
conductive fluid and the magnetic fields used to confine the plasma, since these effects significantly influence
the flow features. In this context, rigorous studies and research activities are imperative to provide high–
quality numerical data and develop precise predictive numerical tools. This work introduces two OpenFOAM
magnetohydrodynamics solvers and outlines their respective validation processes. The mMRF solver can
simulate single–phase, incompressible MHD flow for multiple electro–coupled domains.

Meanwhile, the mIF solver is capable of simulating two–phase MHD flow involving incompressible
and immiscible fluids. The mMRF solver has demonstrated outstanding results in simulating classical 2D
benchmarks up to high magnetic field intensities, while the mIF solver proved its ability by estimating, with a
discrepancy of less than 10%, the velocity of a bubble rising within a liquid metal under an imposed magnetic
field.
1. Introduction

Liquid Metals (LM), due to their potential to be used both as
coolants and tritium breeders, are considered as working fluids in
several Breeding Blanket (BB) concepts, such as the Water–Cooled Lead
Lithium BB [1], and in advanced concept of Plasma–Facing Compo-
nents (PFC) [2]. One of the major drawbacks of employing electrically
conductive fluids in a system like a magnetic confined fusion reactor is
their interaction with the magnetic field, leading to the emergence of
magnetohydrodynamic effects (MHD).

Indeed, the induced Lorentz force within the liquid metal changes
the flow features with a significant modification of velocity distri-
bution, an increase in pressure losses and generally resulting in the
degradation of mass and energy transport processes [3]. For these
reasons, the design of these components necessarily requires the de-
velopment of accurate predictive numerical tools and the production
of high–quality numerical data.

In particular, in the context here presented, we are specifically
discussing the magnetohydrodynamics of liquid metals (LM–MHD).
This is because the characteristic parameters of the LMs and the very
intense magnetic field in a reactor allow us to almost always neglect
the magnetic field induced by the currents generated in the LM and so
the flow has no effect on the distribution of the magnetic field, which
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is thus imposed from the outside [3]. This leads to the so–called low–
magnetic Reynolds approximation where the electric potential can be
used as a fundamental quantity to study MHD phenomena with good
accuracy [4].

The application of computational methods for solving LM–MHD
flows dates back to pioneering analyses in the 70 s and matured
towards the 90 s when the increase in computational power allowed
considering increasingly stronger magnetic field intensities. This pa-
rameter, represented by the Hartmann number (Ha), has a significant
impact on the complexity of the analysis. A turning point occurred in
2007 when numerical methods were developed by Ni et al. [4] that
significantly accelerated the maximum achievable Hartmann number,
reaching 104, which is the order of magnitude expected in the next
generation of fusion power plants.

Since then, a significant increase in the available tools for simulating
LM–MHD flows has been witnessed across all the spectrum from in–
house research codes tailored to specific applications to more general
purpose computational fluid dynamics (CFD) software, both commer-
cial and open source. A crucial aspect in the development of these tools
is the Verification and Validation (V&V) process and for this reason,
in 2015, the fusion community agreed upon a series of ‘‘baseline’’
benchmarks to be performed for a rigorous assessment of the tool
capabilities [5]. It should be mentioned that the benchmark activities
vailable online 8 February 2024
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described, despite covering several different scenarios, are lacking any
proposals for multiphase MHD flows; a class of flows relevant for both
BB and PFC using LM as working fluids.

In this work, two numerical solvers developed by the Nuclear Engi-
neering Research Group (NERG) of Sapienza University of Rome using
the OpenFOAM (OF) open source CFD toolbox are presented along with
their validation. In the last 15 years, OF has been a popular choice for
the development of LM–MHD tools both for nuclear and non–nuclear
applications. Indeed, the possibility of working directly on the source
code and exploiting high–performance computing resources without
incurring large licensing costs is undoubtedly a great advantage.

A comprehensive review is out of the scope of this paper, but the
authors would like to mention some relevant papers that specifically
address the simulation of LM–MHD flow at high magnetic field inten-
sity. Arguably, the key development in modeling LM–MHD flow with
OF is the work by Dousset [6] from Coventry University in 2009, which
develop the tools and investigates MHD flow past a truncated square
cylinder. In 2011, Mistrangelo et al. [7] from the Karlsruhe Institute
of Technology (KIT) developed and validated up to a high Hartmann
number probably the first OF LM–MHD solver. In the same years, a
version was also developed by Mas de les Valls et al. [8] from the
Universitat Politecnica de Catalunya (UPC), with formal validation up
to a Hartmann number of 15 000 conducted more recently in 2022 by
Suarez et al. [9] from the same research group. For completeness, it
is worth mentioning the version from Delft University of Technology
(TU Delft), developed and validated with various cases by Blishchik
et al. [10] in 2021, considering also multiphase flow.

The first of the presented solvers is mhdMultiRegionFoam
(mMRF), capable of simulating single–phase, transient, incompress-
ible, isothermal LM–MHD flows. It can handle an arbitrary number
of fluid and solid computational domains. The second one is the
mhdInterFoam (mIF) solver, designed for the study of multiphase
LM–MHD flows in BB and PFC.

