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1 Introduction
The present paper is conceived for the volume dedicated to Errico
Presutti’s 80-th birthday. It is a pleasure for us to contribute
to the celebration of a relevant friend and colleague as Errico.
We learnt a lot from Errico as regards the rigorous analysis of
the scaling limits in non-equilibrium statistical mechanics and
the derivation of effective macroscopic equations, thus the topic
of this paper seems appropriate.

In 1953 Bhatnagar, Gross and Krook [3] proposed a new kinetic equa-
tion giving a tool of analysis, more efficient than the Boltzmann equation
when the Knudsen number is small compared to the macroscopic scales,
but not small enough to neglect the typical kinetic behaviour in favour
of the hydrodynamic description given by the Euler equations. Hydrody-
namics deals with the slow evolution of fields parametrizing the local equi-
librium, which is typically established in a (much shorter) kinetic scale of
time. Maintaining the description given by the Boltzmann equation, as far
as practical questions are in focus, we are led to perform complex dynam-
ical calculations (e.g., numerically) to obtain precise information on such
local equilibria. One is tempted to simplify this task, replacing the two-
body collision by an instantaneous thermalization on a local Maxwellian,
constructed with the empirical parameters given by the dynamics itself.
The equation for the one-particle distribution function f = f(x, v, t) pro-
posed in [3] reads (neglecting mean field effects such as electric fields and
external forces)

(∂tf + v · ∇xf)(x, v, t) = ϱ(ϱMf − f)(x, v, t) , (1.1)

where

Mf (x, v, t) =
1

(2πT (x, t))3/2
exp

(
−|v − u(x, t)|2

2T (x, t)

)
, (1.2)

and

ϱ(x, t) =

∫
dv f(x, v, t) , ϱ u(x, t) =

∫
dv f(x, v, t)v ,

ϱ(|u|2 + 3T )(x, t) =

∫
dv f(x, v, t)|v|2 .

(1.3)

Here, we fix the space dimension d = 3, (x, v) denotes position and velocity
of a typical particle, and t is the time. The Maxwellian Mf has hydrody-
namic parameters (density, mean velocity and temperature) obtained from
local averages of f itself.



From particle systems to the BGK equation 129

It turns out that (1.1) has the same qualitative hydrodynamic be-
haviour of the Boltzmann equation, although the details of the interaction
do not appear anymore in the evolution. In practice, (1.1) is not used to
give a better approximation to the hydrodynamics, but, with respect to
the Boltzmann equation, it is a simpler and more flexible tool to perform
computations [12, 23].

We do not review here in any detail the very extensive literature (math-
ematical and applied) concerning BGK models. This includes numerical
methods, hydrodynamic limits (see [22], or [4] for a more recent contri-
bution), analysis of non-equilibrium steady states (as in [24, 10, 14]), or
applications to gas mixtures (e.g., [1, 6, 2]), to name a few topics only.

The scope of the present paper is to suggest a mathematical derivation
of (1.1) in terms of a minimal modification of a stochastic particle model,
introduced in Section 2 (a spatially inhomogeneous Kac model), which
is commonly used in kinetic theory for the justification of Monte Carlo
numerical schemes (such as the DSMC) in suitable scaling limits.

In two recent papers [7, 8] the convergence of ad hoc stochastic particle
systems to the solutions of the BGK equation (1.1) has been proved. Such
particle systems are very different from the microscopic dynamics intro-
duced below. Yet another, two-species particle system yielding the linear
and homogeneous BGK equation rigorously has been recently studied in
[17].

The BGK equation is frequently used in the physics community as an
efficient tool of computation, while the mathematicians consider it mostly
as a toy model. We believe that the BGK equation has interesting aspects
from the point of view of mathematical physics, which would deserve fur-
ther investigation. We hope our discussion to be a step in this direction.

