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Abstract
The animal gut microbiome has been implicated in a number of key biological pro-
cesses, ranging from digestion to behaviour, and has also been suggested to facilitate 
local adaptation. Yet studies in wild animals rarely compare multiple populations that 
differ ecologically, which is the level at which local adaptation may occur. Further, few 
studies simultaneously characterize diet and gut microbiome from the same sample, 
despite their probable interdependence. Here, we investigate the interplay between 
diet and gut microbiome in three geographically isolated populations of the critically 
endangered Grauer's gorilla (Gorilla beringei graueri), which we show to be genetically 
differentiated. We find population- and social group-specific dietary and gut microbial 
profiles and covariation between diet and gut microbiome, despite the presence of 
core microbial taxa. There was no detectable effect of age, and only marginal effects 
of sex and genetic relatedness on the microbiome. Diet differed considerably across 
populations, with the high-altitude population consuming a lower diversity of plants 
compared to low-altitude populations, consistent with plant availability constraining 
dietary choices. The observed pattern of covariation between diet and gut microbi-
ome is probably a result of long-term social and environmental factors. Our study sug-
gests that the gut microbiome is sufficiently plastic to support flexible food selection 
and hence contribute to local adaptation.
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1  |  INTRODUC TION

The ranges of many species span ecologically diverse habitats, lead-
ing to some degree of adaptation to the predominant local condition. 
Our view of how species adapt has recently expanded beyond the 
organismal level, to also include natural selection acting on the com-
munity of associated microorganisms, the microbiome (Rosenberg 
& Zilber-Rosenberg, 2016). In animals, the gut microbiome plays a 
critical role in key biological processes such as digestion, health, be-
haviour and even host genomic evolution (Agranyoni et al.,  2021; 
Davidson et al., 2020; Moran et al., 2019; Rudman et al., 2019).

The gut microbiome is shaped by numerous factors, including 
host evolutionary relationships, social interactions, habitat and diet 
(Archie & Tung, 2015; Rojas et al., 2021; Youngblut et al., 2019). In 
wild animals, distinct populations living under different ecological 
conditions have been shown to possess unique gut microbiomes 
(Bueno de Mesquita et al., 2021; Couch et al., 2020; Uren Webster 
et al., 2018). Other studies show shifts in the gut microbiome con-
cordant with seasonal dietary changes (Baniel et al., 2021; Bergmann 
et al., 2015; Guo et al., 2021; Hicks et al., 2018). Such differences 
are expected, as microorganisms, with their large population sizes, 
rapid evolution and flexible community structure, are able to re-
spond quickly to changes in environmental conditions (Koskella 
et al., 2017), supporting their role in host local adaptation (Alberdi 
et al., 2016). Experimental work inspecting the directionality of the 
diet–microbiome link suggests a two-way connection. On the one 
hand, dietary manipulations alter the composition of the gut micro-
biome, permitting hosts to rapidly utilize new dietary sources (Reese 
et al., 2021). On the other hand, changes in the gut microbiome it-
self can alter dietary choice (Trevelline & Kohl, 2022). In the wild, 
it is possible that the microbiome may impact dietary choices by 
modulating host behaviour, for example, by constraining selection 
to similar foods even in different habitats or by promoting dispersal 
decisions that reduce environmental change (“natal habitat-biased 
dispersal”).

Here, we investigate geographical variation of the gut microbi-
ome and its potential role in local dietary adaptation by jointly ana-
lysing dietary and gut microbial diversity and composition in several 
isolated populations of the critically endangered Grauer's gorilla 
(Gorilla beringei graueri; Plumptre et al., 2016). This gorilla subspecies 
is endemic to the eastern Democratic Republic of Congo (DRC). Our 
study populations occupy the ecological extremes of the species' 
range, approximated here by altitude (600 m above sea level [asl] 
and 2500 m asl). Grauer's gorillas are herbivores, consuming a large 
diversity of plants and plant parts (Yamagiwa et al., 2005). However, 
due to political instability throughout their range, very little is known 
about the ecology of different populations (but see van der Hoek, 
Binyinyi, et al., 2021a; van der Hoek, Pazo, et al., 2021b).

Using faecal DNA metabarcoding and host genotyping, we first 
investigated whether isolated and genetically differentiated gorilla 
populations show dietary similarities. As plant communities differ 
considerably by altitude throughout the region (Imani et al., 2016), 
the presence of shared food taxa across populations would be indic-
ative of restrictive dietary selection (a core Grauer's gorilla diet). If 
such a pattern of food selection occurs at least in part via gut micro-
bial influence over foraging, we also expect to find a conserved set 
of gut microbial taxa (a core microbiome). In contrast, if plasticity of 
the gut microbiome confers dietary flexibility, potentially facilitating 
local adaptation, we expect diet and the microbiome to differ sig-
nificantly among populations, with strong covariation between them 
and little evidence for conserved dietary and microbial taxa.

2  |  MATERIAL S AND METHODS

2.1  |  Ethics statement

This study was conducted in compliance with legal requirements of 
the DRC and the animal use policies of UC Davis. Data collection 
protocols were approved by Institut Congolais pour la Conservation 
de la Nature. Samples were collected noninvasively, without disturb-
ing the animals.

2.2  |  Sample collection

Grauer's gorilla faecal samples (n  =  220) were opportunistically 
collected in eastern DRC between 2015 and 2018 at three sites: 
Kahuzi-Biega National Park (KBNP, 2.32°S, 28.72°E; 2500 m asl), 
Nkuba Conservation Area in Walikale territory, North Kivu (NCA, 
1.38°S, 27.47°E; 600 m asl) and Maiko National Park (MNP, 0.87°S, 
27.35°E; 830 m asl; Figure 1). Nine different gorilla social groups (six 
in KBNP, two in NCA, one in MNP) and two solitary male gorillas 
(in KBNP) were sampled. Only one group, Chimanuka in KBNP, was 
habituated to human presence, and samples from this group were 
collected from identified individuals after defecation. All other sam-
ples were collected from night nests without knowledge of indi-
vidual identity following the two-step collection method (Nsubuga 
et al., 2004). Geographical location and altitude were recorded using 
handheld GPS devices for all sampling sites except for the Mankoto 
group in KBNP, for which this information was not recorded in the 
field. We assigned age classes based on dung diameter, as follows: 
infant <4 cm, sharing a nest with an adult; juvenile/subadult 4–5 cm, 
own nest; and adults >5 cm (McNeilage et al., 2006; Schaller, 1963). 
For the Chimanuka group, age classes of identified individuals were 
known from observations.

K E Y W O R D S
16S rRNA, critically endangered, faecal DNA, genetic diversity, metabarcoding, trnL
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2.3  |  DNA extraction

Faecal samples were exported to Uppsala University, Sweden, for 
molecular analysis. DNA was extracted from 50 mg of material using 

the DNeasy PowerSoil DNA Extraction Kit (Qiagen) in a dedicated 
primate faecal extraction laboratory, with the following modifica-
tions to the manufacturer's protocol: samples were incubated under 
shaking (500 rpm) in the C1 solution overnight at 23°C, transferred 

F I G U R E  1  (a) Map of Grauer's gorilla faecal sampling locations from Maiko National Park (MNP; designated with cyan on the left-
hand side of the map), Nkuba Conservation Area (NCA; green) and Kahuzi-Biega National Park (KBNP; brown), with (b) inset zooming in 
on different social groups in KBNP. Circle colours designate social groups, coded as in (c). Note that multiple circles are present for the 
Chimanuka group, consistent with opportunistic sampling of identified individuals. Geographical coordinates were not available for the 
Mankoto group. The table in (c) shows the sample size (N = number of unique individuals, f = number of females, m = number of males) 
used for dietary and gut microbiome characterization of each social group. Only diet but not gut microbiome data are available for samples 
shaded in grey. The Bansamba group (NCA) was sampled repeatedly, but only few samples were included in dietary analyses in later years 
(three from 2016 and three from 2018). Also shown for each social group are: Collection year and season, altitude, and Ngenotypes, the total 
number of successfully genotyped samples