2. MHD numerical model description

2.1. Physical model and discretization

Before presenting the developed tools and their validation, this sec-
tion outlines the assumptions and the implemented equations common
to both the solvers. Homogeneous and isotropic continuous media are
considered for both fluid and solid domains. The fluid domains are
assumed to be Newtonian and incompressible. The displacement elec-
tric current is neglected (low–frequency approximation), as well as the
accumulation of electric charge (quasi–neutral approximation) and the
induced magnetic field (low–magnetic Reynolds approximation) [11].

With these assumptions and considering the electric potential 𝜙 as
the main electrical variable, a magneto–hydraulic LM–MHD flow (MHD
with no heat transfer) is described by the following set of equations,
derived from the coupling of the Navier–Stokes’, Maxwell’s, and Ohm’s
equations:

∇ ⋅ 𝒖 = 0 (1)

𝜌
[ 𝜕𝒖
𝜕𝑡

+ (𝒖 ⋅ ∇) 𝒖
]

= −∇𝑝 + 𝜌𝜈∇2𝒖 + 𝒋 × 𝑩𝟎 (2)

∇2𝜙 = ∇ ⋅ (𝒖 × 𝑩𝟎) (3)

𝒋 = 𝜎𝐹 (−∇𝜙 + 𝒖 × 𝑩𝟎) (4)

where 𝒖 is the velocity, 𝑝 the pressure, 𝒋 the electric current density,
𝑩𝟎 the imposed magnetic field, 𝜌 the density, 𝜈 the kinematic viscosity
and 𝜎𝐹 the electrical conductivity of the fluid.

The dimensionless parameters that completely describe a magneto–
hydraulic flow under the proposed assumptions include: the Reynolds
2

number Re = 𝑢0𝐿∕𝜈 which represents the ratio between inertial and b
viscous forces, the interaction parameter (or Stuart number) N =
𝜎𝐹𝐵0

2𝐿∕(𝜌𝑢0) which represents the ratio between electromagnetic and
nertial forces, and the Hartmann number Ha =

√

NRe = 𝐿𝐵0
√

𝜎𝐹 ∕(𝜌𝜈)
which is the square root of the ratio between electromagnetic and
viscous forces, where 𝑢0 and 𝐿 are the mean velocity and the char-
acteristic length. Another important parameter is the wall conductance
ratio 𝑐𝑤 = 𝜎𝑆 𝑡∕(𝜎𝐹𝐿) which represent the ratio between the electrical
conductance of the fluid and the solid walls containing it, where 𝜎𝑆 is
the electrical conductivity of the wall and 𝑡 its thickness.

As seen from Eq. (2), the MHD effect is modeled with the inclusion
of the Lorentz force (𝒋 × 𝑩𝟎) in the momentum equation, which is a
volumetric force in a non–conservative form. This means that, using
a discretization method that should ensure conservation, such as the
Finite Volume Method (FVM) employed in OF, momentum conserva-
tion may still not be guaranteed if the equation is discretized in this
form and without any particular precautions. Indeed, by substituting
the current density with Ohm’s law (Eq. (4)) and discretizing, the
term 𝒖 × 𝑩𝟎 is not derived from the fluxes of quantities on the faces
of the Control Volume (CV), but directly from the values of velocity
and magnetic field at the center of the CV. This is implied in the
discretization of the Ohm’s equation itself if it is performed without
specific adjustments, and it implies that the conservation of charge
and momentum, when it should be as in the Shercliff flow, is not
guaranteed, as demonstrate in [4].

Ni et al. [4] propose two techniques to conservatively calculate the
Lorentz force on an arbitrary collocated mesh:

1. Based on a conservative interpolation scheme of the current
density at the cell center from the cell faces of a CV, value that
will be use for the calculation of the Lorentz force.

2. Based on a conservative formulation of the Lorentz force that
does not require evaluating the electric current density at the
center of the CV but only the current density fluxes on the faces
of the CV. Obviously this eliminate the numerical error from
the interpolation to get the CV center values of the current.
Another advantage is that this formulation can also be used in
the presence of a non–uniform magnetic field.

In the solvers presented below, the second one of these proposed
technique has been adopted, in which the discretized Lorentz force is
expressed by this conservative formula:

(𝒋 × 𝑩𝟎)𝑐 = − 1
𝑉𝐶𝑉

[ 𝑛𝑓
∑

𝑓=1
(𝐽𝑛)𝑓 (𝑩𝟎 × 𝒓𝑐 )𝑓

]

+

− 1
𝑉𝐶𝑉

[

𝒓𝑐 ×
𝑛𝑓
∑

𝑓=1
(𝐽𝑛)𝑓 (𝑩𝟎)𝑓 𝑠𝑓

]

,

(5)

here the subscript 𝑐 denotes the CV center value, the one 𝑓 the face
enter value, 𝑉𝐶𝑉 is the volume of the CV, 𝑠𝑓 is the area of the cell face,
𝑓 is the number of faces which constitute the CV, 𝒓𝑐 in the center of
V coordinate and, finally, (𝐽𝑛)𝑓 is the current density flux on the faces
f the CV.

