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The planted-coloring problem is a prototypical inference problem for which thresholds for Bayes-
optimal algorithms, like belief propagation (BP), can be computed analytically. In this paper, we analyze
the limits and performances of simulated annealing (SA), a Monte-Carlo-based algorithm that is more
general and robust than BP, and thus of broader applicability. We show that SA is suboptimal in the
recovery of the planted solution because it gets attracted by glassy states that, instead, do not influence the
BP algorithm. At variance with previous conjectures, we propose an analytic estimation for the SA
algorithmic threshold by comparing the spinodal point of the paramagnetic phase and the dynamical critical
temperature. This is a fundamental connection between thermodynamical phase transitions and out-of-
equilibrium behavior of Glauber dynamics. We also study an improved version of SA, called replicated SA
(RSA), where several weakly coupled replicas are cooled down together. We show numerical evidence that
the algorithmic threshold for the RSA coincides with the Bayes-optimal one. Finally, we develop an
approximated analytical theory explaining the optimal performances of RSA and predicting the location of
the transition toward the planted solution in the limit of a very large number of replicas. Our results for RSA
support the idea that mismatching the parameters in the prior with respect to those of the generative model
may produce an algorithm that is optimal and very robust.
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I. INTRODUCTION

Inference problems are widespread in all scientific
disciplines and real-world applications based on data
analysis. It is also well known that not all inference
problems have the same difficulty, and the solving algo-
rithms need possibly to be tested on the hardest problems.
For this reason, focusing on classes of inference problems
that are provably very hard is mandatory at the time of
testing algorithms. Here we choose to work with inference
problems defined on sparse random graphs that present the
so-called hard phase that is a range of the signal-to-noise
ratio (SNR) where the solution is in principle achievable
(by unbounded computational power), but any known
algorithm running in a time growing polynomially with
the problem size is not able to reach such a solution. Below
we define more in detail this class of hard inference

problems; for the moment, it is enough to stress that the
presence of the hard phase is related to the so-called
information-to-computational gap conjecture. This conjec-
ture, partially proved for some inference problems and
some classes of algorithms, assumes that the minimal SNR
needed by any polynomial-time algorithm to solve one of
these hard inference problems is larger than the informa-
tion-theoretical lower bound [1–10].
In Fig. 1, we show a schematic phase diagram for a

generic inference problem with a hard phase. The deriva-
tion of such a phase diagram has been possible working in
the very commonly used setting of Bayesian inference
known as the teacher-student scenario first introduced in
Ref. [11]. In this setting, the teacher generates a random
signal x with the prior probability distribution PpðxÞ. The
signal generated by the teacher is often called the planted
configuration. Later, the teacher generates the data from the
signal using a probabilistic model Pm. We assume that
the data come into the form of a sparse graphG and that the
SNR is directly related to the graph mean connectivity
c [12]. Applying a probabilistic model to a random signal,
we get a random graph G generated with the likelihood
PmðGjxÞ. The teacher provides the student with the prior
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Pp, the model Pm, and the data G, asking the student to
infer the planted signal x. Using Bayes’s theorem, the
student can easily write down the posterior probability
distribution

PðxjGÞ ∝ PmðGjxÞPpðxÞ: ð1Þ

The Bayes-optimal estimator x̂opt of the signal can be
obtained by sampling the posterior PðxjGÞ. A weak
recovery of the signal can be achieved if the Bayes-optimal
estimator x̂opt is better than a random guess: This happens
for c > cIT that is above the information-theoretical thresh-
old cIT.
In hard inference problems, it is not enough to have a

SNR larger than the cIT threshold to recover the signal in a
time growing polynomially with the problem size. A larger
algorithmic threshold exists calg, such that only for c > calg
polynomial-time algorithms can actually detect the signal.
The threshold calg clearly depends on the algorithm, and we
show how to estimate it for stochastic samplers based on
the simulated annealing (SA) algorithm.
When the graph G representing the data is a random

graph [14], the posterior can be efficiently sampled by
using the Bethe approximation and the belief propagation
(BP) algorithm [15]. The algorithmic threshold for the BP
algorithm cBP is larger than cIT for inference problems with
a hard phase and is nonetheless considered the optimal
algorithmic threshold for algorithms running in linear time
in the problem size N in the vast majority of the prob-
lems [13,16]. Other algorithms which are not Bayes
optimal, i.e., not sampling exactly the Bayesian posterior,
may have even larger algorithmic thresholds.
Unfortunately, the BP algorithm is known to be not very

robust and of limited applicability when the graph G is not
locally treelike, as the presence of short loops may avoid
convergence to a fixed point and, even at convergence, the
estimated marginal probabilities may be far from the exact
ones [21]. We are not saying BP can never be used for
inference away from random graphs: Indeed, many works
are showing the applicability of BP or inference methods
strongly related to it on real-world data (see Ref. [22] just as
an example). However, having at hand more robust
algorithms that can work efficiently both on random graphs

and on more general structured data is of primary
importance.
To this aim, it is natural to consider samplers of the

posterior probability distribution based on a Monte Carlo
Markov chain (MCMC). By construction, a MCMC will
eventually sample exactly from the posterior, but its limits
and performances are mostly unknown. In some recent
works, it has been proved how the algorithmic threshold of
some MCMC algorithms is higher than the algorithmic
thresholds of other Bayes-optimal algorithms in specific
planted problems [23–25]. However, apart from the
straightforward statement that MCMC methods are slowed
down in a phase where ergodicity is broken in the large-N
limit [26], more precise general statements on when and
why MCMC-based inference algorithms can find the
solution are missing to the best of our knowledge.
MCMC-based inference algorithms could really be ideal

if, on top of being robust, they would also be optimal in
those cases where the optimal threshold can be analytically
computed. To understand this last point, we believe that the
study of inference problems defined on random sparse
graphs is the perfect framework: Thresholds can be
computed analytically thanks to the Bethe approximation
for the posterior distribution, and MCMC simulations can
be run efficiently on very large problem sizes since a single
MC step is linear in N for sparse models.
We study one of the simplest and most common

inference problems, namely, the planted-coloring problem
(to be defined in more detail below), using simple, but
effective, MCMC-based algorithms: SA and replicated
simulated annealing (RSA). The main results that we
achieve within this framework are the following.

(i) Algorithmic threshold for simulated annealing: We
make a conjecture based on firm numerical evidence
and strong analytical arguments for the determina-
tion of the algorithmic threshold of SA. Our con-
jecture is based on the comparison of the spinodal
point and the dynamical phase transition. Subopti-
mal with respect to the Bayes-optimal threshold, we
find that the SA algorithmic threshold is worse than
what has been reported in previous studies.

(ii) Replicated simulated annealing is Bayes optimal: We
provide strong numerical evidence that the algorith-
mic threshold for RSA is extremely close to the
Bayes-optimal one of BP. RSAworks very well even
for a small number of coupled replicas, so the
complexity overhead with respect to SA is minimal.

(iii) Nature of the phase transition: We provide both
numerical and analytical evidence that coupling
replicas changes the nature of the glass transition
in the random problem from a discontinuous one to a
continuous one. This observation may have impor-
tant algorithmic consequences, as hard phases are
known to exist only in models undergoing discon-
tinuous phase transitions.

FIG. 1. The schematic phase diagram for hard inference
problems showing an information-to-computational gap. The
SNR here is given by the graph mean degree c. While for
c < cIT it is impossible to detect the planted signal, for c > cIT it
is in principle possible, but any known algorithm requires a much
larger SNR c > calg to achieve signal detection. The value of calg
depends on the algorithm, and the present work aims to estimate
it for simulated annealing algorithms.
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(iv) Analytical estimate for the RSA critical temper-
ature: We provide an analytical estimate of the
transition temperature in the limit of a large number
of coupled replicas for the RSA algorithm. Con-
vergence to this limiting value is fast, so it provides
a good estimate of the critical temperature also for a
reasonably small number of replicas, those used in
practical simulations.

(v) Optimal temperature for a MCMC is not Bayes
optimal: For the sake of simplicity, here we study
an inference problem without additional noise, i.e.,
generated from a Gibbs distribution at T ¼ 0. We
provide analytical evidence that the optimal temper-
ature for recovering the signal is strictly positive and
not small at all, so far from the Bayes-optimal one
(this is in agreementwith previous numerical results).

(vi) Analytical control of finite-size effects: Analytical
predictions in the large-N limit are of scarce prac-
tical utility if they are not complemented with the
study of finite-size effect, which may be very large.
We provide an analytical explanation of finite-size
effects in the behavior of the SA algorithm, via the
study of BP on finite graphs, where similar finite-
size effects appear.

Taken all together, the above results provide a strong and
coherent theory explaining the behavior of important
algorithms based on simulated annealing in solving hard
inference problems defined on sparse graphs. We believe
this theory has broad applicability, and preliminary results
in other planted models support it (however, we leave the
study of other problems for future works, the planted
coloring being already very interesting and of broad
applicability per se).
The rest of the paper is organized as follows. In Sec. II, we

define the planted-coloring problem and the associated BP
algorithm. In Sec. III, we study the performances of SA and
put forward a conjecture for its algorithmic threshold. In
Sec. IV, we describe the RSA algorithm, and we show that it
can reach the threshold of Bayes-optimal algorithms. In
Sec. V, we describe the finite-size effects in SA and explain
them by studying the BP behavior on single instances of
finite size. Finally, in Sec. VI we summarize the results
found, the general picture emerging from this work, and
possible future implications. We leave to Appendices for
more technical computations.

