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Summary

In this paper we provide an analysis of noise propagation in a stochastic mini-
mal model of chemical self-replication, where a given species can duplicate itself
normally. A feedback from the end product on the source, acting as an inhibitor
transcription factor, is considered. Stochasticity involves the intrinsic noise affect-
ing gene expression, which is assumed to happen in bursts. The use of a stochastic
approach is a novelty within such a framework. The investigation involves the role
of the feedback: how it impacts noise attenuation with respect to different modeling
choices of stochastic transcription, and with respect to different strengths of the feed-
back action. The quantification of noise propagation is measured by means of the so
called metabolic noise, i.e. the coefficient of variation of the end product. Computa-
tions are carried out numerically, according to the Stochastic Simulation Algorithm
(SSA) properly adapted for the proposed Stochastic Hybrid Systems, as well as ana-
lytically: the latter have been achieved by exploiting the linear approximation of the
nonlinear terms involved, since otherwise there are no closed loop solutions for the
first- and second-order moments. In such a way, noise propagation may be linked to
the model parameters, with the SSA aiming at validating the approximated formulas.
Results confirm the noise reduction paradigm with feedback.

KEYWORDS:
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1 INTRODUCTION

Autocatalytic reactions relate to self-replication of a chemical player. Such possibility to duplicate without an external catalytic
action has been suggested to be involved as a motor in species evolution. It can emerge to cope with low abundance of a required
product at the beginning of prebiotic evolution1, as well as at later stages, working as a driving force for the natural selection
of information carriers2 (see also3 and references therein). In 1995, it has been also advanced that life originally arose as
autocatalytic chemical networks4, with auto-catalysis as a potential explanation for abiogenesis.

From a macroscopic point of view, autocatalytic reactions can be observed in abundance. Few examples are the BZ reaction
(a class of reactions producing a chemical oscillator5), any system driven by light coupled to photo-polymerization reactions6,
the haloform reaction (which is one of the oldest organic reactions known7), and the so-called vinegar syndrome8.

Fundamental classes of regulation contemplate the integration of biochemical networks9. It frequently happens in transcrip-
tion networks, where transcription factors exert their regulation role in gene expression by properly acting as activators or
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inhibitors10. While activation, characterized by positive feedback, is less common but still crucial for the onset of many phe-
nomenons (such as multi-stability), the repression case, specified by a negative feedback, is more prevalent in biological systems.
In fact, the latter has an intrinsic propensity to stabilize the concentrations of the chemical players involved11.

Within this framework, different interconnections reveal to play an active role regards to the qualitative behavior of the auto-
catalytic reaction networks. In12 it has been shown how the feedback of the final product onto the source of the self-replication
system enhances stability of the stationary equilibria when acting as inhibitor of the source transcription, whilst it promotes bista-
bility when acting as activator. These results have been formalized according to the standard deterministic approach, describing
the system in terms of species concentrations, by means of Reaction Rate Equations (i.e. Ordinary Differential Equations (ODE)
systems). However, the deterministic approach fails to account for the intrinsic noise that usually arises in biological systems
at many levels, spanning from enzymatic reactions13 to metabolism14 and gene expression15,16. In many cases, cells have to
guarantee the desired average level of specific proteins and to attenuate as much as possible noise fluctuations. To this end, typ-
ical feedback control strategies have been selected by Nature to make robust the required protein production. Straightforwardly,
mathematical control theory has recently gained an increasing interest within the synthetic biology framework whenever cells
are designed to produce prescribed homeostatic levels robustly with respect to noisy uncertainties17.

The stochastic approach, usually developed according to Chemical Master Equations (CME),18 allows to faithfully understand
how noise propagates through the network: noise propagation can be attenuated (or enhanced) by properly exploiting negative
feedbacks, and the correct setting of the model parameters may be exploited to control the end-product fluctuations. These aspects
have recently shown counter-intuitive results, highlighting that a negative feedback may also increase the noise according to a
specific setting of the reactions kinetics13,19.