The present analysis is purely formal. A rigorous approach would re-
quire considerable additional work starting, first of all, from constructive
existence and uniqueness theorems for the solution of Eq. (1.1). At the
moment, such results are available only when the first ϱ on the right-hand
side of (1.1) is replaced by a constant [19, 20] (although they can be ex-
tended to the case when ϱ is replaced by a bounded function λ(ϱ) > 0,
and this is a reasonable physical assumption).

2 Basic particle systems and their kinetic li-
mits

Let T3
ℓ be the 3-dimensional torus of side ℓ. We consider a system of N

identical particles in T3
ℓ and denote by ZN = (XN , VN ) a configuration of

the system, where XN = (x1, . . . , xN ) ∈ (T3
ℓ)

N and VN = (v1, . . . , vN ) ∈
(R3)N are the positions and velocities of the particles, respectively. We



130 P. Buttà, M. Pulvirenti, and S. Simonella

shall also use the notation ZN = (z1, . . . , zN ) with zj = (xj , vj). The
particles move according to the following stochastic dynamics. They are
moving freely until a random Poisson time of intensity scaling as N(N−1)

2 ,
when a pair of them is extracted with an equal probability scaling as

2
N(N−1) . If the particles of such pair are at a distance less than one, they
perform an elastic collision with a random impact parameter ω. Otherwise,
nothing happens. More precisely, if Φ = Φ(ZN ) is a test function on the
state space, the generator of the process reads, in microscopic variables,

LmΦ(XN , VN ) = VN · ∇XN
Φ(XN , VN ) +

∑
i<j

∫
dωB(ω; vi − vj)

× φ(|xi − xj |){Φ(XN , V i,j
N )− Φ(XN , VN )} .

Here φ(r) is supported in (0, 1) and can be taken, for simplicity, as the
characteristic function of such set; V i,j

N has the same components of VN

but for vi and vj , which are replaced by the outgoing velocities v′i and v′j
of a collision law with incoming velocities vi and vj and impact parameter
ω, {

v′i = vi − ((vi − vj) · ω)ω ,

v′j = vj + ((vi − vj) · ω)ω .

Finally, B > 0 is chosen as the cross-section of the Maxwell molecules with
angular cutoff for which ∫

dωB(ω;V ) = 1 .

Up to now we are arguing in terms of microscopic variables, in which
the size ℓ of the configuration space T3

ℓ is very large. Introducing now the
space-time scale parameter ε = ℓ−1 > 0, we pass to macroscopic variables

x → εx , t → εt ,

which belong to the unit torus T3
1 =: T3. In the low-density regime, one

assumes
ε2N = 1 . (2.1)

In the macroscopic variables, the generator takes the form

LmΦ(XN , VN ) = VN · ∇XN
Φ(XN , VN ) + LintΦ(XN , VN ) ,

where

LintΦ(XN , VN ) = ε2
∑
i<j

∫
dωB(ω; vi − vj)φε(|xi − xj |)

× {Φ(XN , V i,j
N )− Φ(XN , VN )}
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and
φε(r) =

1

ε3
φ
(r
ε

)
is an approximation of the delta function. The formal link with the Boltz-
mann equation is explained next.

Consider a symmetric probability distribution WN (ZN , t) solution to
the master equation (forward Kolmogorov equation),

(∂t + VN · ∇XN
)WN (ZN , t) = LintW

N (ZN , t) . (2.2)

From this we can obtain a hierarchy of equations for the marginals asso-
ciated to WN . In particular, denoting by fN

1 and fN
2 the one and two

particle marginals, the first hierarchical equation is

∂tf
N
1 (x1, v1, t) + v1 · ∇x1

fN
1 (x1, v1, t)

= ε2(N − 1)

∫
dω

∫
dx2

∫
dv2 B(ω; v1 − v2)φε(x1 − x2)

× {fN
2 (x1, v

′
1, x2, v

′
2, t)− fN

2 (x1, v1, x2, v2, t)} . (2.3)

If WN is initially chaotic, namely WN (ZN , 0) = f⊗N
0 (ZN ), assuming that

in the limit N → ∞ propagation of chaos occurs at any positive time and
taking ε as in (2.1), from (2.3) we formally obtain the Boltzmann equation.
A mathematical rigorization of this argument is not obvious at all1.