II. THE PLANTED-COLORING PROBLEM

In the present work, we focus our attention on the
planted-coloring problem, which was the first planted
problem studied in detail [27]. Let us start recalling briefly
the coloring problem (both the random and the planted
versions) and their phase transitions.
In the random q-coloring problem, a random graph of N

vertices and mean degree c is given, and we have to assign
one among the q available colors to each vertex in a way to

avoid monochromatic edges, i.e., adjacent vertices with the
same color. In the thermodynamical limit N → ∞, a typical
random q-coloring problem undergoes several phase tran-
sitions [28,29]. Before the so-called dynamical transition
cd, there are exponentially many (in N) solutions that all
belong to a large single cluster. For cd < c < cc, with cc
being the condensation transition, the space of solutions
splits in an exponential number of different clusters, whose
number becomes subexponential for c > cc. A typical
random graph is q colorable up to the satisfiability thresh-
old cs, and for c > cs there is no solution to a typical
random q-coloring problem. The actual values of the
different transitions connectivities cd ≤ cc ≤ cs depend
on q and so does the nature of the phase transition: For
q < 4, the dynamical and condensation transition coincide,
leading to a continuous phase transition, while for q ≥ 4,
the transition is discontinuous. This has consequences also
on the corresponding planted model.
The planted-coloring problem has been introduced in

Ref. [27] and consists in first assigning a random q coloring
to the N vertices (this is the planted solution) and then
building the random graphs of mean degree c by adding
M ¼ cN=2 edges connecting randomly chosen pairs of
vertices of different colors. The inference problem corre-
sponds to the recovery of the signal (the planted solution)
given the random graph G built as explained above. So the
mean degree c of the random graph can be seen as a sort of
signal-to-noise ratio: For small c, the graph G has expo-
nentially many solutions (colorings), and it is impossible to
identify the planted one, while for very large c, the planted
coloring is only compatible with the graph G and can
potentially be identified.
To achieve a more detailed description of the phase

transitions taking place in the planted-coloring problem, we
need to discuss the solutions to the BP equations associated
with the problem. Calling ψ i→j

s the probability that the
vertex i takes the color s in the absence of the link between
i and j, the BP equations read [29]

ψ i→j
s ¼ 1

Zi→j

Y
k∈∂inj

ð1 − ψk→i
s Þ; ð2Þ

where Zi→j is a normalization imposing
P

s ψ
i→j
s ¼ 1, and

∂inj indicates all the neighbors of i with the exclusion of j.
The BP equations are usually solved iteratively and at
convergence provide the marginal probability that variable
i takes color s via

ψ i
s ¼

1

Zi

Y
k∈∂i

ð1 − ψk→i
s Þ; ð3Þ

where Zi is again a normalization constant.
The fixed-point marginals are mainly of two kinds [30]:

(i) uniform over the q colors (ψ i
s ¼ ð1=qÞ; ∀ i; s), iden-

tifying the paramagnetic (PM) phase and (ii) highly biased
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toward the planted solution, identifying the signal recovery
or ferromagnetic (FM) phase. The stability analysis of the
paramagnetic fixed point toward perturbations in the
direction of the planted state reveals that the paramagnetic
phase is locally stable for c < cKS ¼ ðq − 1Þ2 [27] (in that
work, the threshold was called cl, but we prefer a name
making evident the connection with the Kesten-Stigum
bound in tree reconstruction). So for c < cKS, we expect
that BP, if initialized with no information about the signal,
will converge to the uninformative PM fixed point, and
recovery via BP is impossible. Vice versa, for c > cKS any
initial perturbation in the direction of the signal is ampli-
fied, and BP will spontaneously converge to the inform-
ative FM fixed point, highly correlated with the signal.
Thus, cKS is the algorithmic threshold for partial signal
recovery via BP.
The procedure described above is called “quiet planting”

as it adds the planted solution (and a cluster surrounding it)
without changing the structure of solutions to the random
problem for c < cc. Since in this region the planted cluster is
one among exponentially many others, finding it is impos-
sible. Instead, for c > cc, the planted cluster of solutions
dominates the total number of solutions, and the planted
solution can be detected in principle. For this reason,
cc ¼ cIT is called the information-theoretical threshold.
Whether the planted solution can be actually found

above cIT depends on the nature of the phase transition [13].
In continuous phase transitions, we have cIT ¼ cKS and so,
as soon as the planted cluster dominates the total number of
solutions, BP can actually detect it. This happens in the
planted q-coloring problem for q < 4. On the contrary, if
the transition is discontinuous, we have a hard phase for
cIT < c < cKS where the planted solution is in principle
detectable, but signal recovery via BP is impossible due to
the stability (and the strong attraction) of the PM fixed
point. A hard phase exists for q > 4 in the planted
q-coloring problem. The case q ¼ 4 has remained elusive
for a while and was finally solved in Ref. [31].
In the present work, we focus on the case q ¼ 5 that

is an inference problem with a well-defined hard phase.
The threshold values for q ¼ 5 are cd ¼ 12.837ð3Þ,
cc ¼ cIT ¼ 13.23ð1Þ, and cKS ¼ 16 [27,29]. Despite a great
effort to break this hard phase, no polynomial algorithm is
known that can detect the planted solution for c < cKS.
Let us finally discuss a delicate point. By construction,

the BP algorithm relies on the replica-symmetric (RS)
approximation, assuming that most of the solutions form a
single and well-connected cluster [15]. Consequently, the
BP fixed points can describe only RS phases, like the PM
and FM phases discussed above. However, from the
solution of the random model, we know that for c > cd
the space of solutions splits into many different clusters:
This is the so-called glassy phase, as it induces a very
strong slowing-down in many algorithms, and its descrip-
tion requires us to assume replica symmetry breaking

(RSB) [32]. In the planted graph, the planted cluster also
starts to be locally stable at c ¼ cd, exactly as the glassy
states. For cd < c < cc, the planted cluster shares the same
properties as the random glassy states, while for c > cc, its
internal entropy becomes larger than the entropy of the
glassy states, and it starts to be detectable. These glassy
states, which are so important in the description of the
random model, play no role in the BP behavior when it is
applied to the planted case, and the performance of the BP
algorithm is not improved by taking into account the glassy
nature of the hard phase [26].
We have already mentioned that BP is Bayes optimal: It

can find optimal solutions for c > cKS because it assumes
the perfect knowledge of the model. Indeed, Eq. (3)
assumes that we know that there is a hard constraint
imposing the absence of links between nodes of the same
color in the construction of the graph around the planted
solution. It can be shown that, imposing the perfect
knowledge of the model, there cannot exist a RSB phase,
and the only possible transition is a usual ferromagnetic
first-order transition between the PM and FM phases. In
statistical mechanics language, assuming the perfect
knowledge of the model corresponds to be on the so-called
Nishimori line [33], where the RS assumption holds. So, in
the planted-coloring problem, thanks to the perfect knowl-
edge of the generative model, only the PM and FM phases
can dominate the measure over the solutions. The first-
order transition takes place at cIT, where the free energies of
the two phases are equal, with the FM free-energy being
lower for c > cIT (thus, making the signal detectable in
principle). The spinodal points are cd and cKS, as the FM
planted state appears at cd and the PM state becomes
unstable at cKS.
Leaving BP aside and considering broader classes of

algorithms, it is very likely that one has to consider
situations where algorithms do not satisfy the Nishimori
condition: either because they have no perfect knowledge
about the model or because even knowing the model, they
go out of equilibrium, thus violating the Nishimori con-
dition. In all of these cases, the glassy states—so important
in the random model—should be taken again into account
(even if they are irrelevant in the thermodynamic RS
description of the planted model). We see in the next
sections that they are particularly important to determine
the behavior of MCMC-based solvers that do not assume
the perfect knowledge of the model. This is an ideal
example showing that by moving away from equilibrium
statistical mechanics to out-of-equilibrium processes, one
can find a much richer physics that requires a more
complex description.

III. SIMULATED ANNEALING FOR THE
PLANTED-COLORING PROBLEM

In this section, we introduce SA as a solver for the
planted-coloring problem, and we analyze its performance.
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SA is a MC-based algorithm introduced in Ref. [34], and it
is widely used in many optimization problems, including
the random coloring problem [35,36]. In the context of the
planted-coloring problem, it was considered in Ref. [27],
where the authors stated it can find the planted solution in
the whole region c > cKS. We show that this is not in
agreement with our numerical results and propose a better
conjecture.
Given a configuration s of colors of the nodes, in a

statistical mechanics approach, we associate with it an
energy counting the number of monochromatic edges

HðsÞ ¼
X

ði;jÞ∈E
δsi;sj ; ð4Þ

where E is the edge set of the graph. We then introduce a
temperature T ≡ 1=β in the model and a Gibbs-Boltzmann-
like probability measure on the configurations

PGBðsÞ ∝ e−βHðsÞ: ð5Þ

In the T ¼ 0 limit, this probability measure becomes the
uniform distribution over the set of solutions (proper
colorings), which is always nonempty thanks to the
presence of the planted solution s� with Hðs�Þ ¼ 0.
Moreover, the T ¼ 0 distribution coincides with the pos-
terior PðsjGÞ if the prior is uniform over all configurations.
This indicates that the Bayes-optimal temperature is
TBayes ¼ 0. One could then naively conclude that the best
strategy for any inference algorithm should be the sampling
of the T ¼ 0 distribution to detect s�. We see that the
optimal temperature for MC-based algorithms is different
from the Bayes-optimal one TBayes ¼ 0.
The meaning of the distribution PGBðsÞ with T > 0 is to

relax the hard constraints into soft ones: Configurations
with monochromatic edges are admitted, but with a
probability that is more suppressed the lower the temper-
ature is. We start our SA from a random configuration of
colors and at sufficiently high T. At each step of the SA
algorithm, we decrease the temperature by dT and we do a
Monte Carlo sweep (MCS) that corresponds to the attempt
to update the color of each of the N variables following the
usual Metropolis rule: In practice, we change the color si to
s0i, chosen at random between the q possible colors, with
probability 1 if in this way the number of monochromatic
edges decreases, while we update it with probability e−βn if
the number of monochromatic edges increases by n after
the update.
In Fig. 2, we show the intensive energy e ¼ H=N of the

configurations visited by SAwith parameter dT ¼ 10−7 in
ten samples of size N ¼ 105 of the planted-coloring
problem with q ¼ 5. The differences between samples
are negligible (but at c ¼ 18), while the behavior of SA
changes drastically with the mean degree c.

