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Abstract: Conjugating the porphyrin ring with an amino acid via amide linkage represents a straight-

forward way for conferring both amphiphilicity and chirality to the macrocycle. Proline residue

is a good choice in this context since its conformational rigidity allows for porphyrin assembling

where molecular chirality is efficiently transferred and amplified using properly honed aqueous

environments. Herein, we describe the evolution of the studies carried out by our group to achieve

chiral systems from some porphyrin-proline derivatives, both in solution and in the solid state.

The discussion focuses on some fundamental aspects reflecting on the final molecular architectures

obtained, which are related to the nature of the appended group (stereochemistry and charge), the

presence of a metal ion coordinated to the porphyrin core and the bulk solvent properties. Indeed,

fine-tuning the mentioned parameters enables the achievement of stereospecific structures with

distinctive chiroptical and morphological features. Solid films based on these chiral systems were

also obtained and their recognition abilities in gaseous and liquid phase are here described.

Keywords: porphyrins; proline; chirality; supramolecular chemistry; sensors

1. Introduction

Supramolecular systems based on porphyrin derivatives are of great importance,
owing to the intrinsic conceptual stimuli and their applications in diverse scientific and
technological fields such as organic solar cells [1], artificial light-harvesting systems [2,3],
catalysis [4] and photocatalysis [5], photodynamic therapy of tumours [6] and sensors [7].
The implementation of elements of chirality [8–10] infers to these supramolecular archi-
tectures unique properties in terms, for example, of chiral recognition and sensing [11,12],
asymmetric catalysis and Circularly Polarised Luminescence (CPL) generation [13–16].

Several protocols can be pursued for achieving chiral porphyrin-based suprastructures
starting, for example, either from achiral macrocycles in the presence of chemical or physical
chiral effectors or, alternatively, accomplishing the self-assembly of chiral building blocks
in controlled conditions of solvent, temperature, pH or ionic strength. Even if the first
approach requires less time-consuming synthetic procedures and strategies [17–21], it may
suffer from a lower degree of stereochemical efficiency, being often not detached from
relevant stochastic effects or from the presence of adventitious chiral pollutants that are
difficult to eliminate [22]. The second approach, which in most cases would circumvent the
drawbacks mentioned above, may require arduous and lengthy synthetic strategies and
purification protocols [23,24] but undoubtedly offers the noticeable advantage of achieving
chiral systems at a high level of stereospecificity, tuned morphology and function [25–28].
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Over the years, we exploited the approach by tailoring the periphery of a tetraphenyl-
porphyrin with a cationic or anionic proline residue (Scheme 1). These moieties have the
dual function of both bearing the chiral molecular information and inferring, by virtue
of the positive or negative charge present in the group, an amphiphilic character to the
whole structure, guiding the self-assembly process by tuning the features of the solvent
media. It is well known, in fact, that the solvent properties, in terms of polarity, pH and
temperature, may selectively drive the self-recognition attitude of molecular platforms to-
ward the specific formation of the final supramolecular architectures [29]. The enantiomers
of proline have been selected as chiral effectors owing to the stereochemical rigid cyclic
structure of this amino acid. Proline plays a crucial role in asymmetric organocatalysis
with an inherent green shade [30–32], and it is also involved in fundamental functions
in animal and plant biology [33–35]. Very recently, L-proline has been shown to feature
“thought-provoking” properties in the chiral resolution of both enantiomers of mandelic
acid [36], and the covalent and non-covalent association of self-assembling peptides and
tetrapyrrole macrocycles has been reviewed [37].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 19 
 

 

tached from relevant stochastic effects or from the presence of adventitious chiral pollu-
tants that are difficult to eliminate [22]. The second approach, which in most cases would 
circumvent the drawbacks mentioned above, may require arduous and lengthy synthetic 
strategies and purification protocols [23,24] but undoubtedly offers the noticeable ad-
vantage of achieving chiral systems at a high level of stereospecificity, tuned morphology 
and function [25–28].  