In this work, we investigate how noise impacts in a chemical self-replication model, and we exploit both Systems Theory
mathematical formalism and numerical simulations to provide design hints regards to both the feedback role and model parame-
ters setting. The use of the stochastic approach for chemical self-replication is the novelty of this contribution. Similarly to12 we
consider a feedback from the end-product on the source, acting as an inhibitor transcription factor. A continuous-time Markov
chain is exploited to model transcription, by assuming it happens in bursts15,16. Between any two bursts, the chemical play-
ers kinetics evolve according to ODEs and, therefore, the whole system is modeled by means of a Stochastic Hybrid System
(SHS)20. Noise propagation is investigated in terms of the end-product metabolic noise13, i.e. the square of the Coefficient of
Variation (CV2), namely

𝐶𝑉 2 = 𝜎2

𝛼2
, (1)

where 𝜎2 and 𝛼 refer to the stationary variance and average value of an underlying process, respectively. Computations are carried
out according to a twofold approach. On the one hand, analytic computations are provided, on the ground of the linearization
of the nonlinear terms involved in the continuous-time Markov chain as well as in the ODE (we remark that, because of the
nonlinearities, it is not possible to write, in general, the equations in closed form21) and these computations will be exploited
to infer information on how noise propagates according to different settings of the model parameters. On the other hand, these
results are validated by means of numerical Monte Carlo simulations provided by the Gillespie Stochastic Simulation Algorithm
(SSA)22. In particular, we highlight the following contributions and results.

– The use of the stochastic approach highlights how a given qualitative behavior may be lost because of high fluctuations
in gene transcription. The use of a negative feedback mitigates such a drawback.

– The feedback “noise reduction” paradigm is confirmed, i.e. the feedback decreases the impact of the noise on the system.

– A useful closed-form approximated expression of the variance of the end-product of the self-replication model is provided,
according to which the metabolic noise is readily constrained to the model parameters.

The paper is organized as follows. Section 2 describes the stochastic chemical self-replication model in terms of a Stochastic
Hybrid Systems. In Section 3 we derive the approximated dynamics, in terms of ODEs, of the first- and second-order moments
of the underlying state variables. In particular, we show that it is possible to find a solution for a stable equilibrium of the
first-order moments (the expected values), and we provide an approximated closed-form solution for the second-order moments
(actually, the variances) of the underlying state variables. Section 4 motivates the choice of the model parameters. Finally, in
Section 5 we analyze and validate the approximated closed-form expressions through the Gillespie SSA. Conclusions follow.

Notation. On a given filtered probability space (Ω, , (𝑡)𝑡,ℙ), we denote by 𝔼[⋅] the expected value, and for compactness,
we shall also use ⟨⋅⟩. If 𝑧𝑡 is an adapted stochastic process with value in ℝ and 𝜙 ∶ ℝ → ℝ is a measurable function, then we
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denote ⟨𝜙(𝑧)⟩ = lim𝑡→+∞ 𝔼
[

𝜙(𝑧𝑡)
]

when it exists. We shall indicate with capital letters the chemical players (e.g. 𝐴), by small
letters the copy numbers of the player (e.g. 𝑎) and by [𝐴] the concentration of player 𝐴.

2 STOCHASTIC CHEMICAL SELF-REPLICATION MODEL

An established reaction framework to model chemical self-replication is the following23,12

∅
𝑟(𝐵)
←←←←←←←←←←←←←←←←←→ 𝐴 (2)

∅
𝑟(𝐵)
←←←←←←←←←←←←←←←←←→ 𝐶 (3)

𝐴 + 𝐶
𝑘1

←←←←←←←←←←←←←←←←←→ 𝐵 (4)

𝐴 + 𝐶 + 𝐵
𝑘2

←←←←←←←←←←←←←←←←←→ 2𝐵 (5)

𝐵 + 𝐸
𝑘3

←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝑘4

𝐵𝐸 (6)