For c > 18, SA finds a configuration highly correlated
with the planted solution s� on each sample. This is
confirmed also by the data in the inset showing the overlap
between the configuration s reached by SA and the planted
solution s� defined as

Q ¼ maxπ∈Sq
P

iδs�i ;πðsiÞ=N − 1=q

1 − 1=q
; ð6Þ

where Sq is the group of permutations of q elements. The
overlap defined in this way is null for a random guess,
while Q ¼ 1 if there is a perfect recovery of the planted
solution.
On the contrary, for c < 18, SA is unable to reach the

planted solution in any sample, and it gets trapped in glassy
states, which are metastable states (local minima of higher
energy) orthogonal to the planted state (Q ≃ 0). So the
numerical data strongly suggest that cSA ≃ 18 is the
algorithmic threshold for SA. Indeed, exactly at c ¼ 18,
we see in Fig. 2 that the behavior of SA is sample
dependent: A typical behavior that is often observed at a
spinodal point.
The strict inequality cKS < cSA implies SA is not Bayes

optimal, and there exists a region c ∈ ðcKS; cSAÞ where BP
performs better than SA.
Let us comment briefly on the choice of N and dT. We

study several values of N and dT, all providing data
consistent with the claims above, as long as dT is small
enough. In Appendix B, we present the data for different N
and dT values, showing that for c > cKS the SA algorithm
can find solutions with high probability if dT ¼ OðN−aÞ
with a ≃ 1. This means that SA is a solving algorithm
running in a time scaling roughly quadratically with the

FIG. 2. The energy density as a function of the temperature in
simulated annealing for planted coloring with q ¼ 5, N ¼ 105,
and dT ¼ 10−7. For each value of the mean degree c, we show
the results for ten different samples. For c≲ 18, SA does not find
the planted solution and gets trapped in glassy states. Inset:
overlap with the planted configuration as a function of the
temperature (same parameters as in the main figure).
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problem size N. We decide to show only data for N ¼ 105

since this value is large enough that fluctuations are
strongly suppressed.
Data in Fig. 2 clearly show that a dynamical first-order

transition is taking place at the temperature where SA
makes a jump to reach the planted cluster of solutions.
Moreover, when such a dynamical first-order transition
does not take place (i.e., for c < cSA) the overlap remains
null, and SA stays very far from (actually orthogonal to) the
planted solution.
To explain why SA is not able to find the planted

solution for c < cSA, we need to look to the extension to the
finite temperature of the phase transitions at T ¼ 0. How
the thresholds cd and cKS change in temperature was
already computed in Ref. [27] (more details in the
Appendix A): We report them with the names TdðcÞ and
TKSðcÞ in Fig. 3. For T < Td glassy states appear, while for
T < TKS the paramagnetic solution is no more stable with
respect to perturbations toward the planted solution.
The SA protocol starts from very high temperatures and

keeps cooling very slowly (ideally, in an adiabatic way).
Which critical line (either Td or TKS) it will find first
depends on the c value. Defining the SA algorithmic
threshold cSA as the crossing point of these two critical
lines

TdðcSAÞ ¼ TKSðcSAÞ; ð7Þ

we conjecture the following scenario. If c > cSA, decreas-
ing T the paramagnetic phase becomes unstable with
respect to the planted state, and SA jumps into the planted
cluster, thus achieving perfect recovery in the T ¼ 0 limit
(the planted state is very stable at low temperatures, and SA
cannot leave it when glassy states appear below Td).
Conversely, if c < cSA, decreasing T the paramagnet first
becomes unstable toward the glassy states at Td. We remind
that for T > 0 the Nishimori condition is not satisfied, and
so glassy states are not only possible but likely to play a
central role. And indeed, we observe SA falling inside
glassy states for c < cSA. The barriers to escaping these
glassy states are extensive, and SA cannot jump anymore to
the planted solution, even if the temperature is decreased
below TKS: Once the dynamics is trapped by a glassy state,
it will stay there for a time that is exponential in the size of
the system.
Based on the arguments above, the conjecture that cSA is

the algorithmic threshold for SA is very plausible, on top of
being fully supported by numerical observations.

IV. REPLICATED SIMULATED ANNEALING

Having understood that the SA algorithmic threshold cSA
is larger than the BP one cKS because of the existence of
glassy states than can trap the SA algorithm, a natural
question is whether another MC-based algorithm could do
better than SA. In this section, we study the RSA
introduced in Ref. [37] and provide strong numerical
evidence that its algorithmic threshold cRSA matches
cKS, thus being as good as the Bayes-optimal BP.
The idea beyond RSA is to simulate y replicas (copies) of

the system coupled together with ferromagnetic coupling
(i.e., replicas prefer to be in similar configurations). The
corresponding energy function is the following:

HðsÞ ¼
Xy
a¼1

X
ði;jÞ∈E

δsai ;saj −
γ

2y

X
a≠b

XN
i¼1

δsai ;sbi ; ð8Þ

where γ controls the intensity of the ferromagnetic coupling
between replicas that we decide to scale by a factor y in
order to get a well-defined limit when y → ∞. The idea of
simulating different replicas is not new in the use of SA for
inference problems [38], and the correlation among replicas
was also used to modify the underlying graph [39]. The
novelty in the RSA is that the different replicas do not
evolve independently but are coupled together. This is a
practical way to probe states that dominate not the original
free energy, but a modified free energy where the con-
tribution of local entropy is enhanced.
From a practical point of view, RSA works exactly as

SA: We start at a high enough temperature from random
independent configurations for each replica. Each MCS
consists in the attempt to change the color of each variable
in each replica, according to the energy in Eq. (8). After

FIG. 3. Phase diagram in the c-T plane for the planted-coloring
problem with q ¼ 5. TdðcÞ is the critical line below which glassy
states appear, while below TKSðcÞ the paramagnetic solution
becomes unstable toward the planted solution. The information-
theoretical threshold cIT corresponds to cc, while we claim that
SA is not able to find the planted solution for c < cSA. We can
extract cSA as the connectivity at which TdðcÞ ¼ TKSðcÞ. Both in
the yellow and the green region, a MCMC algorithm gets trapped
in glassy states, and the only region in which it can nucleate the
planted solution is the blue one. On the other hand, the BP
algorithm finds the paramagnetic solution in the yellow region,
while it succeeds to find the planted solution both in the blue and
in the green one.
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each MCS, the temperature is decreased by dT. In all our
numerical experiments, we set γ ¼ 1 (a complete study of
the optimal value of γ could be performed, but it is beyond
the scope of the present work).
The lowering of the temperature forces the system to

look for lower-energy configurations, both reducing the
number of monochromatic edges in each replica and
increasing the similarity between replicas. In this way,
RSA should converge toward low-energy states of large
entropy, as larger clusters of solutions can more easily
accommodate y ≫ 1 replicas. The reason why this should
favor the planted cluster of solutions against the glassy
states, is that beyond cc the planted cluster has the largest
entropy: In fact, glassy states are many, but the entropy of
each glassy state is relatively small, such that their total
entropy is not larger than the one of the states dominating
the thermodynamics. This picture is not limited to the
present problem and generalizes to other inference prob-
lems where the signal competes with many more random
“glassy” configurations.
In Fig. 4, we show the behavior of RSA for N ¼ 105 and

c ¼ 17. We report data for only one value dT ¼ 10−7, but
in Appendix B we show that it is enough to have
dT ¼ OðN−aÞ with a ≃ 1 to recover the signal. The curves
for y ¼ 1 are the same shown in Fig. 2 reporting the
inability of SA in finding the planted solution. Instead,
RSA can find the planted solution as long as y > 1.
Surprising enough, already the smallest value y ¼ 2 seems
very effective in the task of detecting the planted signal,
with nine of the ten samples shown in the figure reaching a
perfect recovery. The temperature where detection takes
place that corresponds to a jump in the energy fluctuates a

little bit among the samples, while for larger values of y, the
behavior of RSA is practically sample independent and
seems to follow an almost deterministic law. A possible
explanation is that the PM state in the replicated model is
becoming unstable at the temperature where the jump takes
place: If this happens, the RSA dynamics has no other
option than to flow toward the planted solution, thus
eventually detecting the signal in the T ¼ 0 limit.
To test the above hypothesis, we compute TKSðcÞ in the

replicated planted model. Moreover, to test the conjecture
of the previous section locating the algorithmic threshold
cRSA for RSA, we compute also TdðcÞ in the replicated
random model. The details of these computations are
presented in Appendices D and E, and the main results
are summarized in Fig. 5 for y ¼ 2, 4, 8, 16, 32. It is
immediately evident that the critical lines for y > 1 are
located at much higher temperatures than those for the
original model (y ¼ 1) shown in Fig. 3, and these critical
temperatures are indeed very close to the temperature
where the jump takes place. In particular, the vertical
dashed line in Fig. 4 marks the value of TKS in the y≫1
limit, which turns out to be a very accurate analytical
prediction for the jump location (i.e., the signal detection)
in the RSA run with y ≫ 1 and a very good approximation
also for finite values of y. We see that the sample-to-sample
fluctuations in TKS are larger in the case of small y and
become almost null in the large-y limit, again in perfect
agreement with the observation of the temperature of the
jumps for RSA. Moreover, the critical lines TKSðcÞ and
TdðcÞ shown in Fig. 5 for y > 1 are extremely close.

FIG. 4. The energy density as a function of the temperature in
the replicated simulated annealing for planted coloring with
q ¼ 5, N ¼ 105, dT ¼ 10−7, and c ¼ 17, changing the number y
of replicas. For each value of y, ten different samples are
simulated. For y ¼ 1 SA does not find the planted solution,
while RSA finds it as long as y > 1 RSA finds it. The vertical line
represents TKS as found by the linearization of BP equations
around the PM solution in the limit y → ∞.