Over the years, we exploited the approach by tailoring the periphery of a tetra-
phenylporphyrin with a cationic or anionic proline residue (Chart 1). These moieties have 
the dual function of both bearing the chiral molecular information and inferring, by virtue 
of the positive or negative charge present in the group, an amphiphilic character to the 
whole structure, guiding the self-assembly process by tuning the features of the solvent 
media. It is well known, in fact, that the solvent properties, in terms of polarity, pH and 
temperature, may selectively drive the self-recognition attitude of molecular platforms 
toward the specific formation of the final supramolecular architectures [29]. The enantio-
mers of proline have been selected as chiral effectors owing to the stereochemical rigid 
cyclic structure of this amino acid. Proline plays a crucial role in asymmetric organocatal-
ysis with an inherent green shade [30–32], and it is also involved in fundamental functions 
in animal and plant biology [33–35]. Very recently, L-proline has been shown to feature 
“thought-provoking” properties in the chiral resolution of both enantiomers of mandelic 
acid [36], and the covalent and non-covalent association of self-assembling peptides and 
tetrapyrrole macrocycles has been reviewed [37]. 

In this article, we summarise the development of the studies carried out in recent 
years by our group on the stereospecific self-assembly processes of different amphiphilic 
porphyrin derivatives (Scheme 1) where the aggregation behaviour and the chiroptical 
features were finely tuned by means of (i) the metal insertion that reflects on a peculiar 
coordination ability of the corresponding metalloderivative; (ii) the peripheral charged 
groups, determining both the solubility and the non-covalent interactions that are estab-
lished during the aggregation; (iii) the variation of chiral centre configuration, allowing 
for the achievement of enantiomeric assemblies with specular chirality; and (iv) the dif-
ferent amide connectivity that influences both the stereochemical rigidity of the carbox-
ylate–proline bond, and the nature of the overall intermolecular interactions as a conse-
quence of the opposite charge localised on the stereogenic moiety. 

 
Scheme 1. Molecular structures of the porphyrin-proline conjugates herein discussed. The main 
modifiable molecular synthons on the macrocycles resulting in a distinctive aggregation behaviour 
are highlighted. 

Scheme 1. Molecular structures of the porphyrin-proline conjugates herein discussed. The main

modifiable molecular synthons on the macrocycles resulting in a distinctive aggregation behaviour

are highlighted.

In this article, we summarise the development of the studies carried out in recent years
by our group on the stereospecific self-assembly processes of different amphiphilic por-
phyrin derivatives (Scheme 1) where the aggregation behaviour and the chiroptical features
were finely tuned by means of (i) the metal insertion that reflects on a peculiar coordination
ability of the corresponding metalloderivative; (ii) the peripheral charged groups, deter-
mining both the solubility and the non-covalent interactions that are established during the
aggregation; (iii) the variation of chiral centre configuration, allowing for the achievement
of enantiomeric assemblies with specular chirality; and (iv) the different amide connectivity
that influences both the stereochemical rigidity of the carboxylate–proline bond, and the
nature of the overall intermolecular interactions as a consequence of the opposite charge
localised on the stereogenic moiety.

In addition to the structural parameters dealing with the porphyrin ring, we found that
the properties of the reaction medium definitely impact the aggregation course, affecting
from kinetic aspects to both supramolecular chirality and morphology of the final architec-
tures. The tetrapyrrolic substrates are customarily dissolved as monomers in polar aprotic
solvents (i.e., ethanol, THF or acetonitrile), usually in the range of 5 to 10 µM concentration.
The self-assembly process is then fostered by the addition of a proper amount of water as a
consequence of the onset of hydrophobic effects. This “water-last” protocol ensures optimal
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reproducibility of the experimental results. It is well known, in fact, that the mixing order of
the reactants could severely affect the morphology and, consequently, the physico-chemical
features (size distribution, overall chirality) of the obtained supramolecular species [38].

Alongside these systems obtained in solution, porphyrin-proline conjugates “as is”
or in combination with inorganic nanoparticles, were also used by our group for the
fabrication of chiral solid films that have been exploited in chiral discrimination tests, both
in the gas [39] and liquid phase [40], conferring to these systems a practical value in the
chiral sensing field.

2. Synthesis of the Porphyrin Chiral Derivatives

The synthesis of the macrocycles entailed the straightforward coupling of the proper
macrocycle with the proline derivative using the well-known peptide coupling reactions.
The procedures are summarised in Scheme 2 [41–44].
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The cationic derivative H2P(L)Pro(+), for example, is obtained upon coupling reaction
from the aminophenyl-porphyrin derivative TPP-NH2 with the N-methyl-(L)proline. The
subsequent quaternisation of the proline nitrogen with iodomethane gave the desired
product. Standard metalation procedures have been followed for obtaining the corre-
sponding metallo-derivatives ZnP(L)Pro(+) and CuP(L)Pro(+). The change in the amide
connection afforded the anionic porphyrins, starting from the TPP-CO2H derivative and
(L)- or (D)-proline tert-butyl ester that gave the protected macrocycle by analogous reaction
conditions. Acid-catalysed removal of the protecting group, followed by standard workup
steps including metalation, afforded the desired anionic chiral counterparts MP(L)Pro(−)

and MP(D)Pro(−), with M = 2H or Zn.