The critical part is the evaluation of (𝐽𝑛)𝑓 that must be carried out
ith a conservative scheme which ensure ∑𝑛𝑓

𝑓=1(𝐽𝑛)𝑓 𝑠𝑓 = 0 close to
achine precision. The (𝐽𝑛)𝑓 is computed by the Ohm’s law, with the

ollowing discretized formula

𝐽𝑛)𝑓 = 𝜎𝐹

[

−
(

𝜕𝜙𝑐
𝜕𝑛

)

𝑓
+ (𝒖 × 𝑩𝟎)𝑓 ⋅ 𝒏𝑓

]

, (6)

hich needs the center CV value of the electric potential, derived from
he iterative resolution of the electric potential Poisson equation
𝑛𝑓
∑

𝑓=1
𝜎𝐹

(

𝜕𝜙𝑐
𝜕𝑛

)

𝑓
𝑠𝑓 =

𝑛𝑓
∑

𝑓=1
𝜎𝐹 (𝒖 × 𝑩𝟎)𝑓 ⋅ 𝒏𝑓 𝑠𝑓 (7)

The key point highlighted by Ni et al. [4] is that the 𝜕𝜙𝑐∕𝜕𝑛 must
e discretized with the same scheme and must consider a correction
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for non–orthogonality to ensure charge conservation for non–structured
meshes, that is
(

𝜕𝜙𝑐
𝜕𝑛

)

𝑓
= 𝑓1

(

𝜙𝑐
)

⏟⏟⏟
orthogonal

+ 𝑓2
(

𝜙𝑐 ,∇𝜙𝑐
)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
non–orthogonal

(8)

with ∇𝜙𝑐 evaluated with the Gauss’ rule

∇𝜙𝑐 =
1

𝑉𝐶𝑉

𝑛𝑓
∑

𝑓=1
𝜙𝑓 𝑠𝑓𝒏𝑓 (9)

They proposed two discretization formulas that include a correction for
non–orthogonality [4]. However, in the solvers presented below, the
scheme already existing in OF was used, which represents the gradient
with an orthogonal term calculated implicitly and a non–orthogonal
correction term calculated explicitly [12].

2.2. MHD code workflow

In this section, the calculation algorithm of the MHD model pre-
sented above is briefly described, omitting the hydrodynamic compu-
tation part, which is performed using the PIMPLE1 algorithm. For a
detailed description of the hydrodynamic computation, please refer to
the provided Ref. [12].

1. Initial mapping of the fields (𝒖, 𝑝, 𝑝ℎ𝑖, etc.) from imposed initial
conditions, evaluation for 𝑡 = 0 of the Lorentz force using Eq. (5).

2. PIMPLE algorithm for time 𝑡, converged values of 𝒖 and 𝑝.
3. Solving of the electric potential Poisson Eq. (7) for 𝜙𝑐 .
4. Calculation of 𝜕𝜙𝑐∕𝜕𝑛 from Eq. (8) and calculation of (𝐽𝑛)𝑓

from Eq. (6) with ∇𝜙𝑐 computed from Eq. (9).
5. Calculation of the updated value of the Lorentz force using

Eq. (5).
6. Performing of eventual n external PIMPLE loops to improve the

coupling between the dynamic and electromagnetic variable.
7. Repeat steps from 2 ÷ 6 for 𝑡 = 𝑡 + 𝑑𝑇 .

3. The mMRF solver: code description and validation

3.1. Code description

The mhdMultiRegionFoam is a solver capable of simulating time–
dependent, incompressible, and isothermal MHD flow in an arbitrary
number of fluid and solid regions. The solver is based on the cht-
MultiRegionFoam solver of OF 9, designed for solving conjugate heat
transfer problems involving multiple regions or domains, coupled with
an internal Boundary Condition (BC). The strategy for solving the
coupled heat transfer is segregated, meaning that first, the equations in
the fluid domains are solved using the temperature field in the solids
from the previous time iteration. Then, the equations for the solids are
solved using the temperature field in the fluids from the previous step.
This procedure is iteratively repeated until the solution converges, and
this iterative process is controlled by the PIMPLE loop setup.

Another coupling strategy is the so-called grid coupling strategy
which avoids the use of the internal BC by directly coupling the meshes
of all domains and solving a unique matrix system. The advantage of
this approach is that it eliminates internal iterations between domains,
although it requires processing much larger matrices at the solver
level [8]. However, the authors have found that three external PIMPLE
iterations are sufficient to couple the solution between the fluid and
solid domains. This, combined with the lower memory requirements
needed to process individual region meshes (instead of a global mesh)
and the great flexibility in using internal BC, makes this strategy very
promising for integration into a multi–physics platform.

1 Pressure Implicit Method for Pressure–Linked Equations.
3

Fig. 1. Computational grid on the channel cross–section for the Shercliff flow at
Ha = 500. Detail of the nodes distribution through the side layer (wall parallel to
𝑩𝟎) and through the Hartmann layer (left box, wall perpendicular to 𝑩𝟎). The scaled
velocity is the ratio between the axial velocity and the value of the axial velocity at
the center of the outlet channel cross–section.