FIG. 5. TKS (full lines) and Td (dashes lines) as a function of c in
the replicated model with y ¼ 2, 4, 8, 16, 32. Data are averaged
over ten samples of size N ¼ 106 (which is large enough to avoid
any significant finite-size effects). Inset: The difference TKS − Td
is plotted to help locate the crossing point that defines the
algorithmic threshold cRSA, perfectly compatible with the BP
threshold cKS ¼ 16. Below this threshold, the difference TKS − Td
is compatible with zero, thus making plausible the scenario where
the temperature at which the paramagnetic state loses its local
stability is the same in the planted and the random ensemble.
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Indeed, we report in the inset of Fig. 5 their difference to
help the reader in locating their crossing point that defines
the algorithmic threshold cRSA (according to the conjecture
put forward in the previous section). Within the statistical
uncertainties, the difference TKS − Td does not depend on y
and becomes null at cRSA ≃ 16, perfectly compatible with
the algorithmic threshold cKS ¼ 16. Thus, RSA and the
Bayes-optimal BP algorithm are observed to share the same
(conjecturally optimal) algorithmic threshold. Please note
that below cRSA the difference TKS − Td is compatible with
zero: For these connectivities the temperature at which the
paramagnetic state loses its local stability is the same in the
planted and the random ensemble. As long as y > 1,
changing the number of replicas y does not seem to lead
to improvements, as we also see directly from the RSA
simulation (see Fig. 4). The best choice is thus to use a
small-y value, even y ¼ 2, because the time for running
RSA scales as OðyNÞ.
Let us finally discuss an important difference between

the original model and the replicated one. For y > 1, in the
random model, the transition toward the glassy states
becomes continuous. So, while in the original model
(y ¼ 1) glassy states at Td are already well-formed states
and become dominant with a discontinuous transition, in
the replicated model (y > 1) the glassy states arise
exactly at Td with a continuous transition (a plot showing
how the order parameter changes introducing replicas is
presented in Appendix E). This observation allows us to
compute Td very easily for y > 1 via the linearization
of the BP equations in the random model, similar to the
computation of TKS in the planted model (more details in
Appendices C, D, and E). The consequences of the
changing of the order of the transition on the existence
of hard phases are discussed in the concluding paragraph.

V. FINITE-SIZE EFFECTS

Finite-size effects are sizeable only close to the critical
point. As a typical example, we show in Fig. 6 the behavior
of SA at connectivity c ¼ 17 < cSA for sizes N ¼ 103;
104; 105. At first sight, the behavior of SA seems strange
enough: It can find the planted solution forN ≤ 104, even if
the PM state should be stable given that we are running SA
with c < cSA. As long as the PM is locally stable, the
barrier one has to cross to leave it is OðNÞ, and thus the
corresponding timescale should be O( expðNÞ), definitely
a huge number for the sizes N ¼ 103; 104 shown in Fig. 6.
How can we explain this observation? Can we achieve an

analytical prediction, at least qualitatively, of the above
finite-size effects? A clear and simple answer comes from
the study of the critical values TKS and Td on samples of a
given finite size. Indeed, both critical values can be
computed by running BP on a given sample: TKS is found
by analyzing the stability of the PM state in the planted
model via the linearization of BP equations around the

paramagnetic fixed point; Td is found by running BP on the
random model initialized in a planted glassy state at a given
temperature and looking at the temperature at which the
glassy state becomes unstable toward the paramagnet.
More details are given in Appendix E.
We cannot compare directly TKS and Td for a

given sample, because, as explained exhaustively in
Appendices D and E, we are looking at the ensemble of
graphs planted at T ¼ 0 to compute TKS and to the
ensemble of graphs planted at T > 0 to find Td.
However, to compare the two, we can reasonably assume
that the finite size is effectively changing the mean degree
c. Td and TKS being both monotonic functions of c, we can
assume that the sample that has the highest Td will also
have the highest TKS. Following the same reasoning, we
order values of TKS and Td and pair them following their
order. For each pair, we can now look to the maxðTKS; TdÞ,
because we conjecture that the highest of the two is the one
determining the fate of SA in the search for the planted
signal. In Fig. 7, we show the histograms of TKS (filled
curves) and Td (empty curves) for different sizes at c ¼ 17.
The data are thus in perfect agreement with our claim that
SA can find the planted state only if maxðTKS; TdÞ ¼ TKS,
and this happens with a high probability for N ¼ 103 and
104, while we never observe it for N ¼ 105.
The reason beyond this unexpected behavior is due to the

very different finite-size effects in TKS and Td: While
the latter deviates slightly from the value it takes in the
thermodynamic limit, we observe in TKS substantial devi-
ations, very biased toward larger temperatures. As a
consequence, the PM state gets destabilized at higher
temperatures in samples of finite size allowing for signal
detection (a very favorable effect of finite-size effects).

FIG. 6. The energy density as a function of the temperature
during simulated annealing for planted coloring with q ¼ 5,
c ¼ 17, dT ¼ 10−7, and different problem sizes. For each value
of N, ten different samples are simulated. For N ¼ 105, SA does
not find the planted solution, while it always does for
smaller sizes.
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VI. DISCUSSION AND PERSPECTIVES

In this work, we analyze the limits and the performances
of simple, but efficient, algorithms based on a MCMC
(i.e., SA and RSA) in solving the planted-coloring problem
on sparse random graphs. This problem is a well-under-
stood inference problem (in the teacher-student scenario)
showing an information-to-computational gap: The planted
solution can in principle be detected for c > cIT, but
any known polynomial algorithm can find it only for
c > calg ≥ cKS > cIT.
For planted problems defined on random graphs and for

which the generative model is known—two conditions not
always easy to meet—the BP algorithm is Bayes optimal
and can find the planted solution as soon as c > cKS. The
BP algorithm works at the same temperature used in the
planting process (T ¼ 0 in the present model), and for this
reason, it satisfies the Nishimori condition that keeps the
algorithm away from glassy states: Indeed, in glassy states,
the replica symmetry is spontaneously broken, while the
Nishimori condition implies the replica symmetry must be
preserved. As a consequence, BP is the optimal one among
a large class of message-passing algorithms: As shown in
Ref. [26], generalizing BP to include RSB effects leads to
the worst algorithmic performances (probably due to the
presence of the uninformative glassy states that we have
seen trapping the MCMC algorithms).
Willing to understand the more general situation where

algorithms are run with a temperature T different from
the planting temperature used in the problem generation
(T > Tp ¼ 0 in our case), we need to abandon the

Nishimori condition. In this situation, the glassy states,
which are uninformative from the point of view of the
inference problem, can play a key role, influencing neg-
atively the performances of the algorithms. We show in the
present work that algorithms based on a MCMC, like SA,
can indeed be trapped by glassy states and fail to detect the
signal, even in the region where the FM state has lower
energy with respect to the PM state.
Decreasing the temperature in a SA (or RSA) simulation,

the system faces a critical choice, which is schematically
depicted in Fig. 8: When it leaves the PM state, it can either
flow to the FM state (and thus detect the planted signal) or
get trapped in glassy states (which are uncorrelated to the
planted signal). In the latter case, the FM state becomes
unreachable, even if it has lower energy because the
dynamics in the glassy states is extremely slow, and the
barriers (both energetic and entropic [40]) make paths
leaving the glassy states extremely improbable.
The above observations allow us to make a conjecture on

the location of the algorithmic threshold for MCMC-based
algorithms. In the literature, there is not a clear indication
on which is the correct threshold for these algorithms:
While some works claim that MCMC solvers can reach the
BP threshold [27], some other references suggest that
indeed glassy states negatively influence the performances
of the non-Bayes-optimal algorithms [26,41–44] but do not
provide any estimate of the actual algorithmic threshold.
In this work, we conjecture that the fate of a MCMC-

based annealing algorithm depends on which critical line it
meets before. If the PM spinodal line TKSðcÞ is met first,
the MCMC evolution spontaneously leaves the PM state
heading toward the FM states (the only existing before the
appearance of glassy states) and detecting the planted
signal. On the contrary, if the dynamical critical line
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FIG. 7. Histograms of TKS (filled curves) and Td (empty
curves) obtained by running linearized BP equations on given
instances of different sizes at c ¼ 17 (more details on the
computation in the text). Ordering values of TKS and Td at a
given N and pairing them following their order, for N ¼ 103; 104,
maxðTKS; TdÞ ¼ TKS for almost each pair of temperatures, while
for N ¼ 105 it always happens that maxðTKS; TdÞ ¼ Td (and this
is the reason why SA is not able to reach the planted state for
N ¼ 105). Vertical dashed lines represent TKS and Td in the
thermodynamic limit.