3. Overview of Aggregation Behaviour and Kinetics of Porphyrin Derivatives

Aggregation is a phenomenon of reversible association of monomers bound by non-
covalent interactions including: hydrogen bonds, electrostatic or dipolar interactions, π-π
interactions and London dispersion forces. The most common geometry for porphyrin
aggregates is the staggered π-stacking, in which an electron-rich pyrrole ring overlaps
the central electron-deficient cavity of the adjacent molecule. Since the aggregates can be
dimers, trimers, oligomers or aggregates of a higher order, their electronic spectra exhibit a
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rich florilegium of complex patterns. The spectral variations with respect to the monomeric
form, such as the decrease in intensity of the Soret band, its broadening and the shift in
wavelength maxima, still provide useful information to describe the morphology of the
supramolecular structures. The most well-known aggregate forms are those of type J and H,
after E.E. Jelley and the term hypsochromic, respectively [45,46]. The distinction between
these two forms is based on the dipole moment orientation of chromophores, resulting in a
different shift of the Soret band. H-type aggregates present the stacked chromophores with
face-to-face orientation, in which the maximum overlay of type π-π results in blue-shifted
Soret bands (Scheme 3).
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porphyrin aggregates.

The first explanation of the shift of λmax was provided by Kasha, whose model still
represents a useful qualitative approach, although it has been successively modified. The
excitonic coupling theory describes the interaction between the transition moments of the
chromophores, and the consequent energetic splitting of the excited level, depending on
their geometric arrangement, according to the approximation of the point dipole [47]. J-type
aggregates are generally characterised by side-to-side chromophores with an oblique and
offset overlap; a type J arrangement was observed with both homo- and hetero-aggregates
of amphiphile porphyrins [48].

The kinetic study of the aggregation reactions of these macrocycles plays a fundamen-
tal role. Often the mechanism with which the phenomenon takes place has a determining
role in the morphology and the physico-chemical and stereochemical properties of the final
macroscopic structures. The growth of aggregates of porphyrins can be easily followed over
time by spectroscopic techniques such as UV-Vis, Circular Dichroism, Fluorescence and
Resonance Light Scattering. There are two most common kinetic pathways, each reflecting
in a different type of aggregation mechanism that will therefore be considered separately. It
should be remembered, however, that crossover between different kinetic decays can be
observed depending on the reaction conditions and structural features of the macrocycles.

3.1. Diffusion Limited Aggregation (DLA)

This type of kinetic profile reflects a mechanism that provides for an initial formation
of moderately sized clusters, followed by their growth by incorporating the remaining
monomers in solution. The kinetic law that adheres to the experimental points of this decay
is as follows:

Y = Y0 + (Y∞ − Y0)
[

1 − e−(kt)n
]

(1)

In this equation Y represents the physicochemical properties of the system (molar
concentration, molar extinction, fluorescence emission intensity and so on), k represents
the apparent first-order constant, while the parameter “n” is an indicator of the growth
factor of the aggregates according to a mechanism limited by diffusion, which in the
literature takes the name of DLA (Diffusion-Limited Aggregation). Stretched exponentials
are characterised by an exponent n < 1. When n = 1, the equation reduces to the usual
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exponential distribution process usually called RLA (Reaction-Limited Aggregation), which
corresponds to a first-order process. The term stretched reflects the fact that the relaxation
is slower than a purely exponential dependence on time. Examples of DLA behaviour have
been thoroughly studied in the past by Monsù Scolaro and co-workers [49–51].

A related mechanism, i.e., the Diffusion Limited Cluster–Cluster Aggregation (DL-
CCA) is also encountered [52], and can be distinguished by the former DLA by examining
the fractal, or Hausdorff dimension df, that can be derived from scattering techniques [49].