(a)

(b)

K
B

N
P

Bonane 1 (0,1) 2016 Dry 2328 1
Chimanuka 14 (4,9) 2016 Rainy 2300 44
Mankoto 12 (1,11) 2016 Dry NA 13
Mpungwe 8 (6,2) 2016 Dry 2200 21
Mufanzala 2 4 (3,1) 2016 Dry 2443 5
Mugaruka 1 (0,1) 2016 Dry 2123 2
Namadiriri 13 (8,5) 2016 Dry 2174 23
Nouvelle Famille 6 (5,1) 2016 Dry 2282 16

Maiko 5 (3,2) 2016 Rainy 835 6

Bansamba 11 (9,2) 2015 Dry 619
46Bansamba 3 (1,2) 2016 Rainy 630

Bansamba 3 (0,3) 2018 Dry 675
Membe 1 11 (5,6) 2017 Dry 650 33

N
C

A
M

N
P

Social group N (f,m) Year Season Altitude (m) Ngenotypes

Maiko

Maiko National Park

Membe1
Bansamba

Kahuzi-Biega
National Park

50 km
27.0 28.0 29.0

-2.0

-1.0

0.0

−2.34

−2.30

−2.26

28.66 28.70 28.74

Kahuzi-Biega
National

Park

Mt. Kahuzi
3308 m

5 km

DEMOCRATIC
REPUBLIC

OF THE
CONGO

NCA

Goma

(c)
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into a heating block and incubated at 65°C for 10 min, followed by 
bead beating on a vortex at maximum speed for 1 h at room tem-
perature. Incubation in C2 and C3 solution was on ice, and in C6 
solution at room temperature for 5 min before elution.

2.4  |  Gorilla genotyping, individual identification, 
relatedness and population differentiation analyses

We genotyped all 220 samples at 12 microsatellite loci (vWF, D1s550, 
D4s1627, D5s1457, D5s1470, D6s474, D6s1056, D7s817, D8s1106, 
D10s1432, D14s306 and D16s2624) following the two-step multiplex 
protocol (Arandjelovic et al., 2009) and sexed them with the amelo-
genin assay (Bradley et al., 2001). Up to four loci were pooled, based 
on fluorophores and product sizes, and run on an ABI GeneAnalyzer 
(ThermoFisher Scientific). We scored genotypes manually in genemap-
per version 5.0 (Chatterji & Pachter, 2006) and identified individuals 
in cervus version 3.0.7 (Kalinowski et al., 2007). Samples were consid-
ered to originate from the same individual if their genotypes matched 
at five or more loci without mismatches, with the probability of iden-
tity assuming full-sibling relationship (PIDsib) < .05. We manually gen-
erated consensus individual genotypes from matching samples, taking 
into account the time and place of sample collection and the presence 
of other individuals from the same group.

We tested for deviations from Hardy–Weinberg equilibrium, 
heterozygote deficiency and linkage disequilibrium at each locus in 
genepop version 4.7.5 (Raymond & Rousset,  1995; Rousset,  2008). 
Genetic population structure was assessed using structure version 
2.3.4 (Porras-Hurtado et al.,  2013) with 20 independent runs for 
K = 1–11 (11 social groups), a 100,000-iteration burn-in, and data 
collection for 1,000,000 runs, assuming population admixture and 
correlated allele frequencies (Falush et al., 2003). Results from differ-
ent runs of K were merged in clumpp (Jakobsson & Rosenberg, 2007; 
Kopelman et al., 2015), and analysed and visualized in “pophelper” 
in R version 4.2.0 (Francis,  2017; R Core Team,  2022). The most 
probably value of K was determined using ∆K (Evanno et al., 2005). 
We used the “adegenet” R package for principal coordinate analy-
sis (PCoA) of genotypes (Jombart, 2008). Population differentiation 
statistics FST and F'ST (Meirmans & Hedrick, 2011) were calculated 
in genodive version 3.04 (Meirmans,  2020), and significance as-
sessed with 9999 permutations. We compared genetic relatedness 
between populations and social groups using an AMOVA in the R 
package “poppr” (Kamvar et al., 2014) and calculated pairwise relat-
edness (r) between all individuals within KBNP and NCA separately 
in ml-relate (Kalinowski et al., 2006).

2.5  |  Characterization of gorilla diet

We characterized the diet of 92 individuals identified by genotyp-
ing (see Results; Tables S1 and S2). We aimed to analyse one nest 
site per group, but also included additional nest sites of the same 
group collected during the same year and season to maximize the 

number of studied individuals (Table S2). A single sample per indi-
vidual was studied. The majority of our samples were collected dur-
ing the dry season, but we also included some samples, social groups 
(Chimanuka) and one population (MNP) that were collected during 
the rainy season (Table S2). We present our analyses with and with-
out these samples.

We amplified the P6 loop of the trnL chloroplast intron (Taberlet 
et al., 2007), a locus typically used for herbivore dietary metabar-
coding, and for which a large database of tropical plants is available 
(Mallott et al.,  2018). We used the standard trnL g and h primers 
(Table  S3), tagged with 96 8-bp barcodes. Each barcode differed 
from all others at a minimum of three positions. DNA amplifications 
were carried out in 20 μl reactions containing 2 μl faecal DNA ex-
tract, 1 U Platinum II Taq Hot-Start DNA polymerase, 1× Platinum 
II Buffer, 0.2 mM each dNTP, 2 mM MgCl2 and 1  μM each primer. 
Each DNA sample was amplified twice. The duplicates were placed 
randomly on different polymerase chain reaction (PCR) plates to 
avoid potential batch effects and biases due to cross-contamination 
of sample and/or barcoded primers (Table  S1). We included one 
PCR-negative, two to three empty wells per plate and five DNA ex-
traction blanks to check for contamination (Taberlet et al.,  2018). 
PCR conditions consisted of 2 min denaturation at 94°C followed by 
35 cycles of 94°C for 30 s, 51°C for 30 s and 68°C for 15 s, without 
final extension. PCR products were visualized on a 2% agarose gel to 
confirm amplification without contamination.

The barcoded PCR products were pooled column-wise (16 μl for 
each sample, duplicates in separate pools), mixed with 640 μl PB 
Buffer and purified using MinElute columns (Qiagen), eluting in 50 μl 
EB buffer. Double-indexed next-generation sequencing libraries 
(Kircher et al., 2012) were prepared as detailed previously (Brealey 
et al., 2020; Rohland et al., 2015) but using nonbarcoded incomplete 
adapters after blunt-end repair. Two library preparation blanks were 
carried through all steps. Each pool was quantified using quantita-
tive PCR (qPCR) with PreHyb primers (Table S3; Rohland et al., 2015) 
and amplification settings as in Brealey et al. (2020).