In spite of the presence of the factor ε2 = 1/N in the interaction opera-
tor, what we are dealing with is far from a mean-field model. Actually, the
model is rather intractable both at the mathematical and at the practical
level, at least at the scales of time of interest in the applications. It is in-
deed close to the more fundamental, Hamiltonian system of deterministic
particles following the Newton’s law.

The BGK equation cannot follow directly from the previous model, not
even modifying the scaling relation (2.1). In fact, when

εαN = 1 for α ∈ (2, 3] (2.4)

we obtain hydrodynamic equations for the slow time evolution of the fields
which parametrize the local equilibria.

Notice that, in the scaling (2.1), the average number of particles falling
in the ball Bε(x1) of radius ε around x1 is o(1), so that it is difficult to
figure out the instantaneous thermalization which is present in the BGK
model. Therefore, a natural proposal is a mean-field particle model in

1One can apply the method of Lanford for mechanical systems [16] to obtain a
short time validity result working in L∞(T3 × R3) (and assuming fast velocity decay).
Unfortunately, we cannot approach the problem in L1(T3 × R3) because, due to the
presence of φε, the collision operator has an L1-norm diverging with ε.
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which either φε = φ is independent of ε or it approximates the delta
function much more gently. We will do so by introducing a partition of
the torus in square cubes, exactly in the spirit of classical numerical codes
[5].

3 The mean-field stochastic particle system
Let {∆} be a partition of T3 in cubic cells ∆ with equal volume |∆|.
Consider a system of N particles evolving freely in T3 up to an exponential
time of suitable intensity. At such time, a pair of particles is extracted
randomly. If they fall in the same cell ∆, they may perform a collision as
in the basic system of Section 2. Otherwise, nothing happens.

As before, ZN = (XN , VN ) = (z1, . . . , zN ) denotes a configuration of
the system, being zi = (xi, vi) position and velocity of the i-th particle.
The generator of this process reads (Φ = Φ(ZN ) a test function)

LΦ(ZN ) = VN · ∇XN
Φ(ZN ) +

1

N |∆|
∑
i<j

∫
dωB(ω; vi − vj)χi,j

× {Φ(XN , V i,j
N )− Φ(XN , VN )} , (3.1)

where χi,j = 1 if i and j belong to the same cell and 0 otherwise. As before,
we denote by WN (ZN , t) a symmetric probability distribution solution to
the associated master equation,

(∂t + VN · ∇XN
)WN (ZN , t)

=
1

N |∆|
∑
i<j

∫
dωB(ω; vi − vj)χi,j{WN (XN , V i,j

N )−WN (XN , VN )} .

(3.2)

There exist several variants of such spatially inhomogeneous, mean-field
particle models with collisions. For instance, Cercignani’s model of soft
spheres [11, 15] in which, at variance with the above proposal, the im-
pact vector ω is not random; we refer to [18] for an account of related
mathematical results.

This process yields formally the Boltzmann equation in the combined
limit N → ∞ and |∆| → 0. Indeed, let WN (ZN , t) be a symmetric
probability distribution solution to the master equation (3.2). If fN

1 and
fN
2 are the one and two particle marginals, for any test function φ = φ(z),

d

dt

∫
dz1 f

N
1 φ =

∫
dz1 f

N
1 v1 · ∇xφ+

N − 1

N |∆|

∫
dz1 dz2

∫
dωB(ω; v1 − v2)

× χ1,2f
N
2 (z1, z2){φ(x1, v

′
1)− φ(x1, v1)} . (3.3)
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Therefore, under the assumption of propagation of chaos, letting first N →
∞ and then |∆| → 0 we recover the Boltzmann equation in the weak form
(assuming the existence of a global solution and its stability with respect
to a regularization via a cell partition).