3.2. Autocatalytic Kinetic Profile

This behaviour, characterised by a typical sigmoidal shape, was first observed by
Robert F. Pasternak and co-workers in their seminal kinetic studies of the formation of
porphyrin aggregates on DNA [53]. This profile is typical of autocatalytic processes, which
lead to the development of species with peculiar fractal morphology. In nature, this
phenomenon can be commonly observed, for example, in the formation of dendrites of
transition metals, their oxides or ice crystals and so on. This mechanism is characterised
by an initial slow stage (lag phase), in which nucleation seeds are formed, allowing a
subsequent catalysed growth of the aggregates. The presence of this phenomenon is
justified by the fact that the aggregation nuclei offer a more extensive interaction (wider
non-covalent surface), catalysing the growth of supramolecular systems. The integrated
kinetic equation is:

[M] = [M]∞ + ([M]0 − [M]∞)

{

1 + (m − 1)
[

k0t + (n + 1)−1(kcatt)
n+1

]

−
1

m−1

}

(2)

where [M] is the concentration (or other physical quantity related to it such as, for example,
absorbance, CD or fluorescence emission intensities) at time “t”, [M]0 and [M]∞ are the
concentrations at the start (t = 0) and the end of the process (t = ∞) and parameter “m”
estimates the size of the nucleating centres, indicating the number of monomers that
constitute a growth centre acting as a surface for the catalysed growth. The parameter “n”
indicates instead the degree of cooperativity of the process and strictly influences the speed
of the global assembling. The term k0 indicates the kinetic constant of the uncatalysed
parallel process, in which the monomer interacts with other single monomers, or with
nuclei characterised by an aggregation number lower than m. Finally, kcat indicates the
catalysed rate constants of the growth of structures on suitably sized nuclei. This equation
is valid for m > 1 and both k0 and kcat have the dimensions of s−1 and for t → 0 the
constant kcat → k0. In some instances, the values of kcat could show a dependence on the
initial concentrations of the solutions, indicating the formation of “nucleation seeds” of
different nature and morphology.

This nonconventional approach has been successfully employed for the investigation
of growth processes of porphyrin aggregates on DNA matrices and other chiral polymers,
for different and important biological self-assembled systems [54] and in acid-catalysed
water-soluble porphyrin aggregation [55].

A particular form of this equation has been developed by Pasternack, for the case of
disassembly of a DNA-bound porphyrin aggregate by β-cyclodextrin [56].

[M] = [M]∞ + ([M]0 − [M]∞)exp

{

−

(

k f t
)n+1

/(n + 1)

}

(3)

This is a reduced form of the Equation (2), at the limiting value of m → 1, indicating
that any monomer itself constitutes a catalysed nucleation centre. The parameter kf is the

rate constant of formation of aggregates in s−1 units, and “n” is again the cooperativity
factor of the formation process. Notably, in the case of n = 0, the equation assumes the form
of a conventional first order kinetic law.
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4. Aggregation Behaviour and Supramolecular Chirogenesis of the
Free-Base Derivatives

Initial studies carried out on the cationic free-base H2P(L)Pro(+) put in evidence the
fundamental aggregation features of this kind of substrate, with reference to the nature
and the composition of the solvent [41]. The title porphyrin is in monomeric form in
ethanol, while in 75/25 v:v hydroalcoholic medium, the species is prone to self-assemble.
The formation of aggregates is evidenced by the typical changes in the spectroscopic
pattern of the macrocycles that presents a bathochromic effect and lowering of the intensity
of the main Soret B band (Figure 1a). Notably, the redshift evidences the formation of
supramolecular species with local offset, J-type topology. This proper solvent composition
allows for an optimal reaction rate that can be followed by conventional spectroscopic
means (UV-Visible), revealing an autocatalytic behaviour typical of the templated formation
of supramolecular fractal structures in the case of water soluble tetrapyrrolic platforms [53].
Worthwhile to note, the aggregation proceeds with the formation of J-type, offset structures
featuring intense supramolecular chirality as a consequence of the reading-out and transfer
of the chiral information stored on the proline cationic stereogenic centre (Figure 1b).
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Conversely, in a medium constituted by a higher amount of water (90/10 v:v) in which
the hydrophobic effect is much more impelling, the aggregation process is faster and the
final species are characterised by a lower degree of supramolecular chirality, as shown
by the corresponding CD spectra of weaker intensity and the apparent no shift of the
Soret band in the UV-Vis spectra (Figure 1a,b). Corresponding Resonance Light Scattering
(RLS) studies indicated that the slower and more specific self-assembly process leads to the
formation of ordered structures with more effective electronic coupling among the aromatic
platforms. RLS is a powerful spectroscopic technique developed in the past by Robert
Pasternack to study porphyrin aggregates, consisting of increasing the intensity of the
scattered light in the proximity of the electronic absorption of the aggregates, typically at
the Soret B band [57,58]. RLS intensity is related to the number, size, and coherence length
of the aggregates, i.e., the extent of the electronic communication among the aromatic
platforms [59].

