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Abstract

Many of the biggest puzzles in physics, such as the nature of dark matter and the
behavior of spacetime singularities, stem from the interplay between gravity and
quantum mechanics. Compact objects, like neutron stars and black holes, offer a
unique setting to investigate these questions, as they probe strong gravitational
fields and may be the only possible way to observe dark particles. With the recent
discovery of gravitational waves, we now have an uncharted way to study such
extreme environments, potentially shedding light on those fundamental issues.

This thesis focuses on fermion soliton stars, a class of compact objects that emerge
from a theory in which a nonlinear self-interacting scalar field couples with fermions
via a Yukawa interaction, resulting in an effective fermion mass that depends on the
fluid properties. We elucidate the fundamental features of this model and its links
to the Standard Model and beyond. Moreover, we provide distinctive signatures of
the model in the gravitational wave signal, offering a way to distinguish fermion
soliton stars from other types of compact objects.
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STF: symmetric trace-free
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Chapter 1

Introduction

The realm of physics underwent deep revolutions during the twentieth century. First
of all, spacetime, which for Newton was absolute and equal to itself in all points of
the Universe, was shown to be rather a dynamic object, whose properties (including
the rate at which time passes) highly depend on the velocity of the observer and the
local matter distribution. That was the most profound lesson taught by the theories
of special and general relativity, proposed by Einstein, respectively, in 1905 and
1916. Corroborated by many experimental tests, the theory of gravity that arose
after Einstein’s work has established itself as our best theory to probe the world of
the infinitely big, from the scale of the solar system to the size of the observable
Universe.

The second revolution was the discovery of quantum mechanics, which allowed
the human mind to penetrate the bizarre laws of the infinitely small. This theoretical
success was intimately connected with an intense experimental activity aimed at
shedding light on the subatomic world, which began with the discovery of the
electron by Thomson in 1897. Such an incredible effort, both on the theoretical and
experimental side, reached its highest moment in the 1970s, when people realized
that quantum field theory, a theoretical framework developed to unify both the
laws of quantum mechanics and special relativity, was successful in explaining all
the collected experimental evidence, once a relatively small number of fields and
interactions were assumed. That was the discovery of the so-called Standard Model
of particle physics (SM).

During the last decades, the SM has successfully passed extremely precise
experimental tests, without showing signs of failure. However, there are strong
reasons, both on the theoretical and experimental side, to believe that the Standard
Model is not complete. For example, observations ranging from the galactic to the
cosmological scales, suggest that the baryonic matter observed in the Universe is just
a small fraction (∼ 16 %) of the total matter content of the Universe. The missing
∼ 84 % is called dark matter [5]. Whether dark matter consists of particles, classical
fields, macroscopic bodies, or a combination of these, the simplest explanations
require introducing new ingredients or mechanisms into the Standard Model.

Moreover, a quantum theory that fully embeds gravitational interactions into
the Standard Model is missing. The conceptual difficulties that arise when one tries
to unify the two pillars of fundamental physics, quantum field theory and general
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relativity, can be understood heuristically as follows.
Quantum field theory teaches us that to probe the world at a distance ∼ ∆x, we

must concentrate an energy E ∼ ~c/∆x in that region. The smaller the region we
want to probe, the higher the energy needed. This process can not continue forever.
Indeed, when ∆x becomes comparable with the Schwarzschild radius corresponding
to the pumped energy, i.e. ∆x ∼ GE/c4, general relativity predicts that the
region collapses into a black hole. Thus, imposing that E ∼ ~c/∆x ∼ c4∆x/G
leads to ∆x ∼

√
~G/c3 ∼ 10−35 m. Under this length scale, called Planck length

and denoted as lp, the fundamental degrees of freedom of the theory are changing
and new phenomena are expected to take place (such as Hawking’s evaporation of
these microscopic black holes). The corresponding energy scale is mp c

2 ∼ ~c/lp ∼
1019 GeV, where mp is called Planck mass.

We cannot fail to mention also a further revolution brought about by the explosion
of statistical mechanics as a tool for investigating the world of the infinitely complex.
It is conceivable that interactions among these three fundamental pillars (general
relativity, quantum field theory, and statistical mechanics) will generate new and
fertile ideas able to push further the frontiers of human knowledge.

1.1 Compact objects as a bridge between the micro and
the macro world

Based on the previous argument, one may think that the only way to reach the
quantum gravity regime is by probing the Planck length, which requires an energy
E ∼ 1019 GeV, many orders of magnitude larger than the energy currently available
at the world’s biggest collider, the Large Hadron Collider (LHC).

There is however another possible path to the quantum regime, which uses strong
classical fields. Indeed, one expects that when the intensity of a classical field exceeds
a critical threshold, quantum effects show up. For example, when a constant electric
field E becomes bigger than

Ec ∼ me

e
∼ 1018 V/m , (1.1)

where me is the electron mass and e is the elementary charge, electron-positron
pairs are spontaneously created, causing the decay of the electric field, which is a
macroscopic measurable effect. This is the so-called Schwinger pair production [6].

In a similar spirit, it is conceivable that in the vicinity of a compact self-gravitating
object (such as black holes and neutron stars), where the gravitational field is strong,
quantum effects show up on scales much bigger than the Planck length, potentially
leading to a measurable effect.

Even forgetting about quantum gravity considerations, the aforementioned dark
matter problem may require, as discussed, introducing new ingredients into the
Standard Model (SM). If new particles exist in Nature, they may clump together to
form macroscopic self-gravitating objects, as happens for neutron stars. Such exotic
compact objects (ECOs) would naturally be decoupled (or only feebly interacting)
with other Standard Model particles/fields, playing naturally the role of dark matter
candidates (see 2.5).
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The detection of gravitational waves [7] inaugurated a hitherto uncharted window
into the Universe, paving the way to the exploration of the strong gravity regime
around conventional compact objects (black holes and neutron stars), as well as the
possibility of probing the existence of exotic compact objects and indirectly physics
beyond the Standard Model. Indeed, the discovery of an ECO in a binary merger
through gravitational wave observation, would indirectly shed light on the existence
of elusive particles.

These arguments clearly show that compact objects are a bridge between the
micro and the macro worlds. As further proof of this fact, we may consider the
formula expressing the maximum mass for a given model of compact objects. This
explicitly links the macroscopic properties of the objects (such as mass and radius),
with the parameters of the underlying microscopic theory (such as the mass of the
fundamental particle). For example, let us consider the formula expressing the
maximum mass Mc of a fermion star (such as a neutron star),

Mc ∼ 1
m2

(
~c
G

)3/2

, (1.2)

where m is the fermion mass (where the omitted O(1) prefactor depends on the
particular equation of state chosen). We explicitly see that the above formula
depends on a microscopic parameter, m, and on several fundamental constants,
including the reduced Planck constant ~, characterizing the quantum world, and
Newton’s gravitational constant G, which concerns the biggest scales in the Universe.

1.2 Fermion soliton stars
In light of the previous arguments, the quest for physically motivated theories that
give rise to exotic compact objects appears extremely compelling.

This thesis focuses on fermion soliton stars, a class of compact objects that
emerge from the following theory

S =
∫

d4x
√

−g
[ R

16πG − 1
2∂

µφ∂µφ− U(φ) + ψ̄(iγµDµ −mf )ψ + fφψ̄ψ
]
, (1.3)

describing a real scalar field φ and a fermion field ψ that interact through a Yukawa
term. A pictorial representation of these compact objects is shown in Fig. 1.1.
The choice of the scalar potential U(φ) is crucial in determining the macroscopic
properties of the fermion soliton stars (see Table 1.1).

This simple field theory enjoys three fundamental properties:

• the matter Lagrangian for φ and ψ is renormalizable, in contrast to the widely
used model describing solitonic boson stars [8, 9, 10, 11] in which the scalar
potential is non-renormalizable and field values should not exceed the limit of
validity of the corresponding effective field theory;

• the underlying Lagrangian is local and, together with the previous point, this
ensures that all the physics derived from it will not give rise to a superluminal
speed of sound;
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Figure 1.1. A pictorial illustration of a fermion soliton star. The inner region is dominated
by fermions ψ, smoothly connected, and surrounded by, an outer layer made of the
scalar field φ.

• arises in the SM and several BSM extensions, such as asymmetric dark matter
models [12].

Model Potential U(φ) Maximum mass Mc/M� Confining regime

Symmetric 1
2µ

2φ2
(
1 − φ

φ0

)2
3
(

500 GeV
µ

)(
107GeV
φ0

)2
mf > 6

(
µ
mp

)1/2
φ0

Asymmetric µ2

2! φ
2 + κ

3!φ
3 + λ

4!φ
4 ∼

(
GeV
µ

)(
GeV
φ0

)
mf & (µφ0)1/2

Mexican hat λ
16

(
φ2 − φ2

0

)2
0.1
(

GeV
µ

)(
GeV
φ0

)
mf > 2(µφ0)1/2

Table 1.1. Scalar potential, maximum mass, and confining regime for different fermion
soliton star models. The parameters µ, φ0 are, respectively, the bare mass and the
vacuum expectation value of the scalar field, while mf is the bare mass of the fermion.
For asymmetric fermion soliton stars, there are O(1) coefficients that depend on the
energy difference between the false and the true vacuum. In all three cases, the maximum
compactness is ≈ 0.27. The scaling of the maximum mass is valid in the confining regime
of the particular model, i.e. when φ0/mp � 1 and, at the same time, the correspondent
condition on mf is met.

About forty years ago, Lee and Pang proposed the first version of the model with
a symmetric scalar potential [13]. Working in a thin-wall limit in which the scalar
field is a step function, for some values of the parameters, Lee and Pang obtained
approximated solutions describing fermion soliton stars.

It is worth spending some words on the meaning of the term soliton, to avoid
confusion that often arises reading the literature. We will define a soliton as a
solution to a nonlinear wave equation that is localized with finite energy, everywhere
regular, and compatible with an asymptotically flat spacetime. In the context of the
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present model, the nonlinear wave equation is provided by the equation of motion of
the real scalar field φ (see e.g. sec. 3.1.1).

1.2.1 Outline and general structure

In Chapter 2, we present a concise introduction to the physics of compact objects.
In Chapters 3 and 4, we show that fermion soliton stars exist beyond the thin-
wall approximation, and we build exact static solutions within General Relativity.
Moreover, we elucidate some key properties of the model, in particular the role of the
effective fermion mass provided by the Yukawa coupling, and the consequences of a
scalar potential with generic asymmetric vacua. We explore the model systematically,
presenting mass-radius diagrams and the maximum compactness of fermion soliton
stars for various choices of the parameters. In Chapter 5 we investigate applications
of the previous findings adopting a particle physics perspective, presenting the
mechanism of non-perturbative vacuum scalarization as a support mechanism for
new compact objects that can form in the early Universe, can collapse into primordial
black holes (PBHs) through accretion past their maximum mass, and serve as dark
matter candidates. In Chapter 6, we briefly discuss the main possibilities to test
ECOs through gravitational wave observations. Finally, in Chapter 7 we investigate
the tidal deformations of fermion soliton stars and compute the corresponding tidal
Love numbers for different model parameters, highlighting how this information can
be used to disentangle fermion soliton stars from other families of compact objects.

In this thesis, we use natural units ~ = c = 1, and the (−,+,+,+) signature.
We define the Planck mass through G = m−2

p .





7

Chapter 2

The physics of compact objects:
an introduction

2.1 Compact objects: the end point of gravitational
collapse

Imagine a region of space filled with a (large) set of neutral massive particles. On
scales much bigger than the typical inter-particle separation, the system is effectively
described as a macroscopic fluid. In the simplest case, both viscosity and heat
flow are absent and, therefore, the short-distance dynamics is fully captured, in
the hydrodynamic limit, using only two functions, the energy density ε(x) and the
pressure p(x), where x = (ct,x) is the spacetime point.

Since the particles are electrically neutral, the only long-range force acting on the
system is gravity. Assuming that the fluid is non-relativistic (i.e. ε ≈ ρ, being ρ the
mass density and p � ρ), gravitational interactions will be well-described through
the Newtonian gravitational potential Φ(x). Let us call u(x) the (spatial) velocity
of the fluid element located at x at time t. Then, the relevant equations are [14]

∂tρ = −∇ · (ρu) , (2.1)

(∂t + u · ∇)u = −∇p

ρ
− ∇Φ , (2.2)

∇2Φ = 4πGρ . (2.3)

Eq. (2.1) is the continuity equation. It states that if there is a variation in the mass
density ρ inside some fixed volume, this has to come from particles that enter or
leave the volume. Eq. (2.2) is the Euler equation and comes from the momentum
conservation. Finally, eq. (2.3) is the Poisson equation, describing the gravitational
potential Φ generated by the source ρ.

To close the system of equations, we need to specify an equation of state, i.e. a
relation between ρ and p of the form p = p(ρ, T ), where T is the temperature of the
fluid. Such a relation is dictated by the microphysics of the system. For simplicity,
we will consider a barotropic fluid, where p = p(ρ) only.
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2.1.1 Ignoring gravity

It is instructive to first consider the case where gravity is absent, i.e. Φ ≡ 0. In this
regime, a solution for the previous system of equations is simply ū ≡ 0, ρ = ρ̄, and
p = p̄, where ρ̄ and p̄ are just two constants. The latter solution describes an infinite,
static fluid, i.e. not evolving in time. On top of this, we now add small perturbations,
by writing ρ = ρ̄+ δρ and p = p̄+ δp. The equations for the perturbations δρ and
δp are obtained by linearizing eqs. (2.1) to (2.3)

∂tδρ = −∇ · (ρ̄u) , (2.4)
ρ̄ ∂tu = −∇δp . (2.5)

Acting with a further time derivative on eq. (2.4) and using eq. (2.5), gives

∂2
t δρ− ∇2δp = 0 . (2.6)

Since the fluid is barotropic, the pressure perturbation can be written as

δp = ∂p

∂ρ
δρ ≡ c2

sδρ , (2.7)

where cs is the sound speed of the fluid. Substituting the latter expression in eq. (2.6)
gives

(∂2
t − c2

s∇2)δρ = 0 , (2.8)
which is a wave equation. Hence, the solutions will be sound waves

δρ(t,x) = Aei(ωt−k·r) , (2.9)

where k is the wavevector, ω = cs |k| is the frequency, and λ = 2π/|k| is the
wavelength of the wave.

2.1.2 Including gravity

Let us now switch on gravitational interactions. Formally, the configuration de-
scribing an infinite static fluid becomes ill-defined, since the solution of the Poisson
equation eq. (2.3) with a constant density leads to a divergent gravitational potential
Φ. Physically, this is merely a consequence of the fact that there are no infinite,
static self-gravitating fluids. However, the physical point that we will highlight is
not affected by these formal issues, which indeed can be cured through a suitable
regularization procedure (such as enclosing the system in a large but finite volume).

Repeating the same steps as before, we obtain again a wave equation

(∂2
t − c2

s∇2)δρ = 4πGρ̄ δρ , (2.10)

but now the frequency ω of a monochromatic solution is given by the equation

ω2 = c2
sk

2 − 4πGρ̄ . (2.11)

We notice that ω is either real or purely imaginary. The transition between the two
regimes is controlled by the critical wavevector kJ such that ω2 = 0, i.e.

kJ ≡
√

4πG ρ̄
cs

. (2.12)
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This parameter sets the fundamental scale of the system, called the Jeans scale. For
small scales (|k| � |kJ |), the pressure dominates and we find the same oscillations
as in the previous case. However, on large scales (|k| � |kJ |), gravity dominates,
the frequency ω becomes imaginary and the solution of the perturbation is δρ ∝
exp(± t/τ), where τ ≡ 1/

√
4πG ρ̄. The presence of this instability, where the density

perturbation grows exponentially, determines the onset of the gravitational collapse.
To determine the actual fate of the system, a fully non-linear simulation, which

also takes into account relativistic effects, is typically required. Still, it is conceivable
that the late-time attractor solution will be a stationary, self-gravitating object, at
least for some choices of the initial conditions. This intuition is confirmed by various
numerical results (see for example [15, 16]).

2.2 Equations of stellar structure

2.2.1 The Newtonian equations for stellar structure

Based on the previous arguments, it appears extremely compelling to understand
the properties of the stationary solutions to eqs. (2.1) to (2.3), since they represent
the leftover of the gravitational collapse. For example, it is interesting to assess the
allowed range of masses and radii where the final self-gravitating object lives. To
achieve this, we simply take the static limit of eqs. (2.1) to (2.3), i.e. we assume
that ρ, p, and Φ do not depend on time, while the fluid velocity u vanishes. To keep
things as simple as possible, we further look for a spherical symmetric configuration,
i.e. ρ, p, and Φ are taken to be only functions of the radial coordinate r. Then,
eq. (2.1) becomes trivial, while eqs. (2.2) and (2.3) reduce to

dp

dr
= −ρdΦ

dr
, (2.13)

1
r2

d

dr

(
r2dΦ
dr

)
= 4πGρ . (2.14)

It is convenient to integrate the last equation,

r2 1
G

dΦ
dr

= 4π
∫ r

0
(r′)2ρ(r′)dr′ . (2.15)

What appears on the right-hand side is nothing but the total mass m(r) contained
in a spherical shell of radius r. At this point, we can substitute back into eq. (2.13)
obtaining one single equation,

dp

dr
= −Gm(r)

r2 ρ(r) . (2.16)

Physically, this equation demands hydrostatic equilibrium between gravitational
interaction and internal pressure at any fluid element.

Adding to the latter equation also the definition of m(r) (in differential form)
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and the equation of state, we obtain a set of three equations,

dm

dr
= 4πr2ρ(r) (2.17)

dp

dr
= − Gm(r)

r2 ρ(r) (2.18)

p = p(ρ) , (2.19)

which describes the stellar structure in Newtonian gravity.
These equations have to be solved by first choosing a value ρc for the mass

density at the center of the star, i.e. ρ(0) = ρc, and then integrating up to the point
where the pressure vanishes, which defines the radius R of the star, i.e. p(R) = 0.
The latter condition not only ensures that the fluid is localized in some finite region
of space, but also guarantees the continuity of the solution at the radius of the star.
Once the radius R is determined, the mass of the star will simply be M = m(R).

2.2.2 Tolman-Oppenheimer-Volkoff equations

A crucial dimensionless parameter characterizing each equilibrium configuration is
the modulus of the gravitational potential at the surface of the star, i.e. GM/R.
This quantity is often called compactness and hereafter denoted as C. If C � 1,
then the gravitational field near the surface of the object is weak and the Newtonian
description we have been using so far is reliable. On the other hand, when C ∼ 1,
General Relativity effects become important and eqs. (2.17) to (2.19) must be
corrected.

To this end, we recall that the stress-energy tensor describing a perfect fluid is
covariantly written as

Tµν = (ε+ p)uµuν + p gµν , (2.20)

where ε and p are, respectively, the energy density (which reduces to the mass density
ρ in the non-relativistic limit) and the pressure, while uµ is the four-velocity of the
fluid element, and gµν the metric of the spacetime. The latter is assumed to be static
and spherically symmetric, conveniently described by the following line element

ds2 = −e2u(r)dt2 + e2v(r)dr2 + r2(dθ2 + sin2 θdϕ2) , (2.21)

in terms of two unknown functions u(r) and v(r).
The Einstein field equations Gµν = 8πGTµν on the spacetime given by eq. (2.21)

lead to the following final set of equations

dm

dr
= 4πr2ε , (2.22)

dp

dr
= −G

r2
(ε+ p)[m(r) + 4πr3p]

1 − 2Gm(r)
r

, (2.23)

where
m(r) ≡ r

2G(1 − e−2v(r)) . (2.24)

The eqs. (2.22) and (2.23) are known as the Tolman-Oppenheimer-Volkoff (TOV)
equations. Once an equations of state p = p(ε) is assigned, they fully characterize
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the stellar structure in General Relativity. In the Newtonian limit, where the fluid
is non-relativistic (ε ≈ ρ, being ρ the mass density and p � ρ) and the gravitational
field is weak (2Gm(r)

r � 1), we consistently recover eqs. (2.17) and (2.18). Notice
that m(r) acquires the physical meaning of total mass in a spherical shell of radius
r only in the Newtonian limit. In the fully relativistic regime, it should be thought
of just as a parametrization of the rr-component of the metric.

Regularity of the solution in the center of the star imposes the boundary condition
m(r = 0) = 0. Moreover, in fully analogy with the Newtonian case, we must choose
a central value of the energy density, i.e. ε(r = 0) = εc (or, equivalently, a central
value for the pressure). With these two boundary conditions, the TOV system can
be numerically integrated up to the point where the pressure vanishes, i.e. p(R) = 0,
which defines the radius of the star, as in the Newtonian analog. Once m(r), p(r),
ε(r) and R have been found, the function v(r) in eq. (2.21) is determined simply
using eq. (2.24), whereas u(r) is given by integrating the r-component of conservation
law ∇νT

µν = 0, which gives

u(r) = −
∫ r

0

p′

ε+ p
dr′ + u0 . (2.25)

The constant u0 = u(r = 0) is determined by imposing the continuity of the metric
at the surface of the star. Indeed, outside the star ε = p = 0 and thus the solution
must reduce to the Schwarzschild metric, by Birkhoff’s theorem [17]. This leads to
the condition

e2u0 =
1 − 2Gm(R)

R

e
2
∫ R

0 − p′
ε+p

dr
. (2.26)

Finally, the mass of the star as determined by distant observes is

M =
∫ R

0
4πr2ε dr , (2.27)

which is formally the same expression we used in Newtonian theory. However, the
analogy is misleading, because eq. (2.27) takes into account not only the rest mass
of the various fluid elements (as it happens in Newtonian theory), but also their
internal energy and the overall gravitational potential energy [18, 19]. For this
reason, M is often called the total mass-energy inside the radius R.

An implicit hypothesis we have been using so far is the so-called partial decoupling
of matter from gravity [20]. It states that the equation of state can be derived by
neglecting curvature effects. It is justified by the fact that the typical scale of
interparticle separation is much smaller than the characteristic scale over which the
metric changes appreciably.

2.3 Degenerate stars
So far we have been considered a completely generic fluid. In the following, we
will focus on the particular case of degenerate matter, which provides a very good
description of the internal structure of the most dense stars, i.e. white dwarfs and
neutron stars. Degenerate matter is usually modeled as a cold Fermi gas, which we
will briefly review in the following paragraph.
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2.3.1 Degenerate Fermi gas

Let us consider a system of N non-interacting spin-1/2 fermions with mass m in the
non-relativistic regime, distributed in a cubic box of volume V = L3. The dynamics
is described through the Hamiltonian [21]

H =
N∑
i=1

k2
i

2m , (2.28)

where ki is the momentum of the i-th particle. Since the Hamiltonian commutes
with the momentum and spin operators, the single-electron wave function will be
expressed as

ψk,s(x) = φk(x)χs , (2.29)

that is a direct product between the Pauli spinor χs specifying the spin polarization,
and the eigenfunction of the momentum operator φk, expressed as

φk(x) =
√

1
V
eik·x . (2.30)

The latter satisfies periodic boundary conditions,

φk(x1, x2, x3) = φk(x1 + n1L, x2 + n2L, x3 + n3L) (2.31)

where n1, n2, n3 = 0,±1,±2, · · · . This implies that the momenta are quantized, i.e.

k1 = 2πn1
L

, k2 = 2πn2
L

, k3 = 2πn3
L

. (2.32)

Thus, each single-particle quantum state is determined by the triplet of integers
(n1, n2, n3), corresponding to the energy

εk = k2

2m =
(2π
L

)2 1
2m(n2

1 + n2
2 + n2

3) . (2.33)

The ground state of the system is then found by arranging all the particles in
such a way that each energy level is occupied by a fermion pair (one for each of
the two possible spin polarizations), starting from the lowest level (corresponding
to n1 = n2 = n3 = 0), up to the highest available level with N particles, whose
energy is called Fermi energy, hereafter denoted as εF. Of course, the bigger N ,
the higher the energy of the last occupied state, i.e. εF increases with the number
of particles N . The Fermi energy also defines a Fermi momentum through the
expression kF =

√
2mεF.

The set of all quantum states naturally lives on a cubic lattice with unit lattice
spacing. In this space, let us now consider a sphere of radius

√
n2

1 + n2
2 + n2

3. The
number of quantum states contained in this sphere is estimated as the volume of the
sphere divided by the volume of a unit cell (which is one in our particular lattice),
that is

#states ≈ 4π
3
(
n2

1 + n2
2 + n2

3

)3/2
= V

6π2 k3 , (2.34)

where in the last step we used eq. (2.32). It is possible to show that the error made
in writing the latter expression is subleading in the infinite particle limit N → ∞.
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As said, when the system is in the ground state, all the levels are populated up to
the Fermi momentum kF and each level hosts two particles due to spin degeneracy.
Hence, the total number of particles is expressed as N = V k3

F/3π2 and the fermion
number density will be

n = N

V
= k3

F
3π2 . (2.35)

We have been considering so far the non-relativistic regime. However, eq. (2.35)
is true also in the relativistic regime, since it is just based on counting quantum
states up to a maximum level kF. What changes is the relation between εF and kF,
which is generalized as follows

εF =
√
k2

F +m2 . (2.36)

The expressions for the total energy density ε and pressure p emerging at the
macroscopic level, in a generic regime, are given by

ε = 2
(2π)3

∫ kF

0
d3k

√
k2 +m2 , (2.37)

p = 2
(2π)3

∫ kF

0
d3k

k2

3
√
k2 +m2

, (2.38)

where these formulas are derived using standard kinetic theory [21]. Moreover, the
total rest-mass density of the system is expressed as

ρ = mn . (2.39)

It is also useful to define the total kinetic energy density εkin of the Fermi gas as

εkin = ε− ρ = 2
(2π)3

∫ kF

0
d3k

(√
k2 +m2 −m

)
. (2.40)

If the temperature is sufficiently low, the system will populate the ground state
we just described. A gas of non-interacting fermions in its ground state is said to be
degenerate. Practically, a gas becomes degenerate when the thermal energy kBT (kB
is the Boltzmann constant) is much smaller than the Fermi energy kF. It is therefore
convenient to define a critical density nc such that εF = kBT , which corresponds to
a critical Fermi momentum

kcF =
√

(kBT )2 + 2mkBT . (2.41)

Thus, eq. (2.35) gives a critical number density nc = (kcF)3/3π2. We conclude that
whenever n � nc the gas is degenerate, wherese if n � nc quantum effects are
negligible.