However, regardless of the strategy employed, the transport equa-
tions between domains need to be coupled, conserving the main vari-
able at the interface among the regions. In the case of the mMRF
solver, the coupling BC has been modified to ensure the continuity
of the electric potential and the conservation of its flux (or electric
current) at the interface, implementing the following equations, where
the subscript 𝐹 and 𝑆 mean, respectively, fluid and solid:

𝜙𝐹 = 𝜙𝑆 (10)

𝜎𝐹
𝜕𝜙𝐹
𝜕𝑛

= −𝜎𝑆
𝜕𝜙𝑆
𝜕𝑛

(11)

Therefore, considering the workflow presented in Section 2.2, the
steps executed in the code are the same but with the following differ-
ences:

1. After step 5, 𝜙𝑐,𝑆 and 𝜕𝜙𝑐,𝑆∕𝜕𝑛 in solids are calculated respec-
tively with Eqs. (7) and (6), considering that 𝒖 = 0 and that the
electrical conductivity is that of the respective solid region under
consideration.

2. Step 6 becomes crucial to ensure the coherence of the electric
potential field between fluids and solids. Usually, three external
PIMPLE cycles are sufficient to guarantee this coherence.

3.2. Validation

This section will present the results for the baseline benchmark
problem as outlined in the Ref. [5], which consist simulating a fully
developed (2D), laminar, steady MHD flow within a square duct sub-
jected to a uniform transverse magnetic field 𝑩𝟎, up to high Hartmann
numbers. Two distinct wall electrical conductivity conditions were
explored: one with perfectly electrically insulated walls (𝑐𝑤 = 0),
corresponding to the Shercliff flow and labeled as A1 in the benchmark,
and another with perfectly insulated side walls (parallel to 𝑩𝟎) and
electrically conductive (𝑐𝑤 = 0.01) Hartmann walls (perpendicular to
𝑩𝟎), corresponding to the Hunt flow, labeled as A2. Explanation of
physical phenomena and discussion of flows features for these classical
MHD flows can be found in established MHD literature, such as the
Ref. [3].

The numerical domain consist a half–square, where, to reduce com-
putational effort, the symmetry boundary condition was applied on
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the symmetry plane perpendicular to 𝑩𝟎. An uniform pressure value
of zero was enforced at the outlet, along with the zeroGradient BC for
elocity, ensuring a fully developed flow. At the inlet, the zeroGradient
C for pressure was applied, and the velocity was mapped through the
apped BC, which connects the inlet and outlet, ensuring a fixed value

f mean velocity on the cross–section. This approach effectively models
n infinitely long channel simulating only a small axial length. At the
luid–solid interface, the zeroGradient BC and the noSlip BC were

set for pressure and velocity, respectively, and the custom coupling
boundary condition ensured the continuity of electric potential and
conservation of current density. Regarding the electric potential, the
zeroGradient BC was applied at the inlet and outlet, following the
expected 2D current distribution, as well as at the external boundary
of the walls.

The governing equations were solved on a structured, hexahedral
and coherent mesh, with higher resolution near the walls where the
MHD boundary layers develop, as shown in Fig. 1. For all the analyzed
cases, 7 elements were placed inside the wall thickness and 9 elements
were positioned between the inlet and outlet. It was observed that the
mapped BC is sensitive to the number of axial elements, making it pos-
sibly not the most optimal solution for achieving periodicity between
two patches. The exploration of alternative boundary conditions for this
purpose is still under analysis.

A second–order backward discretization scheme was employed for
he temporal term, while Gauss discretization with linear interpolation
f variables was applied to all other terms. Concerning the resolution
f the discretized equations, the PCG.2 method with the DIC3 precon-

ditioner was utilized for the pressure and electric potential variables,
whereas the PBiCGStab4 method with the DILU5 preconditioner was
applied to the velocity variable [12]. As previously stated, PIMPLE
algorithm was employed for the pressure–velocity coupling, performing
two internal corrector loops and a minimum of three external loops.
Convergence of the simulations was deemed achieved when the resid-
uals of all variables reached values below 10−6 and the discrepancy
of select physically significant variables between consecutive iterations
((𝑥𝑡 − 𝑥𝑡−1)∕𝑥𝑡−1) fell below 10−6.

The benchmark involves comparing the numerical dimensionless
flow rate 𝑄∗

𝑂𝐹 with the analytical values 𝑄∗
𝐴𝑁 provided in Ref. [5].

It is important to underline that these analytical solutions are valid
considering the so-called thin–wall condition [3]. Therefore, a ratio
between the characteristic length 𝐿, i.e the half–length of the side
parallel to 𝑩𝟎, and wall thickness 𝑡 equal to 10−2 was considered. The
relation to calculate the dimensionless flow rate are:

𝑄∗ = ∫

1

−1
𝑑𝑦∗ ∫

1

−1
𝑈∗𝑑𝑧∗ (12)

𝑈∗ = 𝑈
[

𝐿2(−𝑑𝑃∕𝑑𝑥)∕(𝜈𝜌)
] (13)

here 𝑈 represents the integral area average value computed at the
utlet of the numerical domain and the pressure gradient 𝑑𝑃∕𝑑𝑥 is
alculated as the ratio of the pressure drop (the integral area average
alue at the inlet due to the fixed zero–value at the outlet) and the axial
ength of the domain.