Analogous studies carried out on the anionic counterpart H2P(L)Pro(−) [43] showed
different kinetic behaviour in the same hydroalcoholic solvent mixture, featuring a much
faster DLA process (Figure 2a). This difference reflected itself in the supramolecular chirality
of the final architectures, with the formation of species with less intense dichroic features of
about one order of magnitude (Figure 2b), being [θ] = 2 × 106 and 3 × 105 deg cm2 dmol−1

for the cationic and the anionic derivatives, respectively, at 5.0 µM concentration.
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Analogous findings have been reported by Monsù Scolaro, who showed that the
kinetic of the aggregation strongly influences the chirality of the growing species [60].
A recent work of Meijer and co-workers highlighted the effect of the “C=O centred” vs.
the “NH centred” motifs of the amide connectivity of a porphyrin macrocycle with an
uncharged stereodirecting group, due to their different strengths of molecular interaction
and conformational flexibility [61]. The macrocycle with the C=O centred motif yielded
H-type aggregates with intense supramolecular chirality, conversely to the NH centred
counterpart that formed achiral J-type species. In our case, an opposite trend is found
since the “NH-connected” cationic platform leads to the formation of suprastructures
with the most intense chirality. Hence, the different behaviour observed should be in-
ferred to the nature of the charges residing on the proline functionality that modulates
the physicochemical behaviour of the macrocycles and the interactions onset during the
supramolecular polymerization.

However, it must be emphasised that disregarding the nature of the charge of the
proline residues, the same J-type aggregates with the same −/+ signs are observed for
the CD bands of both types of supramolecular species, indicating the same anti-clockwise
porphyrin-to-porphyrin spatial arrangements, dictated by the configuration of the chiral
L-proline moieties [62].

Atomic Force Microscopy topographic imaging of the cationic and anionic aggregates
on HOPG revealed important differences also on the morphology of these structures,
showing a globular appearance for the anionic derivatives and entangled fibrillar structures
for the cationic counterpart (Figure 3) [43].

A remarkable aspect of the above-described systems is that the anionic aggregates of
H2P(L)Pro(−), act as an efficient substrate for the templated aggregation of the cationic
analogue H2P(L)Pro(+), resulting in the final “catanionic” species with increased both
supramolecular chirality and the aggregation rate by about one order of magnitude [63].
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Interestingly, the opposite experiment, i.e., templated aggregation of the negative
macrocycles onto cationic aggregates, did not amplify the final chiroptical features, sug-
gesting that the process complies with the so-called sergeant-soldier principle. This effect
could be ascribed to the diverse degree of hydrophilicity/lipophilicity of the charged
groups, i.e., quaternary ammonium and carboxylate moieties, that onset peculiar compet-
itive intermolecular interactions such as π-cation or hydrogen bond with the N or NH
groups of the inner cores of the aromatic platforms and solvation forces with the bulk
solvent. According to the Hofmeister series [64], the carboxylic groups are characterised by
higher hydrophilicity and tend to be more exposed to the external side of the aggregates
exerting a more effective electrostatic interaction toward the incoming cationic ammo-
nium groups. On the other hand, these latter, more polarisable, species are more prone
to interact with the inner aromatic part, resulting in a less effective interaction with the
incoming carboxylate moieties. This subtle interplay of electrostatic and hydrophobic
effects has been more recently rationalised by Monsù Scolaro, who showed a clear depen-
dence on the nature of the counter-anion on both the kinetics and the final overall chirality
of water-soluble achiral porphyrin aggregates (TPPS4) catalysed by inorganic acids [64].
The reactivity order (i.e., the extent of conversion and the kinetic constant values) are in
the order H2SO4 > HCl > HBr > HNO3 > HClO4, from the “least-perturbing” anion to the
“most-perturbing” one, with respect to the hydrogen-bond network of the solvent. Worth-
while to note, the dissymmetry factor (g) of the resulting CD spectra shows an opposite
trend, being the highest in the case of the perchlorate anion. Interestingly, in all of the cases
the CD spectra feature a spectral pattern of positive Cotton effect, although a random sta-
tistical outcome would be expected, and is commonly observed, for a symmetry-breaking
event on an achiral substrate [65,66]. However, this preferential chiral induction is not
unprecedented, although it is of still unclear origin [22,67]. Moreover, it has been reported
in a case, that the templated formation of chiral J-aggregates both the kinetic and the final
anisotropy factor of the formed species are dependent on the enantiomer employed as a
chiral effector [68].