3.1 BGK equation

To derive, at least formally, the BGK model, we introduce a modification
of the stochastic process (3.1) in which, inspired from the original paper [3],
we reinforce the interaction leaving finite the mean-free path. To do this,
we introduce a time τ , which will eventually converge to 0, and prescribe
the dynamics in each time interval [2nτ, 2(n + 1)τ ], n ∈ N, according
to the following rules. All the particles move freely in the time interval
[2nτ, (2n+ 1)τ ], while, during the time interval [(2n+ 1)τ, (2n+ 2)τ ], the
particles contained in each cell ∆ evolve according to the homogeneous Kac
dynamics with probability τN∆/N and nothing happens with probability
1− τN∆/N , where N∆ denotes the number of such particles. This allows
to preserve the mean free path finite, being τ properly small. Moreover,
we increase the number of collisions introducing a time-scale parameter ε
in the Kac dynamics.

The solution WN (t) to the corresponding master equation (hereafter,
we will often omit the explicit dependence of WN on the variables ZN ) is
thus given by a product formula,

WN (nτ) = (S0(τ)K(τ))nWN (0) ,

where S0 is the free stream operator and

K(τ) =
∏
∆

[
τN∆

N
S∆(τ) +

(
1− τN∆

N

)]
,

with

S∆(τ) = exp
(τ
ε
L∆
int

)
and (G = G(VN ) a test function)

L∆
intG(VN ) =

1

N |∆|
∑
i<j

∫
dωB(ω; vi − vj)χ

∆
i,j{G(V i,j

N )−G(VN )} .

Above, χ∆
i,j = 1 iff xi, xj ∈ ∆, and χ∆

i,j = 0 otherwise. Moreover, we
assume ε ≪ τ ≪ 1.
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The product formula is easily rewritten as a discrete time Duhamel
formula with respect to the linear evolution S0,

WN (nτ) = S0(τ)(K(τ)− 1)WN ((n− 1)τ) + S0(τ)W
N ((n− 1)τ)

= · · ·

= S0(nτ)W
N (0) +

n∑
k=1

S0(kτ)(K(τ)− 1)WN [(n− k)τ ] .

We next observe that

K(τ)− 1 = τ
∑
∆

N∆

N
(S∆(τ)− 1) +O(τ2) ,

whence, for small τ ,

WN (nτ) ≈ S0(nτ)W
N (0)+

n∑
k=1

τS0(kτ)
∑
∆

N∆

N
(S∆(τ)−1)WN ((n−k)τ) .

(3.4)
Now, let fN

1 be the one-particle marginal,

fN
1 (t) = fN

1 (z1, t) =

∫
dZ1,N WN (ZN , t) ,

being dZ1,N = dz2 · · · dzN . Integrating both sides of (3.4) with respect to
dZ1,N and then changing variables X1,N → X1,N + kτV1,N we get

fN
1 (nτ) = s0(nτ)f

N
1 (0) +

n∑
k=1

τs0(kτ)QWN ((n− k)τ) , (3.5)

where s0 is the one-particle free stream operator and

QWN (t) = QWN (z1, t) =

∫
dZ1,N

∑
∆

N∆

N
(S∆(τ)− 1)WN (ZN , t) .

We next write,

QWN (z1, t) =

∫
dX1,N RN

t (XN )
∑
∆

N∆

N

×
∫
dV1,N (S∆(τ)− 1)ΠN

t (VN |XN ) ,

with RN
t (XN ) =

∫
dVN WN (ZN , t) the spatial density and ΠN

t (VN |XN )
the distribution in velocity conditioned to XN (which, for the moment,
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plays the role of a parameter). Denoting by V A
N the velocity variables of

the particles in A ⊂ T3, we set (with an abuse of notation)

ΠN
t (V ∆c

N |XN ) =

∫
dV ∆

N ΠN
t (VN |XN )

and let ΠN
t (V ∆

N |XN , V ∆c

N ) be the distribution ΠN
t (VN |XN ) conditioned to

V ∆c

N , so that

ΠN
t (V ∆c

N |XN )ΠN
t (V ∆

N |XN , V ∆c

N ) = ΠN
t (VN |XN ) .