A mesh sensitivity analysis was conducted for both the A1 and A2
ases at Ha = 500, aiming to investigate the influence of resolution on
oth the Hartmann Layer (HL) and the Side Layer (SL). The HL develops
n the Hartmann wall and its thickness scales with ∼ 𝐿∕Ha, while the
L develops on the side walls and scales with ∼ 𝐿∕

√

Ha.
In addition to considering the integral quantity 𝑄∗ as a comparison

parameter through the error 𝐸(𝑄∗) = |𝑄∗
𝑂𝐹 −𝑄∗

𝐴𝑁 |∕𝑄∗
𝐴𝑁 , two local

2 Preconditioned Conjugate Gradient.
3 Simplified Diagonal–based Incomplete Cholesky.
4 Preconditioned Bi–Conjugate Gradient Stabilized.
5

4

Simplified Diagonal–based Incomplete LU. t
Table 1
Results of the mesh sensitivity analysis for the A1 case with Ha = 500.

HL
division

SL
division

Number of
elements

𝐸(𝑄∗)
(%)

𝐸(𝐼𝐻𝑃 )
(%)

𝐸(𝐼𝑆𝑃 )
(%)

0 6 30 096 25.14 0.722 1.258
2 6 38 304 3.280 0.049 0.173
4 6 44 460 0.957 0.043 0.117
6 6 47 880 0.602 0.041 0.115
8 6 50 616 0.468 0.038 0.115
10 6 52 668 0.395 0.033 0.105

6 8 52 920 0.585 0.029 0.102
6 10 56 700 0.577 0.022 0.096
6 12 60 480 0.571 0.018 0.092

Table 2
Results of the mesh sensitivity analysis for the A2 case with Ha = 500.

HL
division

SL
division

Number of
elements

𝐸(𝑄∗)
(%)

𝐸(𝐼𝐻𝑃 )
(%)

𝐸(𝐼𝑆𝑃 )
(%)

0 6 30 096 3.846 0.730 0.830
2 6 38 304 1.008 0.282 0.378
4 6 44 460 0.638 0.267 0.362
6 6 47 880 0.576 0.255 0.361
8 6 50 616 0.550 0.251 0.359
10 6 52 668 0.526 0.229 0.334

6 8 52 920 0.540 0.216 0.326
6 10 56 700 0.521 0.203 0.311
6 12 60 480 0.510 0.194 0.302

Table 3
Results of the validation process for the A1 case.

Ha Q∗
AN[%] E(Q∗)(%) E(IHP)(%) E(ISP)(%)

500 7.680 × 10−3 0.602 0.044 0.115
5000 7.902 × 10−4 0.424 0.022 0.033
10000 3.965 × 10−4 0.386 0.040 0.015
15000 2.648 × 10−4 0.383 0.022 0.065

Table 4
Results of the validation process for the A2 case.

Ha Q∗
AN[%] E(Q∗)(%) E(IHP)(%) E(ISP)(%)

500 1.405 × 10−3 0.576 0.255 1.363
5000 1.907 × 10−5 0.055 0.624 0.620
10000 5.169 × 10−6 0.018 0.118 0.981
15000 2.425 × 10−6 0.248 0.036 1.127

quantities are also taken into account. Specifically, axial velocity (𝑢𝑥)
profiles were examined on the two principal axes of the channel cross–
section: one in the 𝑧–direction, parallel to 𝑩𝟎, passing through the HL
denoted as 𝐼𝐻𝑃 , and the other in the 𝑦–direction, perpendicular to
𝑩𝟎, passing through the SL denoted as 𝐼𝑆𝑃 . Discrepancies between the
umerical and analytical integral values were computed in an absolute
iscrete manner, avoiding compensations of velocity excess in some
arts of the profile with defects in other parts. This was achieved
tilizing the formula 𝐸(𝐼𝑥) =

∑𝑠𝑝
𝑖=1 |𝐼𝑥,𝑂𝐹 − 𝐼𝑥,𝐴𝑁 |∕

∑𝑠𝑝
𝑖=1 𝐼𝑥,𝐴𝑁 , with 𝑠𝑝

he number of sampling points.
The results of the sensitivity analysis for case A1 and A2 are

resented in Tables 1 and 2, respectively. Increasing layer resolution
enerally reduces discrepancies with reference quantities, but HL res-
lution impacts the solution more than SL. For A1, < 4 divisions of
L cause significant errors due to current leakage, leading to underes-

imated Lorentz force and higher flow rate. A2 allows < 2 elements
o maintain < 1% error. The authors concluded that considering 6
lements in both the HL and SL for both cases represents a suitable com-
romise between accuracy and computational cost for the continuation
f the validation activity.

Tables 3 and 4 present the validation results for the A1 and A2 cases,
espectively. The numerical results exhibit an excellent agreement with

he analytical solutions across all tested magnetic field intensities for
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Fig. 2. Dimensionless velocity profiles near the Hartmann (up) and side (down) layer
for the A1 case for Ha = 15 000. The scale velocity 𝑢𝑥,𝐶 si the velocity at the center of
the cross–section.

both cases, with a maximum deviation of approximately 1%. This high
level of accuracy is further evident in the comparison between the nu-
merical and analytical velocity profiles [4] along the main cross–section
axis in the z and 𝑦–directions.