5. Aggregation Behaviour and Supramolecular Chirogenesis of the
Metallo-Derivatives

5.1. Aggregation Behaviour of Cationic MP(L)Pro(+)

The coordination of a divalent cation within the tetrapyrrolic core resulted in different
aggregation kinetic and chiroptical features of the final supramolecular species.

In both of the cases (M=Zn(II) or Cu(II) porphyrins), a distinct biphasic process is
observed [69] (Figure 4a), consisting in a fast non-specific “initial burst” occurring within the
time of preparation of the solution, followed by a slower step of structural rearrangement
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of the initially formed non-coherent CD silent structures, which give rise to the formation
of chiral supramolecular species.
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In the case of the Zn(II) complex in the same 25/75 EtOH/H2O v:v medium, the
second slower step is characterised by an apparent first-order kinetic. The final chiral
assemblies feature absorption spectra with a peculiar, coupled pattern for the Soret band
that reflected itself in double-bisignated Cotton bands in the CD spectra. These bands have
different intensities of −/+ sign that are indicative of an anti-clockwise mutual disposition
of the porphyrin platforms [62] (Figure 4b).

The overall CD intensity is about two orders of magnitude lower than that observed
in the free-base counterpart, indicating a strong coordination effect to the central Zn ion by
the solvent that hampers the formation of a structure in which the macrocycles are coupled
at a close distance. The striking role played by the reaction medium is also witnessed by
the fact that in dimethylacetamide/water, a strongly coordinating solvent, aggregates no
longer feature any supramolecular chirality.

In the case of the Cu(II) derivative, a similarly coupled Soret band and corresponding
bisignated negative CD spectra are obtained (Figure 4b, inset). Remarkably, different
kinetic behaviour for the second process is found, following a cooperative autocatalytic
path in this case. This mechanistic difference can be attributed to the lower tendency of the
tetra-coordinated metal centre to onset further interaction with the solvent.

5.2. Through the Looking Glass: Aggregation Behaviour of Anionic MP(L)Pro(−) and
MP(D)Pro(−) (M = 2H or Zn)

The results obtained in the solvent-driven aggregation of the L- and D-enantiomer
of the Zn-anionic porphyrin confirmed the stereospecificity of the molecular recognition
that strictly follows the chiral information stored on the anionic proline group. In par-
ticular, the (L)-derivative gives rise to the formation of chiral J-type structures featuring
a CD spectral pattern governed by an intense coupled, bisignated band of positive sign
([θ] = 107 deg cm2 dmol−1), indicating a mutual clockwise arrangement of the macrocy-
cles. The other enantiomer behaves in specular mode, ending with the formation of
anti-clockwise structures [44]. Interestingly, a closer look at the CD spectra clearly revealed
in both cases the presence of a coupled band at 440 nm and a more diffused one at 418 nm,
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in close correspondence with the UV-Vis spectra. This peculiar pattern has been ascribed
to the formation of J aggregates of complex morphology, with excitonic coupling along
two different space directions [70]. A notable example has been quite recently reported by
Short and Balaban, who demonstrated the complex morphology of water-soluble achiral
porphyrin J aggregates in the form of intrinsically chiral helical structures arranged in
nanotube shape [71].

In our case, detailed kinetic studies revealed a complex reaction pathway consisting
of first, a rapid formation of species characterised by a low supramolecular chirality
([θ] = 104 deg cm2 dmol−1) that evolves through a slow autocatalytic process toward the
formation of the final highly chiral structures (Figure 5b). Interestingly, the best fit of the
data (obtained by either UV-Vis or CD spectroscopy; Figure 5c) is accomplished by using
the Equation (3), indicating that the initially formed structures would act as a “single-site”
enantiospecific surface (i.e., a collection of independently catalytic chiral sites with the
same reactivity).
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The different striking behaviour of the anionic Zn-derivative with respect to the free-
base analogue is certainly attributable to the intermolecular coordination of the prolinate
effector to the inner Zn(II) ion, accounting also for the high intensities of the chiroptical
features of the corresponding structures. The involvement of the Zn-coordination is also
demonstrated by the results obtained in the aggregation experiments carried out on the
free-bases H2P(L)Pro(−) and H2P(D)Pro(−), which form chiral aggregates with CD bands
of two order of magnitude lower in intensities and with opposite signs, with respect to the
corresponding Zn-derivatives. Moreover, a recent account demonstrated the involvement
of Zn-coordination in the formation of porphyrin’s supramolecular polymerisation [72].