FIG. 8. A schematic picture of the general scenario faced by an
annealing process looking for the planted signal. Decreasing the
temperature, the fate of the annealing algorithm is determined by
which critical temperature is met first between TKS and Td (as
explained in the text). The lower diagram should remind us that
once the system gets trapped in glassy states it cannot reach the
planted signal anymore due to the large barriers.
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TdðcÞ is met first, glassy states become the most attractive
for the MCMC evolution, and the system gets trapped in
glassy states forever. We see that the above conjecture
predicts with high accuracy the algorithmic thresholds
measured in numerical simulations for both SA and
RSA. For SA, we find that the algorithmic threshold is
suboptimal (cSA > cKS), thus correcting previous claims of
optimality [27]. For RSA, instead, we find an optimal
algorithmic threshold (cRSA ≃ cKS).
The optimality of RSA is a very good news: Being a

MCMC-based algorithm, it is extremely robust and can be
used with confidence also in more structured problems, like
those coming from realistic applications, where message-
passing algorithms are likely to fail. The RSA algorithm
has been introduced in Ref. [37] as a smart way to sample
configurations with large local entropy. To the best of our
knowledge, it was never used before in inference problems.
We adopt it with the following rationale: According to the
scenario depicted above, the inference process can be seen
as a competition between the single FM planted state and
the exponentially many glassy states, the two competitors
having similar chances of attracting the dynamics close to
the algorithmic threshold. Given that the glassy states are
many, we expect the basin of attraction of a single glassy
state to be much smaller than the one of the FM planted
state. For this reason, in the replicated system, the y copies
are more likely to be attracted by the FM state having a
larger basin than by any single glassy state (while being
distributed over several glassy states is not convenient
because of the coupling among replicas).
In other words, the improvement of RSAover SA is due to

the planted state being different fromglassy states (and this is
often the case in inference problems), but it cannot be
extended straightforwardly to other types of problems. For
example, in a recent paper we compared the performances of
SA and RSA for an optimization problem, the largest
independent set problem on sparse random graphs [45],
and in that case, we did not find a great improvement in the
replicated version. However, in hard optimization problems,
one is often trying to find a solution that lies inside a glassy
state (e.g., in the clustered phase of constraint satisfaction
problems [29,46,47]). Thus, if the competition is taking place
between glassy states of similar internal entropy, the repli-
cated version of the algorithms does not lead to any great
improvement (as we saw in the largest independent set
problem [45]). So, it is worth stressing that the very good
performances of RSA in inference problems [48] are mainly
due to the internal entropy of the planted state being larger
than the one of each glassy state, and this difference is
general, being theplanted state theonewith the lowest energy
and being the basin of attraction larger for lower-energy
states (see, e.g., the discussion in Appendix A of Ref. [40]).
We study annealing algorithms as they represent the

safer way to test a broad range of temperatures: Any good
practitioner would start running SA if they know anything

about the model to be optimized, and the output of SA
would already provide a rough but useful indication of the
critical temperature region to be better explored. However,
once one gets a more detailed picture of the energy
landscape (as we do here for the planted-coloring problem),
the natural question is “Is the optimal temperature to run a
MCMC eventually the replicated one?” The answer is clear
from Figs. 2 and 4: The optimal temperature for the MCMC
is the one where the jump to the planted state takes place
(let us call it T jump). Indeed for T > T jump, the MCMC is
stacked in the PM phase, while decreasing the temperature
the dynamics becomes slower, and the time for doing the
jump increases (and even eventually diverges if glassy
states with extensive barriers appear).
Noticing that in all cases where the signal can be detected

by MCMC-based algorithms we have T jump > 0, we can
straightforwardly conclude that the optimal MCMC tem-
perature is not the Bayes-optimal one. A similar conclusion
has been achieved recently for MCMC-based algorithms
solving the planted clique problem [24,49] and in the rank-
one matrix-estimation problem [50]. So, it seems a general
statement that, once we consider out-of-equilibrium proc-
esses solving an inference problem, the Bayes-optimal
temperature plays a marginal or null role, and the optimal
temperature is typically higher (larger thermal fluctuations
enhance the exploration of the configuration space). This is
reminiscent of what has been found for Langevin dynamics
in another inference problem, the spiked matrix-tensor
model: In that case, the Langevin algorithm is suboptimal
with respect to message-passing algorithms, due to the
presence of glassy states, and it is computationally advanta-
geous for it to mismatch the parameters to find the planted
solution of the problem [42–44].
The mismatch between the optimal MCMC temperature

and theBayes-optimal temperature is a goodnews for all those
situations when the generative model is not known and
matching the planting temperature would be simply impos-
sible by ignorance. So, having robust algorithms that canwork
even without knowing exactly the properties of the generative
model is extremely useful, and the only requirement is to have
an idea of the optimal temperature at which the algorithm
should be run (the jump temperature in the present case).
We attempt to get an analytical estimation of the jump

temperature T jump by checking the stability of the PM state
in the replicated model (the details of the computation are
in Appendix D). However, the replicated model has many
short loops, and the Bethe approximation is no longer exact
(one should consider supervariables involving the y rep-
licas and taking qy values, but we leave this computation
for future work). Luckily enough in the large-y limit, the
interaction among replicas becomes weak (we scale it by
1=y to get a well-defined limit for y → ∞), and the Bethe
approximation is again valid on a single graph. In the y ≫ 1
limit, we can thus obtain an estimate of T jump (it is reported
in Fig. 4 with a vertical dashed line) that compares
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extremely well with numerics even for smaller values of y.
This is, in our opinion, a very relevant achievement as
predicting the dynamical behavior of out-of-equilibrium
algorithms is typically very challenging, and the cases
where this can be put in connection with the thermody-
namical phase diagrams (as those shown in Figs. 3 and 5)
are very few, especially for sparse models.
A final comment is about the nature of the transitions in

the replicated system. We already pointed out that the
transition from the PM state toward the glassy states
changes its nature adding replicas, passing from a discon-
tinuous transition for y ¼ 1 to a continuous transition for
y > 1. This could sound strange and unexpected; however,
this phenomenon is reminiscent of what happens in other
disordered systems: Let us consider the formulation of the
problem where the y-coupled variables on a single site form
a supervariable taking qy values. The supervariable is
subject to a local field that favors configurations where
the y replicas are similar. It is well known that disordered
models undergoing a discontinuous replica symmetry-
breaking transition (e.g., the famous p-spin model [51])
can change their nature to a continuous transition in
presence of an external field. In the case of the y replicas,
the change in the nature of the transition is caused by a self-
induced internal field. This change in the type of transition
should lead us to rethink the whole concept of the hard
phase in inference problems, which is fundamentally
grounded on the discontinuous nature of the phase tran-
sition. Indeed until now, any known model whose random
version shows a discontinuous transition, has a hard phase
in its planted version, while any model that shows a
continuous transition in its random version does not have
a hard phase in its planted version. The phase diagram of a
model with a discontinuous transition has the same form as
the one we show in Fig. 3 for the coloring problem. In the
upper panel in Fig. 9, we show the typical phase diagram
for a model with a continuous transition: The PM state
loses stability as long as the glassy states or the planted
state become locally stable, respectively, in the random
graph or in the planted graph. The temperature at which the
PM state becomes unstable toward the planted state is
always higher than the temperature of the instability toward
a random glassy state in a planted graph: As a result, there
is no hard phase, because it is possible to recover the
planted state as long as it becomes locally stable, both for a
BP or for a MCMC algorithm. The phase diagram for the
replicated model is instead different as shown in the lower
panel of Fig. 9: Below a certain connectivity (that in the
case of the coloring problem, we find numerically to
coincide with cKS) the temperature at which the PM state
becomes unstable toward the planted state coincides with
the one at which it becomes unstable toward the glassy
states (in other words, the two critical lines merge).
Moreover, as long as the glassy states become locally
stable, both a MCMC algorithm and the BP algorithm get

trapped by them and do not find the planted state. In this
situation, the hard phase is present but its nature is different
from the one arising in discontinuous models: While for
discontinuous models, the hard phase is caused by the local
stability of the PM state and the planted state is retrievable
as soon as the PM state becomes locally unstable, in the
replicated model, the continuous transition destabilizing the
PM state may lead to the concurrent formation of glassy
states (for c < cKS in our model) that trap the algorithms
and make the planted state not retrievable.
At this point, one could ask why glassy states are not a

problem for BP in the nonreplicated models, both discon-
tinuous and continuous (in the green region of both Figs. 3
and 9 glassy states are stable but BP does not “see” them)
while they trap the BP algorithm in the replicated case. In
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FIG. 9. Qualitative phase diagram for a “standard”model with a
continuous transition (upper panel) and for the replicated coloring
model (lower panel). While for a standard continuous model,
the temperature at which the PM state becomes unstable toward
the planted state is always higher than the temperature of the
instability toward a random glassy state, for the replicated model
below a certain connectivity, the two temperatures coincide. As in
Fig. 9, in the blue regions both a MCMC algorithm and BP can
nucleate the planted solution, while in the green one, MCMC
algorithms get trapped in glassy states while BP is able to find the
planted one. In the diagram of the replicated model, a new
previously unseen region, colored pink, appears where both a
MCMC algorithm and BP are trapped by a glassy state.
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the nonreplicated models, the number of glassy states goes
to infinity in the thermodynamic limit, and their basin of
attraction is very narrow: BP randomly initialized is not
able to enter any of them. The introduction of replicas
changes the free energy of the model, performing a sort of
weighted average over the states, reducing the number of
glassy states and enlarging their basin of attraction (for a
pictorial representation of this phenomenon see Fig. 1 of
Ref. [37]): In this way, they become accessible by the BP
algorithm. This phenomenon should depend on the param-
eters y and γ and we leave its complete characterization for
future works [52]. Please note that the PM state, which is
trapping BP in the hard phase in the nonreplicated model,
can be viewed as the white average over all the underlying
glassy states [26]. When replicas are added, the role of PM
trapping BP is taken by some new glassy states that can be
viewed as a weighted average over the glassy states of the
nonreplicated original model.
In conclusion, what is the most robust, eventually

optimal, and easy-to-use algorithm to solve hard inference
problems? We see that for the coloring problem, RSAwith
few replicas, say, y ¼ Oð10Þ, is the best option. It is more
robust than BP, and it can be applied essentially to any kind
of graph. Its running time is OðyNÞ, so only a factor y
slower than the simpler SA, which is the first option for any
practitioner. Maybe parallel tempering (PT) could be better
than RSA, but it is more difficult to use and requires a
preprocessing operation where the temperature schedule
has to be optimized. Moreover, RSA can be restricted to a
small temperature range around TKS, thus reducing the
running times, while PT requires many more temperatures
to be run efficiently.
Let us also comment that RSA can be viewed as a