If ∆1 is the cell containing x1, then for any ∆ ̸= ∆1 we have∫
dV1,N (S∆(τ)− 1)ΠN

t (VN |XN ) =

∫
dV ∆c

1,N ΠN
t (V ∆c

N |XN )

×
∫
dV ∆

N (S∆(τ)− 1)ΠN
t (V ∆

N |XN , V ∆c

N ) = 0 ,

having used, in the last equality, that dV ∆
N is stationary under S∆(τ).

Hence,

QWN (z1, t) =

∫
dX1,N RN

t (XN )
N∆1

N

∫
dV

∆c
1

N ΠN
t (V

∆c
1

N |XN )

×
∫
dV ∆1

1,N (S∆1(τ)− 1)ΠN
t (V ∆1

N |XN , V
∆c

1

N ) . (3.6)

Now, for ε ≪ τ , the mixing property of the Kac model implies

S∆1(τ)ΠN
t (V ∆1

N |XN , V
∆c

1

N ) ≈ µEN
∆1

,PN
∆1

(V ∆1

N ) ,

where µEN
∆1

,PN
∆1

is the microcanonical measure associated to the empirical
energy and momentum in ∆1,

EN
∆1

=
1

2N∆1

∑
j: xj∈∆1

v2j , PN
∆1

=
1

N∆1

∑
j: xj∈∆1

vj .

On the other hand, letting πN
∆1

= N∆1/N be the empirical density in ∆1,
we expect that, with large (i.e., converging to one) RN

t (XN )-probability
when increasing N ,

πN
∆1

≈ ϱN∆1
(t) :=

∫
∆1

dx ϱN1 (x, t)

(where ϱN1 (x, t) :=
∫
dv fN

1 (x, v, t)) and that the vj ’s are asymptotically
independent. Therefore, by the law of large numbers, again with large
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RN
t (XN )-probability when increasing N , we expect also

EN
∆1

≈ EN
∆1

(t) :=
1

ϱN∆1
(t)

∫
∆1

dx

∫
dv fN

1 (x, v, t)
v2

2
,

PN
∆1

≈ PN
∆1

(t) :=
1

ϱN∆1
(t)

∫
∆1

dx

∫
dv fN

1 (x, v, t)v .

Since the functions ϱN∆1
, EN

∆1
, and PN

∆1
are non random, inserting the above

approximations in (3.6) and using the obvious identities∫
dX1,N RN

t (XN )

∫
dV

∆c
1

N ΠN
t (V

∆c
1

N |XN ) =

∫
dX1,N RN

t (XN )

= ϱN1 (x1, t) ,∫
dZ1,N RN

t (XN )ΠN
t (V

∆c
1

N |XN )ΠN
t (V ∆1

N |XN , V
∆c

1

N ) = fN
1 (z1, t) ,

we obtain

QWN (z1, t) ≈ ϱN∆1
(t)

(
ϱN1 (x1, t)

∫
dV ∆1

1,N µEN
∆1

(t),PN
∆1

(t)(V
∆1

N )− fN
1 (z1, t)

)
.

We finally observe that by the equivalence of the ensembles, see Appendix
A, the marginal distribution

∫
dV ∆1

1,N µEN
∆1

,PN
∆1

(V ∆1

N ) is close (since N∆1
≈

ϱN∆1
N is large) to the Maxwellian

MPN
∆1

,TN
∆1

(v1) =
1

(2πTN
∆1

)3/2
exp

(
−
|v1 − PN

∆1
)|2

2TN
∆1

)
,

with 3TN
∆1

= 2EN
∆1

− (PN
∆1

)2. In conclusion,

QWN (z1, t) ≈ ϱN∆1
(t)
(
ϱN1 (x1, t)MPN

∆1
(t),TN

∆1
(t)(v1)− fN

1 (z1, t)
)
.

Inserting the last approximation for QWN in (3.5) we get

fN
1 (nτ) ≈ s0(nτ)f

N
1 (0) +

n∑
k=1

τs0(kτ)[ϱ
N
∆1

(ϱN1 MPN
∆1

,TN
∆1

− fN
1 )]((n− k)τ) .