𝐵𝐸
𝑘5

←←←←←←←←←←←←←←←←←→ 𝐸 (7)
Reactions (2) and (3) represent the production of the sources 𝐴 and 𝐶 with reaction rates 𝑟 regulated in feedback by the

product 𝐵. In other words, 𝐵 is a transcription factor for the production of proteins 𝐴 and 𝐶 . Besides, 𝐴 and 𝐶 contribute
to produce 𝐵 according to both an uncatalyzed reaction (4) and to the autocatalytic replication of 𝐵, reaction (5). Finally, 𝐵
degrades according to the action of an enzyme 𝐸, reactions (6) and (7). The working assumptions are that

i) the system of reactions has no limiting reagents so that, because both sources are produced according to the same reaction
rate 𝑟(𝐵), one may assume that the concentrations of 𝐴 and 𝐶 are always the same, i.e. [𝐴] = [𝐶] (see24,12 for details).
That means, reactions (4) and (5) simplify into

2𝐴
𝑘1

←←←←←←←←←←←←←←←←←→ 𝐵 (8)

2𝐴 + 𝐵
𝑘2

←←←←←←←←←←←←←←←←←→ 2𝐵. (9)

ii) the binding/unbinding reactions providing precursor complex 𝐵𝐸 to produce 𝐵 degradation occur at a faster rate, so that
the Quasi-Steady State Approximation applies25 and the classical Michaelis-Menten (MM) saturating function models 𝐵
degradation rate, so that reactions (6)-(7) simplify as

𝐵
𝑘5Λ(𝐵)
←←←←←←←←←←←←←←←←←←←←←←←←←→ ∅, Λ(𝑏) = 𝑏

𝑏 + 𝜁
(10)

where 𝜁 is the Michaelis-Menten constant.

According to a deterministic approach, an Ordinary Differential Equations (ODE) system can be written, describing the time
course of the chemical players concentrations, providing different qualitative behaviors according to different setting of the
feedback action of 𝐵 onto the source production (see12,26 and references therein). The feedback action exerted by 𝐵 has been
modeled in12 by dealing with 𝐵 as a transcription factor regulating the expression of the source. Deterministic approaches may
be found in24,27,28

In this work, we extend the model to account also for the intrinsic noise affecting gene expression15,16. The working hypothesis
is that the production of mRNA, encoding for 𝐴 expression, occurs in bursts. Transcriptional bursting in gene expression has
been proven for both eukaryotic29 and prokaryotic15 cells, according to single-cell experiments. Gene transcription (i.e. mRNA
production) is the only source of stochasticity introduced, so that the whole system is modeled according to a Stochastic Hybrid
System (SHS) framework, where an Ordinary Differential Equation continuously describes the evolution of the state variables
and specific stochastic discrete events reset the state vector whenever they occur. Such a SHS framework has been often exploited
in the recent years (see, among the others,19,20,30,31,32).

The SHS approach neglects other (than bursty transcription) noise sources and loses validity if the intrinsic noise in reactions
is large enough (e.g. when the copy numbers are not that large). In these cases, the Effective Mesoscopic Rate Equation (EMRE)
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approach, derived from a systematic expansion method and proposed in33 (see also34), provides a trustworthy route to estimate
the average concentrations as coming from the master equations.

More in details, let 𝑎, 𝑏 denote the copy number of𝐴 and𝐵, respectively, and𝑚 denotes the copy number of mRNA transcript
of𝐴.𝑚 production represents the unique source of noise, occurring in bursts and modeled according to the following reset maps

𝑚(𝑡) = 𝜑𝑗(𝑚(𝑡−)) = 𝑚(𝑡−) + 𝑗 𝑗 ∈ ℕ, (11)

with 𝑗 denoting the size of the burst occurring according to the transition intensities