Each sample pool and both library blanks received a unique 
combination of indices (Table  S1) using the reaction mixture and 
cycling conditions in Brealey et al.  (2020) for indexing PCR. The 
number of cycles ranged from eight to 10, depending on the copy 
number estimated from qPCR (Table S1). Library preparation blanks 
were amplified for 10 cycles to maximize capture of potential con-
taminants. We performed MinElute purification and quantified in-
dexed pools with qPCR (as above), using primers i7 and i5 (Rohland 
et al., 2015; Table S3). Indexed sample pools were combined in equi-
molar amounts, except for library preparation blanks, of which we 
added 0.5 μl each, corresponding to the lowest amount added for 
any sample. The final sequencing pool was subjected to two-sided 
size selection with AmPure XP beads (Beckman Coulter) (0.5× fol-
lowed by 1.8×), which is optimized for trnL amplicons (~10–150 bp 
in length + 148  bp of barcoded and indexed adapters) and eluted 
in 30 μl EB buffer. The cleaned library pool was sequenced at the 
Uppsala Science for Life Laboratory on a single MiSeq lane with 150-
bp paired-end sequencing with version 2 chemistry.
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Using obitools version 1.2.13 (Boyer et al.,  2016), paired reads 
with quality scores >40 and overlap >10 bp were retained and 
merged. Sample identity for each read was established through its 
index and barcode, requiring an exact sequence match. Sequences 
were clustered into molecular operational taxonomic units (MOTUs), 
each representing a unique plant taxon (Valentini et al., 2009). A large 
number of MOTUs had fewer than 10 sequences across all samples 
and were removed, as recommended (e.g., Shehzad et al.,  2012). 
We also removed sequences that differed by exactly one nucleo-
tide from a more abundant sequence and had a total count less than 
5% of the more abundant sequence, following Boyer et al.  (2016). 
Taxonomic assignment used a custom-made reference database (see 
below). Based on the frequency of identity to the reference data-
base (Figure S1) and similar to other trnL-based studies of primate 
diet (e.g., Quéméré et al., 2013), we removed sequences below an 
identity threshold of 0.90, which are probably chimeric and enriched 
in sequencing or PCR errors.

2.6  |  Compiling plant trnL reference database

We built a local DNA barcoding reference library by download-
ing all 324,502 available sequences from NCBI GenBank using the 
search query: “(trnL[All Fields] OR complete genome[All Fields]) 
AND (plants[filter] AND (chloroplast[filter] OR plastid[filter]))” (last 
accessed December 2, 2021). In obitools, the sequence list was an-
notated with taxonomy information downloaded from NCBI (ftp://
ftp.ncbi.nih.gov/pub/taxon​omy/taxdu​mp.tar.gz, last accessed 
December 3, 2021). To complete the database of trnL genes, we 
used the same trnL g-h primers as in the wet laboratory to extract 
trnL variants in silico in the program ecopcr version 2.1 (Ficetola 
et al., 2010), following an established protocol (Boyer et al., 2016). 
We kept sequences 10–230 bp long with at most three primer mis-
matches in total (Taberlet et al., 2018). The final database contained 
21,308 trnL in silico amplicons, in 608 families and 5662 genera.

To evaluate the resolution of our reference database with re-
spect to local plant diversity, we compared plant taxa present in it to 
a list of plants known to occur in the Kahuzi and Itebero regions of 
KBNP (Yumoto et al., 1994) that we first updated to reflect current 
taxonomic classification using the Global Biodiversity Information 
Facility. The updated list contained 328 taxa, in 81 unique families 
and 234 genera. Of these, all families and 77.4% of genera were 
present in our trnL database.

2.7  |  Characterization of gorilla gut microbiome

We characterized gut microbial composition in 70 individuals in 
KBNP and NCA populations using a single sample per individual 
(Table S2). We selected the same sample used for dietary analyses 
and only dry season samples from the Bansamba group in NCA. To 
quantify possible contamination, we carried nine random extraction 
blanks through the entire data processing pipeline.

The V4 region of the 16S rRNA gene was amplified with prim-
ers 515F/806R (Table  S3) for each sample in duplicate. The 20-μl 
PCR contained 2 μl of extracted DNA, 5 μM each of the forward and 
reverse primer, 1× Phusion High-Fidelity Buffer, 0.02 units Phusion 
HF DNA polymerase (2 U μl−1), 0.012 mg DMSO and 0.05 μM (each) 
dNTPs. Thermal cycling conditions were: 30 s at 98°C, 25 cycles of 
98°C for 10 s, 52°C for 20 s and 72°C for 20 s, and 10 min at 72°C. 
PCR cycles were limited to 25 to minimize the risk of unspeci-
fied products and chimeras. Duplicate reactions were pooled and 
cleaned with AmPure beads (Qiagen).

Next-generation sequencing libraries were prepared from PCR 
products following the double-barcoding, double-indexing strategy 
(Kircher et al., 2012; Meyer & Kircher, 2010; Rohland et al., 2015; 
van der Valk et al.,  2017). As a result, each sample had a unique 
combination of two barcodes and two indices, which enabled bio-
informatic filtering of potential chimeric molecules and misassigned 
reads resulting from index hopping (van der Valk et al., 2017, 2020). 
For indexing, we determined the suitable number of PCR cycles (8–
11) based on qPCR of barcoded libraries, as above. Indexed libraries 
were quantified by qPCR and pooled in equimolar amounts for se-
quencing on a single MiSeq lane, using version 2 chemistry and 250-
bp paired-end sequencing at the Uppsala Science for Life Laboratory 
sequencing facility.

After demultiplexing sequencing reads and removing adapters 
(Brealey et al.,  2021), we estimated microbial amplicon sequence 
variants (ASVs) using dada2 (Callahan et al., 2016), which avoids bi-
ases of arbitrary similarity thresholds (Edgar,  2018). Forward and 
reverse reads were truncated to 200 and 150 bp, respectively, after 
which read quality scores dropped below 35. We merged paired-end 
reads, requiring ≥12 bp overlap, and removed sequences outside the 
range 250–256 bp and those with any barcode mismatch, as recom-
mended (Callahan et al., 2016).

Taxonomy was assigned using the SILVA 132 reference database, 
released in December 2017 (Quast et al.,  2012). Species-level as-
signment required a strict 100% match (Edgar, 2018). We removed 
singletons and ASVs labelled “Unassigned,” “Eukaryota,” “mito-
chondria” or “chloroplast,” but retained Archaea. Although archaeal 
amplification from the V4 region of the 16S rRNA gene is limited 
(Raymann et al., 2017), within-data set comparisons are nonetheless 
informative.

2.8  |  Statistical analyses of trnL and 16S data sets

To examine dietary and microbiome diversity, we analysed the trnL 
and 16S rRNA metabarcoding data sets, after first filtering out rare 
sequence variants of <0.5% relative abundance in every sample, as 
suggested (Deagle et al., 2019). We evaluated sampling effort and 
sequencing depth accumulation curves in the R packages “vegan” 
(Oksanen et al., 2020) and “ranacapa” (Kandlikar et al., 2018), respec-
tively. We checked whether the predicted number of taxa (asymp-
tote of the sequencing accumulation curve) minus actual number of 
taxa (richness) related to any of the considered biological variables 

ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
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or sequencing depth (read count) using a generalized linear model 
(GLM) with quasi-Poisson error distribution in the R package “lme4” 
(Bates et al., 2015).

We calculated two alpha diversity metrics for each data set: 
richness, or the number of taxa, and Shannon's diversity index, or 
evenness (Chao et al.,  2014). As recommended by McMurdie and 
Holmes (2013), we did not rarefy our data but included read number 
as the first factor in all models. To test the effects of population, 
social group, altitude, sex and age class on diversity metrics, we fit-
ted a GLM with quasi-Poisson (for richness) or gamma (for evenness) 
error distribution with logit link function, followed by Tukey hon-
estly significant difference (HSD) comparisons between levels of 
significant categorical variables (χ2 test with Bonferroni correction; 
Lenth et al., 2021).