Taking the limits ε → 0, N → ∞, and finally τ → 0, the above display
implies that the (limit) one-particle marginal f solves the integral equation,

f(x, v, t) = f0(x− vt, v) +

∫ t

0

ds ϱ∆x
(ϱMP∆x ,T∆x

− f)(x− vs, v, t− s) ,
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where ∆x is the cell containing x and ϱ∆, P∆, T∆ are defined as ϱN∆ , PN
∆ ,

TN
∆ with fN

1 replaced by f .
Finally, taking also the limit |∆| → 0, we recover the equation

f(x, v, t) = f0(x− vt, v) +

∫ t

0

ds (ϱ(ϱMf − f))(x− vs, v, t− s) ,

which is the mild formulation of Eq. (1.1) via Duhamel formula.

A Equivalence of ensembles

Let µE,P
N denote the uniform (i.e., microcanonical) distribution in

XE,P
N :=

{
VN ∈ (R3)N :

N∑
j=1

|vj |2 = 2NE ,

N∑
j=1

vj = NP

}
.

In [9, Lemma 4.1], it is shown that if N ≥ 3 and VN ∈ X 1/2,0
N is distributed

according to µ
1/2,0
N then each variable

ṽj =

√
N

N − 1
vj , j = 1, . . . , N ,

is distributed in the unit ball of R3 with law

dνN (v) =
|S3N−7|
|S3N−4|

(
1− |v|2

)(3N−8)/2
dv ,

where Sn denotes the unit n-sphere. From this we deduce that if T is
the temperature such that 2E − P 2 = 3T , N ≥ 3, and VN ∈ XE,P

N is
distributed according to µE,P

N , then each velocity vj is distributed in the
ball of radius

√
3T (N − 1) and center P with law

dνE,P
N (v) =

1

[3T (N − 1)]3/2
|S3N−7|
|S3N−4|

(
1− |v − P |2

3T (N − 1)

)(3N−8)/2

dv .

Recalling that

|Sn| = 2π
n+1
2

Γ
(
n+1
2

) ,
where Γ(x) denotes the gamma function, and using the Stirling approxi-
mation

Γ(x) =
√
2π xx− 1

2 e−x

[
1 +O

(
1

x

)]
, x > 0 ,
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we get

|S3N−7|
|S3N−4|

=
1

(πe)3/2

(
3N − 4

2

) 3N−5
2
(
3N − 7

2

)− 3N−8
2
[
1 +O

(
1

N

)]
=

1

(πe)3/2
exp

(
3N − 5

2
log

3N − 4

3N − 7
+

3

2
log

3N − 7

2

)
×
[
1 +O

(
1

N

)]
=

(
3N

2π

)3/2 [
1 +O

(
1

N

)]
,

so that

lim
N→∞

1

[3T (N − 1)]3/2
|S3N−7|
|S3N−4|

=
1

(2πT )3/2
.

On the other hand,

lim
N→∞

(
1− |v − p|2

3T (N − 1)

)(3N−8)/2

= exp

(
−|v − P |2

2T

)
.

Therefore, looking at dνE,P
N (v) as a probability on R3, its density

gE,P
N (v) =

1

[3T (N − 1)]3/2
|S3N−7|
|S3N−4|

(
1− |v − P |2

3T (N − 1)

)(3N−8)/2

+

converges pointwise to MP,T (v) = [2πT ]−3/2 exp
(
− |v−P |2

2T

)
as N → ∞.

Moreover, there are C1, C2 > 0 such that gE,P
N (v) ≤ C1 exp

(
−C2|v − P |2

)
(this can be seen using, e.g., the inequality 1−r ≤ e−r valid for any r > 0),
so that, by dominated convergence, we also have

lim
N→∞

∫
dνE,P

N (v)h(v) =

∫
dvMP,T (v) ,

for any function h ∈ L1(R3; eC2v
2

dv).
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