Figs. 2 and 3 depict these comparisons for the A1 and A2 flows,
respectively, showcasing the robustness of the numerical simulations,
especially in the most challenging case.

4. The mIF solver: code description and validation

4.1. Code description

The mhdInterFoam is a solver capable of carrying out MHD time–
dependent simulation of two incompressible, isothermal and immisci-
ble fluids. Currently, it supports only the fluid region, so it is possible to
model only ideal electric wall conditions through BCs, such as perfectly
electrically insulated and conductive walls.

The solver is based on the interIsoFoam solver of OF v2212, which
is an extension of the interFoam solver using the isoAdvector phase–
fraction based interface capturing approach [13], with optional mesh
motion and mesh topology changes including adaptive re–meshing.
The implementation of MHD effects was carried out by adapting the
guidelines from what is arguably the most significant work in numerical
modeling of MHD multiphase phenomena, the 2014 study by Zhang
et al. [14], to the structure of the base solver.

The solver interIsoFoam has been already tested by the authors
under hydrodynamic conditions for an high–density ratio mixture, a po-
tentially critical condition for multiphase numerical models, correctly
simulating several flow regime for the rise of helium bubbles within
the lead–lithium eutectic alloy [15].

The two–phase modeling is performed employing the Volume of
Fluid (VOF) method, a free–surface modeling technique which use a
scalar function 𝛼 that represent the volume fraction of each fluid in
a CV. A value equal to 0 indicates that phase 1 is present in that
specific CV, while a value equal to 1 means that phase 2 is present
in that specific CV. Control volumes with values between these two
extremes represent the interface between the two phases. Excluding
5

Fig. 3. Dimensionless velocity profiles near the Hartmann (up) and side (down) layer
for the A2 case for Ha = 15 000. The scale velocity 𝑢𝑥,𝐶 si the velocity at the center of
the cross–section.

phase changes, the mass of a certain phase must be conserved, and thus:

𝜕𝛼
𝜕𝑡

+ ∇ ⋅ (𝛼𝒖) = 0 (14)

In essence, this represents the advection equation of the interface, and
its solution must preserve its sharpness. The interIsoFoam solver pro-
vides three different solutions to achieve this, and in the following, the
isoAdvector method [13] has been applied. For a detailed description
of interIsoFoam refer to Refs. [11,15].

Once the alpha distribution is calculated, material properties are
updated within the computational domain according to the following
relationship, where 𝛽 represents a generic property:

𝛽 = 𝛼𝛽1 + (1 − 𝛼)𝛽2 (15)

The VOF method employ a single momentum equation for the whole
mixture and below is reported the one implemented in the mIF solver,
which includes the Lorentz force:

𝜌
[ 𝜕𝒖
𝜕𝑡

+ (𝒖 ⋅ ∇) 𝒖
]

=

− ∇𝑝 + ∇ ⋅ 𝛹 + 𝑭 𝑆 + 𝜌𝒈 + 𝒋 × 𝑩𝟎

(16)

where 𝛹 is the viscous stress tensor, 𝒈 the gravitational acceleration
and 𝑭 𝑆 the surface tension which is modeled as a volumetric force
employing the Continuum Surface Force (CSF) technique of Brackbill
et al. [16]

𝑭 𝑆 = 𝛾𝜅∇𝛼 (17)

𝜅 = ∇ ⋅
(

∇𝛼
|∇𝛼|

)

(18)

where 𝛾 is the surface tension coefficient and 𝜅 the interface curvature.
As shown in the previous equations and in the algorithm proposed

in [14], MHD effects manifest only in the momentum Eq. (16), where
the Lorentz force was calculated using the conservative formula (5) and
closure of the equations system was performed using Eqs. (6) and (7),
where electrical conductivity is calculated using Eq. (15).

Considering the workflow presented in Section 2.2, it is modified by
including the following steps between step 1 and 2:
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Fig. 4. Computational grid on the bottom part of the midplane cross–section for the
bubble with 𝑑 = 5.60mm and 𝐵0 = 0.5 T at time zero. Detail of the nodes distribution
through the Hartmann layer (left box).

Fig. 5. Results of the mesh sensitivity analysis for the bubble with 𝑑 = 5.60mm for
𝐵0 = 1T. The bubble rising velocity is the time–average value of the terminal velocity
up to 0.1 s.

1. Variables are updated due to possible mesh modifications (adap-
tive re–meshing).

2. The alpha transport Eq. (14) is computed, considering the veloc-
ity field from the previous time–step, and thus, the position of
the interface between phases is known.

3. Material properties are updated with the new alpha distribution
(Eq. (15)).

The remaining steps remain essentially unchanged, where PIMPLE
is responsible for the velocity–pressure coupling in the momentum
equation and the calculation of the MHD part follows steps 4 and 5.

4.2. Validation

In this section, we present the results of the validation process
for the mIF code. This validation involves simulating the rising of a
nitrogen bubble in a square channel filled with liquid mercury under
the influence of a transversal uniform magnetic field 𝑩𝟎. This particular
case was previously explored by Mori et al. [17], where the bubble
dynamics for various initial diameters 𝑑 was investigated under three
different magnetic field intensities, ranging from 0.5 to 1.5 T.