𝜆𝑗(𝑏) = Ψ(𝑏)𝑝(𝑗), with Ψ(𝑏) = 𝑟0 + (𝜂 − 𝑟0)
𝜃𝜈

𝜃𝜈 + 𝑏𝜈
, 𝑗 ∈ ℕ, (12)

where Ψ(𝑏) describes the feature of the feedback exerted by the transcription factor, here assumed to act as an inhibitor. 𝑟0 is a
leak transcription rate (occurring even when there is abundance of inhibitor), 𝜂 > 𝑟0 is the maximal transcription rate occurring
in absence of inhibitor, 𝜃 is the end-product copy number according to which the feedback exerts half of its maximal strength
over 𝑟0, and 𝑝(⋅) is a probability mass function with positive support of a random variable with finite moments of any order (we
shall see later the possible choices of such distribution). In other words, the probability that a burst production (11) takes place
in an infinitesimal interval [𝑡, 𝑡 + d𝑡) is given by 𝜆𝑗(𝑏)d𝑡. Within any two bursts, the state variables 𝑚, 𝑎, 𝑏 evolve according to
the following ODE

d𝑚
d𝑡

= −𝛾 𝑚 (13)
d𝑎
d𝑡

= 𝜅𝑚 − 𝑘1𝑎2 − 𝑘2𝑎2𝑏 (14)
d𝑏
d𝑡

= 𝑘1𝑎
2 + 𝑘2𝑎2𝑏 − 𝑘5Λ(𝑏), Λ(𝑏) = 𝑏

𝑏 + 𝜁
, (15)

where 𝑎 and 𝑏 dynamics comprise the reaction rates from reactions (8) and (9) (according to standard mass action law) and (10).
As regards to the mRNA dynamics, a linear degradation is considered (𝛾 in (13) stands for mRNA degradation rate) and the
translation rate is also assumed to be a linear function of the mRNA (𝜅 in (14) stands for the source translational rate per mRNA).

3 FIRST AND SECOND ORDER MOMENTS APPROXIMATIONS

The computation of the metabolic noise (1) strongly relies on the first- and second-order moments of the state variables involved
in the SHS. In general, if 𝑥 ∈ ℝ𝑛 describes the ODE 𝑥̇ = 𝑓 (𝑥) associated to the SHS, 𝜑𝑗(𝑥−) refer to the reset maps and 𝜆𝑗(𝑥)
refer to the transition intensities, given a continuously differentiable function 𝜓 ∶ ℝ𝑛 → ℝ, it is possible to write the dynamics
of the expectation of 𝜓(𝑥) as20

d𝔼 [𝜓(𝑥(𝑡))]
d𝑡

= 𝔼
[

d𝜓(𝑥(𝑡))
d𝑥

𝑓 (𝑥(𝑡))
]

+
∞
∑

𝑗=1
𝔼
[(

𝜓(𝑥(𝑡) + Δ𝑗) − 𝜓(𝑥(𝑡))
)

𝜆𝑗(𝑥(𝑡))
]

, (16)

where Δ𝑗 , with 𝑗 ∈ ℕ, is the size of the jump of 𝑥 because of the reset 𝜑𝑗(𝑥−).

3.1 First-order moments
Let us write the ODE (13)–(15) in the compact form

d𝑥(𝑡)
d𝑡

= 𝑓 (𝑥(𝑡)), with 𝑥(𝑡) =
⎡

⎢

⎢

⎣

𝑚(𝑡)
𝑎(𝑡)
𝑏(𝑡)

⎤

⎥

⎥

⎦

, 𝑓 (𝑥(𝑡)) =
⎡

⎢

⎢

⎣

𝑓1(𝑥(𝑡))
𝑓2(𝑥(𝑡))
𝑓3(𝑥(𝑡))

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝛾𝑚(𝑡)
𝜅𝑚(𝑡) − 𝑘1𝑎2(𝑡) − 𝑘2𝑎2(𝑡)𝑏(𝑡)

𝑘1𝑎2(𝑡) + 𝑘2𝑎2(𝑡)𝑏(𝑡) − 𝑘5Λ(𝑏(𝑡))