Moreover, we found that the presence of 100-fold molar excess of external nitrogen
ligands, i.e., (R)- and (S)-1-phenylethylamine, dictated the stereochemical course of the self-
assembly process, disregarding the stereochemistry of the L- or D-proline functionalities
(Figure 6a) [73]. Furthermore, the species formed using an achiral ligand (i.e., benzylamine)
no longer showed supramolecular chirality. Finally, the presence of the chiral amines has
been found to remarkably impact the morphology of the aggregates, appearing as bundles
of rod-like structures, differently to those of fractal shapes formed in bare aqueous solvent
mixtures, without nitrogen ligands (Figure 6b,c).
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6. Transfer of Supramolecular Chirality from Solution to Solid State: Chiral Films on
the Glass Surface

The transfer of chiral porphyrin aggregates and related structures on solid surfaces
is an issue of great importance for the construction of advanced materials endowed with
specific properties and functions, which strongly depend not only on the intrinsic molecular
structure but also on their supramolecular organisation [74]. This section describes the
development of the construction of solid-state films composed of the title macrocycles.

6.1. Fabrication of Solid Films of Cationic Porphyrin Derivatives MP(L)Pro(+) (M = 2H, Zn, Cu)

Aggregates of the cationic porphyrins show the peculiar tendency to spontaneously
layer onto solid substrates, such as glass or quartz slides, from hydroalcoholic solutions.
The thickness of the obtained film, measured by the optical density of the solid layers,
depends on the initial concentration of the solutions. In the case of achiral cationic analogs,
the spontaneous deposition been exploited for the fabrication of solid-state sensors for
Hg2+ ions in water [75] and the assessment of food quality in real matrices [76]. The
same procedure has been employed for the construction of porphyrin-silica nanoparticles
conjugates [77] and a selective ionophore in PVC-membrane sensors [78].

In the case of the present chiral cationic derivatives, the spontaneous deposition
yielded to porphyrin films with retained supramolecular chirality (Figure 7a) [42]. The
same substrates, once transferred onto quartz slides by means of Langmuir–Blodgett
technique, still formed chiral films but, in the case of the cationic free-base (M = 2H), of
opposed chirality with respect to that of the films obtained upon spontaneous deposition
in equilibrium conditions (Figure 7b) [79].
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This finding, important for selecting the overall chirality of the deposited material,
has been inferred to the effect of the physical forces applied during the formation of the
compressed porphyrin layer at the air–water interface.

6.2. Fabrication of Solid Films of Anionic Porphyrin Derivatives ZnP(L)Pro(−) and
ZnP(D)Pro(−)

Differently from the cationic congeners, the anionic derivatives do not spontaneously
layer onto dipped solid substrates. However, their solid-state films could be conveniently
prepared by the drop-casting method, an easy and versatile means for obtaining function-
alised surfaces whose properties feature satisfactory reproducibility. As far as the chirality
transfer is concerned, the successful outcome depends on a subtle interplay of factors
such as, among others, solvent bulk properties (i.e., viscosity, vapour pressure) and the
interaction of the molecular substrates with the surface [80,81].

Our recent studies pointed out that the presence of oligo-aggregates of porphyrin in the
bulk solution, strictly related to the solubility of the macrocycle and its concentration, is one
of the important issues in forming a solid film with supramolecular chirality. Indeed, these
systems act as chiral molecular seeds during solvent evaporation, allowing the following
self-assembling process into larger structures [82]. The roughness of the receiving surface
has also been found to play a determinant role. Excellent results in terms of reproducibility
and overall chirality were obtained, for example, in the case of the enantiomers of the
Zn-derivatives from toluene solutions of 10−4 M concentration on ultra-flat quartz-coated
glass slides (i.e., with the roughness of ca. 1 nm) [83]. Indeed, this aromatic solvent, besides
the noncoordinating character, possesses the optimal physical properties in terms of surface
tension and vapor pressure that ensure the film adhesion to the substrate and prevent a too
fast solvent evaporation. These two factors are essential for the stereospecific organisation
of porphyrin macrocycles onto the glass.