As a concrete example, let us asses whether the neutron matter inside a neutron
star is degenerate or not. The typical temperature of a neutron star is T ∼ 109 K,
whereas the mass of a single neutron is m ∼ 1 GeV. Hence, eq. (2.41) leads to a
critical density ρc = mnc ∼ 1010 g/cm3. On the other hand, the typical neutron
star core density is ρ ∼ 1014 g/cm3. Then, ρ � ρc (or equivalently n � nc), and
therefore the neutron gas which is supporting the neutron star is in a degenerate
phase.
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2.3.2 Equation of state of degenerate matter

The integrals in eqs. (2.37) and (2.38) can be solved analytically. Then, one can in
principle invert eq. (2.37) to get kF as a function of ε, and plug this information
into eq. (2.38). This simple argument shows that the equation of state describing a
degenerate Fermi gas is barotropic, i.e. p = p(ε). Equivalently, kF can be expressed
in terms of the rest-mass density through eqs. (2.35) and (2.39), which leads to an
equation of state of the form p = p(ρ).

The functional relation between p and ε or ρ becomes particularly simple in two
relevant regimes.

• Non-relativistic regime. If pF � m the fermions are non-relativistic. To leading
order, ε reduces to ρ, and the pressure can be expressed as

p = K ρ
5
3 , (2.42)

where

K = 1
5

(
3π2

m4

)2/3

. (2.43)

• Ultra-relativistic regime. If pF � m the fermions are ultra-relativistic and
every quantity can be expanded in the m → 0 limit. In terms of the rest-mass
density ρ, the pressure can be expressed as

p = K ′ ρ
4
3 , (2.44)

where

K ′ = (3π2)
1
3

4m
4
3
. (2.45)

If we instead express the pressure using the energy density ε, we get an even
simpler formula,

p = 1
3ε . (2.46)

Technically speaking, to the leading order the rest-mass density ρ is zero and
the only sensible expression is eq. (2.46). However, such an equation of state,
when plugged into the TOV equations eqs. (2.22) and (2.23), does not give
rise to configurations with finite radii. Physically, this means that it is not
possible to gravitationally confine a gas of pure radiation into a regular star.
A possible way to overcome this obstacle is to add a constant ε0 to the energy
density [22], i.e. ε = 3p+ ε0. This modifies eq. (2.46) in the following way

p = 1
3ε− ε0

3 . (2.47)

In general, an equation of state with the functional form p = Kργ , where K, γ
are two independent parameters, is called polytropic.
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Figure 2.1. Mass-radius diagrams of a degenerate star with an equation of state eq. (2.42)
(violet curve) and eq. (2.47) for ε0 = 6 × 10−3 GeV4 (orange curve). We highlight with a
star the position of the maximum-mass configurations.

2.3.3 Example of solutions

In this section we numerically solve eqs. (2.22) and (2.23) for different choices of the
central pressure p(r = 0) = pc, both in the case of non-relativistic and relativistic
Fermi gas, i.e. we adopt, respectively, eq. (2.42) and eq. (2.47) as equation of state.
In the latter case, we choose as a benchmark value ε0 = 6 × 10−3 GeV4. We fix
m = 1 GeV.

Once an equation of state is fixed, we thus generate a one-parameter space of
solutions, each specified by a value of pc, describing all the possible equilibrium
configurations, each characterized by mass M(pc) and radius R(pc). It is often
convenient to collect this information in a mass-radius diagram, as shown in fig. 2.1.

2.3.4 On the existence of a maximum mass

Inspecting fig. 2.1, we notice that each curve spans a range of masses bounded
from above by the maximum possible value Mc ∼ 1M�. In other words, the
quantity Mc is the critical mass above which no equilibrium configuration can
exist. This was first noticed by Chandrasekhar for white dwarfs [23] and then
extended to neutron stars by some authors [24, 25]. Even if the exact value of
Mc depends on the particular equation of state chosen, its existence arises in full
generality, even for models of compact objects other than white dwarfs and neutron
stars. Besides its phenomenological relevance, the critical mass has a remarkable
theoretical importance, since it typically involves the microscopic parameters of the
theory, and thus represents a bridge between the microphysics and the macroscopic
world.

For concreteness, let us derive the critical mass for a family of stars supported
by a relativistic degenerate Fermi gas. Integrating eq. (2.35), one finds the total
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number N of fermions in the system in a configuration of radius R as

N =
∫ R

0
4πr2dr n = 4

9π (RkF)3 , (2.48)

Then, the energy gas Egas will be:

Egas =
∫ R

0
4πr2dr ε = 1

3π (RkF)3kF ⇒ Egas ' N4/3

R
, (2.49)

where in the last step we used eq. (2.48). On the other hand, the gravitational
energy Eg inside the configuration is estimated as

Eg ' −GM2

R
. (2.50)

Thus, the total energy is

E = Egas + Eg ' N4/3

R
− GM2

R
. (2.51)

A bound configuration requires E < 0 and therefore E = 0 corresponds to the critical
configuration beyond which no equilibrium is possible. The condition E = 0 yields

N4/3 = GM2
c . (2.52)

If we estimate N ∼ Mc/m, we finally obtain

Mc ∼
( 1
G

)3/2 1
m2 . (2.53)

For m ∼ 1 GeV, we get Mc ∼ M�, which is in agreement with fig. 2.1.
The maximum mass also defines a turning point in the mass-radius diagram. The

latter plays a role when the stability of compact objects is investigated. Generically
speaking, across a turning point the equilibrium configurations change behavior
against radial perturbation (they become unstable if they were before stable and
vice versa) [19].

2.4 Compactness bounds

In sec. 2.2.2 we introduced the compactness as

C = GM

R
. (2.54)

It is a fundamental parameter to characterize the properties of a compact object.
For static and spherically symmetric configurations,

• if C > 1/6 ≈ 0.17 then the spacetime features an ISCO (acronym for ”innermost
stable circular orbit”), which has an important role in the dynamics of accretion
disks [26];
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• if C > 1/3 ≈ 0.33 the spacetime shows a light ring, the only circular orbit for
massless test particle (which is however unstable); it has a crucial importance in
describing how the compact object appears when illuminated by light [26] and
it is responsible for the emission of the so-called ”echoes” [26] (see sec. 6.3.2).

The maximum possible value for the compactness C is 1/2, corresponding to a black
hole. Thus, any regular (i.e. without curvature singularities) compact object will
necessarily satisfy C < 1/2. However, there are reasons to believe that, within general
relativity, there are no regular static configurations made out of physically reasonable
matter whose compactness is arbitrarily close to the black hole limit [27]. A classical
result that goes in this direction is Buchdahl’s theorem [28, 19] which states that
the maximum compactness of a self-gravitating object is C < 4/9 ≈ 0.44. The
theorem is based on the assumptions that the configuration is static and spherically
symmetric, the fluid is perfect (see eq. (2.20)) and

ε ≥ 0 , p ≥ 0 , dε

dr
≤ 0 , (2.55)

where ε and p are, respectively, the energy density and the pressure. However, if we
further require radial stability of the equilibrium configurations and impose that the
sound speed of the fluid should not be greater than the speed of light, i.e.

cs =

√
dp

dε
≤ 1 (2.56)

we recover the so-called causal Buchdahl bound [22, 11, 27] C < 0.354, which is
smaller than 4/9.

Relaxing some of the previous assumptions (e.g. considering theories beyond
general relativity or considering exotic matter, for which eq. (2.55) does not apply)
provides a way to circumvent Buchdahl’s theorem. This highlights the relevance of
the compactness C in parametrizing new physic effects [26].

2.5 Exotic compact objects
The only known examples of compact objects are black holes and neutron stars.
As discussed in sec. 2.3.1, the latter are roughly described as a degenerate gas of
neutrons bound by gravitational interaction. Diverse experimental observations
constrain dark matter to act on macroscopic scales as a cold, feebly-interacting,
stable fluid [5]. However, the actual microscopic degrees of freedom which constitute
dark matter are not known. A viable possibility is that dark matter is composed of
a new stable particle (see e.g. refs [29, 30]). It is conceivable that these particles
clump together to form macroscopic self-gravitating objects, as happens for neutron
stars. Such exotic compact objects (ECOs) would naturally be decoupled (or only
feebly interacting) with other Standard Model particles. Nonetheless, they can still
leave gravitational signatures, particularly in gravitational waves emitted by binary
systems of two ECOs or an ECO and a neutron star/black hole [31]. This already
shows the extraordinary possibilities opened after the discovery of gravitational
waves.
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Figure 2.2. The (non-exhaustive) ECO atlas.

Even if we think on purely theoretical grounds, forgetting about the dark matter
consideration, it is a rather general fact that as soon as new fields are added to
the Standard Model, configurations describing ECOs arise. A non-exhaustive list
of proposed models are boson stars and oscillatons [32], fermion stars [33], axion
stars [34], dark photon stars [35], gravastars [36], AdS bubbles [37], wormholes [38],
firewalls [39], fuzzballs [40, 41]. A conceptual map useful for navigating among the
various models is shown in fig. 2.2.

In general, for an ECO to be considered a physically viable object, a few
requirements should be fulfilled [42, 43]:

• to be described within a sound physical theory (such as local and causal
theories with an underlying Lagrangian description, possibly motivated in
some BSM scenario);

• to be stable against small perturbations and long-lived;

• to have a dynamical formation mechanism.

As suggested by ref. [26], it is evocative to make a parallel with the timeline of
particle discoveries. As shown in fig. 2.3, after the detection of the electron in 1897,
the number of particles discovered increased slowly for roughly two decades. From
the 1920s, the slope of the line underwent a sharp increase, culminating in the 1980s
with the discovery of the W and Z bosons. Then, a second period of slow increase
settled down, which lasts until today.

From this standpoint, BHs and neutron stars could be just two examples of a
large zoo of possible compact objects, yet to be discovered. The first GW detection
of a BH binary happened in 2015 [7], while the first NS binary was detected in
2017 [44]. It is conceivable that in a few decades, thanks to the advance in GW
astronomy and the development of a new generation of interferometers, new species
in the zoo of compact objects will be unveiled, as it happened in the timeline of
particle discoveries.
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Figure 2.3. Timeline of particle discoveries.

2.5.1 Boson stars and oscillatons

One of the simplest examples of an ECO is boson stars. These are gravitational
bound states supported by a cold gas of bosons, unlike the case of degenerate
stars discussed in section 2.3, which are instead supported by a gas of fermions.
Due to their intrinsic properties, a large fraction N of bosons occupy the lowest
quantum energy level, giving rise to a macroscopic coherent state. The system is then
conveniently described through a field Ψ(x) of integer spin. The large occupancy
number ensures that quantum fluctuations δΨ are small, i.e.

δΨ
Ψ → 0 as N → ∞ . (2.57)

This allows us to study boson stars within classical field theory.
The simplest scenario is that of a free complex scalar field φ decoupled from the

Standard Model, and described by the action

S =
∫
d4x

√
−g
(

R

16πG − 1
2∂

µφ∗∂µφ− m2

2 φ∗φ

)
. (2.58)

This theory admits static and spherically symmetric geometries, dubbed mini boson
stars [45]. The critical mass Mc for these configurations is

Mc ∼
( 1
G

) 1
m
, (2.59)

where m is the mass of the scalar field φ. Current gravitational wave interferometers
can probe ECOs that have roughly the mass of the Sun. Eq. (2.59) then sets the
relevant scale for the boson mass m to be ∼ 10−10 eV, which is obtained in the case
of QCD axion or axion-like particles. This simple computation explicitly shows how
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GW detection can contribute to the search for new physics in a region completely
inaccessible by current particle accelerators.

Similar solutions exist also if we include scalar self-interactions, for example
adding a λ|φ|4 term [46] or higher dimensional operators [8]. In general, the critical
mass Mc will depend on the precise form of the scalar potential U(φ), together with
the maximum compactness reached by the configurations. As a rule of thumb, the
stronger the self-interactions the higher the maximum compactness and mass of a
stable boson star. Analogous static and spherically symmetric geometries are also
formed out of massive vector fields[47, 48].

In some peculiar models, the solutions exist even without gravity. These are
known as Q-balls [49]. They describe spatially localized clumps of particles stabilized
just by their self-interaction. Crucially, they have the same properties of the ordinary
vacuum as spatial infinity. For this reason, they are classified as non-topological
solitons (NTSs), at variance with topological solitons, such as monopoles and strings.
The relativistic generalization of Q-balls, where the effects of gravity are included,
are called solitonic boson stars [8, 11].

When the scalar field in eq. (2.58) is real, no-go theorems [50, 51] prevent the
existence of static geometries as long as U(φ) ≥ 0. Thus, one is forced to relax
some assumptions. For example, one might consider a negative scalar potential
in a region. This however leads to a violation of the weak energy condition [52].
Alternatively, one can look for time-dependent geometries. In this case, one finds
solutions dubbed oscillatons, which however decay with time (although the lifetime
can be very long) [32].

Both boson stars and oscillatons possess robust dynamical formation mechan-
icsms [53, 54] and are therefore natural outcomes of the gravitational collapse.
Moreover, both are shown to be radially stable [55]. Therefore, they are sound and
well-motivated examples of ECOs.
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Chapter 3

Fermion soliton stars

Summary

In this chapter, we show that a real scalar field coupled to a fermion via a Yukawa
term can evade no-go theorems preventing solitonic solutions (see Sec. 2.5). We
study this model within General Relativity without approximations, finding static
and spherically symmetric solutions that describe fermion soliton stars. The Yukawa
coupling provides an effective mass for the fermion, which is key to the existence
of self-gravitating relativistic solutions. We systematically study this novel family
of solutions and present their mass-radius diagram and maximum compactness,
which is close to (but smaller than) that of the corresponding Schwarzschild photon
sphere. Finally, we discuss the ranges of the parameters of the fundamental theory in
which the latter might have interesting astrophysical implications, including compact
(sub)solar and supermassive fermion soliton stars for a standard gas of degenerate
neutrons and electrons, respectively.

3.1 Setup
We consider a theory in which Einstein gravity is minimally coupled to a real scalar
field φ and a fermion field ψ. The action can be written as [13]

S =
∫

d4x
√

−g
[ R

16πG − 1
2∂

µφ∂µφ− U(φ) + ψ̄(iγµDµ −mf )ψ + fφψ̄ψ
]
, (3.1)

where the scalar potential is

U(φ) = 1
2µ

2φ2
(
1 − φ

φ0

)2
, (3.2)

and features two degenerate minima at φ = 0 and φ = φ0. The constant µ (resp.
mf ) is the mass of the scalar (resp. fermion). The Yukawa interaction1 is controlled
by the coupling f . The fermionic field has a U(1) global symmetry which ensures
the conservation of the fermion number N . Also, we point out that, in the absence
of gravity, the Lagrangian in eq. (3.1) describes a renormalizable field theory; this is

1See also ref. [56] for a recent work on a condensed dark matter in a model with a Yukawa
coupling between a fermion and a scalar particle.
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in contrast to the widely used model describing solitonic boson stars [8, 9, 10, 11]
in which the scalar potential is non-renormalizable and field values should not
exceed the limit of validity of the corresponding effective field theory. The covariant
derivative Dµ in eq. (3.1) takes into account the spin connection of the fermionic
field.

From the quadratic terms in the fermion Lagrangian, it is useful to define an
effective mass,

meff = mf − fφ. (3.3)

We will focus on scenarios in which the fermion becomes effectively massless (i.e.
meff = 0) when the scalar field sits on the second degenerate vacuum, φ = φ0. This
condition implies fixing

f = mf

φ0
. (3.4)

As we shall discuss, we are mostly interested in configurations where the scalar
field makes a transition between the false2 vacuum (φ ≈ φ0) to the true vacuum
(φ ≈ 0).3

3.1.1 Thomas-Fermi approximation

The description of a fermionic field in eq. (3.1) requires treating the quantization
of spin-1/2 particles in curved spacetime. In particular, one should deal with the
problem of finding the ground state of an ensemble of N fermions in curved spacetime
(see e.g. [59, 60]). However, in the macroscopic limit N � 1, it is convenient to
adopt a mean-field approach, which in this context is called the Thomas-Fermi
approximation4 . The latter relies on the assumption that the gravitational and
scalar fields are slowly varying functions with respect to the fermion dynamics.
Consequently, they do not interact directly with the (microscopic) fermionic field
ψ, but with average macroscopic quantities. In practice, one can divide the entire
three-space into small domains that are much larger than the de Broglie wavelength
of the typical fermion, but sufficiently small that the gravitational and scalar fields
are approximately constant inside each domain. Then, every domain is filled with a
degenerate (i.e. the temperature is much smaller than the chemical potential) Fermi
gas (see sec. 2.3.1), in such a way that the Fermi distribution is approximated by a
step function, nk = θ(kF − k), where kF(xµ) is the Fermi momentum observed in
the appropriate local frame.

The energy density of the fermion gas reads

W = 2
(2π)3

∫ kF

0
d3k εk, (3.5)

2Although the minima at φ = 0 and φ = φ0 are degenerate, we shall call them true and
false vacuum, respectively, having in mind the generalization in which the potential U(φ) can be
nondegenerate, i.e. U(φ0) 6= U(0) (see Fig. 3.1).

3Recently, ref. [57] studied a related model in which dark fermions are trapped inside the
false vacuum during a first-order cosmological phase transition, subsequently forming compact
macroscopic “Fermi-balls”, which are dark matter candidates and can collapse to primordial black
holes [58].

4We point the interested reader to Appendix A of ref. [13] for a complete derivation of the
Thomas-Fermi approximation in curved spacetime, while here we summarise the main properties.



3.1 Setup 23

where εk =
√
k2 +m2

eff . Notice that W = W (xµ) through the spacetime dependence
of kF and meff . In an analogous way, we obtain the fermion gas pressure P and the
scalar density S = 〈ψ̄ψ〉 as

P = 2
(2π)3

∫ kF

0
d3k

k2

3εk
, (3.6)

S = 2
(2π)3

∫ kF

0
d3k

meff
εk

. (3.7)

It is easy to show that these quantities satisfy the identity

W − 3P = meffS. (3.8)

In the Thomas-Fermi approximation, the fermions enter Einstein’s equations as
a perfect fluid characterized by an energy-momentum tensor of the form

T [f ]
µν = (W + P )uµuν + Pgµν , (3.9)

while they also enter the scalar field equation through the scalar density S. Indeed,
by varying the action in eq. (3.1) with respect to φ, we obtain a source term of the
form ≈ fψ̄ψ. Within the Thomas-Fermi approximation, this becomes

fψ̄ψ → f〈ψ̄ψ〉 ≡ fS, (3.10)

which is consistent with the fact that, in the fluid description, the scalar field equation
couples to fermions through a term proportional to the trace (T [f ])µµ = −W + 3P .

Equations of motion

It is now possible to write down the equations of motion for our theory in covariant
form

Gµν = 8πGTµν ,

�φ− ∂U

∂φ
+ fS = 0, (3.11)

where
Tµν = −2

( ∂Lφ
∂gµν

− 1
2gµνLφ

)
+ T [f ]

µν , (3.12)

in which Lφ is the Lagrangian density of the scalar field. In order to close the system,
we need an equation describing the behavior of kF. This is obtained by minimizing
the energy of the fermion gas at a fixed number of fermions [13].

From now on, for simplicity, we will consider spherically symmetric equilibrium
configurations, whose background metric can be expressed as

ds2 = −e2u(ρ)dt2 + e2v(ρ)dρ2 + ρ2(dθ2 + sin2 θdϕ2), (3.13)

in terms of two real metric functions u(ρ) and v(ρ) (at variance with the previous
chapter, hereafter we denote the radial coordinate as ρ). Furthermore, we will assume
that the scalar field in its equilibrium configuration is also static and spherically
symmetric, φ(t, ρ, θ, ϕ) = φ(ρ). Being the spacetime static and spherically symmetric,
kF = kF(ρ) can only be a function of the radial coordinate.
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Fermi momentum equation

In the Thomas-Fermi approximation, the fermion gas energy can be written as [13]

Ef = 4π
∫

dρ ρ2 eu(ρ)+v(ρ)W, (3.14)

while the number of fermions is

N = 4
3π

∫
dρ ρ2ev(ρ)k3

F(ρ). (3.15)

To enforce a constant number of fermions, we introduce the Lagrangian multiplier
ωF and define the functional

E′
f [kF] = Ef [kF] − ωF

(
N [kF] −Nfixed

)
, (3.16)

which is minimized by imposing

δE′
f [kF]

δkF(ρ) = 0. (3.17)

This directly brings us to the condition

εF = e−uωF, (3.18)

where εF = εkF is the Fermi energy. Thus, ωF coincides with the Fermi energy in
flat spacetime while it acquires a redshift factor otherwise. Since εF =

√
k2
F +m2

eff ,
eq. (3.18) in turn gives

k2
F(ρ) = ω2

Fe
−2u(ρ) − (mf − fφ(ρ))2 . (3.19)

3.1.2 Dimensionless equations of motion and boundary conditions

In order to simplify the numerical integrations, as well as physical intuition, it is
convenient to write the field equations in terms of dimensionless quantities. To this
end, we define

x = kF
mf

, y = φ

φ0
, r = ρµ. (3.20)

Therefore, the potential and kinetic terms become

U = µ2φ2
0

[1
2y

2(1 − y)2
]

≡ µ2φ2
0Ũ(y),

V = µ2φ2
0

[1
2e

−2v(r)(∂ry)2
]

≡ µ2φ2
0Ṽ (y), (3.21)

while Eqs. (3.5)-(3.7) can be computed analytically as

W = m4
eff

8π2

[
s
√

1 + s2(1 + 2s2) − log
(
s+

√
s2 + 1

)]
≡ m4

fW̃ (x, y), (3.22a)

P = m4
eff

8π2

[
s

(2
3s

2 − 1
)√

1 + s2 + log
(
s+

√
s2 + 1

)]
≡ m4

f P̃ (x, y), (3.22b)

S = m3
eff

2π2

[
s
√

1 + s2 − log
(
s+

√
s2 + 1

)]
≡ m3

f S̃(x, y), (3.22c)
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where W̃ , P̃ , S̃ are dimensionless quantities and we introduced s ≡ x/(1 − y) for
convenience. Remarkably, these expressions are the same as in the standard case of
a minimally coupled degenerate gas with the substitution mf → meff .

As we shall discuss in Appendix A, this property will be important when com-
paring this model to a scalar-tensor theory. Note that the massless limit, meff → 0,
should be taken carefully as not all the dependence on meff is expressed in the di-
mensional prefactor. By performing the first integrals in Eqs. (3.22a)-(3.22c) in the
meff → 0 limit, we obtain W = P/3, as expected for an ultrarelativistic degenerate
gas.

It is convenient to further introduce the dimensionless combination of parameters

Λ =
√

8πφ0
mp

, η = mf

µ1/2φ
1/2
0

. (3.23)

Finally, the field equations (i.e. the Einstein-Klein-Gordon equations with the
addition of the Fermi momentum equation) take the compact form

e−2v − 1 − 2e−2vr∂rv = −Λ2r2
[
η4W̃ + Ũ + Ṽ

]
,

e−2v − 1 + 2e−2vr∂ru = Λ2r2
[
η4P̃ − Ũ + Ṽ

]
,

e−2v
[
∂2
ry +

(
∂ru− ∂rv + 2

r

)
∂ry

]
= ∂Ũ

∂y
− η4S̃,

x2 = ω̃2
Fe

−2u(r) − (1 − y)2, (3.24)

where Ũ , Ṽ , P̃ , W̃ , and S̃ depend on x, y, and r, and we also introduced ω̃F = ωF/mf .
Static and spherically symmetric configurations in the model (3.1) are solutions to
the above system of ordinary differential equations. For clarity, we summarize the
relevant parameters in Table 3.1.

Absence of φ = const solutions

Note that, because U = 0 = dU/dφ in both degenerate vacua, it is natural to
first check what happens when φ = φ0 = const or if φ = 0. The former case (i.e.,
y(ρ) = 1) is an exact solution of the scalar equation and reduces Einstein’s equations
to those of gravity coupled to a degenerate gas of massless (since meff(φ0) = 0)
fermions. In this case, self-gravitating solutions do not have a finite radius [61]. On
the other hand, due to the Yukawa coupling, in the presence of a fermion gas φ = 0
is not a solution to the scalar field equation.

Thus, self-gravitating solutions to this model must have a nonvanishing scalar-field
profile. In particular, we will search for solutions that (approximately) interpolate
between these two vacuum states.

Boundary conditions at ρ = 0

Regularity at the center of the star (ρ = 0) imposes the following boundary conditions

v(r = 0) = 0, u(r = 0) = 0,
y(r = 0) = 1 − ε, ∂ry(0) = 0,
P̃ (r = 0) = P̃c, (3.25)
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Table 3.1. List of the model parameters, the fermion soliton star parameters, and the
dimensionless quantities adopted to express the system of equations in compact form. Due
to the condition in eq. (3.4), in our case only three model parameters are independent.

Model parameters

µ Scalar field mass

φ0 VEV of the false vacuum

mf Fermion mass

f Yukawa coupling

Solution parameters (boundary conditions)

Pc Fermion central pressure

ε = 1 − φ/φ0 Central scalar field displacement

Dimensionless parameters/variables

Λ =
√

8πφ0/mp Dimensionless VEV of the false vacuum

η = mf/
√
µφ0 Scale ratio

x = kF/mf Dimensionless Fermi momentum

y = φ/φ0 Dimensionless scalar field

r = ρµ Rescaled radius

where ε > 0 will be fixed numerically through a shooting procedure in order to
obtain asymptotic flatness.