The parameter chosen for comparison is the terminal velocity of
the bubble 𝑈 . Initially at rest, the bubble undergoes acceleration
6

𝑇

Fig. 6. Electric currents streamlines near the bubble with 𝑑 = 5.60mm and 𝐵0 = 0.5 T.
The scaled current density is the ratio between the current density magnitude and the
characteristic value equal to 𝜎𝑢𝑇𝐵0 with 𝜎 = 8.8 × 104 Am−2.

until it attains a limit velocity, a value contingent upon factors such
as the bubble diameter, material properties and the intensity of the
magnetic field. This terminal velocity, apart from minor oscillations,
remains relatively constant. The convergence criteria are established by
observing this behavior, deeming the simulation converged when the
oscillations remain within the range of ±10% concerning the terminal
velocity. Achieving this requires a simulation time–frame between 0.21
and 0.25 s.

Referring to the original paper [17] for a detailed description of
the experimental test section, it is crucial to note that producing a
perfectly spherical bubble and accurately measuring its diameter and
its velocity in an opaque medium like mercury is a challenging task.
The bubbles were created by injecting nitrogen through a nozzle and
their diameter was estimated based on the nitrogen flow rate and the
rate of bubble generation measured using an electrical triple probe
system, which is used also for the bubbles velocity. Due to these
uncertainties, the authors conducted multiple experiments using the
same nitrogen flow rate and determined the rising velocity through a
statistical model. Additionally, the probe system allowed for estimating
the bubble diameter at the starting point from the point of impact
between the bubble and the probes and they observed a discrepancy
compared to the initial estimate of about 30% [17].

The numerical domain is represented as a parallelepiped, with a
square base measuring 6𝑑 × 6𝑑. In general, the magnetic field exerts
a significant influence on the velocity, and depending on the bubble’s
dimensions, the domain height needs to be adjusted to provide an
appropriate time–frame and space for computing the terminal velocity.
For the considered parameters, the domain height ranges from 16𝑑 to
42𝑑.

The motion of the spherical nitrogen bubble start from rest at a
distance of 1𝑑 above the bottom wall considering the bubble centroid,
while the liquid mercury remains stationary, with a zero–velocity
condition imposed throughout the domain. The material properties
considered in this simulation are detailed in the Ref. [18] and the
main dimensionless parameter, i.e. the Re or Galilei number, the Eötvös
number (ratio between gravitational and surface tension forces) and Ha
vary in the interval 3200 ≤ Re ≤ 11 800, 1.5 ≤ Eo ≤ 8.5 and 0 ≤ Ha ≤ 148.

Concerning the BCs, the noSlip condition for velocity and the zero-
Gradient condition for pressure, volume fraction and electric potential
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Fig. 7. Shape of the bubble with 𝑑 = 5.60mm for the hydrodynamic case (left),
𝐵0 = 0.5 T (center) and 𝐵0 = 1T. The bubble is computed and the isovolume for the
value 𝛼 = 0.5 at several time–steps.

have been applied on all walls. This last condition is in line with the
glass channel used by Ref. [17].

The generation of a suitable computational grid, ensuring both
accuracy and reasonable computational cost, presents a significant
challenge in modeling flows of this nature. The presence of a practically
perfect electrical insulator, like nitrogen, leads an accumulation of the
electric current near the bubble interface, as shown in Fig. 6, resulting
in the generation of a MHD layer near the interface. Ensuring a certain
level of resolution within these layers implies having a highly refined
mesh in all parts of the domain where the bubble rises, which means
to an enormous number of mesh elements, or the use of Adaptive Mesh
Refinement (AMR) technique capable of automatically refining the
mesh near the interface. The mIF solver has inherited the capability to
employ AMR from the base interIsoFoam solver however, as it stands,
this approach does not seem suitable for application in an MHD case.
Further analyses are currently underway to explore this possibility, and
the findings will be discussed in detail in a dedicated future paper.

Currently, the meshing strategy is designed based on a criterion
independent of the resolution of the MHD layers near the interface.
This approach, in line with proposals in the existing literature [14,18],
is primarily founded on the bubble diameter. Specifically, the mesh
configuration comprises a core mesh with dimensions 3𝑑×3𝑑, consisting
of uniformly sized square elements of 𝑑∕𝑛 × 𝑑∕𝑛. This core mesh is
followed by a transition mesh from the core to the mesh near the walls,
where the elements measure 𝑑∕8×𝑑∕8. Finally, the mesh near the walls
is designed to ensure 7 divisions across the MHD layers, as shown in
Fig. 4. The parameter 𝑛 introduced above was determined through a
mesh sensitivity analysis, considering values of 𝑛 = 11, 𝑛 = 16 and
𝑛 = 24 and the average value of the terminal velocity up to 0.1 s as a
comparing parameter. The analysis revealed a solution independent of
mesh resolution for 𝑛 = 16, as shown in Fig. 5, which was consequently
chosen for all the cases presented hereafter. The obtained results, along
with the employed discretization scheme and algebraic solver, will be
comprehensively discussed in a future dedicated paper.