To assess trends in diet and microbiome composition (beta di-
versity), we followed a strategy designed for the compositional na-
ture of metabarcoding data (Gloor et al., 2017; Weiss et al., 2017). 
We used Bayesian multiplicative zero replacement and centred 
and log-ratio (CLR) transformed each data set using the R packages 
“zcompositions” (Palarea-Albaladejo & Martín-Fernández, 2015) and 
“compositions” (van den Boogaart & Tolosana-Delgado, 2008). For 
the microbiome data set, we also computed compositional abun-
dance at phylogenetic balances using phylogenetic isometric log-
ratio transform (phILR; Silverman et al., 2017) by aligning sequences 
to the Greengenes 13_5 mega-phylogeny (DeSantis et al., 2006) in 
sepp using default parameters (Mirarab et al., 2012). We evaluated 
sources of variation in diet and microbiome beta diversity using 
PERMANOVA, via the function adonis2 in “vegan” (Anderson & 
Walsh, 2013), modelling Aitchison's dissimilarity (Euclidean distance 
between CLR or phILR values; Aitchison et al., 2000) as a function 
of ecological and biological variables. The predictor variables were: 
sequencing read count as first variable, even if p > .05; population; 
social group; sex; age class; and altitude. We evaluated the marginal 
effect of each predictor variable (by = “margin” argument), such that 
the sequential order of variables did not affect variable significance 
or effect size. Post hoc comparisons between levels of overall sig-
nificant variables were done using “pairwiseAdonis” with Bonferroni 
correction (Arbizu, 2020).

We estimated the covariance between diet and microbiome 
composition using a co-inertia analysis in the package “omicade4” 
and calculated the RV coefficient (Escoufier,  1973; Robert & 
Escoufier, 1976) and its significance using a Monte Carlo test with 
999 permutations (Meng et al.,  2014). To compare the effects of 
diet and other variables on the gut microbiome, we fit a multiple 
regression on matrices (MRM) model (Lichstein, 2007), an extension 
of the partial Mantel test, in “ecodist” (Goslee & Urban, 2007). The 
explanatory variables were straight-line geographical distance, al-
titude difference, diet composition (Aitchison distance), and social 
group and population as binary (same, 0, or different, 1). The influ-
ence of genetic distance (1 − genetic relatedness) was also modelled 
only within KBNP, since individual genetic relatedness cannot be 
accurately measured across isolated populations. Significance was 
assessed using 999 matrix permutations. To identify dietary and 

microbial taxa that may be responsible for compositional differences 
between populations and social groups, we used the R package 
“ALDEx2” and focused on differences with effect sizes >1 (Wilcoxon 
rank sum test with correction for false discovery rate p < .05; Gloor 
et al., 2017).

3  |  RESULTS

3.1  |  Study populations of Grauer's gorillas are 
genetically differentiated

We identified 92 unique individuals in the three study popula-
tions: 59 in KBNP, 28 in NCA and five in MNP (Figure 1; Table S2). 
Individuals belonged to six different social groups and two solitary 
adult males in KBNP, two social groups in NCA and one group in 
MNP. Each individual was sampled 1–13 times, with 4–17 individuals 
per social group.

None of the 12 microsatellite loci deviated from Hardy–
Weinberg equilibrium after Bonferroni correction for multiple test-
ing (p > .1). On average, there were 6.1 alleles per locus (Table S2). 
The average observed and expected heterozygosities were 0.66 and 
0.68, respectively. The test for global heterozygote deficiency was 
not significant overall (p = .6) or in any population (p > .4). The link-
age disequilibrium test was not significant for any locus pair (p > .1). 
Thus, we considered all loci in further analyses.

Analysis of the three populations using structure (Porras-Hurtado 
et al., 2013) revealed two distinct genetic groups (optimal K = 2 ac-
cording to ∆K; Evanno et al., 2005; Figure S2). The clusters differ-
entiated gorillas in high-altitude KBNP (2500 m asl) from those in 
low-altitude NCA and MNP (600–830 m asl) (Figure S3), consistent 
with PCoA (Figure 2a). All three populations were significantly dif-
ferentiated from one another (F'ST = 0.26–0.45; p < .001; Table S4A), 
with largest differences between MNP and KBNP, which are fur-
thest apart geographically (215 km). Individuals within social groups 
were more closely related than individuals in different groups in the 
same population (AMOVA ϕ = 0.12, p < .001; Table S4B), consistent 
with gorilla social structure (Harcourt & Stewart, 2013).

3.2  |  Negative controls in trnL and 16S rRNA 
metabarcoding

To quantify contamination in the diet (trnL) and the gut microbiome 
(16S rRNA) data sets, we analysed DNA extraction blanks, PCR-
negative controls, unused barcode combinations, and library prepa-
ration negative controls (for diet; Tables S2, S5 and S6). In the diet 
data set, the extraction and PCR negatives contained 16 trnL reads 
in total, identified to 12 plant taxa. Each taxon had one to three reads 
summed across all negative controls, yet up to 3620–154,357 reads 
per sample (Table  S5). There were no reads with unused barcode 
combinations, suggesting that barcode cross-contamination was 
negligible. In the microbiome data set, four extraction blanks had 
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90 reads in total, whereas the remaining five had none (Table S6). 
These mapped to eight 16S taxa, with three to 26 reads each. As 
with the diet data, these taxa were among the most abundant in 
the samples (up to 2244–14,307 reads per sample). This pattern is 
consistent with low-level cross-contamination from high-quantity 
into low-quantity samples typical for large-scale sequencing studies 
(Eisenhofer et al., 2019).

3.3  |  Diet of Grauer's gorillas

We characterized the diet of 92 Grauer's gorilla individuals (Table 1) 
using the chloroplast trnL P6 loop locus. After data filtering, we re-
tained 5,367,160 trnL sequencing reads (45% of raw reads) belonging 
to 120 unique taxa (Table S7A, S8). PCR replicates were more similar 

to each other than to other samples in alpha and beta diversity 
(p < .001, Figure S4), and hence their sequencing data were pooled. 
Sample size and sequencing depth were sufficient to capture dietary 
diversity in KBNP and NCA, but not in MNP, where only five indi-
viduals were sampled (Figure S5).

Of the 120 detected dietary plant taxa, 115 could be identified 
to at least the order level (in 29 different orders), 110 to family (in 
49 families) and 44 to genus (in 35 genera) level (Table S8). All but 
21 taxa have previously been recorded in the Grauer's gorilla diet 
in KBNP, NCA, and Mt. Tshiaberimu (Kambale, 2018; van der Hoek, 
Pazo, et al., 2021b; Yamagiwa et al., 1994, 2005 Yumoto et al., 1994; 
Table S8, columns S and T; Figure S6). These 21 taxa are, however, 
present in the region (Spira et al., 2018).

Each Grauer's gorilla faecal sample contained 36–80 trnL taxa 
(mean 58.52 ± 10.83; Figure  3a), with each population showing 

F I G U R E  2  (a) PCoA of genetic distances among individuals based on microsatellites. NMDS of (b) dietary composition and (c) gut 
microbiome composition, both in Aitchison distances. Individual samples are coloured by population of origin, with 95% confidence interval 
ellipses for each population (brown = KBNP, green = NCA, cyan = MNP, as in Figure 1)
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TA B L E  1  Most prevalent dietary plant taxa by population

ID
NCBI-based finest 
taxonomic identity

Distribution-refined 
probable identity

Mean 
abundance 
KBNP

Mean 
abundance 
NCA

Mean 
abundance 
MNP

KBNP 
ranka

NCA 
ranka MNP ranka

1 Urera sp. Urera hypselodendron 35.1% 0.2% 0.1% 1 14 19

2 Apocynaceae sp. Taccazea apiculata 21.0% 0.2% 0.2% 2 16 17

6 Urticaceae sp. Urticaceae sp. 6.0% 12.9% 0.06% 3 13 22

8 Myristicaceae sp. Pycnanthus, Staudtia or 
Afradisia sp.

0.05% 14.5% 8.1% 13 1 5

5b Apocynoideae sp. Baissea, Funtumia or 
Motandra sp.