The central value of the pressure P̃c is fixed in terms of ω̃F and ε through the
relation

P̃c = 1
24π2

(
ω̃F

√
ω̃2

F − ε2(2ω̃2
F − 5ε2) + 3ε4 arctanh

√
1 − ε2

ω̃2
F

)
, (3.26)

obtained computing eq. (3.22b) in ρ = 0. In practice, in a large region of the
parameter space one obtains ε � 1. In this limit, eq. (3.26) reduces to P̃c ≈ ω̃4

F/12π2.
Finally, since a shift u(ρ) → u(ρ) + const in eq. (3.24) merely corresponds to a

shift of the fermionic central pressure, we have imposed u(ρ = 0) = 0 without loss of
generality.

Definitions of mass, radius, and compactness

We define the mass of the object as

M = m(ρ → +∞)
G

, (3.27)

where the function m(ρ) is related to the metric coefficient v(ρ) by e−2v(ρ) =
1 − 2m(ρ)/ρ, and can be interpreted as the mass-energy enclosed within the radius
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ρ. In terms of the dimensionless variables introduced in eq. (3.20), it is convenient
to define m̃(r) = µm(ρ). Thus, one obtains

µM

m2
p

= m̃(r). (3.28)

Notice that, in the asymptotic limit r → ∞, eq. (3.28) becomes independent of the
radius.

Typically, the radius of a star is defined as the value of the radial coordinate at
the point where pressure drops to zero. As we shall discuss, in our case the fermion
soliton stars will be characterized by a lack of a sharp boundary. Analogously to the
case of boson stars [54], one can define an effective radius R within which 99% of
the total mass is contained. (As later discussed, we shall also define the location
Rf where only the pressure of the fermion gas vanishes.) Finally, we can define the
compactness of the star as GM/R.

3.2 Some preliminary theoretical considerations
Before solving the full set of field equations numerically, in this section we provide
some theoretical considerations that might be useful to get a physical intuition of
the model.

3.2.1 On the crucial role of fermions for the existence of solitonic
stars

Classical mechanics analogy

In order to understand why the presence of fermions in this theory plays a crucial
role for the existence of stationary solutions, it is useful to study a classical mechanics
analogy for the dynamics of the scalar field [49].

For the moment we consider flat spacetime. Furthermore, we start by ignoring the
fermions (we will relax this assumption later on). The set of Eqs. (3.24) drastically
simplifies to a single field equation

∂2
ρφ+ 2

ρ
∂ρφ− ∂U

∂φ
= 0. (3.29)

To make the notation more evocative of a one-dimensional mechanical system, we
rename

ρ → t, φ(ρ) → φ(t), Û := −U, (3.30)
in such a way that the equation of motion becomes

φ′′(t) = −∂Û

∂φ
− 2
t
φ′(t), (3.31)

which describes the one-dimensional motion of a particle with coordinate φ(t) in
the presence of an inverted potential, Û , and a velocity-dependent dissipative force,
−(2/t)φ′(t). Within this analogy, the boundary (or initial) conditions (3.25) simply
become

φ(t = 0) = φ0 − δφ, φ′(t = 0) = 0, (3.32)
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Figure 3.1. Inverted potential with degeneracy (blue line, our case) and without degeneracy
between vacua (orange line). The scalar field is shown in units of the vev φ0.

where φ0 is the position of the false vacuum and δφ = εφ0. As we impose zero
velocity at t = 0, the initial energy is E(0) = Û(φ0 − δφ). The energy E(t) of the
particle at a time t is obtained by subtracting the work done by the friction:

E(t) − E(0) = L(t), (3.33)

where

L(t) = −2
∫ t

0
dt′ φ̇

2(t′)
t′

. (3.34)

Note that, owing to the initial conditions, this integral is regular at t = 0. On the
other hand, the existence of a solution with asymptotically zero energy requires the
particle to arrive with zero velocity at φ = 0 for t → +∞. Therefore, we impose
E(t → ∞) = 0. As the total energy loss due to friction is L(t → ∞), the latter
condition means

E(0) = −L(t → ∞) (3.35)

that is

Û(φ0 − δφ) = 2
∫ ∞

0
dt′ φ̇

2(t′)
t′

. (3.36)

This equation can be interpreted as an equation for δφ in order to allow for the
existence of a “bounce” solution5. One can demonstrate the existence of such a
solution heuristically. Let us first consider a slightly modified version of the inverted
potential without degeneracy (orange plot in Fig. 3.1). Obviously, if the motion
starts exactly at φ0 with zero velocity, the particle would remain at rest. However,
if we start on the left of the maximum the particle will roll down, bounce, and

5A bounce solution is the one reaching asymptotically the true vacuum with zero energy, after
having ”bounced” at the minimum of the inverted potential.
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eventually climb the leftmost hill shown in Fig. 3.1. Now, if the dynamics starts too
far from φ0 (still on the left of the maximum), with zero initial velocity it might
not have enough energy to reach the zero-energy point at φ = 0. Similarly, if the
dynamics starts too close to φ0, the particle might reach φ = 0 with positive energy
and overcome the hill rolling up to φ → −∞. By continuity, there must exist a
unique point such that the total energy loss due to friction compensates the initial
gap of energy with respect to the energy of φ = 0.

However, by applying the same argument to our degenerate case (blue curve in
Fig. 3.1), it is easy to see that there is no solution to eq. (3.36) 6. This is because
the energy loss due to friction is nonzero, so the particle will never reach φ = 0 and
is doomed to roll back in the potential eventually oscillating around the minimum of
Û . This shows that, in the degenerate case considered in this work, a simple scalar
model does not allow for bounce solutions in flat spacetime.

If we now reintroduce fermions in the theory, the scalar field equation reads (still
in flat spacetime)

φ′′(t) = −∂Û

∂φ
− 2
t
φ′(t) − fS. (3.37)

Since S ≥ 0, the fermions act with a force pushing our particle toward the origin,
potentially giving the right kick to allow the particle to reach φ = 0 asymptotically.
As we shall see, this also requires S = 0 (i.e., no fermions) around the origin, for the
particle to reach a stationary configuration at φ = 0.

This simple analogy shows how the presence of the fermions is fundamental as
it allows the solution to exist. In the following section, we will show how this is
realized in the full theory which includes gravitational effects. Furthermore, we
will show that, in certain regions of the parameter space, relativistic effects are in
fact crucial for the existence of the solution, since the latter requires a minimum
fermionic pressure to exist.

Evading the no-go theorem for solitons

The above conclusions, deduced from our simple heuristic picture, hold in the context
of General Relativity as well. Indeed, without fermions in the system of Eqs. (3.24),
and since our potential (3.2) is nonnegative, a general theorem proves that no
axially symmetric and stationary solitons (that is asymptotically flat, localized, and
everywhere regular solutions) can exist [50, 51].

However, the presence of fermions evades one of the hypotheses of the theorem.
As we will show, in this case stationary solitons generically exist also for a real scalar
field (at variance with the case of boson stars, which require complex scalars) and
for a wide choice of parameters.

3.2.2 Scaling of the physical quantities in the µR � 1 regime

Assuming µR � 1, it is possible to derive an analytical scaling for various physical
quantities, as originally derived in ref. [62] and similar in spirit to Landau’s original
computation for ordinary neutron stars (see, e.g., [61]).

6At least if we look for a solution in which the scalar field does the transition at a finite time.
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It is instructive to consider (3.1) in the absence of gravity. As already pointed
out, the theory has a conserved (additive) quantum number N , brought by the
fermion field ψ. Being µR � 1, the real scalar field solution is well approximated by
a stiff Fermi function [13],[62]

φ(ρ) ≈ φ0
1 + eµ(ρ−R) . (3.38)

The definition of kF is nothing but eq. (3.19) with u = 0 (since we work in the
absence of gravity)

k2
F(ρ) = ω2

F − (mf − fφ(ρ))2 . (3.39)

Because of eq. (3.38), the Fermi momentum is nearly fixed to the constant value
ωF for ρ . R, and for ρ ≈ R it goes to zero stiffly. Therefore, the field ψ is
approximately confined within the sphere of radius R. We assume that the quanta of
ψ are noninteracting, massless, and described by Fermi statistics at zero temperature.
Thus, we obtain the standard relation for the particle density

n = #particles
unit.volume = 2

8π3

∫ kF

0
4πk2dk = ω3

F
3π2 . (3.40)

Since kF ' ωF = const, the total number of particles is

N = n

∫ R

0
4πρ2dρ = 4

9π (RωF)3. (3.41)

The fermion energy is

Ef =
∫ R

0
4πρ2dρ W = (3π)1/3

(3
4N

)4/3 1
R
, (3.42)

where
W = energy

unit.volume = 2
8π3

∫ kF

0
4πk2dk · k = ω4

F
4π2 . (3.43)

The energy associated with the scalar field φ is instead

Es =
∫ R

0
4πρ2dρ (U + V ) '

(1
6µφ

2
0

)
4πR2 , (3.44)

where we have used the fact that
12
µφ2

0
U ' 12

µφ2
0
V ' δ(ρ−R) , (3.45)

which can be shown using eq. (3.38) and µR � 1.
The total energy of our configuration is

E = Ef + Es, (3.46)

while the radius can be found by imposing ∂E/∂R = 0, yielding

R =
[ 3
4π (3π)1/3

(3
4N

)4/3]1/3( 1
µφ2

0

)1/3
(3.47)
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Table 3.2. Analytical scalings of some physical quantities at the maximum mass Mc in the
µR � 1 limit.

Mass µMc/m
2
p ∼ 1/Λ2

Radius µRc ∼ µMc/m
2
p ∼ 1/Λ2

ω̃F ω̃cF ∼ (µ/mp)1/2/(φ0/mf ) ∼ Λ1/2/η

Central pressure P̃c ∼ ω̃4
F ∼ Λ2/η4

and the mass
M = E(R) = 12πR2

(1
6µφ

2
0

)
. (3.48)

From Eqs. (3.47) and (3.48), we get

R ∼ N4/9 M ∼ N8/9 . (3.49)

Thus, at least for large N , the mass of the soliton is lower than the energy of the
sum of N free particles, ensuring stability.7

In the absence of gravity, M can be arbitrarily large. However, due to relativistic
effects, we expect the existence of a maximum mass beyond which the object is
unstable against radial perturbations. We expect that gravity becomes important
when 2GM/R ∼ 1. Therefore, the critical mass Mc can be estimated by simply
imposing R ∼ 2GMc in eq. (3.48), yielding G2Mc ∼ 1/µφ2

0 and thus

µMc

m2
p

∼ 1
Λ2 . (3.50)

Likewise, one can obtain the scaling of all other relevant quantities, which we collect
in Table 3.2.

Self-consistency criteria

When deducing the scaling reported in Table 3.2, we made the following assumptions:

i) µR � 1;

ii) a gas of massless fermions in the interior of the star.

In practice, the first assumption is not restrictive (see e.g. [63]). Indeed, since µ−1

is the Compton wavelength of the scalar boson, in the context of a classical field
theory we should always impose µR � 1. In other words, if µR ' 1 the quantum
effects of the scalar field become important on the scale of the star and one cannot
trust the classical theory anymore. The hypothesis µR � 1 is an essential ingredient
in order to approximate the scalar field profile with eq. (3.38), and to assume, as
a consequence, that kF is a step function. Besides, it guarantees that the energy

7This conclusion remains true in the fully relativistic theory as well.
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density of the scalar field is near a delta function. Using the scaling reported in
Table 3.2, condition i) implies Λ � 1.

One may worry that the second assumption can be violated since the scalar field
is not located exactly at φ0 in the origin ρ = 0, and therefore fermions are never
exactly massless. It is enough to check that the fermion gas is very close to being a
massless gas. Let us recall that the effective mass of the fermion is defined as

meff(ρ) = mf

(
1 − φ(ρ)

φ0

)
(3.51)

and therefore meff(ρ = 0) = mf ε. We can say that the fermion gas is effectively
massless when W/P = 3. From Eqs. (3.5) and (3.6), at the lowest order in ε one
obtains

W

P
= 3

(
1 +

2m2
f ε

2

k2
F

)
+O(ε3), (3.52)

which indicates we should require
2m2

f ε
2

k2
F

� 1 (3.53)

in the vicinity of the origin at ρ ' 0. At larger radii, the scalar field gradually
moves away from the central configurations and fermions start retaining a bare mass.
Inserting eq. (3.39) in the previous condition and expanding eq. (3.26) provides the
condition we need to enforce to obey assumption (ii), i.e.,

2m2
f ε

2

(12π2Pc)1/2 � 1. (3.54)

We express ε using the scalar field profile approximation in eq. (3.38). Indeed, with
simple manipulations, one finds

− log ε = µR � 1. (3.55)

Substituting (3.55) in (3.54), and neglecting, at this stage, the numerical factors one
obtains

log
(
mf

P
1/4
c

)
� µR. (3.56)

Using the scaling relations in Table 3.2, we obtain

log
(

η

Λ1/2

)
� 1

Λ2 . (3.57)

Summing up, the following conditions on the parameters

Λ � 1, (3.58)

log
(

η

Λ1/2

)
� 1

Λ2 (3.59)

are our self-consistency criteria to check if we are in a regime in which the scaling
reported in Table 3.2 is expected to be valid. While it can be shown that the second
condition implies the first, we prefer writing both for the sake of clarity. Notice
that, for fixed Λ � 1, one can violate (3.59) for increasing values of η, but only
logarithmically.
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Confining and deconfining regimes

An important consequence of the scalings collected in Table 3.2 is that the critical
mass and radius are independent of η at fixed Λ. We shall call the region of the
parameters space where this happens the confining regime of the solutions. Indeed,
in this regime the size of the soliton is dictated by the parameters of the scalar
field, i.e. µ and φ0, regardless of the value of the fermion mass mf . Physically, we
expect that this would be the case when there exists a hierarchy between the scalar
and fermion parameters. Since this hierarchy is measured by η, we expect that the
confining regime exists only when η is larger than a critical value, ηc.

To better clarify this point, we consider again eq. (3.19) for the Fermi momentum,

k2
F(ρ) = ω2

Fe
−2u(ρ) −mf

(
1 − φ(ρ)

φ0

)2
. (3.60)

In the mf → 0 limit, this quantity becomes positive definite and so the fermionic
pressure cannot vanish at any finite radius. In other words, the radius of the star
can be arbitrarily large, provided that mf is sufficiently small. This is nothing but
the well-known fact that a star made of purely relativistic gas does not exist.

Hence, if we enter a regime where the fermion bare mass mf is so small that,
even after the scalar field has moved away from the false vacuum (where the effective
fermion mass is small by construction), the Fermi gas is still relativistic, then the
radius of the star grows fast and a small variation in mf produces a big variation in
the radius. We call this regime the deconfining regime of the solution.

In terms of the dimensionless variables defined above, the mf → 0 limit becomes

ω̃F → ∞. (3.61)

Therefore, we expect that, for a given choice of (Λ, η), the confining regime exists
only if ω̃F is smaller than a certain value ω̃cF. Using the scaling for ω̃cF in Table 3.2,
this can be translated into the condition

Λ1/2

η
< c, (3.62)

where c is a constant that has to be determined numerically.
At this point, it is natural to define ηc as the value of η in which eq. (3.62) is

saturated. In this way, eq. (3.62) becomes

η > ηc = cΛ1/2. (3.63)

To summarize, when η & ηc (confining regime) the size of the soliton near the
maximum mass is mostly determined by the properties of the scalar field, whereas it
strongly depends on the fermion mass when η . ηc (deconfining regime8).

8Note that, deep in the deconfining regime (when η → 0), the Compton wavelength of the
fermion, 1/mf , might become comparable to or higher than the radius of the star. In this case, we
expect the Thomas-Fermi approximation to break down.
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3.2.3 Energy conditions

For an energy-momentum tensor of the form

Tµν = diag{−ρ, P1, P2, P3}, (3.64)

the energy conditions take the following form:

• Weak energy condition: ρ ≥ 0 and ρ+ Pi ≥ 0.

• Strong energy condition: ρ+
∑
i Pi ≥ 0 and ρ+ Pi ≥ 0.

• Dominant energy condition: ρ ≥ |Pi|.

For a spherically symmetric configuration, P1 = Pr is the radial pressure, while
P2 = P3 = Pt is the tangential pressure. For our model,

ρ = U + V +W , (3.65)
Pr = V − U + P , (3.66)
Pt = −U − V + P . (3.67)

Since V,W , and P are nonnegative quantities, we obtain ρ+ Pr ≥ 0 and ρ+ Pt ≥ 0.
Thus, the weak and strong energy conditions are satisfied if

U + V +W ≥ 0, (3.68)
3P − 2U +W ≥ 0 , (3.69)

respectively. Since U is also a non-negative quantity, the weak energy condition is
always satisfied, while the strong energy condition can be violated. In particular, it
is violated even in the absence of fermions (P = W = 0).

The dominant energy condition, instead, gives two inequalities:

U + V +W ≥ |P + V − U |, (3.70)
U + V +W ≥ |P − V − U |. (3.71)

One can show that the dominant energy condition is satisfied whenever

W + 2(U + V ) ≥ P, (3.72)

This inequality is satisfied if
W − P ≥ 0 , (3.73)

which can be shown to be true using the analytic expressions of W and P .
To sum up, the weak and dominant energy conditions are always satisfied, while

the strong energy condition can be violated (e.g. in the absence of fermions) as
generically is the case for a scalar field with a positive potential [51].

3.3 Numerical results
In this section, we present the fermion soliton solutions in spherical symmetry
obtained by integrating the field equations (3.24). We will confirm the existence of
a solution beyond the thin-wall approximation used in ref. [13]. Also, based on the
numerical solutions, we can confirm the scalings derived in the previous sections in
a certain region of the parameter space and fix their prefactors.
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Figure 3.2. Radial profiles of the dimensionless pressure P̃ , scalar profile y, and metric
functions u (shifted) and v for two example configurations. Continuous lines represent
numerical data, whereas dashed lines reconstruct the asymptotic behavior of the solutions
by fitting with the Schwarzschild solution. Top panels: Λ = 0.141, η = 1.26, P̃c =
0.00903, and log10 ε = −13.9. The mass and radius of the soliton fermion star are
µM/m2

p = 6.14 and µR = 33.8, respectively. This solution falls within the confining
regime. Bottom panels: Λ = 0.141, η = 0.996, P̃c = 0.0222, and log10 ε = −12.9.
The mass and radius of the soliton fermion star are µM/m2

p = 5.71 and µR = 39.3,
respectively. This solution falls within the deconfining regime.

3.3.1 Numerical strategy

In this section, we summarize the numerical strategy we adopt to find soliton fermion
solutions. Given the boundary condition (3.25), the set of equations (3.24) is solved
numerically by adopting the following strategy:

1. We fix a certain value of ω̃F;

2. for a given value of ω̃F and of the central scalar field (i.e., a value of ε),
we obtain P̃c through eq. (3.26), and therefore x through the last equation
in (3.24)9;

3. we integrate the first three equations in (3.24) for the variables (u, v, y), starting
from r ≈ 0 to the point r = Rf where the fermion pressure drops to negligible
values, P̃ (Rf ) = 0;

4. we eliminate the fermionic quantities from the system of equations (3.24)
and start a new integration with initial conditions given at r = Rf imposing

9Equivalently, one can give initially P̃c, ε and determine ω̃F inverting eq. (3.26).
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Figure 3.3. Mass-radius (left panels) and compactness-mass (right panels) diagrams for
fermion soliton stars. The top panels refer to various values of (Λ, η) in the confining
regime (η > ηc; see Sec. 3.2.2). As a reference, in the top-left panel we also draw the
lines R = 2GM , R = 9/4GM , R = 3GM , corresponding to the Schwarzschild radius,
Buchdhal’s limit [28], and the photon-sphere radius. The bottom panels refer to various
values of η for fixed Λ = 0.141. The smallest value of η considered is near but greater
than the critical value. The inset shows the curves in logarithmic scale, to highlight
that in this case there exists a turning point in the M -R diagram at low masses that
proceeds toward the Newtonian limit of small M and large R.

continuity of the physical quantities. That is, the initial conditions on the
metric and scalar fields at r = Rf are obtained from the last point of the
previous integration up to r = Rf ;

5. we use a shooting method to find the value of ε that allows an asymptotically
flat solution to exist, which means imposing y(r → ∞) → 0;

6. as previously discussed, because the scalar field does not have compact support,
we define the radius of the star (R > Rf ) as that containing 99% of the total
mass, i.e. m̃(R) = 0.99µM/m2

p (eq. (3.28)), and the compactness is GM/R;

7. Finally, we repeat the procedure for a range of values of ω̃F, finding a one-
parameter family of solutions. As we shall discuss, in certain regimes (including
the deconfining one) this family exists only if P̃c is above a certain threshold,
therefore lacking a Newtonian limit.

As already noted, a vanishing scalar field (y = 0, ∂ry = 0) is a solution to the
scalar equation in eq. (3.24) only if S = 0, that is, in the absence of fermions.
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Figure 3.4. Left: Behavior of the critical radius Rc with Λ and η. The scaling (3.63) is
highlighted by the diagonal black dashed line. We observe an agreement until Λ . 0.3
whereas, for larger Λ, ηc increasingly exceeds the predicted value. The horizontal grid
line highlights when the µR > 1 regime ends. The shaded region above the two dashed
lines is the confining regime. Right: Behavior of the critical radius Mc with Λ and η.
We observe that the critical mass does not exhibit a significant change of behavior for
η < ηc.

This ensures that in any solution with y → 0 at infinity the fermion pressure must
vanish at some finite radius. Therefore, the fermion soliton solution is described
by a fermion fluid confined at r ≤ Rf and endowed with a real scalar field that is
exponentially suppressed outside the star, as expected from the discussion in Sec. 3.2.
A pictorial representation of these compact objects is shown in Fig. 1.1.

As described in the previous section, important parameters are the mass and
radius of the critical solutions, Mc and Rc. In practice, we compute these quantities
by identifying in the M -R diagram the point of maximum mass.

3.3.2 Fermion soliton stars

First of all, we confirm that fermion soliton stars exist beyond the thin-wall approxi-
mation used in ref. [13]. An example is shown in Fig. 3.2 which presents the radial
profiles for the metric, scalar field, and fermion pressure.

Inspecting the panels of Fig. 3.2 can help us understand the qualitative difference
between solutions in the confining regime (top) and the deconfining one (bottom).
In the first case, as soon as the scalar field moves away from its central value at
ρ → 0, and the effective mass of the fermion field grows, the pressure quickly drops
to zero. This is reflected in the fact that the macroscopic size of the star R is found
to be very close to where the scalar field starts moving away from the false vacuum.
This is the reason why the macroscopic properties of the star are mainly dictated
by the scalar field potential. In the latter case, the small bare mass of fermions
makes them remain ultra-relativistic even when the scalar field moves away from the
false vacuum, generating a layer where fermionic pressure drops exponentially but
remains finite. After the energy of fermions has fallen within the non-relativistic
regime, fermionic pressure rapidly vanishes. The existence of such a layer makes
the final mass and radius of the star dependent on the fermion mass, see more
details below. Also, as the numerical shooting procedure requires matching the
asymptotic behavior of the scalar field outside the region where the energy density
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of the fermions remains sizable, deconfining solutions are characterized by a larger
tuning of the parameter controlling the central displacement ε.

In Fig. 3.3 we present the mass-radius and compactness-mass diagrams for various
values of Λ and η, in the confining regime. In the top panels, we observe that Λ
strongly affects the mass-radius scale and the maximum mass, while from the bottom
panels, we observe that η has a weaker impact on the maximum mass, as expected
from the discussion in Sec. 3.2.

The dependence of Mc and Rc on Λ and η is presented in Fig. 3.4. As expected,
we observe that, for a fixed Λ, there is a critical value of η, below which the radius
begins to grow rapidly. For η > ηc and Λ . 0.5, we observe that the predictions given
in Sec. 3.2 are valid, confirming the existence of a confining regime. Indeed, in that
region of the parameter space, both the mass and the radius have little dependence
on η. This dependence grows very slowly for an increasing value of η, in agreement
with eq. (3.59). Moreover, the value of ηc scales, for Λ . 0.3, in agreement with
eq. (3.63), while for larger values of Λ it exceeds the analytical scaling. At variance
with the critical radius, the critical mass does not exhibit a change of behavior for
η < ηc. As a consequence, the compactness decreases quickly.

In general, taking into account all the configurations numerically found, log10 ε
lies in the interval (−150,−0.01).

Finally, in Table 3.3 we report the scaling coefficients computed numerically,
which are valid in the confining regime (η & ηc, Λ . 0.5).

3.3.3 On the existence of a Newtonian regime

From the bottom panels of Fig. 3.3, we observe that, even though η has a weak
impact on the maximum mass, it can qualitatively change the M − R diagram,
especially at low masses. Overall, the mass-radius diagram reassembles that of
solitonic boson stars [8, 9, 10, 11] with several turning points in both the mass and
the radius, giving rise to multiple branches (see also [64]). The main branch is the
one with M ′(R) > 0 before the maximum mass, which is qualitatively similar to
that of strange (quark) stars [65, 22]. However, the low-mass behavior (and the
existence of a Newtonian regime) depends strongly on η.

For sufficiently large values of η (always in the confining regime), there exists a
low-compactness branch in which M ′(R) < 0 and where the fermionic pressure is
small compared to the energy density, giving rise to a Newtonian regime. However,
an interesting effect starts occurring for values of η near, but greater than, the
critical one (e.g., the blue curve for η = 1.26 in the bottom panels of Fig. 3.310) all
the way down to the deconfining regime. In this case, there is still a lower turning
point in the M -R diagram, but the compactness eventually starts growing (see right
bottom panel). In this case, there is no Newtonian regime since the compactness is
never arbitrarily small.

This peculiar behavior is also related to another important feature of the model,
namely the fact that, for η sufficiently small, fermion soliton stars exist only above
a minimum threshold for the central fermionic pressure. We clarify this point in

10Notice that, in the bottom-left panel, it is not possible to see the complete tail of the M -R
diagram. As underlined in the text, in the center-right panel of Fig. 3.5 we plot the complete M -R
diagram.
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Table 3.3. Various scaling of the critical parameters with coefficients derived numerically
in the Λ . 0.5 range.