⎤

⎥

⎥

⎦

(17)
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By virtue of (16), we can compute the dynamics of the moments of the proposed self-replication model. In particular, taking
into account (11), (12) and the ODE (13)–(15), we can write the equations of the first-order moment1

d ⟨𝑚(𝑡)⟩
d𝑡

= −𝛾 ⟨𝑚(𝑡)⟩ + 𝜇𝑟0 + 𝜇(𝜂 − 𝑟0)
⟨

𝜃𝜈

𝜃𝜈 + 𝑏𝜈(𝑡)

⟩

, (18)

d ⟨𝑎(𝑡)⟩
d𝑡

= 𝜅 ⟨𝑚(𝑡)⟩ − 𝑘1
⟨

𝑎2(𝑡)
⟩

− 𝑘2
⟨

𝑎2(𝑡)𝑏(𝑡)
⟩

, (19)

d ⟨𝑏(𝑡)⟩
d𝑡

= 𝑘1
⟨

𝑎2(𝑡)
⟩

+ 𝑘2
⟨

𝑎2(𝑡)𝑏(𝑡)
⟩

− 𝑘5

⟨

𝑏(𝑡)
𝜁 + 𝑏(𝑡)

⟩

, (20)

where we set the average burst size 𝜇 =
∑∞
𝑗=1 𝑗𝑝(𝑗) which is finite because of the assumptions on 𝑝. Due to the nonlinear terms,

it is not possible to write the expression of the first order (any order in general) moments in closed form. For, it is common,
according to the van Kampen’s system-size expansion for Chemical Master Equations18 (see e.g.30,19) to make use of the linear
approximation of the nonlinear terms around a fixed point 𝑥̄ = (𝑚̄, 𝑎̄, 𝑏̄)⊤. In this spirit, (18)–(20) can be approximated by

d ⟨𝑚(𝑡)⟩
d𝑡

≈ −𝛾 ⟨𝑚(𝑡)⟩ + 𝜇Ψ(𝑏̄) + 𝜇Ψ′(𝑏̄)
(

⟨𝑏(𝑡)⟩ − 𝑏̄
)

, (21)

d ⟨𝑎(𝑡)⟩
d𝑡

≈ 𝜅 ⟨𝑚(𝑡)⟩ − 𝑘1𝑎̄2 − 2𝑘1𝑎̄ (⟨𝑎(𝑡)⟩ − 𝑎̄) − 𝑘2𝑎̄2𝑏̄ − 2𝑘2𝑎̄𝑏̄ (⟨𝑎(𝑡)⟩ − 𝑎̄) − 𝑘2𝑎̄2
(

⟨𝑏(𝑡)⟩ − 𝑏̄
)

, (22)

d ⟨𝑏(𝑡)⟩
d𝑡

≈ 𝑘1𝑎̄
2 + 2𝑘1𝑎̄ (⟨𝑎(𝑡)⟩ − 𝑎̄) + 𝑘2𝑎̄2𝑏̄ + 2𝑘2𝑎̄𝑏̄ (⟨𝑎(𝑡)⟩ − 𝑎̄) + 𝑘2𝑎̄2

(

⟨𝑏(𝑡)⟩ − 𝑏̄
)

− 𝑘5Λ(𝑏̄) − 𝑘5Λ′(𝑏̄)
(

⟨𝑏(𝑡)⟩ − 𝑏̄
)

. (23)

If the point 𝑥̄ = (𝑚̄, 𝑎̄, 𝑏̄)⊤ is set such that

−𝛾𝑚̄ + 𝜇Ψ(𝑏̄) = 0 (24)
𝜅𝑚̄ − 𝑘1𝑎̄2 − 𝑘2𝑎̄2𝑏̄ = 0 (25)

𝑘1𝑎̄
2 + 𝑘2𝑎̄2𝑏̄ − 𝑘5Λ(𝑏̄) = 0, (26)

then equations (21)–(23) admit a unique stationary point exactly at 𝑥̄ = (𝑚̄, 𝑎̄, 𝑏̄)⊤. Clearly, the validity of the proposed
approximation is stronger in case of small noise fluctuations around the stationary point.