7. Development of Sensors Based on Chiral Solid Films of Porphyrins MP(L)Pro(−)
(M = 2H, Zn)

Chiral layers of the anionic derivatives containing the (L)-Proline group have been
deposited on different surfaces and tested for the recognition of couples of analyte enan-
tiomers. Stereoselective sensors were, for example, developed by anchoring Zn(L)Pro(−)

to ZnO nanoparticles. This hybrid material possesses a combination of unique properties
such as (i) an increased surface area and (ii) a low thickness of the sensing film, allowing
stereoselective detection also in a high concentration range of chiral analytes. As shown by
TEM images (Figure 8a), the porphyrins act as a glue connecting different nanoparticles in
the resulting film. Remarkably, the solid-state films showed interesting chiroptical activ-
ity as evidenced by electronic circular dichroism (ECD) that highlighted an induction of
chirality from porphyrins to ZnO NPs (a dichroic band appears in the UV region), due to
electronic coupling existing between the two components (Figure 8b).

An easy way to fabricate a chemical sensor consisted of drop-casting this hybrid
material onto a mass transducer such as a quartz microbalance (QMB). So-made sensors
displayed stereoselective recognition properties for the (R)-limonene enantiomer vapours
(Figure 8c,d) [39]. The high sensitivity featured toward limonene vapours, compared to
other gas-phase chiral analytes tested as α-pinenes or butan-2-ols, is attributable to the ease
of intercalation of the flat molecules within the porphyrin platforms and on the capability
to onset π−π interactions.

Very recently, we found that Langmuir–Shaefer films of the free-base derivative
H2P(L)Pro(−) can selectively recognise the same L-amino acid from the D-enantiomer
in the water solution [40]. In this case, the deposition process seems to promote the por-
phyrins transfer as monomers on the substrate, allowing the selective interaction with the
fluxed L-proline. The binding with the amino acid induces aggregation and a consequent
fluorescent quenching that can be used as an analytical signal (Figure 9a). The same effect
is only marginally observed under fluxing D-Proline solutions (Figure 9b), demonstrating
the enantioselectivity of the system.
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This interesting finding would pave the road for the construction of tailored solid-state
sensible material with selective chiral recognition features that can be specifically tailored
for a given enantiomer.
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8. Conclusions and Future Perspectives

In this work, the aggregation properties of amphiphilic porphyrin derivatives bearing
an ionic proline functionality have been summarised, pointing out the effect of the charge’s
nature and the chirality of the appended chiral effectors and of the bulk solvent properties
on the stereospecificity of the self-assembly processes. The possibility of transferring
the chiral features in the solid state has been also discussed, together with the eventual
application of the obtained material for the stereoselective detection of chiral vapors by
piezoelectric mass transducers (QMB-electronic nose).

In the light of the possibility of extending the arena of the involved macrocycles by
further functionalisation of both their periphery and their inner core, the presented results
are of importance for the development of systems implemented in sensors arrays [84],
are able to discriminate a large class of analytes for the monitoring of food quality [85],
as well as environmental and health safety. According to the data reported in a recent
review, in fact, ca. 40% of the likely underestimated 4000 environmental pollutants are
chiral [86]. These species, caused by their continuous release and accumulation in the
environment (soils, freshwaters and biota) unavoidably enter the food chains, resulting in
severe effects for human and other living species [87–90]. A new emergent protagonist in
the theatre of the methods developed for facing this highly impactful problem is graphene
and its derivative graphene oxide (GO) [91], which have been demonstrated to show
promising performances as absorption and remediation agents in wastewater treatment
plants [92]. The implementation of elements of chirality, for example, in GO derivatives
would represent a fine tuning of the above-described properties for the stereoselective
detection and removal of chiral noxious wastes. The chiral functionalisation of GO surfaces
has been reported, mainly through bonds with amino acid derivatives [93–95]. Although
both non-covalent and covalent porphyrin-GO conjugates are widely reported [96], mostly
for photovoltaic [97] or cancer treatment [98–101], none of which involve strictu sensu chiral
porphyrins, except for the presence of a coordinated chiral group to the central metal
ion [102,103].

Within this respect, we can surmise that the incorporation of our restless proline-
porphyrin derivatives onto the GO surface would represent a step forward to fulfill the
need of systems for selective recognition and removal of the above-cited pollutants. Studies
on this interesting topic are actively being carried out in our groups, and the results will be
reported in future.
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