Critical mass µMc/m
2
p ≈ 0.19/Λ2

Critical radius µRc ≈ 0.71/Λ2

Compactness of the critical solution Cc ≈ 0.27

Critical value of the scale ratio ηc ≈ 2.7 Λ1/2

Fig. 3.5. In the left panels we show the mass of the star as a function of the central
fermionic pressure for Λ = 0.141 and three values of η. For η = 0.966 and η = 1.26
(top and center panels), the pressure has a lower bound, corresponding to the absence
of a Newtonian limit. For η = 2.92 (bottom panels) the behavior is qualitatively
different and in this case the Newtonian regime is approached as Pc → 0.

To clarify where the minimum pressure and these multiple branches are in the
mass-radius diagram, in the right panels of Fig. 3.5, we show data points for M −R
using the same color scheme as in the corresponding left panels. Interestingly, the
minimum pressure does not correspond to the minimum mass in Fig. 3.5, but it is
an intermediate point in the M −R diagram. In the center-right panel we show an
extended version of the Λ = 0.141, η = 1.26 curve shown in Fig. 3.3. This highlights
the peculiar behavior of the new branch, which has a further turning point at large
radii.
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Figure 3.5. Left panels: The mass of fermion soliton stars as a function of the central
fermionic pressure. Right panels: The corresponding mass-radius diagram using
the same color scheme as in the left panels, in order to associate with each point the
corresponding central pressure. Top: Λ = 0.141 and η = 0.996. This solution is in the
deconfining regime and there is a lower bound on P̃c below which no solution exists.
Center: Λ = 0.141 and η = 1.26. This solution is in the confining regime but, also in
this case, there exists a lower bound on P̃c. Bottom: Λ = 0.141 and η = 2.92. This
solution is in the confining regime but, given the larger value of η, there is no lower
bound on P̃c and a Newtonian regime exists. In all three cases, for a certain range of
P̃c there are multiple solutions with the same central fermionic pressure and different
central values of the scalar field.
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Studying the stability of these different peculiar branches [64] is left for future
work.11

Finally, note that in both cases there are values of the central fermionic pressure
corresponding to multiple solutions, each one identified by a different central value
of the scalar field.

3.4 Parameter space and astrophysical implications
Given the number of parameters of our model, it is interesting to study the charac-
teristic mass and radius of fermion soliton stars in this theory. By defining

q ≡ (µφ2
0)1/3, (3.74)

as long as we are in the confining regime, one finds

Mc ∼ 0.19
8π

m4
p

q3 ∼ 1.27M�

(
q

5 × 105 GeV

)−3
, (3.75)

Rc ∼ 0.71
8π

m2
p

q3 ∼ 6.5 km
(

q

5 × 105 GeV

)−3
, (3.76)

where we included the prefactors obtained using the numerical results. Given the
cubic dependence on q, the model can accommodate compact objects of vastly
different mass scales, while the compactness at the maximum mass is independent of
q, GMc/Rc ∼ 0.27, which is slightly larger than that of a typical neutron star, but
still smaller than the compactness of the photon sphere. Consequently, one expects
fermion soliton stars to display a phenomenology more akin to ordinary neutron stars
than to black holes [26]. The authors of ref. [13] considered the value q = 30 GeV,
yielding supermassive objects with Mc ∼ 1012M� and Rc ∼ 1013 km ∼ 0.3 pc.
Instead, the choice

q = qastro ∼ 5 × 105 GeV (3.77)
leads to the existence of soliton solutions of mass and radius comparable to ordinary
neutron stars.

Furthermore, the fact that the model is in the confining regime only above a
critical value of η, eq. (3.63), implies (using eq. (3.23) and our numerical results)

mf > 2.7
(√

8πq3

mp

)1/2
∼ 0.6 GeV

(
q

qastro

)3/2
, (3.78)

a range including the neutron mass. Therefore, the fermion gas can be a standard
degenerate gas of neutrons. It is also interesting to combine the above inequality
(saturated when mf = mc

f ) with eq. (3.75), finding a relation between the maximum
mass of the soliton in the confining regime and the critical fermion mass,

Mc ∼ 0.46
(

GeV
mc
f

)2

M� , (3.79)

11We point to ref. [66], where a broad class of related theories is analyzed in terms of energy
stability (though without taking gravity into account), and to ref. [67], in which the stability of
neutron and boson stars is studied through catastrophe theory. However, the issue of stability in
the present work remains open and needs a full radial perturbation analysis.
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independently of q. Interestingly, this model allows for subsolar compact objects for
fermions at (or slightly heavier than) the GeV scale, whereas it allows for supermassive
(Mc ∼ 106M�) compact stars for a degenerate gas of electrons (mc

f ∼ 0.5 MeV).
Clearly, the same value of q can be obtained with different combinations of µ

and φ0. In general,

µ = 500
(

q

qastro

)3 (500 TeV
φ0

)2
TeV (3.80)

= 500
(

mc
f

0.6 GeV

)2 (500 TeV
φ0

)2
TeV , (3.81)

so µ ∼ GeV for q = qastro (or, equivalently, for mc
f = 0.6 GeV) and φ0 ∼ 3 × 105 TeV.

Note that the latter value is still much smaller than the Planck scale, so the condition
Λ � 1 is satisfied. From our numerical results, Eqs. (3.75) and (3.76) are valid as
long as Λ . 0.5, whereas, for larger values of Λ, Mc, Rc, and Cc decrease rapidly
and the condition µR � 1 might not hold (see Fig. 3.4). This gives an upper bound
on φ0,

φ0 .
0.5√
8π
mp ∼ 1018 GeV, (3.82)

which, using eq. (3.80), can be translated into a lower bound on µ

µ & 8.4 × 10−11
(

q

qastro

)3
eV. (3.83)

Thus, also the scalar-field mass can vastly change depending on the value of q,
reaching a lower limit that can naturally be in the ultralight regime.

Finally, in the deconfining regime, there is no minimum fermion mass so solutions
can exist also beyond the range dictated by eq. (3.78), but soliton fermion stars
in such a regime would be characterized by smaller values of compactness (see
discussion in Sec 3.3).

3.5 Conclusions
In this chapter, we have found that fermion soliton stars exist as static solutions
to Einstein-Klein-Gordon theory with a scalar potential and a Yukawa coupling
to a fermion field. This confirms the results of ref. [13] obtained in the thin-wall
approximation and provides a way to circumvent the no-go theorems [50, 51] for
solitons obtained with a single real scalar field.

Focusing on spherical symmetry, we have explored the full parameter space of the
model and derived both analytical and numerical scalings for some of the relevant
quantities such as the critical mass and radius of a fermion soliton star. Interestingly,
the model predicts the existence of compact objects in the subsolar/solar (resp.
supermassive) range for a standard gas of degenerate neutrons (resp. electrons),
which might be connected to an exotic explanation for the LIGO-Virgo mass-gap
events that do not fit naturally within standard astrophysical scenarios.

We also unveiled the existence of a confining and deconfining regime – where
the macroscopic properties of the soliton are mostly governed by the scalar field
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parameters or by the fermion mass, respectively – and the fact that no Newtonian
analog exists for these solutions for fermion masses below a certain threshold.
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Chapter 4

Fermion soliton stars with
asymmetric vacua

Summary

Fermion soliton stars are a motivated model of exotic compact objects in which a
nonlinear self-interacting real scalar field couples to a fermion via a Yukawa term,
giving rise to an effective fermion mass that depends on the fluid properties. In this
chapter, we continue our investigation of this model within General Relativity by
considering a scalar potential with generic asymmetric vacua. This case provides
fermion soliton stars with a parametrically different scaling of the maximum mass
relative to the model parameters, showing that the special case of symmetric vacua,
in which we recover our previous results, requires fine-tuning. In the more generic
case studied here the mass and radius of a fermion soliton star are comparable to
those of a neutron star for natural model parameters at the GeV scale. Finally, the
asymmetric scalar potential inside the star can provide either a positive or a negative
effective cosmological constant in the interior, being thus reminiscent of gravastars
or anti-de Sitter bubbles, respectively. In the latter case, we find the existence of
multiple, disconnected, branches of solutions.

4.1 Setup

We consider again the theory (3.1), i.e.

S =
∫

d4x
√

−g
[ R

16πG − 1
2∂

µφ∂µφ− U(φ) + ψ̄(iγµDµ −mf )ψ + fφψ̄ψ
]
, (4.1)

where R is the Ricci scalar of the metric gµν , φ is the scalar field with potential
U(φ), ψ is the fermion with mass mf , and f is the Yukawa coupling. As discussed in
the previous chapter, the latter provides an effective mass, meff = mf − fφ, that is
crucial for the existence of these solutions [13, 1], which indeed circumvent classical
no-go theorems for the existence of solitons [50, 51]. The covariant derivative Dµ in
eq. (4.1) takes into account the spin connection of the fermionic field.



46 4. Fermion soliton stars with asymmetric vacua

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.5

0.0

0.5

1.0

Figure 4.1. Scalar potential in eq. (4.2) normalized with respect to U0 = µ2v2
F/12 as

function of φ/vF for three different values of ζ.

Here we consider a generalized scalar potential,

U(φ) = µ2v2
F

12
vF
vB

( φ
vF

)2[
3
( φ
vF

)2
− 4

( φ
vF

)(
1 + vB

vF

)
+ 6vB

vF

]
. (4.2)

The latter features two minima at φ = 0 and φ = vF, separated by a maximum
located at φ = vB. The potential in eq. (4.2) can be also written as

U(φ) = µ2

2! φ
2 + κ

3!φ
3 + λ

4!φ
4, (4.3)

with the definitions λ = 6µ2

vBvF
, κ = −λ

3 (vF + vB).
By defining ζ = vB/vF, it is possible to control the energy difference between

vacua, as illustrated in Fig. 4.1. When ζ = 1/2 the two minima are degenerate,
whereas if ζ > 1/2 the minimum φ = vF has more energy than φ = 0. The opposite
happens for ζ < 1/2.

In the degenerate case ζ = 1/2, eq. (4.2) takes the simple form

U(φ) = 1
2µ

2φ2
(
1 − φ

vF

)2
, (4.4)

which is the potential originally considered in [13] and fully investigated in the
previous chapter.

We will focus on scenarios in which the fermion becomes effectively massless (i.e.
meff = 0) when the scalar field sits on the second vacuum, φ = vF. This condition
implies fixing

f = mf

vF
. (4.5)

We will consider spherically symmetric equilibrium configurations, whose back-
ground metric can be expressed as

ds2 = −e2u(ρ)dt2 + e2v(ρ)dρ2 + ρ2(dϑ2 + sin2 ϑdϕ2), (4.6)
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in terms of two real metric functions u(ρ) and v(ρ).
As discussed in Sec. 3.1.1, fermions are treated through the Thomas-Fermi

approximation [13, 1], practically meaning that they enter Einstein’s equations as a
perfect fluid characterized by an energy-momentum tensor of the form

T [f ]
µν = (W + P )uµuν + Pgµν , (4.7)

where W is the energy density and P is the pressure of the fluid, while they also
enter the scalar field equation through the scalar density S.

Following exactly the same steps discussed in sec. 3.1.2 (in particular we introduce
dimensionless parameters Λ and η as in eq. (3.23)), one finds the same field equations
given in eq. (3.24)

4.1.1 Scaling arguments

As highlighted in sec. 3.2.2, simple analytical estimates are possible in the macroscopic
limit µR � 1, by studying eq. (4.1) in the absence of gravity (R is the stellar radius1).

The main physical difference with respect to the ζ = 1/2 case is the presence of
a nonzero energy density associated with the scalar field in the interior of the star.
From eq. (4.2), the latter is

% = U(φ = vF) = µ2v2
F

12ζ (2ζ − 1) . (4.8)

In general, the total energy of the system is

E = Ek + Es + Ev, (4.9)

where Ek is the fermion energy, while Es = 4πR2(1
6µv

2
F), Ev = 4π

3 R
3% are the surface

and the volume energy of the scalar field, respectively. The quantity s = 1/6µv2
F plays

the role of a surface energy density. The minimum-energy condition, ∂E/∂R = 0
gives Ek = 2Es + 3Ev, which in turn yields

M := Emin = 12πsR2 + 16
3 π%R

3. (4.10)

We estimate the critical mass Mc as the point at which R ∼ 2GM . This gives a
quadratic equation, whose positive root is

Mc ∼ − s

2%G + s

2%G

√
1 + 4%

Gs2 . (4.11)

In the limit %/Gs2 � 1, i.e. when the surface energy density dominates over that of
the volume,

µMc

m2
p

∼ 1
Λ2 , (4.12)

which is indeed the scaling found in the case of perfect degeneracy, ζ = 1/2, studied
in the previous chapter.

1In the numerical procedure, the radius R is defined as that containing 99% of the total mass
(see 3.3.1).
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In the opposite limit, %/Gs2 � 1, when the volume energy dominates we get

Mc ∼ 1
G3/2|%|1/2 . (4.13)

Intriguingly, the latter scaling is what we would get from a bubble of cosmological
constant 8πG%. As we shall discuss later, depending on the sign of %, in this
limit we can have a compact object with either a positive or a negative effective
cosmological constant in the interior, reminiscent of gravastars [68, 36, 69] or anti-de
Sitter bubbles [37], respectively.

Notice that eq. (4.13) can be also written as

µMc

m2
p

∼ 1
Λ , (4.14)

showing a parametrically different scaling with respect to eq. (4.12). Moreover, using
eq. (4.8) we get

%

Gs2 ∼ 1
Λ2

ζ − 1
2

ζ
. (4.15)

Remarkably, in the Λ � 1 limit (which, as we shall discuss, is the regime in which we
find compact configurations of astrophysical interest) the volume energy dominates
as soon as ζ departs from 1/2. Therefore, the case of degenerate vacua, originally
proposed in ref. [13], appears unnaturally fine-tuned.

Finally, we highlight that the macroscopic limit µR � 1 parametrically cor-
responds to the region Λ � 1. Indeed, the dimensionless radius of the critical
configuration µRc shows the same scaling of the critical mass (see eq. (4.12) or
eq. (4.14)) because of the relation Rc ∼ 2GMc.

4.1.2 Confining regime

Along the line of arguments given in sec. 3.2.2 and in sec. 4.1.1, it is possible to
compute the scaling of ω̃F for the critical solution in the regime µR � 1. In this case,
the real scalar field solution is well approximated by a stiff Fermi function [13, 62]

φ(ρ) ≈ vF
1 + eµ(ρ−R) , (4.16)

which sharply interpolates between the two vacua in a region of size µ−1. In that
region, the effective mass meff quickly increases allowing the fermion pressure to go
to zero. Therefore, the (relativistic) Fermi gas is well confined in the core of the star
ρ ≤ R. This implies that the Fermi momentum is nearly constant in the core and
equal to its central value ωF. Consequently, the fermion number density is estimated
as ∼ ω3

F and the total number of fermions in the configuration is then N ∼ (RωF)3.
Hence,

ωF ∼ N1/3 1
R
. (4.17)

Assuming ζ > 1/2, the fact that µR � 1 (which, as already discussed, corresponds
to Λ � 1) implies thought eq. (4.15) that that Ev dominates over Es. Thus,

%R3 ∼ Ev ∼ Ek ∼ N4/3 1
R

⇒ N1/3 ∼ %1/4R. (4.18)
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Substituting eq. (4.18) into eq. (4.17), one gets ωF ∼ %1/4. By using eq. (4.8) and
the definitions of the dimensionless quantities given in Sec. 4.1, we finally obtain2

ω̃F ∼ 1
η

(2ζ − 1
12ζ

)1/4
. (4.19)

The latter quantity is needed to find the confining regime of the model, which is
the region in the parameter space where the mass and radius of the solution do not
depend significantly on mf . As discussed in sec. 3.2.2, we expect that, for a given
choice of (Λ, η), the confining regime exists only if ω̃F is smaller than a certain value
ω̃max

F . Using eq. (4.19),

ω̃F < ω̃max
F ⇒ η > ηc = C(ζ). (4.20)

At variance with the ζ = 1/2 case (where a similar argument gives ηc ∼ Λ1/2, see
sec. 3.2.2), in the nondegenerate case ηc is independent of Λ. We numerically checked
that C(ζ) ∼ 1. Therefore, as long as Λ � 1, requiring

η & 1, (4.21)

is enough to ensure that the solutions lay in the confining regime.

4.1.3 Binding energy

Given a configuration made of N fermions, whose total mass is M , it is useful to
define the binding energy

EB := M −mfN. (4.22)

We wish to compare the energy of the relativistic configuration, in which gravity and
the scalar interaction act as a glue, with the energy of the configuration in which
the N fermions are free particles. If EB < 0 the relativistic configuration is stable
under dispersion into free particles, i.e. the system is gravitationally bound.

In the Thomas-Fermi approximation, the number of fermions is [13]

N = 4
3π

m3
f

µ3

∫
dr r2ev(r)x3(r) ≡

m3
f

µ3 Ñ . (4.23)

Using eq. (3.23), we can rewrite eq. (4.22) as

µEB
m2
p

= µM

m2
p

− η4Λ2

8π Ñ. (4.24)

Since N ∼ (RωF)3, the combination of eq. (4.14) and eq. (4.19) gives Ñ ∼ 1
(Λη)3 .

Substituting the latter into eq. (4.24) finally yields

µEB
m2
p

∼ 1
Λ
(
1 − η

)
. (4.25)

Thus, the condition EB < 0 translates again into eq. (4.21). In other words, being
in the confining regime ensures also stability against dispersion into free particles.

2In the degenerate case ζ = 1/2, the scaling is parametrically different, see Table II in the
previous chapter.
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Figure 4.2. Mass-radius (left top panel), compactness-mass (right top panel), binding energy
(left bottom panel), and ratio U(ρ = 0)/W (ρ = 0) (right bottom panel) for fermion
soliton stars with an effective positive cosmological constant in the interior (ζ > 1/2)
as the asymmetry between vacua grows. We fixed Λ = 0.15 and η = 3. The latter are
representative values such that the Newtonian limit exists and the configurations lie
in the confining regime, where the dependence of the critical mass on η is very weak.
Varying Λ does not qualitatively change the behaviors of the diagrams. There exists
a turning point in the M -R diagrams at low masses, which cannot be seen from the
figure, that proceeds towards the Newtonian limit of small M and large R, similarly
to what already found in the degenerate case. In the bottom-right panel, we do not
show the degenerate curve ζ = 1/2 since in this case U(0) ≈ 0 by construction. Note
that U(0)/W (0) → 0 in the large central pressure limit, corresponding to the spiraling
behavior in the M −R diagram.

4.1.4 Energy conditions

If ζ > 1/2 (corresponding to a positive effective cosmological constant in the interior),
the scalar potential is positive definite and the same arguments discussed in sec. 3.2.3
hold, i.e. the weak and dominant energy conditions are satisfied, whereas the strong
energy condition is violated. Different conclusions have to be drawn when ζ < 1/2
(corresponding to a negative effective cosmological constant in the interior). In
this case, the scalar potential is negative around φ = vF, which in turn leads to a
violation of the weak energy condition. Indeed, the latter is satisfied in φ ≈ vF, i.e.
ρ ≈ 0, if

U(ρ ≈ 0) +W (ρ ≈ 0) ≥ 0. (4.26)
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Being the effective fermion mass negligible around φ ≈ vF, W (ρ ≈ 0) ≈ 3Pc. Using
this fact, together with eq. (4.8), eq. (4.26) gives

3Pc + µ2v2
F

12ζ (2ζ − 1) ≥ 0. (4.27)

Being Pc = m4
f P̃c, we finally obtain that the weak energy condition imposes

P̃c ≥ 1
η4

(1 − 2ζ)
36ζ . (4.28)

As expected, this is trivially true if ζ > 1/2. Conversely, it could be violated
when ζ < 1/2, as we show using the following heuristic argument (and exactly
via numerical integration in the next section). Thinking in terms of the classical
mechanics analogy described in sec. 3.2, when ζ < 1/2 the false vacuum φ = vF
of the inverted potential has more energy than the true vacuum φ = 0. Thus, the
particle can reach the true vacuum even in the absence of the fermions, which means
that the solution exists also in the Pc → 0 limit3 . As we lower Pc, there will be a
point in which the inequality (4.28) does not hold anymore. The existence of the
latter point is confirmed by numerical results (see next section) which also show
that the binding energy of solutions that violate (4.28) can be positive, i.e. there
exist configurations energetically unstable.

4.2 Numerical results

A fermion soliton star is described by a core of relativistic fermion fluid mixed with
an effective cosmological constant, surrounded by a shell of real scalar field that is
exponentially suppressed outside the star. Depending on the value of ζ, we find
different behaviors. If ζ = 1/2 the effective cosmological constant vanishes and
we recover the degenerate case presented in the previous chapter. If ζ > 1/2, the
effective cosmological constant inside the core is positive and, as we shall see, the
solution follows the qualitative picture outlined in the previous section. Finally,
if ζ < 1/2 a different behavior appears, due to the violation of the weak energy
condition. We shall refer to the ζ > 1/2 and ζ < 1/2 cases as de Sitter and anti-de
Sitter interiors, respectively, although we stress that the metric in the interior would
be effectively (anti) de Sitter only if the energy density of the scalar field dominates.
As we shall discuss, this can be the case for certain configurations with an effective
negative cosmological constant, while an effective positive cosmological constant
never dominates the fermionic contribution.

4.2.1 De Sitter interior (ζ > 1/2)

In Fig. 4.2 we present the mass-radius and compactness-mass diagrams for various
values of ζ > 1/2, in the confining regime. We observe that ζ affects the mass-radius
scale and the maximum mass (left panel), while it has a weaker impact on the

3This is not in contradiction with the no-go theorem stated in ref. [51] since for ζ < 1/2 the
scalar field potential is not positive definite.
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Figure 4.3. Critical radius Rc (left panel) and mass Mc (right panel) as functions of Λ and
ζ. In the degenerate case (ζ = 1/2), both quantities scale as 1/Λ2 in the Λ � 1 limit,
while for ζ > 1/2 they scale as 1/Λ. These results are in agreement with the analytical
estimates given in Sec. 4.1.1.
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Figure 4.4. Mass-radius (left panel) and compactness-mass (right panel) diagrams for
fermion soliton stars with an anti-de Sitter core. We fixed Λ = 0.15, η = 3 and ζ = 0.49.
Note the presence of two disconnected branches. The blue curves/points correspond
to solutions satisfying the weak energy condition, while the others violate eq. (4.28).
The red circle corresponds to P̃c → 0, i.e. a purely-scalar solitonic configuration in the
absence of fermions that does not exist in the ζ ≥ 1/2 case.

compactness (right panel). Moreover, the binding energy is negative, which means
that the configurations are stable against dispersion into free particles.

The dependence of Mc on Λ and ζ is presented in Fig. 3.4. As expected,
Mc ∼ 1/Λ2 when there is a perfect symmetry between vacua (ζ = 1/2), whereas for
any ζ > 1/2, the scaling changes parametrically in Mc ∼ 1/Λ.

4.2.2 Anti-de Sitter interior (ζ < 1/2)

In Fig. 4.4 we present the mass-radius diagram for ζ = 0.49. The latter shows a
different behavior from the ζ ≥ 1/2 case, due to the presence of two disconnected
branches of solutions.

In particular, we highlight the existence of the point (red circle in Figs. 4.4
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Figure 4.5. Binding energy (left panel) and ratio |U(ρ = 0)|/W (ρ = 0) for the lower
branch shown in Fig 4.4, using the same color scheme to highlight the violation of the
weak energy conditions (4.28). We observe that there exists a set of solutions around
µR ∼ 110 where |U(ρ = 0)|/W (ρ = 0) � 1 while the binding energy is still negative.

and 4.5) mentioned in Sec. 4.1.4, where the fermion density is negligible4, which
in turn is linked with the divergence of the ratio |U(ρ = 0)|/W (ρ = 0) shown in
the right panel of Fig. 4.5. Moreover, in the left panel of Fig. 4.5 we show that the
latter point is unstable with respect to dispersion into free particles.

Remarkably, from Fig. 4.5 we observe that there exists an intermediate regime,
in which |U(ρ = 0)|/W (ρ = 0) � 1, but the configurations are gravitationally bound.
This means that inside these solutions there is essentially an anti-de Sitter core,
whereas the fermions, although with a negligible energy density in the core, are still
crucial to energetically bind the configurations. As an example, we show one of
these solutions in Fig. 4.6.

Analogous configurations, but with a de Sitter spacetime inside, do not exist
when ζ > 1/2. Indeed, in the latter case, fermions are always characterized by a
higher energy density in the core than the scalar field, because they have to fill the
energy gap between the false vacuum and the true vacuum of the inverted potential
(when ζ ≥ 1/2 the solution does not exist in the absence of fermions). This is
explicitly shown in the bottom-right panel of Fig. 4.2.

The latter results and the existence of two branches for ζ < 1/2 can be better
understood by looking at Fig. 4.7, where we show the mass as a function of ω̃F for
both ζ < 1/2 and ζ > 1/2. In particular, we observe that for ζ ≥ 1/2 there exists a
minimum value of ω̃F, below which no solution is found. For ζ < 1/2, instead, ω̃F
can be arbitrarily small. This causes the detachment between the two branches of
the ζ = 0.49 curve, which also manifests in Fig. 4.4.

The existence of two branches makes it harder to identify configurations that
are expected to be stable under radial perturbations. In this case, it is particularly
interesting and important to perform a radial stability analysis, which is left for
future work. In the next section, we shall focus on the more standard ζ > 1/2 case.

4Analogous configurations, characterized by the absence of fermions and the violation of the WEC,
were already discussed in the literature under the name of ’scalarons’ and studied in connection
with hairy black holes [52, 70, 71, 72].
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Figure 4.6. Radial profiles of scalar field φ, normalized with respect to vF, metric functions u,
v (left panel) and fermion pressure (right panel) for a configuration with an effective anti-
de Sitter core, but still a negative binding energy (Λ = 0.15, η = 3, ζ = 0.49). Continuous
lines represent numerical data, whereas dashed lines reconstruct the asymptotic behavior
of the solution by fitting with the Schwarzschild spacetime. We observe a sharp (but
continuous) transition between anti-de Sitter and Schwarzschild around µρ ∼ 110.
The mass and radius of this configuration are µM/m2

p ≈ 7.63 and µR ≈ 111.8, the
compactness is C ≈ 0.068, while the solution parameters are P̃c = 1.30 × 10−6 and
log10 ε = −44.8. The binding energy is µEB/m

2
p ≈ −4.51 and the ratio between

cosmological constant and central fermion density inside is |U(ρ = 0)|/W (ρ = 0) ≈ 10.8.