4.6% 8.9% 14.7% 4 2 3

25 Megaphrynium 
macrostachyum

Megaphrynium 
macrostachyum

0.01% 3.4% 0.05% 25 3 26

31 Phyllanthaceae sp. Phyllanthaceae sp. 0.01% 0.01% 18.8% 46 63 1

32 Alafinae sp. Strophanthus sp. 0.02% 0.2% 12.9% 29 26 2

14b Ficus sp. Ficus sp. 2.7% 5.6% 1.9% 8 6 14

aEach taxon was first ranked by its relative abundance per sample, then taking the mean across all samples in a population to obtain population-level 
ranks. This measure thus reflects the average abundance rank of a given taxon across all samples in a population. The top three ranking taxa per 
population are shown, as well as all taxa present in every sample above the relative abundance threshold of 0.5% (shaded rows).
bThese taxa had greater than 1% relative abundance in all three populations.
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a different set of most abundant and prevalent plants (Table  1; 
Table  S8). Five plant taxa were found in every sample collected 
during the dry season in KBNP and NCA, even though they showed 
very low abundance in some samples (0.1%). Only two plant taxa had 
abundances over 1% in all three populations (Table 1).

3.4  |  Geography, altitude and social group 
influence dietary diversity and composition in 
Grauer's gorillas

Dietary richness and evenness differed significantly by population 
and social group (p < .001, Table S9). Both were significantly higher 
in low-altitude populations (NCA and MNP) than in high-altitude 
KBNP (mean richness: 66.8 ± 7.5 taxa in MNP, 65.6 ± 6.1 in NCA vs. 
54.5 ± 10.4 in KBNP, p < .001; evenness: 10.0 ± 1.3 in MNP, 8.4 ± 2.5 
in NCA vs. 5.4 ± 2.6 in KBNP, p < .001; Figure S7). Altitude was also 
inversely related to dietary richness and evenness in KBNP (p < .001; 
Figure S8). In contrast, neither sex nor age (age class available for 
70 individuals) had an effect on dietary richness or evenness (p > .3; 
Table S9). We obtained qualitatively similar results when analysing 
only dry season samples (i.e., excluding Chimanuka group, three in-
dividuals from the Bansamba group, and MNP; Table S9), with the 
exception that dietary richness did not significantly change with al-
titude in KBNP (p = .2).

Hierarchical clustering of dietary composition first separated 
high-altitude (KBNP) from low-altitude (NCA and MNP) locations 
(Figure 3b), even though MNP samples were collected during the 
rainy season. Within populations, individuals clustered by social 
group. Nonmetric multidimensional scaling (NMDS) ordination 
showed a similar pattern (Figure 2b). After accounting for sequenc-
ing depth, dietary composition was significantly influenced by pop-
ulation (p < .001, explaining 27.9% of the variance) and social group 
(p < .001, explaining an additional 21.6%) but not by sex (p = .7) or 
age (p =  .2; Table 2). All social groups differed significantly from 
each other (p < .05; Table 2), except for some comparisons involv-
ing the Mufanzala2 group, which had a small sample size (n = 4). 
Restricting the analysis to two similarly sized social groups from 
each of the NCA and KBNP populations collected during the dry 
season, we confirmed the presence of significant between-group 
and between-population diet differences (Table S10), demonstrat-
ing that our results are robust to differences in sample size and 
season.

Using aldex2, we identified differentially abundant dietary taxa 
across populations. These taxa were among the most abundant in 
each population (Table  1), most of which were absent or present 
at very low abundance in other populations (Figure 3c; Table S11). 
Out of the 21 previously undescribed food items, 13 were signifi-
cantly more abundant in low-altitude populations compared to the 
high-altitude population KBNP (Tables S8 and S9; Figure S6). Within 

F I G U R E  3  (a) Plants consumed by Grauer's gorillas in KBNP, NCA and MNP. The 15 most abundant taxa across all samples are shown. 
Populations are designated with coloured bars below (MNP cyan, NCA green, KBNP brown). (b) Hierarchical cluster dendrogram of Ward's 
sum of squares based on minimum variance of squared dissimilarities (Murtagh & Legendre, 2014) of centred-log-ratio (CLR) transformed 
taxon abundance. Branches are coloured by social group, following the code in Figure 1. (c) Plant taxa in Grauer's gorilla diet, coloured by the 
population in which they are significantly more abundant (aldex2 Wilcoxon test p < .05). For taxa that differ between two or more population 
pairs, the colour corresponds to the population with greatest effect size. Grey taxa do not differ significantly in abundance between 
populations. Branch lengths do not reflect phylogenetic distance. Diagram generated with the “metacoder” package in R (Foster et al., 2017)
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populations, each social group consumed between two and 32 dif-
ferentially abundant taxa (mean = 11.3 ± 11.6).

3.5  |  Gut microbiome of Grauer's gorillas in Kahuzi-
Biega National Park and Nkuba conservation area

We characterized 16S rRNA diversity in 70 individuals for which we 
also had dietary data (Figure 1c; Table S2), using the same samples as 
for diet. Two samples had low read counts (five and 348, compared 
to the mean 43,611 ± 11,357) and were excluded. Our final data set 
consisted of 68 unique individuals and contained 2,965,516 reads in 
417 unique microbial taxa (Table S12).

The sample accumulation analyses suggested that additional 
sampling of faeces from more individuals could uncover novel gut 
commensals at the population level (Figure  S9A). However, per-
sample sequencing depth was sufficient to obtain a good represen-
tation of host microbiome diversity (Figure  S9B). We detected 16 
different phyla and 48 different families of microorganisms in the 

gut microbiome of Grauer's gorillas. All taxa were identified at least 
to the family level, 309 taxa to the genus level and 17 to the spe-
cies level (Table S12). None were closely related to dominant soil mi-
croorganisms (Delgado-Baquerizo et al., 2018). We detected seven 
Archaea ASVs, belonging to the families Methanomethylophilaceae 
and Methanobacteriaceae. Each faecal sample contained on average 
200.29 ± 19.6 taxa (min = 160, max = 237), each with average abun-
dance of 0.2 ± 0.4%. Eleven taxa were present in every gorilla faecal 
sample from both populations (the core gut microbiome); however, 
populations differed in the most abundant taxa (Table 3). In accor-
dance with previous studies on great apes (Campbell et al.,  2020; 
Gomez et al.,  2016; Hicks et al.,  2018; Nishida & Ochman,  2019), 
Grauer's gorilla gut microbiomes were dominated by the phyla 
Firmicutes (65.6% in KBNP, 60.0% in NCA), Bacteroidetes (20.7% 
in KBNP, 23.1% in NCA), Spirochaetes (3.5% in KBNP, 5.4% in NCA), 
Chloroflexi (2.7% in KBNP, 4.3% in NCA), Proteobacteria (2.8% 
in KBNP, 3.4% in NCA) and Actinobacteria (2.0% in KBNP, 1.8% 
in NCA; Figure  S10), representing a diversity of microbial families 
(Figure 4a).

TA B L E  2  PERMANOVA model of factors influencing dietary composition

Variable Df R2 F p

Post hoc tests

Significant pairwise comparisons pBonferroni

Read count 1 .01 1.73 .05 –

Population 2 .279 17.80 <.001 NCA – KBNP <.001

KBNP – MNPa <.001

MNP – NCA <.001

Social Group 6 0.216 4.56 <.001 KBNP

Chimanukaa – Nouvelle Famille .02

Chimanukaa – Mankoto .005

Chimanukaa – Mpungwe .005

Chimanukaa - Mufanzala2 .02

Chimanukaa – Namadiriri .005

Nouvelle Famille – Mankoto .02

Nouvelle Famille – Mpungwe .02

Nouvelle Famille – Namadiriri .005

Mankoto – Mpungwe .005

Mankoto - Mufanzala2 .03

Mankoto – Namadiriri .005

Mpungwe – Namadiriri .005

Mufanzala2 – Namadiriri .02

NCA

Membe1 – Bansamba(a) .005

Sex 1 .005 0.82 .6 –

Age classb 2 .022 1.28 .1 –

Note: PERMANOVA implemented using the adonis2 function (Oksanen et al., 2020) testing the marginal effect of each predictor variable.
aSamples from MNP, Chimanuka group in KBNP, and three out of 17 individuals from Bansamba group in NCA were collected during the rainy season, 
whereas all other samples were collected during the dry season. Removal of these individuals from this analysis did not affect the results (Table S10).
bAge class (Infants [N = 7], Juveniles/subadults [N = 21], Adults [N = 42]) was modelled separately using a reduced data set, since only 70 of the 92 
samples had age estimates. In this model the other predictor variables had estimates similar to those of the complete data set.
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3.6  |  Diversity and composition of the gut 
microbiome in Grauer's gorillas correlates with 
population and social group identity