From a mathematical viewpoint, the search for the solution of (24)–(26) may be seen as a particular case of the wider
investigation carried out in12. After straightforward manipulation of (24)–(26), the solution 𝑏̄ satisfies

Ψ(𝑏̄) =
𝑘5𝛾
𝜅𝜇

Λ(𝑏̄), (27)

and we can give a graphical interpretation of it. Indeed, the left-hand side of (27) is the monotonically decreasing function
defined in (12), starting from 𝜂 for 𝑏̄ = 0 and asymptotically approaching 𝑟0 < 𝜂 for 𝑏̄ → +∞. On the other hand, the right-
hand side of (27) is a monotonically increasing function starting from 0 for 𝑏̄ = 0 and asymptotically approaching 𝑘5𝛾∕(𝜅𝜇) for
𝑏̄ → +∞. Therefore, a unique solution occurs if, and only if, the lower bound of the left-hand side is lower than the upper bound
of the right-hand side, see Fig. 1 for the curves at different values of parameter 𝜇. That means

𝑟0 <
𝑘5𝛾
𝜅𝜇

. (28)

It is worth noticing that the average size of the burst 𝜇 plays a crucial role, since, if it increases enough to violate condition (28),
the equilibrium is lost. On the other hand, for a trivial leak transcription rate 𝑟0 = 0, condition (28) is always satisfied, whatever
is the burst average size.Such a result is coherent with the one reported in35 where a variant of the classical Michaelis-Menten
enzymatic framework is considered, accounting for substrate replenishment. In that case, steady-state solutions were proved to
occur if the input rate of replenishment of the substrate was smaller than the maximum rate of production of the product, i.e.
the maximum clearance rate for 𝐵 in the present case. Indeed, by increasing the transcription leakage rate 𝑟0 we increase the
production rate for 𝐵, namely 𝜅𝜇Ψ(𝑏̄)

𝛾
from (24)-(26), that may exceed the maximum rate of degradation 𝑘5, thus losing stability

according to (28): the enzyme will not be able to degrade 𝐵 fast enough and hence the stationary state is lost.
In Figure 1 one can infers the graphical solution of (27) for the parameters setting of Section 4 for different values of the

average burst size 𝜇. It is apparent that, by increasing 𝜇, the average copy number of species 𝐵 definitely increases up to infinity
for 𝜇 → 𝑘5𝛾∕(𝜅𝑟0).

1we recall the notation 𝔼[⋅] = ⟨⋅⟩.
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FIGURE 1 Graphical interpretation of (27), where Ψ(𝑏) is the transition intensity defined in (12) and Φ(𝑏) ∶= 𝑘5𝛾
𝜅𝜇

Λ(𝑏̄), for
different values of the average burst size 𝜇. The model parameters have been set according to Section 4.

With respect to the role of the feedback, by assuming to increase parameter 𝜃 enough to make negligible the inhibitor action
of 𝐵, constraint (27) becomes

𝜂 =
𝑘5𝛾
𝜅𝜇

Λ(𝑏̄) (29)

that means
𝜂 <

𝑘5𝛾
𝜅𝜇

(30)

an inequality much difficult to obtain, since 𝜂 > 𝑟0. In summary, the greater is the average burst size 𝜇, the more a negative
feedback would be required to ensure the existence of an equilibrium point. More in general, by denoting with

𝜆̄𝑗 = 𝜂̄𝑝(𝑗), 𝑗 ∈ ℕ, (31)

the transition intensities for the no-feedback case, if
𝜂̄ = Ψ(𝑏̄) (32)

with 𝑏̄ standing for the stationary value achieved according to the feedback case, then parameters are set in order to keep fixed
the same equilibrium point with or without the feedback.

In what follows, we choose 𝑥̄ = (𝑚̄, 𝑎̄, 𝑏̄)⊤ satisfying (24)–(26) and thus we have lim𝑡→+∞ ⟨𝑥(𝑡)⟩ = 𝑥̄ in our approximation.