4.3 Parameter space and astrophysical implications

When ζ > 1/2, it is straightforward to identify a critical massMc (and corresponding
radius Rc) as the point of maximum mass in the M -R diagram, Fig. 4.2. As
heuristically shown in Sec. 4.1.1 for Λ � 1, and confirmed numerically in Fig. 4.3 as
long as Λ . 0.15, in this regime the critical mass and radius scale as

µMc

m2
p

= A(ζ, η) 1
Λ , (4.29)

µRc = B(ζ, η) 1
Λ . (4.30)

The region (Λ . 0.15, η = 3) is inside the confining regime, where the dependence
of the critical quantities on η is very weak (see 3.3.2). Thus, within very good
approximation A,B are functions of ζ only. Numerical fits show that A(ζ), B(ζ)
are functions of order unity (see legend in Fig. 4.3). Therefore, assuming A,B ∼ 1
and defining q = (µvF)1/2, it is possible to give the following general estimate of the
critical quantities,

Mc ∼ O(M�)
(0.6 GeV

q

)2
,

Rc ∼ O(km)
(0.6 GeV

q

)2
. (4.31)

Hence, the model can accommodate compact objects of vastly different mass scales,
while the compactness at the maximum mass is independent of q, and equals to
GMc/Rc ≈ 0.27 (see top-right panel of Fig. 4.2), which is slightly larger than that of
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Figure 4.7. Mass as a function of ω̃F. We fixed Λ = 0.15, η = 3. For ζ = 0.53
(representative of ζ ≥ 1/2), there exists a minimum value of ω̃F around 0.5, while for
ζ = 0.49 (representative of ζ < 1/2) ω̃F can be arbitrarily small, which in turn leads to
two branches of solutions.

a typical neutron star, but still smaller than the compactness of the photon sphere of
a Schwarzschild black hole (GM/R = 1/3). As a result, one expects fermion soliton
stars to display a phenomenology more akin to ordinary neutron stars than to black
holes [26].

Moreover, condition eq. (4.21) gives

mf & q. (4.32)

Interestingly, the choice q ∼ qastro = 0.6 GeV leads to the existence of fermion soliton
stars with mass and radius comparable to ordinary neutron stars, with a fermion
mass in the natural energy scale O(GeV). This is a striking difference with respect
to the degenerate model presented in the previous chapter, which required scalar
field parameters at much higher energy scales in order to obtain solar-mass compact
configurations.

4.4 Discussion and Conclusions
We have constructed physically admissible configurations of fermion soliton stars
in the presence of a scalar potential featuring two asymmetric vacuum states. This
generalizes the original model of [13] (recently explored in full general relativity [1]
and presented in the previous chapter), in which the two vacua are degenerate [2].

The breaking of the degeneracy drastically changes the qualitative properties
of the solution, thus unveiling that the degenerate case is nongeneric and requires
fine-tuning. First of all, the scaling of the maximum mass relative to the model
parameters is different from the degenerate case and makes it easier to obtain solar-
mass compact solutions with natural model parameters in the GeV scale. Secondly,
the breaking of the degeneracy implies that the interior of the star can be described
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by either a positive or a negative effective cosmological constant; the latter case
(effective anti-de Sitter core) being associated with compact solutions with further
peculiar properties.

The case of de Sitter interior provides a concrete realization of a model somehow
reminiscent of that of gravastars [68, 36, 69], which are indeed supported by a
positive cosmological constant in the interior and feature anisotropic pressure [73]
(naturally provided by the scalar field in our model). Our model is anyway different
from the original gravastar, since for ζ > 1/2 the contribution of the fermion fluid is
comparable to, and typically much larger than, that of the effective cosmological
constant (see right bottom panel of Fig. 4.2). Interestingly, a recent concrete
realization of a gravastar was proposed in ref. [74].

Likewise, the case of anti-de Sitter interior is somehow reminiscent of that of
anti-de Sitter bubbles [37]. This case shows interesting features such as multiple
branches and viable configurations in which the contribution of fermions is negligible
(but anyway needed for the existence of bound solutions).
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Chapter 5

Compact objects from
non-perturbative vacuum
scalarization

Summary

In this chapter, we explore applications of the previous findings adopting a particle
physics perspective. We consider a theory in which a real scalar field is Yukawa-
coupled to a fermion and has a potential with two non-degenerate vacua. If the
coupling is sufficiently strong, a collection of N fermions deforms the true vacuum
state, creating energetically favored false-vacuum pockets in which fermions are
trapped. We embed this model within General Relativity and prove that it admits
self-gravitating compact objects where the scalar field acquires a non-trivial profile
due to non-perturbative effects. We discuss some applications of this general mecha-
nism: i) neutron soliton stars in low-energy effective QCD, which naturally happen to
have masses around 2M� and radii around 10 km even without neutron interactions;
ii) Higgs false-vacuum pockets in and beyond the Standard Model; iii) dark soliton
stars in models with a dark sector. In the latter two examples, we find compelling
solutions naturally describing centimeter-size compact objects with masses around
10−6M�, intriguingly in a range compatible with the Optical Gravitational Lensing
Experiment (OGLE) + Hyper Suprime-Cam (HSC) microlensing anomaly. Besides
these interesting examples, the mechanism of non-perturbative vacuum scalarization
may play a role in various contexts in and beyond the Standard Model, providing a
support mechanism for new compact objects that can form in the early Universe,
can collapse into primordial black holes through accretion past their maximum mass,
and serve as dark matter candidates.

5.1 The mechanism of non-perturbative vacuum scalar-
ization

Along the lines of the previous chapters, we consider a simple model for NTSs
in which a real scalar field h is coupled to a fermion through a Yukawa coupling.
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Figure 5.1. Sketch of the mechanism, showing the energy E of different configurations
as a function of η, a fundamental parameter defined in eq. (5.13). The bigger η the
more the theory becomes strongly coupled. The orange balls represent massive fermions,
whereas the yellow balls represent the false vacuum pockets of the scalar field in which
the fermions are massless (and therefore depicted by smaller orange balls). (a) Standard
ground state of the system. (b), (c) Whenever η & 1, it is energetically convenient for
the system to trap a fraction of fermions in false vacuum pockets. For η . 1, equilibrium
configurations describing bound false vacuum pockets do not exist.

The scalar potential features the typical Mexican hat shape, with two minima in
h = ±v and a maximum in h = 0. However, the presence of the fermionic condensate
S = 〈ψ̄ψ〉 effectively modifies the shape of the scalar potential (see Fig. 5.2). In
particular, if the Yukawa coupling f is sufficiently strong (or the scalar quartic λ
sufficiently small), the point h = 0 becomes an actual (local) minimum of the theory.
The latter condition is mathematically formulated by requiring that the parameter
η = f/(2λ)1/4 & 1. In this regime, we show the existence of a bound NTS where the
scalar field interpolates between h = 0 (false vacuum) and h = v (true vacuum)1,
working in a fully relativistic approach.

The physical implication of the latter result is that, if η & 1, a collection of N
fermions is able to deform the h ≡ v ground state, giving rise to NTSs that describe
false vacuum pockets, in which the N fermions are trapped (see Fig. 5.1). The latter
are unable to escape (at least classically) because their energy is lower than Nmf ,
the rest energy of N free fermions (mf is the fermion bare mass). Thus, the energy
of an everywhere uniform configuration h ≈ v becomes higher than the energy of
a configuration that shows false vacuum pockets here and there. Since NTSs are
intrinsically non-perturbative states (see Sec. 5.3), the ground state of the system
acquires a nontrivial scalar profile by means of non-perturbative effects. We dub
this mechanism non-perturbative vacuum scalarization.

Investigations in a similar spirit were recently carried out by ref. [75] in the
context of exotic neutron stars.

1Without loss of generality, we are assuming that the asymptotic (scalar) ground state of the
Universe is h = v. One can also consider a solitonic solution that connects h = 0 with h = −v, but
then we would have a topological soliton (because the asymptotic value of the scalar field in the
solution would be different from its value in the rest of the Universe).
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5.2 Model for relativistic NTSs
Our starting point is the following theory, in which a (real) scalar boson h and a
Dirac fermion ψ are minimally coupled to Einstein gravity2,

L = R

16πG − 1
2∂µh∂

µh− ψ̄γµDµψ − U(h) − f√
2
h ψ̄ψ, (5.1)

where the scalar potential is (see Fig. 5.2 for η = 0)

U(h) = λ

16
(
h2 − v2

)2
. (5.2)

Performing spontaneous symmetry breaking h → h+ v in the Lagrangian (5.1) gives
rise to a well-defined scalar mass term,

m2
h = λv2

2 . (5.3)

However, for clarity of exposition, we prefer to work directly with (5.1), which has a
simpler analytical expression. The Yukawa interaction is controlled by the coupling
f , giving an effective mass to the fermion,

meff = f√
2
h. (5.4)

It is also useful to define

mf = meff(h = v) = f√
2
v, (5.5)

which is the effective fermion mass when the scalar sits on the minimum v > 0.
The fermionic field has a U(1) global symmetry which ensures the conservation

of the fermion number N (the Noether charge).
Our setup is similar to that of the previous chapters. An important difference

is that here we relax the fine-tuning of the Yukawa coupling f previously imposed
(see sec. 3.1 and sec. 4.1), which allows us to explore connections with more realistic
particle-physics content, as later discussed.

We will consider spherically symmetric equilibrium configurations, whose back-
ground metric can be expressed as

ds2 = −e2u(ρ)dt2 + e2v(ρ)dρ2 + ρ2(dθ2 + sin2 θdϕ2), (5.6)

in terms of two real metric functions u(ρ) and v(ρ).
As previously stated, fermions are treated through the Thomas-Fermi approx-

imation (see 3.1.1), practically meaning that they enter Einstein’s equations as a
perfect fluid characterized by an energy-momentum tensor of the form

T [f ]
µν = (W + P )uµuν + Pgµν , (5.7)

2We use the signature (−, +, +, +) for the metric and adopt natural units (~ = c = 1). With the
normalization used for the fermionic kinetic term, the Dirac matrices have an extra −i factor with
respect to the usual ones but satisfy the usual relation {γµ, γµ} = 2gµν . The covariant derivative
Dµ takes into account the spin connection of the fermionic field. We are neglecting interactions
with gauge fields, but it is straightforward to generalize our model including them.
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Figure 5.2. Effective scalar potential (see eq. (5.16)) normalized with respect to U0 = λv4/16
as a function of h/v for various values of η in the Newtonian regime. In this regime, the
zeros of the Fermi momentum are h/v = ±ω̃F (for |h|/v > ω̃F the fermions are removed
from the theory). We fixed a representative value ω̃F = 0.5. We notice that when η & 1
the effective potential develops a local minimum in h = 0. The shape of the potential is
qualitatively the same even in the fully relativistic regime.

where W is the energy density and P is the pressure of the fluid, while they also
enter the scalar field equation through the scalar density S, defined in sec. 3.1.1.

The fermion fluid is fully characterized once the Fermi momentum kF is given.
Within the Thomas-Fermi approximation, it can be shown that (see 3.1.1)

k2
F(ρ) = ω2

Fe
−2u(ρ) −m2

eff , (5.8)

where ωF is the Fermi energy at the origin (ρ = 0), which can be written in terms of
the fermion central pressure P (ρ = 0) ≡ Pc (see sec. 3.1.2 for details).

Analogously to what we did in sec. 3.1.2, it is convenient to introduce the
dimensionless quantities

x = kF
mf

, y = h

v
, r = mhρ , ω̃F = ωF

mf
, (5.9)

in terms of which the potential U and kinetic V = 1
2e

−2v(ρ)(∂ρh)2 terms can be
written as

U ≡ µ2v2
F Ũ(y) , V ≡ µ2v2

F Ṽ (y). (5.10)

Moreover, we introduce the following dimensionless fermionic quantities

W̃ = W

m4
f

, P̃ = P

m4
f

, S̃ = S

m3
f

. (5.11)

Finally, the field equations (i.e. the Einstein-Klein-Gordon equations with the



5.3 Properties and interpretation 61

addition of the Fermi momentum equation) take the compact form

e−2v − 1 − 2e−2vr∂rv = −Λ2r2
[
η4W̃ + Ũ + Ṽ

]
,

e−2v − 1 + 2e−2vr∂ru = Λ2r2
[
η4P̃ − Ũ + Ṽ

]
,

e−2v
[
∂2
ry +

(
∂ru− ∂rv + 2

r

)
∂ry

]
− ∂Ũ

∂y
− η4S̃ = 0,

x2 = ω̃2
Fe

−2u(r) − y2, (5.12)

where Ũ , Ṽ , P̃ , W̃ , and S̃ depend on x, y, and r. The above equations contain two
dimensionless combinations of the parameters3

Λ =
√

8πv
mp

, η = f

(2λ)1/4 = mf

m
1/2
h v1/2

, (5.13)

the physical interpretation of which will be discussed in the next section.
NTSs in the model (5.1) are static and spherically symmetric solutions to the

above system of ordinary differential equations. The boundary conditions are the
same as those used in sec. 3.1.2, but in the present case4 y(r = 0) = ε, where ε is
the initial displacement with respect to the false vacuum y = 0. The numerical
procedure to build these solutions is the same as in sec. 3.3.1, to which we refer for
more details.

Considering more than one Dirac fermion or including Majorana fermions in
eq. (5.1) is a straightforward generalization. In the Thomas-Fermi approximation,
this simply requires associating a Fermi momentum to each fermionic component
and adding the relative energy density, pressure, and scalar density to the equations.

5.3 Properties and interpretation

Before presenting the numerical results, it is useful to discuss some general properties
of these solutions.

The NTSs arising from eq. (5.1) are essentially fermion soliton stars with an
effective positive cosmological constant inside, studied in the previous chapter.
Therein, it was found that the energy of these solutions gets two contributions: one
from the volume energy of the field and the other from a surface term (see sec. 4.1.1).
The relative importance of these two terms depends on the actual region of the
parameter space.

In a field theory with spontaneous symmetry breaking, it is reasonable to expect
v � mp, which also guarantees that quantum gravity effects can be safely neglected.
From eq. (5.13), this implies Λ � 1, which corresponds to the regime where the
energy is dominated by the volume contribution (see also eq. (4.15)). In this regime
both the mass and the radius scale as 1/Λ, while the parameter ω̃F scales as 1/η.

3If we work in units such that c = 1, ~ 6= 1, η has dimensions of the square root of a coupling, i.e.
[η] = ~−1/4.

4In the absence of fermions, there is also a solitonic solution that connects the two minima of the
potential (h = ±v). This configuration represents a domain wall (which is a topological soliton) [76].
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Moreover, the binding energy EB = M −mfN of a configuration with N trapped
fermions scales as (see sec. 4.1.3)

mhEB
m2
p

∼ 1
Λ
(
1 − η

)
. (5.14)

Thus, for fixed Λ � 1, the dimensionless binding energy is a linear decreasing
function of η. Consequently, the bigger η the more bound the configurations5, with
η ≈ 1 marking the transition from bound to unbound states. As we will discuss in
detail later, for η . 1 the false vacuum pockets indeed disappear, and so does the
nontrivial scalar profile of the ground state. Heuristically, this happens because the
system has no benefit in investing some of its energy to build a false vacuum pocket
to trap fermions that have a small mass gap between the two vacua of the scalar
field. On the other hand, when η & 1 the mass gap is big enough that it becomes
energetically convenient to confine fermions in false vacuum pockets. For this reason,
we will call the region

η & 1 , (5.15)

confining regime6 (in analogy to what was done in sec. 4.1.2). Moreover, the latter
condition ensures that the point h = 0 in eq. (5.2) becomes a local minimum. Indeed,
the effective scalar potential arising from eq. (5.1) is

Ueff
U0

=
(
y2 − 12)2 + 8 η4S̃ y , (5.16)

where U0 = λv4/16. In order to analyze the behavior of the potential around the
origin y = 0, we compute

(Ueff
U0

)′′
(y = 0) = 8η4ω̃2

F
π2 − 4 . (5.17)

Thus, the point y = 0 will be a local minimum of the potential only if(Ueff
U0

)′′
(y = 0) > 0 , (5.18)

which in turn yields
ω̃F >

π√
2 η2 . (5.19)

Using the fact that ω̃F ∼ 1/η, one gets again eq. (5.15). In Fig. 5.2 we explicitly
show the behavior of the effective potential for different values of η in the Newtonian
regime, where the fermion scalar density S is analytically expressed as a function of
y only.

It is important to stress that the NTSs discussed here are genuinely non-
perturbative states. Indeed, in the limit in which one of the relevant couplings
(λ or f) is sent to zero, the energy diverges. When λ → 0, this happens because

5This behavior could be modified by quantum corrections (see [77, 78] for investigations along
this line in the absence of gravity).

6In units such that c = 1, ~ 6= 1, the perturbativity bound is ~1/4η .
√

4π ∼ O(1). Restoring
natural units, the condition (5.15) corresponds to a strongly-coupled theory.
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Figure 5.3. Radial profiles of scalar field h, normalized with respect to v, metric functions u,
v (left panel), and fermion pressure (right panel) for a typical configuration (Λ = 0.075,
η = 4). Continuous lines represent numerical data, whereas dashed lines reconstruct
the asymptotic behavior of the solution by fitting with the Schwarzschild spacetime.
The mass and radius of this configuration are mhM/m2

p ≈ 4.08 and mhR ≈ 14.96,
the compactness is C ≈ 0.27, while the solution parameters are P̃c = 8.8 × 10−3 and
log10 ε = −19.00. The binding energy is mhEB/m

2
p ≈ −5.10.

η → ∞. When f → 0, instead, the fermion mass vanishes (and so does the mass
gap) and consequently the hydrostatic equilibrium implies h → v (see sec. 5.3.1), as
already anticipated from the previous heuristic argument. Therefore, NTSs arising
from eq. (3.1) actually become standard fermion stars [33] made of nearly massless
fermions. In the zero-mass limit, the configuration does not have a finite radius
and its energy diverges. In both cases, it is impossible to describe these solutions
perturbatively around f ≈ 0 or λ ≈ 0.

Notice that if the two vacuum states are degenerate, whenever Λ � 1 there is no
need for a strongly coupled fermion since the confining regime is achieved as long
as η & Λ1/2 (see sec. 3.2.2), so η can also be small. Indeed, in the latter case, the
volume density of the scalar is zero, and the system needs much less energy to form
a false vacuum pocket.

Finally, we highlight that our semi-classical approach, in which the scalar field is
described as a classical solution (while quantum effects are taken into account for
fermions), is valid whenever the scalar self-interactions are weak, i.e. λ . (4π)2.

5.3.1 Numerical results

In Fig. 5.3 we show an example of a solution with the radial profiles for the metric,
scalar field, and fermion pressure.

In Fig. 5.4 we present the mass-radius and compactness-mass diagrams for
various values of η in the confining regime η & 1. As anticipated, we observe that
the mass-radius diagram is very weakly dependent on η. Moreover, the compactness
becomes arbitrarily small along the tail of the mass-radius diagram, giving rise to a
Newtonian regime.

In Fig. 5.5 (left panel), we show the rescaled mass MΛ and rescaled radius RΛ,
confirming the expected scaling in the Λ � 1 limit. Overall, the mass-radius diagram
is qualitatively similar to that of strange (quark) stars [65, 22].
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Figure 5.4. Mass-radius (left panel) and compactness-mass (right panel) diagrams for
various values of η. We fixed Λ = 0.075. Varying Λ does not change the results
qualitatively. There exists a turning point in the M -R diagrams at low masses, which
cannot be seen from the figure, that proceeds towards the Newtonian limit of small M
and large R, similarly to what already shown in sec. 3.3.3.
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Figure 5.5. Left panel: Rescaled mass-radius diagrams for various Λ. We fix η = 4. Varying
η does not produce appreciable changes as long as we stay in the confining regime η & 1.
As expected, there is an approximate scaling law as ∼ 1/Λ, which becomes more and
more accurate as Λ → 0. Right panel: Mass as a function of ω̃F for various values of η.
We fixed Λ = 0.075. Varying Λ does not change the results qualitatively. Notice the
existence of a minimum value for ω̃F at any given η.

It is straightforward to identify a critical mass Mc (and corresponding radius
Rc) as the point of maximum mass in the M -R diagram. As confirmed in Fig. 5.5,
for Λ . 0.1 those quantities behave according to

mhMc

m2
p

= A(η) 1
Λ , mhRc = B(η) 1

Λ . (5.20)

As shown in Fig. 5.4, in the confining regime the dependence of the critical quantities
on η is very weak. Thus, A and B are approximately constant, and numerical fits
show that A ≈ 0.36 and B ≈ 1.35. We therefore obtain

Mc ≈ M�
(0.34 GeV

q

)2
, Rc ≈ 5.5 km

(0.34 GeV
q

)2
, (5.21)

where q = (mhv)1/2, in terms of which the condition (5.15) can be written as

mf & q. (5.22)
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Finally, the compactness of the critical configuration is GMc/Rc ∼ A/B ∼ 0.27,
slightly higher than that of a typical neutron star.

In Fig. 5.5 (right panel) we plot the mass as a function of ω̃F for various values
of η at fixed Λ = 0.075, in the confining regime. In the low-mass region of these
curves, where mhM/m2

p ≈ 0, ω̃F → 1. In that limit ε → 1, the fluid energy density
(together with its number density) vanishes and thus the false vacuum pocket is lost.
As long as we depart from the mhM/m2

p ≈ 0 branch, ε becomes a small number and
the false vacuum pocket is recovered. From Fig. 5.5 (right panel) we also notice that,
for any given η, ω̃F cannot be arbitrarily small. This means that configurations in
which ε is small (i.e. truly false vacuum pockets) exist only above a minimum value
ω̃min

F . We numerically verified that the scaling for ω̃min
F is

ω̃min
F ≈ 2

η
. (5.23)

Notice that this quantity is independent of Λ. Since the number density n in the
core is proportional to ω3

F (see sec. 4.1.2) for further details), we estimate

nmin ≈ 1
3π2m

3
f (ω̃min

F )3 ≈ 8
3π2 (mhv)3/2 . (5.24)

The latter quantity can be interpreted as the minimum Noether charge per unit
volume that allows for the existence of false vacuum pockets in the model (5.1). The
configuration with the minimum possible Noether charge density has some peculiar
properties. Calling Mmin and Rmin, respectively, its mass and radius, numerical
analysis shows that

mhMmin
m2
p

≈ 1.00, mhRmin ≈ 2.24
Λ2/3 . (5.25)

Hence, in the Λ � 1 limit this special configuration is pushed towards the tail of
the mass-radius diagram, where the compactness GMmin/Rmin ∼ Λ2/3 → 0. We
conclude that NTSs arising from eq. (5.1) scan a range of masses and radii starting
from the configuration in eq. (5.25) deep in the tail of the mass-radius diagram,
where relativistic gravitational effects are negligible, up to the critical configuration
in eq. (5.21), above which the NTS is expected to undergo gravitational collapse.

In Fig. 5.6, we show the initial displacement ε and the binding energy of the
configurations as a function of η. As expected from the discussion in Sec. 5.3, the
bigger is η the lower the binding energy. In particular, we observe that the binding
energy of the critical configurations, marked with a violet dot in Fig. 5.6, decreases
linearly in η, as expected. Around η ≈ 1, we find configurations with positive binding
energy, in agreement with the estimate in eq. (5.14).

From the left panel of Fig. 5.6, we observe that the bigger is η, the lower the
displacement ε, whereas, for η ≈ 1, the displacement is ε ≈ 1, meaning that the scalar
field is practically already on the true vacuum. In the latter case, as anticipated
from the discussion in Sec. 5.3, the effective fermion mass is already very near to
mf and the picture of the configuration as a false vacuum pocket is lost. Therefore,
we confirm that the ground state acquires a non-trivial scalar profile only if η is
above a particular threshold. The numerical analysis done within the Thomas-Fermi
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Figure 5.6. The initial displacement (left panel) and binding energy (right panel) for various
values of η. We fixed Λ = 0.075. Varying Λ does not change the results qualitatively. As
expected, the bigger η, the lower the binding energy. The configurations corresponding
to the critical ones are highlighted with a violet marker.

approximation shows that already with η . 2 we enter the deconfining regime (with
the appearance of several turning points in both the mass and the radius, similarly
to what is shown in sec. 3.3.3) and for η = 1 all the configurations with EB < 0
have h ≈ v.

5.3.2 Stability of NTSs

There are three main independent mechanisms through which a NTS may decay in
time. First of all, if the binding energy is positive, a configuration with N fermions
trapped inside is triggered to disperse into free N particles by quantum and/or
thermal fluctuations [79]. As discussed in Sec. 5.3.1, as long as eq. (5.22) is satisfied,
the configurations are bound.

Second, NTSs may be unstable under classical perturbations. A full investigation
of the latter point goes beyond the scope of this work. However, in the confining
regime, the shape of the mass-radius diagram is qualitatively similar to that of
strange (quark) stars [65, 22]. Therefore, we expect the configurations below the
critical mass to be at least radially stable, as it happens for ordinary stars [61].

Third, the configurations could be unstable under fission into smaller config-
urations. Calling E(N) the energy of a NTS with N trapped particles inside,
whenever

E(N1) + E(N2) > E(N1 +N2) (5.26)

fission is forbidden. The above equation can be recast in the following condition
(also known as the Vakhitov–Kolokolov stability criterion [80, 81])

d2E

dN2 < 0 . (5.27)

For the configurations laying below the critical mass, we numerically checked that
eq. (5.27) holds.
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5.4 Applications of the model

In this section, we discuss explicit realizations of the model under investigation,
embedded in various theories.