Gut microbiome richness and evenness were significantly higher in 
the high-altitude population (richness: mean KBNP = 202.2 ± 20.0 
taxa vs. NCA  =  190.2 ± 14.0; p  =  .02; evenness: 83.7 ± 17.8 vs. 
74.2 ± 12.8, p  =  .01), the opposite trend to diet, although neither 
microbiome richness nor evenness were related to altitude within 
KBNP (p  =  .07, .9; Table  S13; Figure  S11). While richness of the 
microbiome did not differ by sex (p  =  .2), females had more even 
microbiomes than males (85.7 vs. 78.5, p  =  .002). There were no 
differences by age (richness p = .3; evenness p = .1). The gut micro-
biome alpha diversity differed significantly by population even after 
removing rainy season samples (i.e., excluding Chimanuka group; 
richness p = .001, evenness p = .008; Table S13).

Gut microbiome composition differed between the two pop-
ulations (KBNP and NCA) (Figure  2c) and among social groups 
(Figure 4a,b), with population explaining 10.5% of the total variance, 
and social group in KBNP explaining an additional 17.8% (p < .001; 
Table  4). Intergroup differences were significant, including among 
groups collected during the dry season (Table 4). Overall, gut micro-
biome dissimilarity was largest between individuals from different 

populations, followed by individuals from different social groups, and 
smallest between individuals from the same social group (Figure 5c). 
Altitude explained 12.7% of the variance across populations (N = 56, 
p < .001, altitude range 1824 m) and accounted for 3.8% in KBNP 
(N  =  45, p  =  .01, altitude range 320 m). Genetic distance among 
gorillas was not a significant predictor of gut microbiome compo-
sition in NCA (N = 11, ρ = −0.08, p = .7), whereas in KBNP it had a 
weak effect (N = 57, ρ = 0.06, p = .02) that disappeared when social 
group was also considered (N = 57, ρ = 0.015, p =  .3; Figure S12). 
Microbiome composition did not differ by sex or age within social 
groups (p > .05, Table 4), but sex was a weak but significant predictor 
of microbiome composition when social group was not considered 
(R2 = .03, p = .005; Figure S13). Results using only dry season sam-
ples (Table  S14A) and phylogeny-informed (phILR) distances were 
qualitatively similar (Table S15).

We identified 42 taxa that differed significantly in abun-
dance between NCA and KBNP (p < .05, effect size > 1; Table S16). 
In KBNP, gorilla gut microbiomes had a higher abundance of 
Muribaculaceae and Erysipelotrichaceae, whereas in NCA the fami-
lies Spirochaetaceae and Christensenellaceae were more abundant. 
At a finer phylogenetic level, the relative abundance of specific 
ASVs in shared families such as Rikenellaceae, Lachnospiraceae and 
Ruminococcaceae differed by population.

TA B L E  3  Most prevalent gut microbiome taxa by population

ASV NCBI-based finest taxonomic identity

Mean 
abundance 
KBNP

Mean 
abundance 
NCA

Rank 
KBNPa

Rank 
NCAa

3b Bacteria; Firmicutes; Clostridia; Clostridiales; Family XIII; AD3011 group 2.40% 2.49% 1 3

6b Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae; 
UCG-004

2.32% 1.16% 2 17

4 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Faecalibacterium 2.78% 0.84% 3 39

5b Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae; RC9 gut group 1.61% 6.36% 7 1

2b Bacteria; Firmicutes; Clostridia; Clostridiales; Christensenellaceae; R-7 group 2.90% 3.97% 4 2

1b Bacteria; Chloroflexi; Anaerolineae; Anaerolineales; Anaerolineaceae; Flexilinea 2.72% 4.27% 6 4

22 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella 7 1.09% 0.18% 10 85

21 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; UCG-005 0.84% 0.99% 13 18

31 Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Oribacterium 0.96% 0.27% 19 61

30 Bacteria; Proteobacteria; Gammaproteobacteria; Betaproteobacteriales; 
Burkholderiaceae; Sutterella

0.95% 0.14% 16 86

33 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; 
Ruminiclostridium 9

0.73% 0.76% 17 35

59 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; UCG-002 0.39% 0.51% 43 31

70 Bacteria; Actinobacteria; Coriobacteriia; Coriobacteriales; Eggerthellaceae; 
Senegalimassilia

0.32% 0.48% 67 40

152 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae 0.15% 0.11% 100 123

aEach taxon was first ranked by its relative abundance per sample, then taking the mean across all samples in a population to obtain population-level 
ranks. This measure thus reflects the average abundance rank of a given taxon across all samples in a population. The top three ranking taxa per 
population are shown, as well as all taxa present in every sample above the relative abundance threshold of 0.5% (shaded rows).
bThese taxa had greater than 1% relative abundance in all three populations.
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F I G U R E  4  Gut microbiome composition (a) at the family level and (b) showing population clustering in composition, using CLR Aitchison 
distances dendrogram based on Ward's clustering criterion (Murtagh & Legendre, 2014). Branches are colored by social group, following the 
code in Figure 1.
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TA B L E  4  PERMANOVA model of factors influencing microbiome composition

Variable Df R2 F p

Post hoc tests

Significant pairwise comparisons pBonferroni

Read count 1 .019 1.68 .05 –

Population 1 .105 7.97 <.001 KBNP – NCA <.001

Social Group 5 .178 2.18 <.001 Chimanukaa – Nouvelle Famille .004

Chimanukaa – Mankoto .01

Chimanukaa – Mpungwe .007

Chimanukaa – Namadiriri .004

Nouvelle Famille – Mankoto .02

Nouvelle Famille – Namadiriri .01

Mankoto – Mpungwe .007

Mankoto – Namadiriri .004

Sexb 1 .014 1.18 .2 –

Age classc 2 .031 1.22 .2 –

Note: PERMANOVA implemented using the adonis2 function (Oksanen et al., 2020) testing the marginal effect of each predictor variable.
aSamples from Chimanuka group in KBNP were collected during the rainy season, whereas all other samples were collected during the dry season. 
Results were similar when removing Chimanuka (Table S14A).
bAlthough not significant in this full model, sex had a weak but significant influence on gut microbial composition in a model containing population 
but not social group (R2 = 0.02, p = .03) and when excluding both social group and population (R2 = 0.03, p = .005).
cAge class (Infants [N = 3], Juveniles/subadults [N = 21], Adults [N = 38]) was modelled separately using a reduced data set, since only 62 of the 68 
samples had age estimates. In this model the other predictor variables had similar estimates as in the complete data set.
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3.7  |  Diet and gut microbiome covary across 
studied populations

Compositional differences in dietary and gut microbial profiles 
showed significant co-inertia (RV  =  0.557, p < .001; Figure  5b) 
and were correlated (ρ = 0.32, p < .001; Figure 5c), even after re-
moving the rainy season samples (RV = 0.599, p < .001; ρ = 0.35, 
p < .001). We detected no correspondence between dietary and 

gut microbial richness (p =  .2; Figure 5a) or evenness (p =  .1). In 
our data set, population and social group were significantly cor-
related with gut microbiome composition, whereas dietary com-
position, geography and genetic relatedness had no effect after 
accounting for social group and population (Tables  5, S14B and 
S17; Figure S12). As with other analyses, data set subsampling indi-
cated that results were robust to sample size differences between 
populations (Table S18).