standard annealing process that is a dynamical process
trying to minimize the energy function, but using an
effective Hamiltonian or cost function where configurations
are reweighted. In the original work introducing RSA, the
motivation was to sample configurations of large local
entropy [37]. However, the idea can be generalized, and we
believe it is really worth exploring further the possibility of
increasing the chances of reaching the planted signal by
modifying the energy landscape. This has been shown
useful in random constraint satisfaction problems, where
the reweighting of solutions can modify the critical lines
and enhance the chance of finding a solution [53,54]. Also,
in the tensor PCA problem, the modification of the energy
landscape achieved via the use of many replicas can lead to
sensible improvement in signal detection [55].
Having found a MCMC-based algorithm (RSA) that has

the same algorithmic threshold cKS as the Bayes-optimal
BP, some questions naturally arise (that we leave for
future works).
Does the RSA optimality hold in general? A simple way

to paraphrase this question is, “Can one demonstrate that
the equivalence

TKSðcKS; yÞ ¼ TdðcKS; yÞ

is valid for all the planted inference problems whenever
y > 1 or at least for y large enough?” And if yes, why? Can
we get an improved RSA by optimizing the coupling
among replicas? We believe the answer to these questions
will come from studying numerically more inference
problems and analytically the y → ∞ limit.
Does there exist an even better MCMC-based algorithm

that can work below cKS, i.e., breaking the hard phase? The
most immediate answer would be negative, given that BP (a
Bayes-optimal algorithm) stops working at cKS. Moreover,
recent works connect the performance of a broad class of
algorithms called stable algorithms with the structure of the
configurational space, suggesting that the clustering of
solutions in the hard phase is an insurmountable obstacle
for stable algorithms [56]. However, we notice that
MCMC-based algorithms do not belong to the class of
stable algorithms (at least if run for a long enough time), so
there is a hope they can work efficiently even in a clustered
hard phase, where message-passing algorithms are deemed
to fail. Moreover, smarter MCMC-based algorithms, like
RSA or PT, actually work in an extended space (in replicas,
the former algorithm, and in temperature, the latter), and in
this extended space, the clustering of the measure may be
less important. In support of this conjecture, we show in the
present work how the nature of the phase transition changes
in the replicated problem.
A last comment is on the scaling of the running times to

find solutions in the regime where the algorithms we study
do work, i.e., above cKS. Given that we focus on sparse
problems, each iteration step of an algorithm is linear in N.
However, the number of iterations can scale with the system
size N. For message-passing algorithms, the number of
iterations scales as a small power of N or a large power of
logðNÞ, while for MCMC-based algorithms the number
of iterations scales roughly linear in N (see Appendix B).
Thismeanswe are already exploring the region of timescales
growing with the system size, where analytical tools are at
present unable to provide any detailed insight. Without
reaching the timescales growing exponentially in N, which
are practically useless for any real-world problem, we
believe the possibility of developing polynomial in N
solving algorithms based on the MCMC working below
cKS in the hard phase is to be seriously taken into account.
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APPENDIX A: SUMMARY OF CRITICAL
TEMPERATURES, THEIR PHYSICAL MEANING,

AND THEIR CONNECTION WITH
PREVIOUS DEFINITIONS

We define TKSðcÞ as the spinodal temperature at which
the paramagnetic state develops an instability toward the
planted solution. This temperature was already computed in
Ref. [27] under the name T2 looking at the divergence of
the ferromagnetic susceptibility. Its exact value is

TKSðcÞ ¼ −
1

log½c−ðq−1Þ2q−1þc �
:

Such a spinodal line ends at zero temperature at cKS ¼
ðq − 1Þ2 (previously called cl in Ref. [27]). As usual in
planted problems, cKS corresponds also to the connectivity
at which the paramagnetic state becomes unstable in a
random graph, without the planted state: This is signaled by
the divergence of the spin-glass susceptibility. However,
one should be careful because this coincidence is not true
anymore when temperature is added: The temperature at
which the paramagnetic state becomes unstable in the
random coloring problem has been computed in Ref. [29]
and it reads

TcðcÞ ¼ −
1

log ½1 − qffiffi
c

p þ1
� ;

and it is always smaller than TKSðcÞ for c > cKS.
The other temperature that is fundamental in our analysis

is TdðcÞ, which is defined as the spinodal temperature
above which a glassy state in the random coloring problem
is not stable anymore. Its behavior is already shown in
Ref. [27]. At T ¼ 0, this line ends in cd ¼ 12.837ð3Þ for
q ¼ 5 [29]. Analogous to cKS, cd turns out to be also the
spinodal connectivity below which a planted configuration
is not stable anymore. Again, this coincidence is not true
anymore when temperature is added: The spinodal temper-
ature for the planted configuration is the one called T1 in
Ref. [27], and T1ðcÞ > TdðcÞ holds for c > cd.
One can generalize the above definitions for TdðcÞ and

T1ðcÞ by introducing TspðTpl; cÞ as the spinodal temper-
ature at which a state planted at temperature Tpl becomes
unstable. With this definition, we have T1ðcÞ ¼ Tspð0; cÞ
and TdðcÞ ¼ TspðT; cÞ.

APPENDIX B: SCALING OF RUNNING TIMES
WITH SYSTEM SIZE

In the main text, we present data only for N ¼ 105 and
dT ¼ 10−7, but it is important to study how small one has

to set dT in order to ensure that the annealing algorithmwill
converge to the solution with high probability. For any
well-normalized cost function, we expect the starting
temperature of the annealing process to be Oð1Þ, i.e.,
not to scale with the system size N. As a consequence, the
running time of the annealing process is OðdT−1Þ, and
given that a single iteration in sparse models requires a time
OðNÞ, the total running time is OðN=dTÞ. Let us discuss
now how dT should be scaled with N in order to ensure
convergence to the planted state.
We run RSA for c ¼ 17 and SA for c ¼ 20 (in both

cases, we expect the algorithm to work if dT is small
enough). We consider sizes N ¼ 103; 104; 105 and several
dT values. From the data of the overlap presented in the
inset of Fig. 2, it is clear that the condition Q > 0.5 selects
the successful runs. For each pair ðN; dTÞ, we measure the
probability of a successful run.
In Fig. 10, we report data obtained by running RSA for

c ¼ 17 with y ¼ 2, 4, 8, and a good scaling of the success
probability can be achieved by plotting the data as a
function of NdTa with a very close to 1. Using this
renormalized variable, times for different sizes collapse and
are well fitted by a function t ¼ erfc½ðNdTa − x0Þ=b� [57].
The best scaling exponents are a ≃ 1.27 for y ¼ 2, a ≃ 0.9
for y ¼ 4, and a ≃ 0.95 for y ¼ 8, but estimating the
corresponding uncertainty is not easy as it depends on
the finite-size corrections to scaling which are not under
control. Nonetheless, all the estimated exponents are very
close to 1, and this implies the RSA algorithm finds the
planted solution in a time scaling roughly quadratically
with the system size.
In Fig. 11, we present the same scaling analysis for the

performances of SA at c ¼ 20. Given the larger number of
runs, the errors on the success probabilities are much
smaller and consequently make evident the need to use
finite-size corrections to scaling. For this reason, we
compute the optimal scaling exponent a ≃ 1.03 by col-
lapsing data for N ¼ 104; 105 assuming the data for N ¼
103 are affected by some small corrections to scaling.
A simple numerical argument for the scaling dT ≈ N−1

in SA and RSA follows. Assume that the Monte Carlo
(Glauber) dynamics is able to detect the planted state only
in the region Td < T < TKS (i.e., the one colored blue in
Figs. 3 and 9, right) that we call the retrieval region. The
time spent in the retrieval region by annealing at a constant
rate is ðTKS − TdÞ=dT, and we need this time to scale like
the time needed by a MCMC simulation run at any fixed
temperature in the retrieval region to find the planted state.
We measure the number of MCSs needed to nucleate the
planted solution running a standard MCMC simulation at
fixed temperature T for c ¼ 20 and y ¼ 1. The results are
presented in Fig. 12. Straight data correspond to a power-
law growth with the problem size N, and the black line
corresponds to a linear growth in N. Several observations
are in order. The optimal time for small values of N seems
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to be achieved for T slightly above TKS ≃ 0.56, and this is
expected as setting the temperature to the largest possible
value speeds up the MC dynamics and finite-size correc-
tions make TKS larger (see Sec. Von the finite-size effects).
If T is too large, eventually it becomes larger than TKS (that
decreases toward its large-N limit) and leaves the retrieval
region: When this happens, the MC dynamics is no longer
able to reach the planted state in a polynomial time, and the
corresponding time grows enormously with N (see data for
T ¼ 0.7). If T is below Td (see data for T ¼ 0.4), the time
to find the planted state grows immediately very fast (likely
superpolynomially). Last, but not least, choosing the
temperature in the retrieval region (better toward its upper

end) the running times to find the planted state scale
roughly linearly with the system size (the black line is a
linear growth law for the ease of reading). This last
observation brings us to the conclusion that, although
running an annealing algorithm is very comfortable
because one does not need to spend time selecting the
optimal running temperature (the annealing will visit the
retrieval region wherever it is), it is not optimal, because all
the time spent outside the retrieval region is actually
useless. The optimal and robust retrieval algorithm is
running MC dynamics in the retrieval region. Since a
single MCS takes a time of orderOðNÞ, the time needed by
MC dynamics to find the planted state in the retrieval region
is again roughly quadratic.
As a comparison, in Fig. 13 we show the number of

iterations that the BP algorithm needs to converge to the
fixed point corresponding to the planted state. Each single
BP iteration takes a time of order OðcNÞ. As shown, the
growth of the number of iterations with the size of the
system can be fitted both by a power law with a very small
exponent and with a logarithmic growth. The two curves
are indistinguishable for the analyzed sizes, and we cannot
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FIG. 10. The success probability of finding the planted state by
running RSA on c ¼ 17 planted-coloring problems of sizeN with
a constant annealing rate dT is a function of dTNa with a scaling
exponent a close to 1 (at least for R ¼ 4, 8). This implies the
running times of RSA are roughly quadratic in N. The fit function
is fðxÞ ¼ erfc½ðx − x0Þ=b�.
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say which is the right scaling. The times grow for smaller
connectivities, but the scaling with N remains the same.