5.4.1 Neutron soliton stars

A simple application of non-perturbative vacuum scalarization is in the context of
the linear sigma model [82], a low-energy effective theory of QCD that implements
spontaneous chiral symmetry breaking. In this context, the fermion in eq. (5.1) is
just a nucleon, while the scalar field is a scalar meson called σ. Using the benchmark
valuesmh ∼ 500 MeV [83], v ∼ fπ ∼ 130 MeV in eq. (5.25), the minimal configuration
is estimated to be

Mmin ≈ 10−19M�, Rmin ≈ 1 cm, (5.28)

while the critical one in eq. (5.21) is

Mc ≈ 2M�, Rc ≈ 10 km, (5.29)

with a compactness of Mc/Rc ∼ 0.27, that is slightly larger than that of an ordinary
neutron star. Moreover, being the mass of the nucleon mf ∼ 1 GeV, we get η ≈ 4,
ensuring that the configurations lay in the confining regime. These estimates are in
agreement with the ones given in ref. [84].

Remarkably, the heaviest neutron stars discovered [85] have a mass compatible
with the estimate in eq. (7.44). In the absence of a scalarization mechanism, it is
well known that a standard degenerate Fermi gas of neutrons can support compact
stars only up to ∼ 0.7M� [24], and nuclear interactions are therefore needed to
explain heavy neutron stars. In our model, instead, we can achieve the same result
by simply coupling the degenerate Fermi gas to a scalar field.

We are neglecting the energy density of the pions assuming that their mean
values on the ground state are zero. However, they are inevitably present in the
linear sigma model and the inclusion of a pion condensate could lead to interesting
phenomenology [86]. Exploring these effects, however, would require a more involved
analysis.

Our simple estimate suggests that the ground state of the heaviest neutron stars
can in fact be scalarized and their core is made of a false vacuum pocket where
the chiral symmetry is unbroken [75, 87]. Such NTSs may be formed in the early
universe (see sec. 5.5), or during the merger of two neutron stars, if the energy
involved is high enough (∼ fπ) to allow for the formation of false vacuum pockets
and consequent trapping of nucleons.

5.4.2 Higgs false vacuum pockets

Non-perturbative vacuum scalarization may also play a role in the Higgs sector of the
Standard Model (SM). Indeed, neglecting gauge interactions, eq. (5.1) naturally arises
after electroweak symmetry breaking, as shown in Appendix B. In this scenario, h is
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the physical Higgs field and ψ a SM fermion. Using mh ∼ 125 GeV and v ∼ 246 GeV,
the minimal configuration is found to be

Mmin ≈ 10−21M�, Rmin ≈ 0.2µm, (5.30)

while the critical mass and radius are

Mc ≈ (4 × 10−6)M�, Rc ≈ 2 cm. (5.31)

These configurations are compelling candidates for non-particle dark matter and
exotic compact objects. Indeed, it is intriguing to note that the critical mass range
is naturally compatible with the OGLE+HSC observation of some microlensing
events [88, 89]. However, non-perturbative vacuum scalarization occurs only if there
is a strongly coupled fermion to the Higgs boson, that is, only if the condition in
eq. (5.15) is satisfied. For the Higgs parameters, eq. (5.15) gives mf & 175 GeV,
which is very near the top quark mass mtop. Nevertheless, as discussed in Sec. 5.3.1,
numerical computations show that we need η & 2 to form bound false vacuum
pockets, meaning that mf should be at least ∼ 350 GeV. This suggests that non-
perturbative vacuum scalarization does not occur in the SM7. In addition, even
if the quark top mass was above the threshold, the electric charge carried by the
fermions would produce a repulsive Coulomb force that in general renders large
configurations unstable [91, 92]. Indeed, the total electric charge is estimated to be
Q ∼ (2/3 e)nR3. For the minimal configuration, this gives Qmin ∼ 1014 C, whereas
for the critical one Qc ∼ 1029 C. In both cases, the total electric charge is way above
the maximum charge compatible with hydrostatic equilibrium [93], i.e. 10−22 C for
the minimal configuration, and 10−7 C for the critical one.

However, top quarks also carry color charges. This gives a possible caveat to the
previous arguments and leaves open the possibility of forming Higgs false vacuum
pockets using only SM fields. To support the latter hypothesis, it is enough to
estimate the fermion number density n inside the object. Using eq. (5.24), we obtain

n ∼ m3
f ω̃

3
F ∼

m3
f

η3 ∼ (mhv)3/2. (5.32)

For the Higgs field parameters, n ∼ 7 × 1047 cm−3, which is orders of magnitude
larger than the nuclear matter density, nnucl ∼ 1038 cm−3. Such high densities
are expected to give rise to exotic states, in which interactions among fermions
cannot be neglected anymore, such as a top/anti-top bound state [94] or a colored
superconductor [95]. These scenarios could allow for bulk matter neutrality with
respect to both electric and color charges. A self-consistent computation where
eq. (5.7) is substituted by a new energy-momentum tensor, in which all these effects
are taken into account, may lower the aforementioned threshold and allow for the
existence of bound configurations.

Non-perturbative vacuum scalarization may naturally occur in extensions of the
SM by a fourth generation of (heavy) fermions. However, the simplest models along

7A similar conclusion is found in ref. [90], where however the authors look for Higgs vacuum
deformation around just one top quark (and not a collection thereof). Moreover, they neglect gauge
interactions (and also gravity, since they are interested in microscopic states).
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this direction are ruled out [96]. A viable possibility is adding only a fourth family
of chiral leptons strongly coupled to the Higgs sector, without modifying the quark
content. This would allow for evading bounds on the number of generations coming
from the Higgs decay into gluons [96].

It is important to stress that, regardless of the particular beyond-SM context
in which eq. (5.1) is obtained, as long as h is the Higgs boson, there are no free
parameters in the model, being the mass and radius of the configurations very weakly
dependent on mf .

False vacuum pocket evaporation

Beyond the three standard mechanisms mentioned in Sec. 5.3.2, there could be other
ways of destroying the object, depending on the specific embedding of the model.
Here we mostly focus on the case of (compact) Higgs false-vacuum pockets, but
the argument can be extended to other models in which the scalar h has Higgs-like
couplings.

Let us assume that the fermions interact with (asymptotically) lighter SM
particles (other than the Higgs boson). Inside the pocket, being the fermions
effectively massless, their lifetime is expected to be extremely long. However, on the
boundary of the pocket, the fermions re-acquire their mass and decays into lighter
SM particles become kinetically allowed. Under the conservative assumption that
all the decay products leave the pocket (effectively subtracting energy from the
configuration), it is possible to give a rough estimate of the lifetime. The number of
fermions in the boundary is Nf

shell ∼ m−1
h R2ω3

F, where m
−1
h is the size of the region

where the fermions acquire their mass and ω3
F is the fermion number density. The

number of fermions that leave the object per unit time is estimated as

dNf
shell
dt

∼ m−1
h R2ω3

F × Γ(mf → something). (5.33)

A naive guess is Γ(mf → something) ∼ mf . The latter estimate is conservative
since we are assuming an O(1) interaction strength with the SM. Moreover, each
fermion decay subtracts from the object an energy ∼ mf . Therefore, the total rate
of energy loss is

dEloss
dt

∼ mf
dNf

shell
dt

∼ m−1
h R2ω3

Fm
2
f . (5.34)

The lifetime is estimated as

tdecay ∼ M

dEloss/dt
∼ M

m−1
h R2ω3

Fm
2
f

(5.35)

Since M ∼ m2
p/mhΛ, R ∼ 1/mhΛ, ωF = mf ω̃F ∼ mf/η, one finally gets

tdecay ∼
m2
pm

2
h Λ η3

m5
f

× v2

v2 = 1
Λη

1
mf

∼ Ñ1/3

mf
(5.36)

We notice that in the limit N → ∞ the lifetime would be infinity. Now,

tdecay ∼ 1
Λη

1
η

1
√
mhv

∼ 1
Λ η2 10−27 sec (5.37)
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Using the Higgs parameters, one gets Λ ∼ 10−16 and

tdecay ∼ 10−11 sec
η2 . (5.38)

The actual computation of the lifetime should be carried out using a background
field method (see e.g. ref. [97]) and is complicated by the fact that we are in a
regime of strong gravitational field8.

Moreover, several subtleties that can drastically change the latter estimate. First
of all, our computation relies on the assumption that the fermions are a gas of weakly
interacting particles. Conversely, if one adds sizeable interactions between fermionic
particles, the lifetime may become much bigger, just like the lifetime of the neutron
inside a nucleus could be bigger than the age of the Universe, whereas the lifetime
of a free neutron is very short. Second, in a beyond-SM scenario, the decay into
lighter SM particles can be forbidden if the fermions in the configuration possess
extra symmetries (see e.g. [98]) or do not couple with other SM particles.

What can not be disentangled from the other SM content is the Higgs field.
In principle, some Higgs quanta of the system may be converted into other SM
particles, producing a net particle flux. Since the Higgs boson is in a non-linear
wave configuration, computing the latter quantity is a non-trivial problem.

We give an estimate through the following argument. A NTS can be quantum
mechanically described as a superposition of many coherent states (see e.g. [99]).
Each soliton quantum represents an interacting state which has in principle nothing
to do with the standard perturbative states of the theory. The soliton size R is set
by the energy µ of these soliton quanta and the configuration is dominated by modes
with momentum k . µ. In particular,

R ∼ 1
µ
. (5.39)

Since in our model R ∼ 1
mhΛ , it is natural to estimate µ ∼ mhΛ ∼ 10−14 GeV =

10−5 eV. Therefore, just by energy conservation, the soliton quanta are not able to
produce asymptotically a SM (massive) particle. Even neutrino (asymptotically)
production is forbidden since mneutrino ∼ 10−2 eV � µ.

What we cannot exclude is asymptotically photon production. However, since
the Higgs boson does not couple to photons at the tree level, the overall effect is
suppressed by loop effects. A rough estimate for the number of photons produced
Nγ gives

dNγ

dt
∼ Nµ × Γ(µ → γγ) ∼ 1

Λ4 × α2µ (5.40)

where α is the fine-structure constant and Nµ is the number of soliton quanta which
is estimated to be ∼ m2

hv
2R3/µ ∼ 1/Λ4. Since the energy of each photon is ∼ µ,

the change in the total energy is roughly µdNγ/dt, which in turn gives the time
needed to destroy the object

M

µdNγ/dt
∼ 1

Λ
1

α2mh
∼ 10−6 sec, (5.41)

8We expect that strong gravity can only increase the lifetime of the object.
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An important caveat of eq. (5.41) is that we are estimating the matrix element
Γ(µ → γγ) as if the soliton quanta were the standard perturbative Higgs quanta of
mass µ. However, we have already highlighted that the soliton quanta are purely
interacting states which have nothing to do with the standard perturbative states.
Therefore, a proper computation is needed to reliably estimate Γ(µ → γγ).

Accretion-driven collapse in the early Universe?

Even in those scenarios where the solitons evaporate (as in the case of the false-
vacuum Higgs solitons), they might still play a role during the evolution of the
Universe, for example, if they survive long enough to accrete a sizeable fraction of
their mass.

Indeed, while for purely scalar solitons (such as boson stars) scalar accretion-
driven collapse to a black hole is prevented by gravitational cooling [100, 54, 101],
our solutions have a fermionic core which can undergo gravitational collapse upon
accretion of ordinary matter.

In the simplest scenario, Higgs balls are produced in the radiation-dominated era
with an initial mass Mi. In principle, such objects are able to accrete significantly
before evaporation and one can therefore estimate the time needed to reach the
critical mass Mc above which the object can collapse into a primordial black hole.
Following Refs. [102, 103], we estimate the mass M of the object at the time t as

GM = t

1 + t
ti

(
ti

GMi
− 1

) , (5.42)

where ti is the time of soliton formation and ti & GMi since Mi must be smaller
than the horizon mass ti/G. At t � ti, the final mass asymptotically is

M → Mi

1 −GMi/ti
, (5.43)

and can be significantly higher than Mi if GMi ∼ ti.
Assuming that the object decays in a time td and requiring M(td) > Mc for

black-hole formation, we obtain

Mi >
Mc

1 +GMc

(
1
ti

− 1
td

) ∼ Mc

1 + GMc
ti

, (5.44)

where the last step is valid if td � ti.
For the case of the Higgs ball, we assume Mc ∼ 4 × 10−6M�, formation at the

electroweak phase transition (ti ≈ 2 × 10−11 sec), and td = ti + tdecay, where tdecay is
given in eq. 5.38. Therefore, for η ≈ 1, these objects will collapse into black holes
before evaporation only if

Mi & 3 × 10−6M� , (5.45)

which is slightly smaller than the maximum mass and than the horizon mass at the
time of formation.

The purpose of the previous estimates is to demonstrate the feasibility of black
hole production by using NTSs as seeds to trigger gravitational collapse. Interestingly,
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this scenario would lead to the formation of PBHs with a mass determined by the
maximum mass of the soliton, regardless of the formation epoch. However, further
work is needed to translate these estimates into a concrete framework and to derive
an actual prediction for the PBH abundance.

5.4.3 Dark soliton stars

The simplest beyond-SM scenario where non-perturbative vacuum scalarization is
realized is in the context of the dark sector paradigm [104], where we interpret
eq. (5.1) as embedded in the dark sector. The SM Higgs field hSM interacts with
the dark scalar h through the unavoidable scalar portal ∝ h2

SMh
2, hSMh

2, h2
SMh. We

assume mh & mhSM , in order to kinematically forbid the Higgs boson direct decay
into the dark scalar, allowing for evading collider constraints on the listed couplings.

In this framework, the evaporation bounds discussed in the previous section can
be easily evaded. Indeed, assuming that ψ is the lightest fermion in the dark sector,
decays on the boundaries are forbidden. Moreover, remembering that NTSs arising
from eq. (5.1) are made of scalar quanta with characteristic energy µ ∼ mhΛ, as
long as

mhΛ < mhSM ∼ 125 GeV , (5.46)

the soliton quanta cannot produce asymptotically SM Higgs particles. Combining
the latter equation with the requirement mh & mhSM , we finally get

Λ <
mhSM

mh
. 1 . (5.47)

Since it is natural to assume Λ � 1, as discussed in Sec. 5.3, Eq (5.47) is easily
satisfied even for a dark scalar much heavier than the SM Higgs boson.

If the scalar quartic λ is an O(1) number, the condition mh & mhSM translates
into q & qSM ≈ 175 GeV. Therefore, we conclude that these dark soliton stars
are expected to be stable and support compact objects of masses naturally in the
subsolar regime, according to eq. (5.21). In particular, for mh ∼ v ∼ 102 GeV, we
have a stable configuration with parameters similar to eq. (5.31).

The dynamical formation of NTSs arising in a similar framework has been
recently studied in [57], through a first-order cosmological phase transition. The
configurations produced, dubbed by the authors Fermi balls, are the non-relativistic
limit of our solutions. If an initial distribution of Fermi balls is able to accrete and
cool down, the final state will be a scalarized ground state (see (c) in Fig. 5.1),
well-described by our solutions.

5.5 Hints at the possible formation mechanisms of NTSs

While we have not directly explored any dynamical formation channels, similar
questions have already been addressed in the literature. The primordial formation
for NTSs has been investigated by many authors (see e.g. [105, 106, 107, 108]),
pointing out two main formation mechanisms, solitosynthesis and solitogenesis. In
the former scenario, NTSs are formed by the fusion of N free fermions. This implies
a non-zero cosmic asymmetry since it is necessary to accumulate a net number N
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of fermions over antifermions in a given region of space. In the latter scenario, a
relic abundance of NTSs is produced through a first- or second-order cosmological
phase transition. Recently, ref. [108] reviewed these formation mechanisms in detail,
showing that in certain cases NTSs can dominate the dark matter abundance.
A further formation channel is provided from the Yukawa interaction present in
eq. (5.1), as long as it is enough long-range. In this case, fermions undergo clustering
and structure formation even in a radiation-dominated era [109, 110, 111].

5.6 Conclusions
In this chapter, we outlined the non-perturbative vacuum scalarization as a general
mechanism to support new solitonic objects that can form in the early Universe and
serve as dark matter candidates. For concreteness, we considered a theory with a
real scalar field coupled to a fermion in the context of General Relativity and found
solutions describing self-gravitating compact objects where the scalar field acquires
a non-trivial profile due to non-perturbative effects. Remarkably, for natural model
parameters between the QCD and the electroweak scale, this model predicts the
existence of compact objects in the subsolar/solar range [3], which could be relevant
for current and future LIGO-Virgo-KAGRA observations (see e.g. Refs. [112, 113]).

Besides the specific examples discussed in this work, other scenarios where
this non-perturbative vacuum scalarization mechanism can play a role are fourth-
generation models with extended Higgs sector [114], asymmetric dark matter mod-
els [12], mirror symmetries, minimal supersymmetric SM [115, 116], Type II see-saw
mechanism [117], grand unified theories, inflation and cosmological phase transi-
tions [118, 119]. Moreover, the inclusion of gauge fields into the solutions could give
rise the important effects (see e.g. ref. [91, 92, 120]), which we plan to explore in
future work.

Although NTSs are energetically favored and stable under (at least) radial
perturbations, couplings to other fields or self-interactions might induce evaporation
of the solution, the details of which depend on the specific embedding of the model
in a given theory. Even in cases in which this time scale is short relative to typical
astrophysical scales, in the early Universe NTSs might have enough time to accrete
past the maximum mass or merge with other objects, with the possibility of forming
primordial black holes in both cases [121, 58, 122, 123, 111, 124, 125]. Interestingly,
this scenario would produce primordial black holes with a mass fixed in terms of
the maximum mass of the soliton, regardless of the formation epoch. As we have
shown, certain realizations of our model naturally lead to compact objects in a
mass range that is compatible with the OGLE+HSC anomaly for some microlensing
events [88, 89].
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Chapter 6

Testing ECOs with gravitational
waves: a short introduction

The detection of gravitational waves by LIGO [7] opened uncharted possibilities
for testing the nature and properties of compact objects. The simplest sources
of gravitational waves are binaries made of two compact objects (and indeed the
first event detected was a binary of two black holes [7]). When the two objects are
far apart, they are modeled as point masses orbiting each other under the force
of gravity. This stage in the life of the binary is called inspiral. The evolution is
conveniently described using a perturbative approach, such as the post-Newtonian
(PN) expansion. As time goes by, the two objects become closer and closer, as
the system gradually loses energy and angular momentum through the emission
of gravitational waves. When the two objects come so close that their velocities
approach the speed of light and the finite-size effects become dominant, perturbation
theory breaks down and the binary enters the so-called merger phase, which is highly
non-linear. Hence, fully numerical simulations are necessary to describe this stage.
After the merger, the system is composed of a perturbed remnant, which oscillates
according to characteristic frequencies. This stage is called ringdown. Finally, the
system relaxes to a stationary configuration. In fig. 6.1, we present a pictorial
illustration of a binary evolution throughout the three stages (inspiral, merger, and
ringdown).

6.1 Sensitivity on ECO parameters
Consider a binary in circular orbit and let us call M1 and M2 the masses of the two
objects. In the inspiral phase, the orbital frequency of this system is [19]

ν = 1
2π

√
GMtot
l30

, (6.1)

where Mtot = M1 +M2 is the total mass, and l0 is the diameter of the circular orbit.
The frequency f of the gravitational waves emitted is twice the orbital frequency [19],
i.e.

f = 1
π

√
GMtot
l30

(6.2)
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Figure 6.1. The gravitational-wave strain amplitude as a function of time for GW150914,
detected at LIGO Hanford and Livingston observatories on September 14, 2015. In the
top row, a pictorial illustration of the BH binary evolution throughout the three stages
(inspiral, merger, and ringdown) is shown. Figure taken from ref. [126].

For a binary of two black holes, the end of the inspiral phase (or the beginning of
the merger phase) is determined by the ISCO of the total system [127], i.e.

RBHISCO = 6GMtot . (6.3)

The corresponding frequency deduced from eq. (6.2) is

fBHISCO = 1
63/2πGMtot

. (6.4)

Numerical simulations show that the latter expression has to be corrected when the
two black holes are highly spinning or the mass ratio M1/M2 is large. However, in
this section we will always consider the case of nearly equal masses and low spins.

When the binary is made of two ECOs, we generalize eq. (6.4) as [31]

fECOISCO = C3/2

33/2πGMtot
, (6.5)

where C is the compactness (assumed to be the same for the two objects). This
ansatz is corroborated by the study of the ISCO location for binaries of neutron
stars [128]. Notice that when C → 1/2 eq. (6.5) tends to eq. (6.4).

To detect the merger and ringdown phase of a binary involving ECOs, the
characteristic frequency fECOISCO must fall within the sensitivity range of any of
the present and future interferometers. For concreteness, we shall consider LIGO,
Einstein Telescope (ET) and LISA. We show the relative frequency bands in table 6.1.
For illustration purposes, we assume a binary of two equal mass ECOs (M1 = M2 =
M), and we use eq. (6.5) to deduce the approximate regions in the parameter space
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Table 6.1. Approximate GW frequency range of LIGO, ET and LISA.

LIGO f = [30 − 1000] Hz

ET f = [1 − 104] Hz

LISA f = [10−4 − 1] Hz

0.1 0.2 0.3 0.4 0.5
10-2
10-1
100
101
102
103
104
105
106
107
108

Figure 6.2. Approximate region of parameter space in the plane (C,M) probed by the
interferometers LIGO, ET, and LISA. For illustration purposes, we have assumed a
binary of two equal mass ECOs (M1 = M2 = M).

(C,M) that LIGO, ET and LISA probe. We show our results in fig. 6.2. Overall,
we see that in the upcoming years we will be able to probe a large portion of the
parameter space. Particularly intriguing is the so-called subsolar range, i.e. the
region where M . 1M�. Indeed, numerical simulations show that astrophysical
black holes are heavier than ∼ 5M� [129], whereas neutron stars lighter than
∼ [10−2 − 10−1]M� are unstable under explosion [130]. Therefore, the detection of
a merger event involving a subsolar object lighter than ∼ 10−2M� would be the
smoking gun for the discovery of new physics. Moreover, in the range ∼ [10−1−1]M�
tidal effects, as potentially already measurable during the ongoing O4 run of the
LIGO/Virgo/Kagra (LVK) collaboration, can be used to rule out astrophysical
origin [112].

As shown in fig. 6.2, ET will probe the subsolar range up to ∼ 10−2M�. To
go even further down, a second revolution in gravitational wave science will be
necessary since the possibility of detecting such high-frequency gravitational waves
is still under debate, although many proposals have been made (see e.g. ref. [131]).

Finally, observations of X-ray binary systems within the Milky Way suggest the
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existence of a lower mass gap between ∼ [3 − 5]M� [132]1. This is particularly
intriguing because theoretical arguments exclude neutron stars heavier than ∼
3M� [134], whereas, as said, stellar black holes are expected to be heavier than
∼ 5M� (this last statement is however delicate, being dependent on the assumptions
upon which numerical simulations work). On the other hand, some of the detected
LVK events (e.g., GW190814 [135] and GW230529 [136]) involve compact objects in
the lower mass gap, the nature of which is still under study. This shows again how
GWs offer amazing opportunities to shed light on the mystery of our Universe and
probe the existence of exotic compact objects.

6.2 Binary inspiral
Once a waveform describing the merger of two compact objects is provided, it is
reasonable to ask which observables are relevant to extract in order to constrain the
nature and properties of the objects involved [137, 26]. The stage in the life of the
binary where most of this information comes out is during the inspiral. As already
mentioned, in the inspiral phase the dynamics is conveniently described through a
post-Newtonian expansion. Adopting this framework, it is convenient to parametrize
the Fourier-transformed GW signal as [26]

h̃(f) = A(f)eiψ , (6.6)

where f and A(f) are, respectively, the GW frequency and amplitude, whereas ψ is
the phase of the signal.

At the lowest order (up to 1.5PN), the only parameters that enter the GW phase
ψ are the masses of the two objects, and their dimensionless spins, while there is no
dependence on the compactness of the components. Higher-order corrections (from
2PN) involve

• the multipolar structure of the bodies, which characterizes their inner struc-
ture [138, 139];

• tidal Love numbers, which quantify the way the bodies respond to the external
gravitational field of their companion (see sec 6.2.2);

• tidal heating, which is essentially the amount of orbital energy dissipated by
the binary due to tidal interactions (see e.g. ref [140]).

We will briefly illustrate the first two points in the following paragraphs, as they
represent the most relevant quantities characterizing the internal structure of the
inspiralling objects.

6.2.1 Multipolar structure

In a similar spirit to the multipolar expansion of the gravitational field in Newtonian
gravity [141], the spacetime metric of a stationary isolated object can be expanded

1We used the adjective lower because there is also the so-called upper mass gap, between
∼ [50 − 120] M�, in which stellar evolution predicts the absence of black holes due to pair-instability
supernovae (see e.g. ref. [133]).
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in inverse powers of a suitable radial coordinate [142, 143]. The coefficients of this
expansion are the multipole moments, which naturally split into two classes: the
mass and current multipoles. We will call QL the mass multipole of order l and SL
the current multipole or order l, where L is a multi-index containing a number l of
individual indices. It can be shown that when the spacetime is axially symmetric,
the multipole moments reduce to scalar quantities Ql, Sl [143].

Remarkably, BH no-hair and uniqueness theorems [144, 145, 143] enforce the
multipole moments of any stationary black hole in isolation to be [26]

QBH
l + iSBH

l = M l+1(iχ)l , (6.7)

where l is an integer, M is the mass of the BH and χ = J/M2 is the dimensionless
spin (J is the angular momentum).

As already mentioned, during the inspiral stage the inner structure of the
inspiralling bodies leaves its imprint on the dynamics through the multipole moments.
In particular, the dominant effect is that of the spin-induced quadrupole moment
Q2 which yields a 2PN contribution to the phase [146, 26]. Therefore, multipole
moments can be constrained with GW measures [147, 148]. Any deviation from the
prediction in eq. (6.7) would signal departures from the Kerr metric. In general,
measures of the multipole moments can be used to discriminate among different
models of ECOs (see e.g. [41, 149]).