F I G U R E  5  Relationship between diet and gut microbiome. (a) Microbiome and dietary richness, assessed as per-sample total sequence 
count, are not correlated (p = .2). (b) High multiple co-inertia (MCIA) between microbiome and diet composition in CLR-transformed space 
with Aitchison distance (RV = 55.7%, MC p < .001 based on 999 permutations). (c) Compositional differences (Aitchison distances) in diet and 
microbiome between samples (i.e., individual gorillas) are correlated in matrix regression
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4  |  DISCUSSION

In this study, we applied faecal genotyping and DNA metabarcoding 
to characterize the diet and gut microbiome of individually identified 
Grauer's gorillas in three genetically differentiated populations (Baas 
et al., 2018), one of which (MNP) has not been previously studied. 
These populations span the Grauer's gorilla altitudinal range, which 
is the widest of all gorilla taxa (Plumptre et al., 2016), providing us 
with the opportunity to test for dietary and gut microbial codifferen-
tiation. In particular, we set out to investigate if the gut microbiome 
may facilitate local adaptation by supporting digestion of diverse 
foods. Alternatively, the presence of conserved dietary patterns 
across populations along with a core gut microbiome would indicate 
a stabilizing role of gut microorganisms, possibly limiting ecological 
adaptation. In Grauer's gorillas, some differences in diet between 
populations have been suggested previously (van der Hoek, Pazo, 
et al.,  2021b; Yamagiwa et al.,  2005), but the gut microbiome has 
never before been assessed.

Our joint diet and gut microbiome analyses provide little evi-
dence for dietary conservation across populations but uncover a 
shared set of gut microorganisms among geographically, genetically 
and ecologically distinct populations of Grauer's gorillas. We detect 
covariation in diet and microbiome, probably as a result of habitat 
differences and social factors among populations and social groups. 
Our results are thus consistent with the notion that the gut microbi-
ome, although being conserved to some degree, provides sufficient 
flexibility to allow exploitation of diverse dietary resources, and 
hence could contribute to local adaptation. In addition, we obtain 
evidence that dietary choice in Grauer's gorillas is at least partially 
determined by plant availability, with a larger dietary repertoire at 
lower altitude.

4.1  |  New insights into Grauer's gorilla diet and 
feeding behaviour

Grauer's gorillas in the three study populations consumed 120 dif-
ferent plant taxa (Table S8), similar to reported dietary composition 
and diversity from observational studies (116 and 100 different 

plants; van der Hoek, Pazo, et al.,  2021b; Yamagiwa et al.,  2005; 
respectively). Low-altitude populations consumed a greater di-
versity of plants than high-altitude populations (Figures  3 and S7; 
Table S9), consistent with the elevational biodiversity gradient (Imani 
et al., 2016; Rahbek, 1995). We documented 54–66 different plant 
taxa in each faecal sample, which is considerably more than the num-
ber of plants consumed based on behavioural observations (17 plant 
taxa per day on average in KBNP; Yamagiwa et al., 2005). In captiv-
ity, gorilla gut retention time is 24–60 h (Remis,  2000). Therefore, 
each faecal sample may represent plants consumed over several 
days, with some items digested faster than others. Alternatively, our 
method could capture taxa that are missed in observational studies 
because they are consumed infrequently, in small quantities, at times 
of the day that are rarely observed (early in the morning or late in the 
evening), or which may be contaminants, nest building material or 
involved in play or display and unrelated to diet.

We detected 21 plant taxa that have not, to our knowledge, 
been reported as Grauer's gorilla foods (Table S8; Figure S6). Some 
of these plants grow in KBNP (Spira et al., 2018) and are consumed 
by mountain gorillas (e.g., Solanoideae; Rothman et al.,  2014; 
Watts,  1984) or western lowland gorillas (e.g., Laurales; Remis 
et al., 2001). Other plants, such as Gnetum and Humiriaceae, have 
not been documented in KBNP but are known western lowland 
gorilla foods (Rogers et al., 2004; Takenoshita & Yamagiwa, 2008), 
which is consistent with their significantly higher abundance in the 
low-altitude sites of MNP and NCA.

Grauer's gorillas in different populations consumed distinct diets 
(Figures 2 and 3; Tables 1 and 2), with only two taxa shared across 
all three populations at an average abundance of >1% per sample: 
Ficus sp. and Apocynoideae sp. (probably Baissea sp., Funtumia sp., 
or Motandra sp. based on plant distribution; Spira et al., 2018). At 
broader taxonomic scales, all individuals consumed four plant fam-
ilies (Urticaceae, Apocynaceae, Moraceae and Vitaceae), but the 
relative abundances varied considerably across populations, from 
less than 1% to up to 42%. The detection of shared taxa suggests 
that the same plants or their close relatives are present in all three 
study sites. However, the pronounced differences in their relative 
abundance suggest either that (i) their availability differs, and go-
rilla dietary choice is essentially passive and primarily based on food 

TA B L E  5  MRM model comparing the effects of geography, diet and sociodemographic factors on Grauer's gorilla gut microbiome 
compositiona

Gut microbiome composition across populations MRM model statistics

Explanatory variable Spearman's ρ p N R2 F-statistic

Geographical distance 0.07 .4 56 .278 98.35

Altitudinal difference −0.08 .6

Diet compositionb −0.19 .07

Population 0.64 <.001

Social group 0.45 <.001

aMicrobiome and diet composition in Aitchison distances.
bModel results without Chimanuka are shown in Table S14B.
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availability, or (ii) that gorilla dietary choice is strongly determined 
by social factors, and food selection is a result of variation in cul-
turally transmitted feeding preferences that differ across popula-
tions and social groups. Comparative vegetation surveys in different 
gorilla populations could help distinguish between these possibili-
ties. Higher dietary diversity of low-altitude populations supports 
the notion of rather opportunistic consumption of available plants. 
However, we also uncover dietary differences among social groups 
from the same population, suggesting that social factors also play a 
role. Since gorilla groups show extensive range overlap, they would 
be well suited for future investigations into the role of cultural vs. 
ecological factors affecting dietary choices by evaluating if group-
specific dietary patterns persist even when different social groups 
use the same habitat.

4.2  |  The role of Grauer's gorilla gut microbiome in 
ecological adaptation

In accordance with previous studies (Amato et al., 2019; Campbell 
et al.,  2020; Gomez et al.,  2016; Moeller et al.,  2014), we de-
tect evidence for a Grauer's gorilla core gut microbiome (present 
in every sample after removing low-abundance taxa, Methods; 
Table 3, Figure 4). We identified 11 taxa belonging to carbohydrate-
degrading clades that were present in all study samples. Many of the 
same phyla, families and genera are also common in other great ape 
gut microbiomes, including western lowland gorillas, chimpanzees 
and humans (Campbell et al.,  2020; Fontsere et al.,  2021; Gomez 
et al.,  2015, 2016; Hicks et al.,  2018; Nishida & Ochman,  2019). 
Nevertheless, gut microbiome composition in Grauer's gorillas dif-
fered by population and to a lesser extent by social group, though 
considerably less so than dietary composition. This could be ex-
plained by functional constraints placed on the gut microbiome, with 
key taxa required to perform essential digestive functions, whereas 
other taxa vary and codiversify with the host. Indeed, interspecies 
studies find a strong effect of host evolutionary relationships on pri-
mate gut microbiome structure and composition (Amato et al., 2019) 
and we expected to detect similar, albeit less pronounced differ-
ences across isolated populations.