Fig. 8 illustrates the rising velocity of the bubble with a diameter
of 5.60mm moving through a 0.5 T magnetic field. The results from two
other codes, taken from Ref. [18] (labeled Code A) and Ref. [14] (Code
B), are also presented, alongside the experimental terminal velocity
value of 168m s−1 [17]. Both the mIF solver and Code A simulate
a very short–lived initial phase, extending from 0 to approximately
0.01 s, characterized by the rapid bubble acceleration. Subsequently,
7

Table 5
Results of the validation. The symbols 𝑈𝑇 ,𝑒𝑥 and 𝑈𝑇 ,𝑚𝐼𝐹 refer, respectively, to the
experimental value in [17] and the mIF results.
𝑩𝟎 (T) d (mm) UT,ex (mm/s) UT,mIF (mm/s) E(UT)(%)

0.0 2.36 189 207 9.5
0.0 3.87 192 189 −1.6
0.0 5.60 201 203 1.0
0.5 2.36 199 187 −6.0
0.5 3.87 184 174 −5.4
0.5 5.60 168 172 2.4
1.0 5.60 143 134 −6.3

Fig. 8. Rising velocity for the bubble with 𝑑 = 5.60mm under a magnetic field with
intensity 0.5 T. Code A refers to the numerical investigation described in [18], code B
to Ref. [14].

the velocity reaches a plateau and begins oscillating around a mean
value. Code B also reaches this point, albeit with a smoother initial
phase. Across all three codes, the average velocity closely aligns with
the experimentally measured value. As shown in Fig. 8, our results
exhibit minor oscillations throughout the timeframe compared to other
codes. This is likely due to the small time–step used in our simulation,
which is on the order of 10−5 ÷ 10−6, and the fact that we probe the
velocity at each time–step.

Table 5 collects the results for all the considered bubbles, demon-
strating that the code accurately predicts the terminal velocity of the
bubbles, with a maximum discrepancy from the experimental data of
approximately 10%.

It should be noted that the experimental values of the terminal
velocity in the absence of magnetic fields exhibit discrepancies, some of
which are significant, compared to the Mendelson formula [19], which
is commonly used to estimate rising velocity in a hydrodynamic regime.
This disparity is likely attributed to the perturbations in the measure-
ment system concerning the motion field of the metal surrounding the
bubble. These perturbations could be expected to impact measurements
even when the magnetic field is applied. Considering the uncertainties
associated with the measured velocity and the starting bubble’s shape
and diameter, mentioned before, the authors regard the results of the
validation activity as successful.

Fig. 7 shows the shape of the bubble during its ascent for several
time–steps. As expected due to the small values of the Eötvös and
Galilei numbers, the shape of the bubble without the magnetic field is
ellipsoidal, without undergoing the creation of filaments or breaking.
Considering the magnetic field, there is not a significant change in the
shape behavior, where the bubble remains substantially ellipsoidal with
the short axis aligned with the magnetic field direction and the long one
perpendicular to the magnetic field, as also found in [20]. In this figure,
the braking action of the Lorentz force is clearly visible, where the
bubble covers a smaller rising space considering the same time–frame,
essentially remaining on an almost straight trajectory.

5. Conclusions and future works

In this paper, we introduced two OpenFOAM solvers for compu-
tational magnetohydrodynamics developed by the NERG of Sapienza
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University of Rome. The first code, the mhdMultiRegionFoam solver,
has the capability to simulate time–dependent, incompressible, and
isothermal MHD flow, accounting for fluid–solid electrical coupling.
The code underwent validation through classic 2D benchmarks up
to 𝐻𝑎 = 15 000, demonstrating outstanding results. In the future,
the code will be improved with the implementation of heat transfer
and buoyancy effects and will undergo further validation considering
the benchmarks described in Ref. [5]. Upon completion of these de-
velopments, the code will have the capability to model single–phase
magneto–convective flows under relevant fusion conditions.

The second solver, mhdInterFoam, is an isothermal, immiscible
wo–phase MHD tool based on the Volume of Fluid method. In this
aper, we present the initial phase of the validation process, involving
he modeling of a rising bubble in liquid metal under the influence
f a uniform transverse magnetic field. The results are promising,
ith a discrepancy of less than 10% compared to the selected exper-

mental validation data. Planning is underway to identify and select
uitable benchmarks for other multiphase MHD scenarios. This activity
s deemed as a necessary step to integrate the validation protocol
utlined in Ref. [5], which currently does not consider any multi-
hase flow, to cover all the relevant physical scenarios expected in
B and PFC. A preliminary candidate has already been identified for
he case of a thin–film flow over an inclined substrate, for which
nalytical solutions and other numerical results exist to provide a frame
f Ref. [21,22].

Furthermore, we ultimately plan to integrate these two solvers into
flexible and comprehensive platform for the simulation of MHD flows

n a variety of conditions representative of all those LM systems and
omponents currently under development for fusion reactors. To this
nd, activities are being planned and are ongoing to extend the capa-
ilities of the existing code base, e.g. simulating the LM compressibility
nd pressurization during coolant leakage transients [23,24], coupling
ith a dedicated system thermal–hydraulics code with MHD effects

REDMaHD) [25], transport of tritium and activated corrosion products
n the LM [26,27], etc.
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