6.2.2 Tidal Love numbers

A robust analytical framework to understand tidal effects is encapsulated in the
concept of tidal Love numbers (TLNs), which quantify the deformability properties
of self-gravitating bodies [150]. Initially devised in the context of Newtonian gravity,
TLNs have since been generalized in a fully relativistic context [151, 152, 153]. The
basic idea is that when a self-gravitating body is immersed in an external gravitational
field, the shape of the object will be consequently deformed, as pictorially shown
in fig. 6.3. At first order, the multipolar deformation induced on the object will be
linear in the strength of the external tidal field. The TLNs are then defined as the
ratio between the induced multipole moments and the tidal moments of the external
gravitational field:

QL = λlGL, SL = σlHL, l & 2 , (6.8)

where λl (σl) is the electric (magnetic) tidal Love number. Here GL (HL) denotes
the electric (magnetic) multipole moments of the external gravitational field.

The significance of TLNs has been particularly highlighted in the study of binary
neutron star (NS) mergers, offering tantalizing prospects for constraining the equation
of state (EOS) of dense matter through GW observations [154, 155, 156, 157, 158,
159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
177, 178, 179, 180, 181] (see [182, 183] for reviews). Remarkably, these objects exhibit
nearly EOS-independent relations between their moment of inertia, spin-induced
quadrupole moment, and electric quadrupolar tidal deformability, which are found
to hold with about 1% accuracy [184, 185, 186]. A similar approximate universality
exists between TLNs of different multipolar order and different parity [187, 188].
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Figure 6.3. Pictorial representation of the induced multipole moments on the deformed
objects (the orange ellipse) by an external gravitational field ~g. The unperturbed object
is represented by the blue circle.

The TLNs have also been studied in the context of asymptotically flat black
holes (BHs), with the intriguing finding that, in general relativity, they vanish in the
limit of static external perturbations for BHs in isolation [152, 153, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205]. However, this
property is delicate, being violated for BH mimickers [206, 207], in the presence of
a cosmological constant [208] or extended gravitational theories [207, 209, 210], in
higher dimensions [211, 212, 213, 214, 215, 216] or in nonvacuum environments in the
presence of secular effects, such as accretion or superradiant instabilities of ultralight
bosonic fields [217, 218, 219, 220, 221, 222]. Furthermore, recently there has been
an emerging interest in computing dynamical Love numbers [223, 224, 225, 226] and
incorporating nonlinear effects [227, 228, 229].

The forthcoming next-generation ground-based GW detectors [230], such as
the Einstein Telescope [231, 232] and Cosmic Explorer [233, 234], will improve the
accuracy of measurements of tidal deformability [235, 180], potentially unveiling the
existence of new physics in the gravitational signals [236].

6.3 Ringdown in a nutshell

6.3.1 Quasinormal modes

The last part in the binary lifetime is the ringdown phase, where the final remnant
relaxes to a stationary state through the emission of GWs. The signal is conveniently
described in perturbation theory as a superposition of waves eiωt with peculiar
complex frequencies, i.e.

ω = ωR + iωI . (6.9)

The presence of a non-zero imaginary part gives rise to damping in the signal (and
it is linked to the emission of GWs). For this reason, these characteristic frequencies
are called quasinormal modes (QNM) [237]. Their values form a discrete set and are
therefore labeled by a set of integer numbers. Thanks to the uniqueness properties
of Kerr black holes in vacuum [144, 145, 143], BH quasinormal modes are univocally
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determined just by mass and angular momentum. On the other hand, different
types of compact objects will have different spectra (see e.g. refs. [238, 239, 240]).
As those frequencies can be measured in the late part of the GW signal, QNMs offer
an elegant way to test the nature of the final remnant and GR uniqueness theorems.
This program goes under the name of ECO spectroscopy. While current detectors
can only reliably extract one mode for massive BH mergers, future ones will detect
more than one mode and really perform spectroscopy [241, 242].

6.3.2 Echoes

A striking feature of regular ECOs which possess a light ring (see sec. 2.4) is the
emission of GW echos [243, 244]. During the ringdown, if the remnant does not have
a horizon, the GW signal is partially reflected on the remnant’s surface and goes
back to the light ring in a time that depends on the remnant’s compactness. As this
scattering back and forward happens many times, a train of signals (the echoes) is
produced. For a BH, this can not happen since the ingoing signal takes an infinite
time to reach the horizon and gets completely absorbed. Therefore, echoes provide
a quantitative test of the existence of a horizon after the merger [245].
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Chapter 7

Tidal Love numbers of fermion
soliton stars

Summary

In this chapter, we investigate the tidal deformations of fermion soliton stars (FSSs)
and compute the corresponding tidal Love numbers for different model parameters.
Furthermore, we discuss the existence of approximate universal relations for the
electric and magnetic tidal deformabilities of these stars and compare them with
other solutions of general relativity, such as neutron stars or boson stars. These
relations for fermion soliton stars are less universal than for neutron stars, but they
are sufficiently different from the ordinary neutron star case that a measurement
of the electric and magnetic tidal Love numbers (as potentially achievable by next-
generation gravitational wave detectors) can be used to disentangle these families of
compact objects. Finally, we discuss the conditions for tidal disruption of fermion
soliton stars in a binary system and estimate the detectability of the electromagnetic
signal associated with such tidal disruption events.

7.1 Perturbations
The tidal deformabilities of compact objects can be computed using perturbation
theory. This amounts to considering fluctuations in both the background metric
and in the matter content of the theory, which in this case consists of the scalar and
fermionic fields. The perturbed metric at first order reads

gµν = ḡµν + hµν , (7.1)

where ḡµν is the background spacetime metric and hµν ≡ δgµν is a small tensorial
perturbation. In the following, we use a bar superscript to denote the unperturbed
quantities.

We assume that the perturbations are sourced by an external stationary tidal
field (see sec. 7.2). Consequently, all the perturbations of the metric/fluid are
independent of time.

The spherical symmetry of the background (see e.g. sec. 3.1.1) allows us to
decompose the first-order perturbation hµν in spherical harmonics and to separate
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the perturbation into even and odd parity sectors, hµν = heven
µν + hodd

µν . The even
sector is often called polar or electric, while the odd one axial or magnetic. The
gauge invariance of General Relativity can be used to impose four conditions on
the metric perturbation and therefore simplify the final equations. A particularly
convenient choice is the Regge-Wheeler gauge (see refs. [246, 19] for further details),
where hµν is decomposed as

heven
µν =


e2uH lm

0 (ρ)Y lm H lm
1 (ρ)Y lm 0 0

H lm
1 (ρ)Y lm e2vH lm

2 (ρ)Y lm 0 0

0 0 ρ2K lm(ρ)Y lm 0

0 0 0 ρ2 sin2 θK lm(ρ)Y lm

 ,
(7.2)

hodd
µν =


0 0 hlm0 (ρ)Slmθ hlm0 (ρ)Slmϕ
0 0 hlm1 (ρ)Slmθ hlm1 (ρ)Slmϕ

hlm0 (ρ)Slmθ hlm1 (ρ)Slmθ 0 0

hlm0 (ρ)Slmϕ hlm1 (ρ)Slmϕ 0 0

 , (7.3)

with scalar and odd vector harmonics
(
Slmθ , Slmϕ

)
≡
(
−Y lm

,ϕ / sin θ, sin θ Y lm
,θ

)
, and

assuming an implicit sum over the angular indices l,m. Similarly, we decompose the
fluid perturbations in spherical harmonics as δX = X1(ρ)Y lm, where δX indicates a
given matter perturbation and X1(ρ) its radial dependence (omitting the multipole
dependence on l,m and the sum over these indices). This results in an analogous
decomposition for the fluid stress-energy tensor:

Tµν = Tµν + δTµν . (7.4)

The corresponding Einstein equations then read δGµν = 8πGδTµν , in terms of the
perturbed part of the Einstein tensor. Since the background spacetime is spherically
symmetric, the two sectors are decoupled and can be solved independently.

In the following, we begin by discussing the matter content and then compute
the metric perturbations in the two sectors.

7.1.1 Fermionic perturbations

By assuming that also the perturbed fluid is perfect (i.e., by neglecting anisotropic
stress), one can introduce the perturbed quantities W = W̄ + δW,P = P̄ + δP, uµ =
ūµ + δuµ, to get

δT [f ]µ
ν = (δW + δP )ūµūν + (W̄ + P̄ )(δuµūν + ūµδuν) + δPδµν , (7.5)

where the background four-velocity of the fluid is simply ūµ = (e−u, 0, 0, 0), while
ūµ = (−eu, 0, 0, 0). It is important to stress that ūµ ∝ δµ0 , so the only nonzero,
nondiagonal elements of eq. (7.5) are the 0i components. On the other hand, in the
presence of anisotropic stress, the ij contributions can also be different from zero.
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Imposing gµνuµuν = −1, one gets

δgµν ū
µūν + 2ḡµν ūµδuν = 0 ⇒ δu0 = 1

2e
−3uδg00 , (7.6)

while δu0 = e−uδg00/2. The tt-component of the fermionic perturbed energy-
momentum tensor then reads

δT
[f ]0
0 = −(δW + δP ) + (W̄ + P̄ )[δu0(−eu)

+ e−uδu0] + δP = −δW . (7.7)

Similarly, it is straightforward to write down the remaining components of the
perturbed stress-energy tensor:

δT
[f ]i
j = δPδij (7.8)

δT
[f ]i
0 = −(W̄ + P̄ )euδui (7.9)

δT
[f ]0
i = (W̄ + P̄ )e−uδui , (7.10)

where δui = dξi/dτ , with ξi the spatial displacement of the fluid element due to the
perturbations, and τ the proper time.

As discussed in ref. [247], in the zero-frequency limit of the time-dependent
response to an external gravitational perturbation the perturbed fluid can either be
static (i.e., characterized by zero three-velocity) or irrotational (i.e., characterized
by zero vorticity). The latter is a more realistic assumption in a binary system, as
discussed in Refs. [248, 247, 188]. Such different fluid configurations are found to
impact the magnetic TLNs in both their sign and value, while the electric TLNs
remain the same in both cases [247, 248]. Therefore, we write the spatial fluid
velocity as [249]

δui = {0, Qlm(ρ)Slmθ (θ , ϕ), Q
lm(ρ)

sin θ2 Slmϕ (θ , ϕ)} , (7.11)

where i = ρ, θ, ϕ and

Qlm(ρ) = −e−u

ρ2 h
lm
0 (ρ) , (7.12)

as required to describe an irrotational fluid [250].
As already highlighted in the previous section, in the Thomas-Fermi approxi-

mation the fermionic fluid is fully characterized once the Fermi momentum kF is
given at each spacetime point. In the following we will assume a similar perturbative
decomposition

kF = k̄F + δkF . (7.13)

Adopting the same decomposition also for the scalar field φ = φ̄+ δφ, as discussed in
the next subsection, we can write down δW, δP, δS in terms of δkF and δφ, assuming
that W,P, S can be computed as in the background case: see Eqs. (3.5), (3.6), and
(3.7). This assumption is valid as long as the time scale of the tidal perturbation is
much longer than that of the fundamental fermionic degrees of freedom, which is
always the case.
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In order to close the system of equations, we need a further condition that relates
δkF to the metric and scalar functions, analogous to eq. (3.19) for the background
quantities. In principle, such a condition can be derived by generalizing the Thomas-
Fermi approximation to a generic spacetime. This task can actually be accomplished
by using the Einstein equations. In particular, adding up the θθ and ϕϕ components
gives δP as a function of H0 and δφ. We can also use eq. (3.6) to write

δP = δP

δkF
δkF + δP

δφ
δφ . (7.14)

At this point we have two independent expressions for δP , which in turn gives δkF
as a function of metric, scalar, and background quantities only. In analogy with
the background case, we therefore need to solve only the Einstein equations and
the scalar field equation. The additional perturbations δW and δS are obtained by
expanding Eqs. (3.5) and (3.7) as done in eq. (7.14). We give the explicit expressions
in Appendix C.

7.1.2 Scalar perturbations

The energy-momentum tensor of a real scalar field reads

T [φ]
µν = ∂µφ∂νφ− gµν

(1
2g

αβ∂αφ∂βφ+ U(φ)
)
, (7.15)

such that its perturbation becomes

δT [φ]
µν = ∂µδφ∂ν φ̄+ ∂νδφ∂µφ̄− δgµν

(1
2 ḡ

αβ∂αφ̄∂βφ̄+ U(φ̄)
)

− ḡµν

(1
2δg

αβ∂αφ̄∂βφ̄+ ḡασ∂αδφ∂βφ̄+ δU

)
, (7.16)

where we have decomposed the scalar potential as U(φ) = U(φ̄) + δU , and

δU = ∂U(φ)
∂φ

∣∣∣
φ̄
δφ . (7.17)

7.1.3 Perturbation equations

We now turn to the solution of the linearized Einstein equations, focusing first on
the polar sector and then on the axial sector.

Polar perturbations

Taking the difference between the θθ and ϕϕ components reveals that H2(ρ) = H0(ρ).
From δGtρ = 8πGδT tρ we get H1 ≡ 0. Also, the ρθ component can be used to relate
K ′ to φ1,H0, and H ′

0 as follows:

K ′ = H ′
0 + 2H0u

′ − 16πGφ1φ
′
0 . (7.18)
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Finally, the difference between the ρρ and tt components can be written as a master
equation for H0, with no further K dependence:

H ′′
0 + 8πGe2v(P1 +W1) +

(2
ρ

+ u′ − v′
)
H ′

0 + 16πG
[
(u′ + v′ − 2

ρ
)φ̄′ − φ̄′′

]
φ1

+
[ 2
ρ2 − e2v(l2 + l + 2)

ρ2 + 16πGe2v(P̄ + W̄ − 1
2 φ̄

′2e−2v) + 4u′

ρ
− 4u′2

]
H0 = 0 ,

(7.19)

where P1, W1 and U1 are the radial components of the matter perturbations δP ,
δW and δU after decomposition in spherical harmonics. The equation of motion for
the scalar field reads

φ′′
1 + φ′

1

(
u′ − v′ + 2

ρ

)
+H0

[(
u′ + v′ − 2

ρ

)
φ̄′ − φ̄′′

]
−
(
l(l + 1)e2v

ρ2 + 16πGφ̄′2
)
φ1 = e2v ∂

2U(φ)
∂φ2

∣∣∣
φ̄
φ1 − e2vfS1 , (7.20)

where, again, φ1 is the radial component of the scalar field perturbation δφ after
expansion in spherical harmonics.

Axial perturbations

The ρϕ component of the perturbed Einstein equations implies h1 = 0, and the ρθ
component implies φ1 = 0. We are therefore left with a single radial equation for
the perturbed function h0 (the tϕ component):

h′′
0 − (u′ + v′)h′

0 +
[
2 − l(l + 1)

]
e2v − 2 + 2ρ(u′ + v′)
ρ2 h0 = 0 . (7.21)

We numerically solve all the perturbed equations by applying the transformation
given in sec. 3.1.2, in analogy with what we did for the background equations.

7.2 Tidal Love numbers
Nonspinning, spherically symmetric, FSSs immersed in an external stationary tidal
field will be deformed and develop a multipolar structure in response to the exter-
nal field. This phenomenon may occur in coalescing binary systems, where each
component tidally deforms its companion because of gravity. The assumption of a
stationary field holds only in the early inspiral phase, when the orbital separation
from the companion is very large and the orbit is slowly varying in time. Furthermore,
one can make use of the approximation that the multipolar deformation induced on
the objects is linear in the strength of the external tidal field to define the tidal Love
numbers (see also sec. 6.2.2) as the ratio between the induced multipole moments
and the tidal moments of the external gravitational field:

QL = λlGL, SL = σlHL, l & 2 . (7.22)

Here the symbols QL (SL) denote the mass (current) multipole moments of order l of
the object (L being a multi-index containing a number l of individual indices), and
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GL (HL) the corresponding electric (magnetic) tidal multipole moments. In analogy
with the electrostatic case, where the electrostatic potential can be expanded in
multipole moments characterizing the shape of the charge distribution, the mass
and current multipole moments in General Relativity are the coefficients of a proper
asymptotic expansion of the metric components, characterizing the source of the
gravitational field (see refs [142, 249] for further details.

The parameters λl (σl) are the electric (magnetic) tidal deformability, related to
the dimensionless TLNs kEl (kMl ) through the relations [151, 187, 249]

λl = (GM)2l+1λ̄l = 2R2l+1

(2l − 1)!!k
E
l ,

σl = (GM)2l+1σ̄l = (l − 1)R2l+1

4(l + 2)(2l − 1)!!k
M
l ,

l ≥ 2 , (7.23)

in terms of the FSS mass M and radius R. The main contribution to the star’s
deformation comes from the quadrupole (l = 2), which will be the main focus of our
analysis.

The TLNs can be extracted by asymptotically expanding the metric of the
object, perturbed by the external tidal source, at spatial infinity. In asymptotically
Cartesian mass-centered coordinates, the time-time and time-space components of
the metric read

g00 = − 1 + 2GM
ρ

+
∑
l≥2

[ 1
ρl+1

(2(2l − 1)!!
l! QLnL

)
+ ρl

( 2
l!GLnL

)]
,

g0i =
∑
l≥2

[ 1
ρl+1

(
−4l(2l − 1)!!

(l + 1)! εijal
SjL−1nL

)
+ ρl

(
l

(l + 1)!εijal
HjL−1nL

)]
,

(7.24)
where ni = xi/ρ is the unit radial vector, nL = na1 . . . nal , and we absorb any factor
of G in the definition of QL, SL [142, 249]. For simplicity, we have neglected terms
independent of ρ and proportional to spherical harmonics of order l′ < l. In this
coordinate frame, the mass dipole of the object vanishes identically. From this
expansion, it is clear that the computation of the TLNs is based on the separation
between the radially decaying multipolar response of the central object and the
external growing solution.

In the following subsections, we compute the tidal deformability of nonrotating
FSSs in both the polar (electric) and axial (magnetic) sectors. Since the background
spacetime is spherically symmetric, these sectors are completely decoupled from
each other and can be treated independently. Notice also that, while the electric
response is the relativistic generalization of the Newtonian Love number, the magnetic
sector is instead fully relativistic [152], since current distributions do not gravitate
in Newtonian theory. Furthermore, one can expand the multipolar quantities in
spherical harmonics, reducing the problem to radial equations, which are independent
of the index m and do not couple perturbations with different values of l. These
equations must be solved in both the exterior and interior regions of the object,
matching the solutions at a characteristic extraction radius Rext, as discussed below.
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Figure 7.1. Electric (upper panels) and magnetic (lower panels) TLNs for the quadrupolar
(l = 2) mode as a function of the FSS compactness GM/R. The different curves
correspond to different values of the model parameters. In the left panels, we fix
η = 3, ζ = 0.53 and vary Λ. In the right panels, we fix Λ = 0.15 and vary η and ζ. We
explicitly see that the curves depend only mildly on η and ζ.
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Figure 7.2. Same as Fig. 7.1, but for a negative effective cosmological constant (ζ = 0.49)
and for Λ = 0.15, η = 3. In this case there are two disjoint branches of solutions,
related to the corresponding branches in the mass-radius diagram shown in Fig. 4.4 (the
blue/orange lines corresponding to the upper/lower branches, respectively). The insets
are zoomed-in versions of the small islands at large compactness, shown in blue.
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7.2.1 Polar sector

In the polar sector, the perturbation equation for the field H0 is given in eq. (7.19).
In the vacuum region outside the object, it reduces to

H ′′
0 + 2(ρ−GM)

ρ(ρ− 2GM)H
′
0

−
(
4G2M2 − 2l(l + 1)GMρ+ l(l + 1)ρ2)

ρ2(ρ− 2GM)2 H0 = 0 . (7.25)

The vacuum solution is given in terms of associated Legendre polynomials as

H0(ρ) = cP Pl2

(
ρ

GM
− 1

)
+ cQQl2

(
ρ

GM
− 1

)
, (7.26)

where the integration constants cP and cQ are found in terms of H0(Rext) and
H ′

0(Rext) by matching to the interior solution. At spatial infinity, ρ → ∞, one gets

H0(ρ) ' c̃P ρ
l + c̃Q

1
ρl+1 + O

(
GM

ρ

)
, (7.27)

where the tilde is used to distinguish these coefficients from the ones introduced in
eq. (7.26), since an additional dependence on the mass M and numerical factors
arises from the asymptotic expansion. One can then plug this expansion into the
g00 component of the metric to get

g00 ∼ −1 + 2GM
ρ

+
∑
l≥2,m

( 1
ρl+1 c̃Q,lm + ρl c̃P,lm

)
Y lm , (7.28)

which can be compared with the asymptotic expansion shown in Eqs. (7.24) once
the multipole moments are properly decomposed in terms of symmetric trace-free
(STF) tensors Qlm and Glm.

By performing this matching, one can identify the growing solution in H0(ρ) with
the tidal field and the decaying one with the response of the object, respectively, and
then extract their multipole moments in terms of the coefficients cQ,lm and cP,lm.
For the leading multipole moment l = 2, the electric TLN reads [151]

kE2 = 8(1 − 2C)2C5(2C(y − 1) − y + 2)
{

10C(C(2C(C(2C(y + 1) + 3y − 2)

− 11y + 13) + 3(5y − 8)) − 3y + 6)

+ 15(1 − 2C)2(2C(y − 1) − y + 2) log(1 − 2C)
}−1

, (7.29)

where we have defined C = GM/Rext and y = ρH ′
0/H0, both evaluated at the

extraction radius Rext, which is taken to be much larger than the FSS effective size R
(in order for the TLN to be independent of it). In the actual numerical computation,
we could not go further than Rext ∼ 2R due to the high fine-tuning required by
the shooting method used to compute the initial displacement of the scalar field.
However, we checked that this yields sufficiently accurate numerical results, due to
the exponential decay of the scalar field at ρ > R.
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The matching variable y can be computed by integrating eq. (7.19) in the interior
of the FSS, imposing the boundary condition of regularity at the origin, ρ = 0:

H0(ρ) = a0 ρ
l
[
1 + O

(
ρ2
)]

, ρ → 0 , (7.30)

where the constant a0 does not affect the TLN, since the problem is linear and this
constant enters in both the strength of the tidal field and the size of the induced
multipolar deformation, and therefore it cancels out when computing their ratio.

In the upper panels of Fig. 7.1 we show the dimensionless TLN for the leading
quadrupolar (l = 2) mode as a function of the compactness, as we vary different
parameters of the model. Similarly to NSs, the characteristic mass-radius diagram
(shown e.g. in fig. 4.2) displays a turning point at large compactness, which shows
up also in the TLNs. We observe that in the phenomenologically interesting range
around GM/R ' 0.2 corresponding to the critical solution, the TLN reaches values of
the order of O(100), growing at small compactness due to the dependence λ̄2 ∝ C−5.
The strongest dependence is on the parameter Λ, describing the scalar field vacuum
expectation value: in general, lower values of Λ give rise to larger TLNs. The TLNs
are almost independent of the degeneracy parameter ζ, which is varied to span both
degenerate and nondegenerate vacua, if one considers vacua with positive energy.

When ζ < 0.5, the interior region of the vacuum bubble has negative energy,
mimicking an effective anti-de Sitter space (see sec. 4.2). This case, plotted in the
left panel of fig. 7.2 for ζ = 0.49, shows a different behavior of the TLN, reflecting
what happens at the background level for the mass-radius diagram (see fig. 4.4).
Indeed, the presence of two disjoint branches at the background level gives rise to two
distinct branches of the TLNs. In particular, the small islands at large compactness
(i.e., the blue curves in fig. 7.2 magnified in the insets) represent the TLNs of the
upper branch of the mass-radius diagram (continuous blue line in fig. 4.4), whereas
the orange curves are associated to the lower branch (dotted line in fig. 4.4). Turning
points in the mass-radius diagram give rise to turning points in the TLNs.

7.2.2 Axial sector

In the axial sector, the perturbation equation for the field h0 is given in eq. (7.21). As
discussed in the previous section, in the following we will work under the assumption
of an irrotational fluid also in the perturbed configuration. Under this assumption,
the perturbation equation at large distances reduces to

h′′
0 + (4GM − l(l + 1)ρ)

ρ2(ρ− 2GM) h0 = 0 . (7.31)

In the external region, the solution of the perturbation equation reads

h0(ρ) = dP

(
ρ

2GM

)l+1
2F1

(
−l + 1,−l − 2,−2l; 2GM

ρ

)
+ dQ

(2GM
ρ

)l
2F1

(
l − 1, l + 2, 2l + 2; 2GM

ρ

)
,

(7.32)

in terms of the hypergeometric function 2F1 (a, b, c;x). The constants dP and dQ
can be found by the matching procedure in terms of h0(Rext) and h′

0(Rext). In the
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large distance regime ρ → ∞ the asymptotic solution is

h0(ρ) = d̃P ρ
l+1 + d̃Q

1
ρl

+ O
(
GM

ρ

)
, (7.33)

where, as we discussed in the electric case, the tilded coefficients include additional
dependence on the mass and further numerical factors. From this expression, one
can obtain the g0ϕ component of the metric as

g0ϕ ∼
∑
l≥2,m

( 1
ρl
d̃Q,lm + ρl+1 d̃P,lm

)
Slmϕ . (7.34)

By STF decomposing the spatial-temporal part of the metric in Eqs. (7.24), one
can again identify the growing and decaying modes of the solutions, and extract the
magnetic TLNs. For the leading l = 2 mode one gets

kM2 = 96C5(2C(y − 2) − y + 3)
{

10C(C(2C(Cy + C + y) + 3(y − 1)) − 3y + 9)

+ 15(2C(y − 2) − y + 3) log(1 − 2C)
}−1

, (7.35)

where we have defined the quantity y = ρh′
0/h0, evaluated at the extraction radius

Rext. As in the electric case, y can be found by numerically integrating eq. (7.21),
with boundary conditions at the center of the FSS given by

h0(ρ) = b0 ρ
l+1
[
1 + O

(
ρ2
)]

, ρ → 0 , (7.36)

where the constant b0 cancels out in the definition of the TLN.
Similarly to the even sector, the lower panels of Fig. 7.1 and the right panel of

Fig. 7.2 show the magnetic TLN for the quadrupolar mode (l = 2) for ζ ≥ 1/2 and
ζ < 1/2, respectively. One can appreciate the same trends observed in the electric
case. The magnetic TLN is found to be about an order of magnitude smaller than
the electric one, as observed for NSs [152, 188].