APPENDIX C: REPLICATED BELIEF
PROPAGATION

In this appendix, we derive the BP equations for the
coloring problem with y-coupled replicas at inverse temper-
ature β, which we call RBP. For this model, the probability
distribution of the variables follows the Gibbs-Boltzmann
probability associated with the Hamiltonian in Eq. (8).
As for the original model, one would like to estimate the

marginal probabilities through the fixed point of some BP-
like equations. However, in the replicated case, the graph is
no more locally treelike, because of the presence of
small loops between the y-coupled replicas, and the BP
equations are not guaranteed to provide the correct solution
to the problem. We see that in the limit y ≫ 1, the
interaction among replicas is weak enough, and the
critical temperatures predicted by RBP will describe
perfectly the transitions observed in the RSA in the limit
of large y.
Making reference to Fig. 14, where every site of the

replicated graph is identified by a pair ði; aÞ, with i being
the vertex of the original graph, taking values in ½1; N�, and
a is the replica index running in ½1; y�, the RBP equations
for the coloring model with y-coupled replicas at inverse
temperature β can be written straightforwardly [58]

ψ ði;aÞ→ðj;aÞ
s ¼ 1

Zði;aÞ→ðj;aÞ
Y
bð≠aÞ

ð1 − ð1 − eγβ=yÞϕði;bÞ→ði;aÞ
s Þ

×
Y

k∈∂inj
ð1 − ð1 − e−βÞψ ðk;aÞ→ði;aÞ

s Þ;

ϕði;aÞ→ði;bÞ
s ¼ 1

Zði;aÞ→ði;bÞ
ϕ

Y
cð≠a;bÞ

ð1 − ð1 − eγβ=yÞϕði;cÞ→ði;aÞ
s Þ

×
Y
k∈∂i

ð1 − ð1 − e−βÞψ ðk;aÞ→ði;aÞ
s Þ; ðC1Þ

with Z and Zϕ being the normalization factors enforcingP
s ψ

ði;aÞ→ðj;aÞ
s ¼ P

s ϕ
ði;aÞ→ði;bÞ
s ¼ 1 for every edge of the

replicated graph. We call ψ the cavity messages passed
between nodes of the same replica, andϕ the cavitymessages
passed between different replicas on the same vertex of the
original graph. In the limit y ¼ 1, the ϕ messages are
irrelevant, and the above equations reduce to the standard
BP equations for the original (unreplicated) model.
To simplify Eqs. (C1) we assume a RS ansatz, where

cavity messages do not depend on the replica indices, that
is, ψ ði;aÞ→ðj;aÞ

s ¼ ψ i→j
s and ϕði;aÞ→ði;bÞ

s ¼ ϕi
s, and then we get

ψ i→j
s ¼ 1

Zi→j ð1− ð1−eγβ=yÞϕi
sÞy−1

Y
k∈∂inj

ð1− ð1−e−βÞψk→i
s Þ;

ϕi
s¼

1

Zi
ϕ

ð1− ð1−eγβ=yÞϕi
sÞy−2

Y
k∈∂i

ð1− ð1−e−βÞψk→i
s Þ:

ðC2Þ

We verify numerically that fixing γ ¼ 1 and solving
Eqs. (C1) and (C2) on any given graph, we get exactly the
same result, both in the high-temperature PM state and in
the low-temperature FM state. So, the RS assumption is
valid in the present case, and we focus only on Eqs. (C2)
hereafter.
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FIG. 13. Number of iterations that the BP algorithm needs
before convergence to the planted fixed point as a function of the
size of the system N for two values of the connectivities c ¼ 17
and c ¼ 20. The growth in the number of iterations can be fitted
both by a power law tðNÞ ¼ aþ bNc with a very small exponent
c ≃ 0.2, and with a logarithmic growth tðNÞ ¼ aþ b logcðNÞ
with c ≃ 2.9. The two curves are indistinguishable for the
analyzed sizes, and we cannot conclude which is the right scaling.

FIG. 14. A schematic view of the replicated graph for y ¼ 4.
The black graph is the original one, while the gray graphs are the
y − 1 replicas. Blue ferromagnetic couplings are present among
every pair of replicated vertices with the same site index.
Replicated BP uses two kinds of messages, ψ and ϕ, represented
by black and blue arrows.
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APPENDIX D: COMPUTATION OF THE
KESTEN-STIGUM TRANSITION TEMPERATURE

IN THE REPLICATED MODEL

The Kesten-Stigum transition temperature corresponds
to the spinodal point of the PM state, that is, to the lowest
temperature such that the PM state is locally stable. If the
trivial fixed point of the RBP equations (ψ s ¼ ϕs ¼ ð1=qÞ)
is correctly describing the PM state of the replicated model,
we can compute TKSðy; γÞ via the study of the local stability
of the RBP trivial fixed point with respect to fluctuations
leading to the planted FM state.
We perform a linear expansion around the PM trivial

solution in the variables

ϵi→j
s ≡ ψ i→j

s −
1

q
; δis ≡ ϕi

s −
1

q
: ðD1Þ

At leading order in this expansion, Eqs. (C2) become

ϵi→j
s ¼

X
k∈∂inj

X
t

∂ψ i→j
s

∂ψk→i
t

����
PM

ϵk→i
t þ

X
t

∂ψ i→j
s

∂ϕi
t

����
PM

δit

¼ A
X
k∈∂inj

�X
t

ϵk→i
t − qϵk→i

s

�
þBðy− 1Þ

�X
t

δit − qδis

�
;

δis ¼
X
k∈∂i

X
t

∂ϕi
s

∂ψk→i
t

����
PM

ϵk→i
t þ

X
t

∂ϕi
s

∂ϕi
t

����
PM

δit

¼ A
X
k∈∂i

�X
t

ϵk→i
t − qϵk→i

s

�
þBðy− 2Þ

�X
t

δit − qδis

�
;

ðD2Þ
where the subscript PM indicates that the function should
be computed at the PM trivial solution ψ s¼ϕs¼ð1=qÞ and

A ¼ 1 − e−β

qðq − 1þ e−βÞ ; B ¼ 1 − eγβ=y

qðq − 1þ eγβ=yÞ :

Equations (D2) define a qðN þMÞ × qðN þMÞ matrix
associated with a given graph of N vertices and M edges.
To study the stability of the paramagnetic solution, one
should look at its maximum eigenvalue λmax. When
λmax ¼ 1, the PM solution loses its local stability. In this
way, we can locate TKSðy; γÞ that we show (fixing γ ¼ 1) in
Fig. 3 for y ¼ 1, in Fig. 5 for y > 1, and in Fig. 4 with a
vertical dashed line in the y ≫ 1 limit. The latter value is a
very good estimate of the jump temperature for large y,
where the planted signal can be detected.

At this point, one could think to obtain an analytic
estimation for TKSðy; γÞ computing the eigenvalues of the
linear transformation in Eqs. (D2), assuming that in the
large-N limit the original graph becomes locally a tree, and
so the cavity messages on the right-hand sides are uncorre-
lated. This is a standard argument that indeed works for
y ¼ 1 and provides the analytical value TKSðy ¼ 1Þ ¼
−1= log ½(c − ðq − 1Þ2=q − 1þ c)� of Ref. [27].
In the following, we show that this kind of computation

for y > 1 does not give the correct result compared to
the large-N limit estimation of TKS from the single
graphs illustrated before. Let us introduce Ps;tðϵi→jÞ and
Qs;tðδði;aÞ→ði;bÞÞ as the probability distributions of the two
kinds of perturbations (between the nodes and between the
replicas) in the direction of color s if the spin i is planted in
the color t. In the large-N limit, assuming a locally treelike
replicated graph, we can write closed equations for these
distributions

Ps;tðϵÞ ¼
X∞
d¼0

d
c
rd

Z X
fσjg;fτjg;fσag

Yd−1
j¼1

dϵjPσj;τjðϵjÞpðτjjtÞ

×
Yy−1
a¼1

dδaQσa;tðδaÞδ(ϵ − f1ðfϵjg; fδagÞ);

Qs;tðδÞ ¼
X∞
d¼0

rd

Z X
fσjg;fτjg;fσag

Yd
j¼1

dϵjPσj;τjðϵjÞpðτjjtÞ

×
Yy−2
a¼1

dδaQσa;tðδaÞδ(δ − f2ðfϵjg; fδagÞ); ðD3Þ

where rd is the probability of having a vertex of degree d in
the original graph (a Poisson distribution of mean c in the
model we study in this work), ðd=cÞrd is the probability
that, taken a link i → j at random, i has degree d, pðτjtÞ ¼
½Iðτ ≠ tÞ=q − 1� is the probability that a neighbor of site i is
planted in the state τ given that i is planted in the state t, and
finally the functions f1 and f2 are defined, respectively, by
the right-hand sides of the first and second equation in
(D2). Please note that we are allowing δa to take different
values for each replica. We are thus analyzing the linear
expansion of Eq. (C1) rather than Eq. (D2) which is the
linear expansion of Eq. (C2).
At this point, given that we are looking for a transition

toward a “ferromagnetic” state, we can restrict our attention
to the first moments of the above distributions

hϵs;ti≡
Z

dϵPs;tðϵÞϵ ¼
X∞
d¼0

d
c
rd

� X
fτjg≠t

A
q − 1

Xd−1
j¼1

�X
σj

hϵσj;τji − qhϵs;τji
�
þ B

Xy−1
a¼1

�X
σa

hδσa;ti − qhδs;ti
��

;

hδs;ti≡
Z

dδQs;tðδÞδ ¼
X∞
d¼0

rd

� X
fτjg≠t

A
q − 1

Xd
j¼1

�X
σj

hϵσj;τji − qhϵs;τji
�
þ B

Xy−2
a¼1

�X
σa

hδσa;ti − qhδs;ti
��

: ðD4Þ
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Exploiting the symmetry under permutation of the
colors, we can identify the only four relevant observables:
ϵe ≡ hϵs;si, ϵd ≡ hϵs;ti with s ≠ t, δe ≡ hδs;si and δd ≡
hδs;ti with s ≠ t. Our goal is to look at fluctuations toward
the planted state; thus, it is convenient to look at the
differences ϵd − ϵe and δd − δe that satisfy the following
closed equations:

ϵd − ϵe ¼ ðϵd − ϵeÞAc q
q − 1

− qBðy − 1Þðδd − δeÞ;

δd − δe ¼ ðϵd − ϵeÞAc q
q − 1

− qBðy − 2Þðδd − δeÞ: ðD5Þ

The analysis of the stability of the PM solution in the tree
limit of the replicated graph is thus reduced to the
computation of the largest eigenvalues of the matrix

"
Ac q

q−1 −qBðy − 1Þ
Ac q

q−1 −qBðy − 2Þ

#
: ðD6Þ

The value of TKS resulting from this computation for
y ¼ 64 is shown in Fig. 15 with the name “RPopDyn,”
as we check it coincides with the result found by running
the population dynamic algorithm to solve Eqs. (D2). The
comparison with the values of TKS obtained from the
solution of the RBP equations on several graph realizations
for different sizes N reveals that in the large-N limit the two
computations coincide only for γ ¼ 0, that is when replicas
do not interact. As long as γ > 0 and the replicas are
coupled, the large-N limit of the single graph computation

does not coincide with the analytical estimation obtained
under the assumption of a locally treelike replicated graph.
The reason for the mismatch between the two compu-

tations is that for y > 1 and γ > 0 the replicated graph is
not locally treelike and cavity messages are correlated.
While running RBP on a given graph these correlations can
be taken into account, the population dynamics algorithm,
by construction, ignores any correlation among cavity
messages. The correlations among messages coming from
different replicas are positive, thanks to the ferromagnetic
coupling among replicas, and this, in turn, produces a much
larger value for TKS than under the assumption of uncorre-
lated messages.
The attentive reader could be puzzled by the fact that

population dynamics gives the wrong result even in the
y → ∞ limit (the curves shown in Fig. 15 are for y ¼ 64,
which is quite large, and their value is almost the asymp-
totic one for y ¼ ∞). In fact, in the limit y → ∞, the y
replicas form a fully connected ferromagnetic Potts model,
and we know that the cavity method becomes exact for
fully connected graphs. However, there is a simple explan-
ation for the failure of population dynamics even when
y → ∞ in this case. The Bethe approximation between the
y replicas is exact in the limit y → ∞ inside a single pure
state. In fact, the clustering property holds inside a pure
state. Our model has a permutation symmetry: When the
system is magnetized, there are in principle different pure
states that can be obtained one from the other just by the
permutation of the colors. Depending on which pure state is
chosen by the y replicas on the site i, also the neighboring
spins j ∈ ∂i will choose their color. In the replicated graph,
there are many small loops of length 4, between the spins
ði; aÞ − ði; bÞ − ðj; bÞ − ðj; aÞ. While in the limit y → ∞,
the connected correlation functions between ði; aÞ and
ði; bÞ and between ðj; aÞ and ðj; bÞ decay to zero, the full
correlation functions do not decay to zero, because the
average magnetization is not zero inside a pure state. The
BP algorithm for a single instance of the graph takes
into account this correlation of the magnetizations, just
because, when applied to a fixed instance of the graph, BP
spontaneously breaks the permutation of the colors just
dynamically choosing a given pure state, and thus, it is
exact in the limit of y → ∞. On the other hand, the
population dynamics algorithm [Eqs. (C3)] does not con-
sider the correlation in the magnetizations, picking each
time different neighboring spins i and j as if they were
uncorrelated, and this random choice is wrong even in the
limit y → ∞.
Willing to improve the analytical computation (or the

solution via the population dynamics algorithm), one
should consider a supervariable at every node of the
original graph, taking qy values. In this case, the graph
connecting the supervariables is indeed locally treelike, and
a population dynamical computation would give the correct
estimates for the thermodynamical thresholds both for
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FIG. 15. TKSðy ¼ 64; γÞ at c ¼ 17 as a function of the coupling
γ among replicas. The upper curves are obtained running RBP on
several graph of a given size N, while the lower curve is obtained
running population dynamics to solve Eqs. (D2), or equivalently,
computing the largest eigenvalue of matrix in Eq. (D6). The limit
N → ∞ of the former computation coincides with the latter only
at γ ¼ 0. As soon as γ > 0, the assumption of the replicated graph
being locally treelike is wrong, and the latter computation fails,
while running RBP on a given graph still provides a reliable value
for TKS.

LIMITS AND PERFORMANCES OF ALGORITHMS BASED ON … PHYS. REV. X 13, 021011 (2023)

021011-17



finite and infinite y (we leave this computation for
future work).

APPENDIX E: COMPUTATION OF THE
DYNAMICAL TRANSITION TEMPERATURE

The dynamical temperature Td is the temperature below
which glassy states are locally stable (and also attractive for
the out-of-equilibrium dynamics). Td is not modified by the
addition of the planted state, which is roughly orthogonal to
the glassy states. For this reason, the usual procedure to
identify Td is as follows: One plants a configuration typical
of the Gibbs measure at temperature T constructing a graph
compatible with it. This is a generalization of the planting
procedure at T ¼ 0 that we describe in the main text. In
practice, to plant a configuration of temperature T when
y ¼ 1, one first decides the assigned color si for each node
i, in such a way that there are N=q nodes for each color.
Then, one extracts two nodes i and j at random among the
N possible ones, and an edge is put between them with

probability p ¼ e−βð1−δsi ;sj Þ. In practice, nonmonocromatic
edges are always accepted, while monochromatic edges are
accepted with probability e−β that tends to zero if T → 0.
One then repeats this operation until M ¼ ðNc=2Þ edges
are put in the graph. The chosen planted configuration is in
this way an equilibrium configuration of the constructed
graph at temperature T. One then initializes BP near
enough to the planted glassy configuration and runs the
BP equations at temperature T. If the fixed point reached by
BP is the PM one, then glassy states are locally unstable
and thus T > Td, while if the fixed point is correlated with
the planted glassy state, then T < Td.
In this way we locate Td for y ¼ 1 (see data in

Fig. 3) [59].
In principle, one could use the same planting technique to

locate Td in the y > 1 case, paying attention to plant a state
according to the replicated Hamiltonian in Eq. (8). In
practice, we do the following: We first decide the assigned
color si for each node i in such away that there areN=q nodes
for each color. We put all the y replicas associated with
the node i in the color si at the beginning. Then we run
a short Monte Carlo simulation at fixed temperature T
for the y replicas of node i with associated Hamiltonian
Hi ¼ −ðγ=2yÞPy

a≠b¼1 δsai ;sbi . In this way, we obtain an
equilibrium configuration for the y replicas of each of the
N nodes (that at this point are still disconnected). Then we
construct the graph: We extract two nodes i and j at random
among theN possible ones, and an edge is put between them

with probability p ¼ e
−β
P

y
a¼1

ð1−δsa
i
;sa
j
Þ
. We then repeat this

operation until M ¼ ðNc=2Þ edges are put in the graph. To
test the local stability of this planted configuration, one really
needs to run the BP algorithm with y different replicas,
according to Eqs. (C1), because the different replicas will not
be planted necessarily with the same color (being the
temperature positive T > 0 each replica will have a nonzero

probability to differ from the planted configuration).
Computing Td in this way, we discover that the transition
becomes a continuous one as soon as y > 1 (at least for
γ ¼ 1). This is signaled by the fact that the overlap between
the fixed point reached by BP initialized near the planted
glassy state atT and the planted glassy configuration tends to
zero continuously in the limit T → T−

d . One can also look at
another order parameter defined as

m2 ¼ 1

yN

XN
i¼1

Xy
a¼1

Xq
s¼1

ðψ ði;aÞ
s Þ2: ðE1Þ

In the paramagnetic state, ψ ði;aÞ
s ¼ ð1=qÞ ∀ s; i; a, and thus,

m2 ¼ ð1=qÞ. When y ¼ 1,m2 jumps discontinuously to the
valuem2 ¼ ð1=qÞ at T ¼ Td, while for y > 1,m2 reaches its
paramagnetic value continuously at Td.
Both the behavior of the overlap and the squared

magnetization summarized in Figs. 16 and 17 imply that
for y > 1 the dynamical transition of the random model
changes nature and becomes continuous, at difference with
the case y ¼ 1, where this transition is discontinuous. This
fact implies that we can compute Td in the y > 1 case just
by looking at the instability of the paramagnetic solution
through the computation of the maximal eigenvalue of
Eqs. (D2) on a given graph without the T ¼ 0 planted
solution (exactly as we did to compute TKS on a graph with
the T ¼ 0 planted solution). We check that this computa-
tion gives exactly the same result for Td as the previously
described planting procedure. However, the study of the
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FIG. 16. Overlap between the fixed point reached by BP
initialized near a planted glassy state at T and the glassy
configuration planted at T, as a function of the planting temper-
ature T for different values of the replicas y at c ¼ 17, N ¼ 104,
γ ¼ 1. At each temperature, the results for five different planted
graphs are shown. Td is located as the lowest temperature at
which the overlap reaches 0. As long as y > 1, the transition
becomes continuous.
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linearized equations is much faster, the convergence of BP
initialized around the planted glassy state being very slow
in the vicinity of Td. With this linearization method, we
compute the Td values for y > 1 shown in Fig. 5.
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