Our results indicate that dietary choice is not constrained by 
the gut microbiome. This is consistent with many studies showing 
that animals, including many primates, experience seasonal dietary 
changes, which are also accompanied by gut microbiome changes 
(Baniel et al.,  2021; Gomez et al.,  2016; Hicks et al.,  2018; Orkin 
et al.,  2019; Sharma et al.,  2020). Here we detect differences be-
tween isolated populations sampled during the same season. This 
is probably the result of microbiome–host codiversification coupled 
with plasticity of the gut microbial community that may facilitate local 
adaptation to different environmental conditions. Interpopulation 
differences tended to derive from differential abundance of spe-
cific taxa within common bacterial families, such as Lachnospiraceae 
and Rikellenaceae. An example of potentially adaptive popula-
tion differences is Treponema (ASV322, Spirochaetaceae), which 

was significantly less abundant in KBNP compared to NCA. Hicks 
et al. (2018) found a correspondence between Treponema and plant 
taxa Marantaceae and Zingiberaceae in western lowland gorillas and 
suggested that it was due to the high fibre content of these fallback 
foods. We find the same relationship, with significantly higher abun-
dances of Marantaceae and Zingiberaceae in NCA, which are im-
portant for Grauer's gorillas at low elevation (van der Hoek, Pazo, 
et al., 2021b).

We did not detect strong effects of genetic relatedness or geo-
graphical distance on gut microbiome composition after accounting 
for population and social group identity, despite clear group-specific 
microbiome patterns. It is noteworthy that social group identity, geo-
graphical and genetic distance are all strongly correlated with each 
other (Table S17). Our findings thus support previous studies that 
show the influence of sociality on gut microbiome composition in 
primates (chimpanzees, Degnan et al., 2012; Moeller et al., 2016; ba-
boons, Tung et al., 2015; colobus monkeys, Wikberg et al., 2020; black 
howler monkeys, Amato et al., 2017; sifakas, Perofsky et al., 2017, 
2021; Rudolph et al., 2022; humans, Dill-McFarland et al., 2019) and 
other group-living animals (e.g., bighorn sheep, Couch et al., 2020). 
Members of the same social group travel together and experience 
the same environments over extended periods of time, which could 
synchronize their diet and also their microbiome. The gut microbi-
ome may in addition be directly influenced by social interactions, 
such as grooming and coprophagy (Amato et al.,  2016; Archie & 
Tung,  2015; Graczyk & Cranfield,  2003). However, this does not 
mean that host genetics are unimportant, as longitudinal studies in 
Amboseli baboons have shown that the primate gut microbiome is 
highly heritable, which cannot easily be detected in shorter-term 
studies (Grieneisen et al., 2021).

The plasticity of the gut microbiome supports its potential role in 
facilitating adaptation to different ecological conditions, which has 
important consequences for species evolution, dispersal and con-
servation. Adaptation to changes in ecological conditions as a result 
of climate change, range expansion or dispersal into novel habitats 
may be supported by the ability to digest diverse foods. Habitat-
biased dispersal, with dispersal decisions probably driven by the 
availability of familiar foods, has been reported in mountain goril-
las (Guschanski et al.,  2008). If the microbiome restricted dietary 
choice, we would expect much greater consistency of dietary items 
across populations than observed here, particularly as similar food 
plants appear to be available in different regions. This means that 
gut microbiome flexibility may facilitate adaptation to novel habi-
tats during translocations of individuals or populations, which is 
an open question in conservation management (West et al., 2019). 
Nevertheless, the gut microbiome may impose constraints on diet 
by driving selection of foods of similar nutrient content, even if they 
differ taxonomically. For example, giant pandas have typical carni-
vore gut microbiomes despite being bamboo specialists, because 
the macronutritional value of consumed bamboo is similar to that of 
meat (Nie et al., 2019). Similarly, the gut microbiome of wild rhesus 
macaques is strongly correlated to seasonal patterns of macronu-
trient intake, but not food type (fruit, leaves, etc.; Cui et al., 2021). 
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Metabolic dietary analyses, as conducted for other gorilla species 
(e.g., Gomez et al., 2015; Rothman et al., 2008), will enable inves-
tigations of whether nutritional values are conserved in different 
populations.

4.3  |  Understanding diet and ecology of wild 
animals requires a combination of approaches

As with every method, the metabarcoding approach to diet and 
microbiome faces limitations, specifically in marker gene selection, 
reference database bias, threshold decisions and interpretation of 
abundance. While Grauer's gorillas predominantly feed on plants, 
they occasionally consume insects and fungi (van der Hoek, Pazo, 
et al.,  2021b; Yamagiwa et al.,  1991), which are not characterized 
using a chloroplast gene, trnL. For dietary analysis of omnivorous 
species, expanding to multiple loci will be necessary (e.g., ITS for 
fungi, CO1 for insects; Taberlet et al., 2018). Further, metabarcod-
ing studies are limited by the content of reference databases, which 
may be incomplete for biodiversity-rich or extreme habitats and 
unstudied microbiomes (Hird, 2017; Taberlet et al., 2018). Similarly, 
genuine dietary or microbial taxa could be removed depending on 
the chosen thresholds for sequence identity and relative abundance. 
We used conservative values similar to other studies of diet and 
gut microbiomes (Deagle et al., 2019; Hibert et al., 2013; Quéméré 
et al., 2013; Srivathsan et al., 2016). However, genuine taxa could 
still have been removed, particularly for dietary characterization due 
to the small size and high variability of the trnL locus. Additionally, 
abundance estimates may not be an accurate reflection of reality 
(Deagle et al., 2019; Gloor et al., 2017). DNA copy number can be 
biased by plant tissue type (i.e., fruit vs. leaves, with leaves con-
taining more chloroplasts; Egea et al.,  2010), the copy number of 
the rRNA locus, relative digestibility (i.e., amount of fibre) and PCR 
amplification success (reviewed by Deagle et al.,  2019). However, 
other methods for dietary characterization also face biases. For 
example, accuracy of macroscopic faecal analysis depends on the 
types of tissues consumed and the extent of digestion (King & 
Schoenecker, 2019). Observational studies can overestimate the im-
portance of foods with longer handling times (Matthews et al., 2020) 
and require habituating study animals, which may make them more 
vulnerable to poaching and increase exposure to human-transmitted 
diseases (Green & Gabriel, 2020). Hence, understanding ecological 
and particularly dietary diversity of different animal species would 
benefit from a combination of approaches. Molecular methods are 
particularly suited for the study of unhabituated animals, in regions 
where tracking over a long time period is not feasible or desirable.

The use of shotgun metagenomics will ameliorate many of the 
limitations described above and also allow for more complete inter-
pretation by enabling functional characterization of gut microbial 
communities. It would thus be feasible to test if the gut microbiome 
differs in functional profiles as a result of dietary differences across 
populations, or if functions remain conserved, suggesting that nutri-
tional values of different diets are indeed similar. With the decrease 

in sequencing costs and massive growth of whole genome reference 
databases (Formenti et al., 2022; Lewin et al., 2018), the use of shot-
gun metagenomics will increase in the coming years, fuelling the ap-
plication of the hologenomic framework to wild animal populations.

5  |  CONCLUSIONS

Our results suggest that the animal gut microbiome may contrib-
ute to adaptation to new environments, while retaining a core set 
of potentially essential constituents. We provide evidence that this 
microbial plasticity is associated with dietary flexibility, and as such 
the gut microbiome may enable the host to exploit new resources, 
a precursor to local adaptation. If so, the microbiome may indirectly 
encourage subsequent cultural adaptation to feeding on new dietary 
items. We emphasize the utility of faecal sampling for minimally in-
vasive population monitoring of different aspects of endangered 
species biology, from genetics to ecology and foraging behaviour. 
A molecular approach can reveal otherwise clandestine insights into 
the biology of elusive animals and is particularly powerful when 
combined with traditional observational methods. Our results high-
light the importance of incorporating multiple axes of population dif-
ferentiation into studies of endangered animals, since safeguarding 
ecological and genetic biodiversity is the primary objective of spe-
cies conservation.
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