7.2.3 Quasi-universal relations

The TLNs of a NS depend on the underlying EOS of nuclear matter. In particular,
for a given mass, different prescriptions for the EOS give rise to different radii
and tidal deformabilities. However, it was found that the moment of inertia, the
spin-induced quadrupole moment, and the electric quadrupolar tidal deformability
are related to each other by nearly EOS-independent relations known as the I-Love-Q
relations. The latter are approximately universal at the level of ∼ 1%, and hold
even for strange quark stars [184, 185, 186].

Similar approximately universal relations for NSs also hold between their quadrupo-
lar electric and magnetic tidal deformabilities [187], with an accuracy of about
(1 ÷ 10)%. In particular, the fitting function

log |σ̄2| = ai + bi log λ̄2 + ci(log λ̄2)2

+ di(log λ̄2)3 + ei(log λ̄2)4 + fi(log λ̄2)5 , (7.37)
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Figure 7.3. Left panel: universality relations for FSSs for different model parameters. In
the ζ = 0.49 case, the lower (upper) branch corresponds to the large compactness, blue
(small compactness, orange) line of Fig. 7.2. Right panel: comparison of the FSS curve
with Λ = 0.15, η = 3, ζ = 0.53 with the universality curves for other compact objects,
such as NSs in the irrotational (solid red line) and static configurations (dashed red
line), soliton boson stars (orange line), massive boson stars (yellow line), minimal boson
stars (green line) and an effective bag model (Bag, water green line).

with fitting coefficients ai = −2.03, bi = 0.487, ci = 9.69 · 10−3, di = 1.03 · 10−3,
ei = −9.37 · 10−5, fi = 2.24 · 10−6 is a good approximation for realistic NSs described
by an irrotational fluid [175]. This fit is shown by the red solid line in the right
panel of Fig. 7.3. As expected, as one increases the compactness, NSs approach the
BH limit with vanishing tidal deformability.

Figure 7.3 also shows the corresponding approximate universality relations for
FSSs. In the left panel, one can appreciate that for FSSs the σ̄2 − λ̄2 relations are
less universal than for NSs, since the curves display O(1) corrections in the small
compactness regime for different choices of the model parameters, while they are less
affected in the large compactness region. The emergence of approximate universal
relations can be understood by inspecting Eqs. (7.29) and (7.35). They both depend
on two dimensionless parameters, C and y. Recall that both mass and radius scale
approximately as ∼ 1/Λα, where α = 1 for ζ 6= 0.5, and α = 2 for ζ = 0.5 (see e.g.
fig. 5.5), while the dependence on η, ζ is weak. From the definitions of C and y,
we see that they are both left unchanged under such a rescaling. Thus, the TLNs
will also be mildly dependent on the fundamental parameters of the theory. This
dependence may become weaker and weaker for small values of Λ, which are however
numerically challenging to achieve. Indeed, as shown in fig. 5.5, the universal scaling
of the mass-radius diagram becomes more and more accurate for small Λ, and one
expects to find a similar behavior for the TLNs.

In the right panel of Fig. 7.3, we compare the σ̄2 − λ̄2 relations for FSSs with
those for realistic NSs. We find that the FSS relation differs from the NS curve,
highlighting the different nature of these objects. By comparing the left and right
panels of Fig. 7.3 we see that, although the TLNs of a FSS are less universal than
those of a NS, the difference in the quasi-universal relations among these classes of
objects are much larger than their individual spread. Thus, a sufficiently accurate
measurement can tell the two relations apart.

The internal structure of FSSs allows for a comparison with the bag model
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described by the EOS [22]
W = W0 + P/ω , (7.38)

which corresponds to the stiffest possible EOS, as the speed of sound cs =
√
ω

takes the maximal value throughout the object. By renormalizing the pressure and
density to the central value W0, one can show that this model allows for a maximal
compactness of [22]

CBag ≤ 4
9

ω(4.18 + ω)
0.77 + 4.69ω + ω2 , (7.39)

quantifying the distance from the Buchdahl bound (obtained in the incompressible
fluid limit as ω → ∞). Notice that a nonzero value of the central density W0 is
necessary to ensure a finite radius.

It is therefore interesting to compare the relativistic TLNs of a FSS with those
of the bag model assuming large internal pressure and sound speed ω = 1/3, which
has a maximum compactness of about CBag . 0.4. This comparison is motivated
by the fact that, within its interior, the FSS is dominated by relativistic fermions,
and the scalar field plays a negligible role. Following this comparison, one can
solve the corresponding perturbation equations for the bag model to derive both
the electric and magnetic TLNs. Notice that the presence of a discontinuity in the
energy density at the object’s surface induces a change in the boundary condition for
the computation of the electric TLNs, which corresponds to shifting the parameter
y by −4πW0R

3/M [251]. The corresponding universality relations are shown by
the water green curve in the right panel of Fig. 7.3. Similarly to the findings of
ref. [184], they are not only in agreement with the standard fit for NSs with ordinary
EOS, but the final result is also very mildly dependent on the sound speed ω. This
suggests that the bag model does not capture the deformability properties of FSSs:
the presence of the scalar field makes a sizeable contribution to the overall energy
and dominates the object’s outer region.

The right panel of Fig. 7.3 also shows the universality relations for different
families of boson stars [207]. These complex bosonic self-gravitating configurations
experience different tidal deformations compared to the other objects, which strongly
depend on the properties of the scalar field potential.

Finally, we notice the presence of a hierarchy between the tidal deformability
of each compact object in the configurations with maximal compactness (identified
by the lower edges of each curve in Fig. 7.3). In particular, the bag model admits
a higher (lower) electric (magnetic) TLN compared to FSSs. Among the various
families of boson stars, the minimal model with no scalar interaction displays the
largest tidal deformability, while solitonic boson stars are less (more) deformable
than massive ones in the electric (magnetic) sector. Accurate tidal deformability
measurements can be used to identify different families of compact objects.

As discussed above, we focused on the most interesting case of an irrotational
fluid. For a static fluid, the magnetic TLNs of a NS have the opposite sign and are
quantitatively different. They display an approximately universal relation different
from irrotational fluid NSs [188], as shown by the red dashed line of Fig. 7.3 (obtained
from the corresponding fit of ref. [235]). Interestingly, next-generation ground-based
GW detectors [230], such as the Einstein Telescope and Cosmic Explorer, should
allow us to measure σ2 and λ2 with sufficient precision to distinguish the irrotational-
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fluid case from the static-fluid case [235]. Since the difference between the NS curve
and the FSS curve shown in Fig. 7.3 is even larger, future detectors should be able
to distinguish FSSs from NSs based on tidal deformability measurements.

Furthermore, from Figs. 7.1 and 7.3 we see that FSSs have lower deformability
than other ECOs for certain model parameters, so it could be difficult to tell them
apart from black holes through the measurement of tidal effects in gravitational
waveforms [112]. It would be interesting to quantify these expectations with more
detailed parameter estimation calculations.

7.2.4 Tidal disruption

Let us consider a massive, nonspinning central object whose mass and radius are
denoted by MB and RB, respectively. It is interesting to ask whether a FSS with
radius R and mass M , orbiting around the central object, can be tidally disrupted,
assuming M � MB. To this end, we need to estimate the distance from the central
object at which the FSS will disintegrate because the central body’s tidal forces
exceed the FSS’s self-gravitation. The latter quantity is called the Roche radius
of the system, and, up to relativistic corrections, is computed using the following
formula

RRoche ∼ γRB

(
WB

W

)1/3
, (7.40)

where WB, W are the densities of the central object and FSS, respectively, and the
numerical coefficient γ takes values ranging from 1.26 for rigid bodies to 2.44 for
fluid bodies [252].

Whenever ζ > 1/2 (asymmetric vacua regime), hydrostatic equilibrium imposes
(introducing q = √

µvF)
ωF ∼ mf

η
= q , (7.41)

as long as we are above the minimal configuration in the mass-radius diagram,
corresponding to the minimum value for ωF (we do not take into account configu-
rations along the mass-radius diagram under the minimal one because the initial
displacement of the scalar field becomes O(1), and thus true solitonic configurations
describing false vacuum pockets are not allowed: see e.g. sec. 5.3.1). Thus, the
density W is estimated as the central fermion energy density Wc ∼ k4

F ∼ ω4
F ∼ q4.

The physically most compelling scenario is when the tidal disruption happens
before the merger phase. Imposing RRoche > RISCO = 6GMB in eq. (7.40), we find
the condition (ignoring O(1) factors)

q .
( mp

MB

)1/2
mp ≈ 1.3 GeV

(M�
MB

)1/2
. (7.42)

For an astrophysical solar-like object with MB ∼ 1M�, the latter condition implies
q . 1 GeV. Higgs false vacuum balls and dark soliton stars (see sec. 5.4) require
q & 102 GeV, and therefore do not get tidally disrupted before the merger. Instead,
neutron soliton stars (also known as quark nuggets) correspond to q ≈ 0.2 GeV,
potentially allowing for tidal disruption of these nontopological solitons, in a range
of masses and radii starting from the (non-compact) minimal configuration

Mmin ≈ 10−19M�, Rmin ≈ 1 cm , (7.43)
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up to the critical one

Mc ≈ 2M�, Rc ≈ 10 km , (7.44)

with a compactness of GMc/Rc ∼ 0.27, which is slightly larger than that of an
ordinary NS. In the latter case, the mass of the FSS becomes comparable to the
mass of the central object, and thus the previous estimates should be taken with a
grain of salt, although they should provide the correct order of magnitude.

In a tidal disruption scenario, the quarks released in the disruption event would
produce jets of hadrons and photons [84, 253, 254]. Assuming that the amount
of energy emitted during a collision is of the order of frad(GMBM/RRoche) and
considering an efficiency factor frad for the energy going into visible Standard Model
radiation, the corresponding power output in one orbital period is given by

P ' 1021L�frad

(
M

0.1M�

)(
MB

M�

)2/3 ( q

0.2 GeV

)10/3
, (7.45)

where L� = 3.8 · 1026 W is the luminosity of the Sun. This power is comparable to
the one emitted by superradiance (see ref. [255] for a discussion).

To assess whether a telescope on Earth could detect this radiation, we assume
an angular resolution of δΩ = 1◦ × 1◦ = (π/180)2 sr and that the binary is situated
at a distance d ' 1 Gpc. Then, the frequency-weighted spectral density is estimated
to be

νIν = P
d2δΩ ' 10−9 W

m2sr

(
frad

10−10

)(
d

Gpc

)−2

×
(
MB

M�

)2/3 ( M

0.1M�

)(
q

0.2 GeV

)10/3
. (7.46)

For comparison, the observed cosmic backgrounds of X-rays and gamma rays range
from 10−10W/m2sr at energies around 10 keV to 10−13W/m2sr around 10 GeV [256],
implying that the tidal disruption of these quark nuggets may produce detectable
photons for an efficiency factor as small as 10−10. If the central object is a BH,
a sizeable fraction of the emitted matter could be accreted by the central object,
giving rise to a subsequent afterglow.

7.3 Conclusions
In this chapter, we studied the deformability properties of FSSs, solutions of general
relativity in which a real scalar field is coupled to a fermionic field by a Yukawa
coupling [4]. The coupling generates an effective mass for the fermions as the scalar
field transitions from a false vacuum to a true vacuum configuration. The structure
of vacua in the scalar field potential determines the nature of the corresponding
compact objects, whose mass-radius curves exhibit different phenomenology for
different model parameters. We have studied both electric- and magnetic-type
perturbations of a FSS background. By perturbing both the scalar and fermionic
sectors (and assuming the latter to be described by the Thomas-Fermi approximation
also in the perturbed configuration), we have derived the corresponding perturbation
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equations and solved them to obtain the conservative and irrotational TLNs. These
are found to depend on the model parameters, especially on the scalar field vacuum
expectation value. As in the case of NSs, the magnetic TLNs are generally smaller
than the electric TLNs.

Using the tidal deformabilities computed in this way, we have investigated the
existence of approximately universal relations between the Love numbers in both
parity sectors, showing a mild dependence on the model parameters and therefore
a solid prediction for these relations (even though they are less universal than
the ones for NSs). We then compared the quasi-universal relations for FSSs with
those found for other compact objects, such as NSs and boson stars, showing that
the universality relations corresponding to different classes of compact objects are
significantly different. This feature could be used as a novel probe to tell apart
various classes of compact objects using tidal deformability measurements with
next-generation detectors.

The characteristic values of the TLNs of FSSs (for model parameters correspond-
ing to objects in the solar mass range) imply that these quantities may be measurable
by future gravitational wave interferometers, such as the Einstein Telescope and
Cosmic Explorer. In particular, the results of ref. [235] imply that these instruments
could measure both the electric and magnetic Love numbers with an accuracy of a
few percent, potentially allowing us to distinguish FSSs from other compact objects
in the solar mass range, such as ordinary NSs or black holes [112].

Finally, we discussed the possible disruption of a FSS in a binary system with
another compact object, such as a black hole, and derived a bound on the vacuum
expectation values that may allow for a tidal disruption event before the ISCO
frequency is reached. Such tidal disruption events could happen for nontopological
quark nuggets, which could release jets of hadrons and photons during the event.
If this process occurs in nature, it would provide a significant contribution to the
observed cosmic backgrounds of X-rays and gamma rays, and even to single resolvable
events.
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Chapter 8

General conclusions and future
prospects

In this thesis, we investigated a simple model for ECOs dubbed fermion soliton
stars [13, 1, 2]. Depending on the parameters of the underlying theory, the model
can accommodate ECOs in a vast range of masses, including compact subsolar and
supermassive fermion soliton stars. In particular, for natural model parameters
between the QCD and the electroweak scale, this model predicts the existence
of compact objects in the subsolar/solar range [3], which could be relevant for
current and future LIGO-Virgo-KAGRA observations (see e.g. Refs. [112, 113]). In
Chapters 3 and 4, we explored in detail the properties of the model, highlighting
the crucial role of the scalar vacuum structure in dictating the features of the
solutions. In Chapter 5, we explored particle-physics implications of the previous
findings, highlighting the mechanism of non-perturbative vacuum scalarization as a
support mechanism for new compact objects that can form in the early Universe,
can collapse into primordial black holes through accretion past their maximum
mass, and serve as dark matter candidates. In chapter 7, we computed the TLNs of
fermion soliton stars. We discussed the existence of approximate universal relations
for the electric and magnetic tidal deformability of these stars, and compared them
with other solutions of general relativity, such as neutron stars or boson stars,
showing that a measurement of the electric and magnetic tidal Love numbers (as
potentially achievable by next-generation gravitational wave detectors) can be used
to disentangle these families of compact objects.

Although we focused on static and spherically symmetric background solutions,
there is no fundamental obstacle in considering spinning configurations and the
dynamical regime, both of which would be relevant to studying the phenomenology
of fermion soliton stars, along the lines of what has been widely studied for boson
stars [54] and for mixed fermion-boson stars [257]. Moreover, due to the existence
of multiple branches [64] and the absence of a Newtonian limit in certain cases, an
interesting study concerns the radial linear stability of these solutions. We hope to
address these points in future work.

A further important extension concerns the dynamical formation of these solu-
tions. Many different channels have already been proposed in the literature. For
example, NTSs arising from eq. (5.1) can be produced by a first-order cosmological
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phase transition [57]. Alternatively, the Yukawa interaction, if enough long-range,
drives clustering and leads to the formation of compact NTSs [109, 110, 111]. Fur-
ther possible formation channels, worth exploring in future work, are the following.
First of all, statistical fluctuations inevitably present even during a crossover, are in
principle able to provide a large concentration of fermions [258] and can be, therefore,
the dominant source of charge fluctuations which leads to NTS formation through
solitosynthesis. Moreover, one could consider a configuration where there is a gas of
N free (massive) fermions moving in the true scalar vacuum h ≡ v. If η & 1 and
for a sufficiently large perturbation of the scalar field with energy above a certain
threshold, we expect to end up in the true (scalarized) ground state.

The idea that a system can scalarize non-linearly, i.e. only if perturbed above
a certain threshold, has been already numerically studied for scalar perturbations
around a Schwarzschild black hole in scalar-Gauss-Bonnet gravity theories [259]. An
interesting extension of our work would be performing similar simulations in our
model, possibly within a cosmological scenario.

Finally, we made an initial step towards a full investigation of the tidal interactions
and tidal deformability of fermion soliton stars, and our results can be improved
in various directions. It would be interesting to perform a more detailed study to
understand how tidal effects could be used to distinguish different classes of ECOs.
Moreover, it would be important to assess if the I-Love-Q relations are valid also
for rotating FSSs. Finally, given the intrinsic time dependence in the evolution of a
binary system, it would be interesting to investigate the FSS dissipative coefficients
and frequency-dependent TLNs, as recently discussed in Refs. [223, 226] for Kerr-like
compact objects. We leave these studies for future work.
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Appendix A

Connection with scalar-tensor
theories

In this Appendix, we discuss whether the model for fermion soliton stars presented
in the main text can also arise in the context of a scalar-tensor theory of gravity
(see, e.g., [260] for a review on modified theories of gravity).

In the so-called Jordan frame,1 where gravity is minimally coupled to matter
fields, scalar-tensor theories are described by the action (see, for example, [261])

Ŝ =
∫
d4x

√
−ĝ

16πG
[
F (φ̂)R̂− Z(φ̂)ĝµν∂µφ̂∂ν φ̂− Û(φ̂)

]
+ Ŝm(ψ̂m; ĝµν) . (A.1)

The coupling functions F and Z single out a particular theory within the class. For
example, Brans-Dicke theory corresponds to F = φ̂ and Z = ω0/φ̂, where ω0 is a
constant.

We can write the theory in an equivalent form in the so-called Einstein frame,
where gravity is minimally coupled to the scalar field. For this purpose, we perform
a conformal transformation of the metric, ĝµν = A2(φ)gµν with A(φ) = F−1/2(φ̂), a
field redefinition, φ = φ(φ̂), and a conformal rescaling of the matter field, ψ̂m → ψm.
The scalar field φ is now minimally coupled to gµν , whereas ψm is minimally coupled
to ĝµν [261]. The energy-momentum tensor is Tµν = A2(φ)T̂µν , whereas the scalar
potential becomes U(φ) = Û(φ̂)

16πGF 2(φ̂)
The scalar field equation in the Einstein frame reads

�φ = −T d logA(φ)
dφ

+ ∂U

∂φ
. (A.2)

Since in our theory (3.1) the scalar field is minimally coupled to gravity, it is
natural to interpret it in the context of the Einstein frame. Thus, we can compare
eq. (A.2) to the second equation in (3.11):

�φ = −fS + ∂U

∂φ
, (A.3)

1In this appendix we used a hat to denote quantities in the Jordan frame, whereas quantities
without the hat refer to the Einstein frame where gravity is minimally coupled to the scalar field.
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which, using eq. (3.8), can be written as

�φ = f

(mf − fφ)T + ∂U

∂φ
. (A.4)

Therefore, if we identify

d logA(φ)
dφ

= −f
(mf − fφ) = 1

φ− φ0
, (A.5)

the scalar equation of our model is the same as in a scalar-tensor theory with coupling
A(φ) in the Einstein frame. Integrating this equation yields (henceforth assuming
A(0) = 1),

A(φ) = 1 − φ

φ0
= meff

mf
. (A.6)

Interestingly, the matter coupling vanishes when φ ≈ φ0.
It is left to be checked if the gravitational sector of our model is equivalent

to that of a scalar-tensor theory with A(φ) given by eq. (A.6). Let us consider a
degenerate gas of noninteracting fermions with mass mf in the Jordan frame, with
energy-momentum

T̂µν = (Ŵ + P̂ )ûµv̂ν + ĝµνP̂ (A.7)

where, assuming spherical symmetry,

Ŵ (ρ̂) = 2
(2π)3

∫ k̂F (ρ̂)

0
d3k

√
k2 +m2

f

P̂ (ρ̂) = 2
(2π)3

∫ k̂F (ρ̂)

0
d3k

k2

3
√
k2 +m2

f

.

(A.8)

In spherical symmetry, since the spacetime has the same form as in eq. (3.13), it
is straightforward to minimize the energy of the fermion gas at a fixed number of
fermions (the calculation is exactly the same as the one done to obtain eq. (3.19)):

k̂2
F = ω̂2

F e
−2û −m2

f . (A.9)

It is important to notice that in the standard scalar-tensor theory in the Jordan
frame, there is no Yukawa interaction; therefore, the fermion particles do not acquire
any effective mass.

In the Einstein frame, eq. (A.7) simply reads

Tµν = (W + P )uµuν + gµνP , (A.10)

whereW = A4(φ)Ŵ and P = A4(φ)P̂ . Therefore, also in the Einstein frame we have
a perfect fluid in the form of a zero-temperature Fermi gas. Let us now compute the
expressions of W and P explicitly. First of all, from eq. (A.8), following the same
computation presented in the main text, we get

Ŵ =
m4
f

8π2

[
x̂
√

1 + x̂2(1 + 2x̂2) − log
(
x̂+

√
x̂2 + 1

)]
P̂ =

m4
f

8π2

[
x̂
(2

3 x̂
2 − 1

)√
1 + x̂2 + log

(
x̂+

√
x̂2 + 1

)] (A.11)



103

where x̂ = k̂F /mf . Since A(φ) = meff/mf , we obtain

W = m4
eff

8π2

[
x̂
√

1 + x̂2(1 + 2x̂2) − log
(
x̂+

√
x̂2 + 1

)]
P = m4

eff
8π2

[
x̂
(2

3 x̂
2 − 1

)√
1 + x̂2 + log

(
x̂+

√
x̂2 + 1

)]
.

(A.12)

Note that W (x̂) and P (x̂) above implicitly define an equation of state that is exactly
equivalent to that obtained from W and P in Eqs. (3.22a) and (3.22b). This shows
that our model can be interpreted as a scalar-tensor theory in the Einstein frame
with coupling to matter given by2 A(φ) = meff/mf .

Furthermore, note that the dimensionless quantity x̂ = k̂F /mf = kF /meff = x is
invariant under a change from the Jordan to the Einstein frame. Therefore, W and
P are exactly those given in Eqs. (3.22a) and (3.22b).

Finally, Ŝ in the Jordan frame reads

Ŝ = 2
(2π)3

∫ k̂F

0
d3k

mf√
k2 +m2

f

(A.13)

=
m3
f

2π2

[
x̂
√

1 + x̂2 − log
(
x̂+

√
x̂2 + 1

)]
, (A.14)

while in the Einstein frame3

S = A3Ŝ = m3
eff

2π2

[
x
√

1 + x2 − log
(
x+

√
x2 + 1

)]
, (A.15)

since x̂ = x. Thus, also in this case we obtain the same expression as in eq. (3.22c).
Having assessed that our model can be interpreted in the context of a scalar-

tensor theory, it is interesting to study the latter in the Jordan frame. In particular,
since

A(φ) = 1√
F (φ̂)

, (A.16)

and A(φ) = 1 − φ/φ0, the coupling function F (φ̂) is singular in φ̂(φ0). In the
language of the scalar-tensor theory, we see that in the core of a fermion soliton star,
where φ ≈ φ0 and matter is almost decoupled in the Einstein frame, the scalar field
in the Jordan frame is strongly coupled to gravity.

2Note that our model and the scalar-tensor theory are not exactly equivalent to each other.
Indeed, while in the scalar-tensor theory any matter field is universally coupled to A(φ)ĝµν , in our
model this is the case only for the fermion gas, while any other matter field is minimally coupled to
the metric, in agreement with the fact that our model is based on standard Einstein’s gravity.

3The fact that S = A3Ŝ can be derived from the condition A4(φ)T̂ = T ⇒ A4(φ)mf Ŝ = meffS.
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Appendix B

Embedding with the Standard
Model

A simple way to derive eq. (5.1) is starting from the standard electroweak theory
minimally coupled to Einstein gravity,

S =
∫

d4x
√

−g
[ R

16πG − Lfields
]
, (B.1)

where

Lfields = −(∂µH)†(∂µH) − L† /DL−R† /DR

− λ

4
(
H†H − v2

2
)2

− f(L†HR+R†H†L), (B.2)

and H is the Higgs field, doublet under SU(2), whereas

L =

vL
ψL

 , R = ψR, (B.3)

are a SU(2) doublet of left-handed fermions and a SU(2) singlet of right-handed
fermion, respectively.

By exploiting the SU(2) × U(1) gauge symmetry to remove the spurious degrees
of freedom, we write

H =

 0
h√
2

 . (B.4)

Substituting in eq. (B.1), we recover eq. (5.1) where

ψ =

ψL
ψR

 . (B.5)
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Appendix C

Fermionic perturbations

In the axial sector, since φ1 ≡ 0, the θθ plus the ϕϕ component of the Einstein
equations gives simply δkF = 0. Thus, δP = δW = δS = 0. Conversely, in the polar
sector, the same combination of the Einstein equations gives

P1 = 1
2H0(P̄ + W̄ ) + U1 +

(
fS̄ − ∂U

∂φ

∣∣∣
φ̄

)
φ1 . (C.1)

Following the procedure described in Sec. 7.1.1, we express kF = (kF)1(ρ)Y (θ, ϕ)
(omitting the multipolar indices) as

(kF)1 = 1
4k̄4

F

[
− φ1(3

√
k̄2

F +m2
eff(4π2∂U/∂φ

∣∣
φ̄

+ fm3
eff

(
log

(
1 − k̄F√

k̄2
F +m2

eff

)

− log
(

k̄F√
k̄2

F +m2
eff

+ 1
))

− 4π2fS̄) + 2fk̄3
Fmeff + 6fk̄Fm

3
eff)

+ 6π2H0

√
k̄2

F +m2
eff(P̄ + W̄ ) + 12π2U1

√
k̄2

F +m2
eff

]
, (C.2)

where meff = mf − fφ̄.

Expanding Eqs. (3.5), (3.7), and substituting eq. (C.1) and eq. (C.2), we obtain
W1, S1 in terms of the background quantities meff and k̄F, as well as metric and
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scalar perturbations, as follows:

W1 = 1

4π2k̄2
F

√
k̄2

F +m2
eff

[
3m2

eff

√
k̄2
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