3.2 Second-order moments
Similarly to the first-order moments computations, by applying (16) for 𝜓(𝑥) = 𝑥𝑖𝑥𝑗 , 𝑖, 𝑗 = 1, 2, 3, second-order moments
equations are achieved. According to the same linear approximations exploited in the ODE nonlinearities (13)-(15) as well as in
the nonlinear transition intensities (12), the following 6th-order linear algebraic system is achieved for the centered second-order
moments (see Appendix for the details)

2𝛾𝜒1 − 2Ψ̃𝜒5 = ΓΨ(𝑏̄) (33)
−𝜅𝛿𝜒2 + 𝜅𝜒4 − 𝑘̄2𝜒6 = 0 (34)

Λ̃𝜒3 + 𝜅𝛿𝜒6 = 0 (35)
−𝜅𝜒1 +

(

𝛾 + 𝜅𝛿
)

𝜒4 + 𝑘̄2𝜒5 − Ψ̃𝜒6 = 0 (36)
−Ψ̃𝜒3 − 𝜅𝛿𝜒4 + (𝛾 − Λ̃)𝜒5 = 0 (37)

𝜅𝛿𝜒2 − 𝑘̄2𝜒3 + 𝜅𝜒5 +
(

Λ̃ − 𝜅𝛿
)

𝜒6 = 0 (38)

in the unknown variables

𝜒 ∶=
((

⟨𝑚2
⟩ − 𝑚̄2

)

,
(

⟨𝑎2⟩ − 𝑎̄2
)

,
(

⟨𝑏2⟩ − 𝑏̄2
)

,
(

⟨𝑚𝑎⟩ − 𝑚̄𝑎̄
)

,
(

⟨𝑚𝑏⟩ − 𝑚̄𝑏̄
)

,
(

⟨𝑎𝑏⟩ − 𝑎̄𝑏̄
))⊤

∈ ℝ6,
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where we recall the overline symbol stands for the limit as 𝑡→ +∞, and

Γ ∶=
∑

𝑗
𝑗2𝑝(𝑗), 𝛿 = 2 𝑚̄

𝑎̄
, 𝑘̄2 = 𝑘2𝑎̄

2, Λ̃ = 𝑘̄2 − 𝑘5Λ′(𝑏̄), Ψ̃ = 𝜇Ψ′(𝑏̄).

Clearly, equations (33)–(38) can be written in matrix form as

Π𝜒 = Υ, (39)

where the expressions of Π and Υ can be readily derived (see equation (A7) in the Appendix). In Appendix the analytical
expression is reported, providing the explicit solution to (39) (equation (A8)).

Finally, since we are interested in the noise propagation through the Coefficient of Variation (CV, see (1)), we pay particular
attention for the variance of the end product 𝐵, namely the third component of 𝜒 , i.e. 𝜎2𝑏 =

(

⟨𝑏2⟩ − 𝑏̄2
)

, according to which,
the closed form expression for 𝐶𝑉 2

𝑏 is

𝐶𝑉 2
𝑏 = 1

Δ
𝛿𝜅3ΓΨ(𝑏̄)

𝑏̄2
(Λ̃ − 𝛾 − 𝛿𝜅), (40)

where Δ is defined in (A15).
As regards the fruitfulness of the achieved analytical results obtained according to the aforementioned linear approximation,

differently from classical Monte Carlo simulations provided by the Gillespie SSA (in this case the 𝜏-leaping version is required
because of the SHS framework), they are easy to handle and allow to infer relationships between noise fluctuations (e.g. mea-
sured by the CV) and model parameters. This point may assume paramount importance in the case of synthetic design of an
autocatalytic reaction whenever a fine tuning of the model parameters is required. Anyhow, any possible hint/inference needs
to be validated by the numerical simulations. Section 5 will show how to exploit such a virtuous cycle binding approximated
analytical results to validation by Monte Carlo simulations.

4 PARAMETERS SETTING

Model parameters have been set by properly exploiting the ones provided by12. Since in12 parameters are given in terms of a
dimensionless ODE, without loss of generality we have assumed 𝜇M and seconds wherever dealing with concentrations and
time units. Finally, we passed from 𝜇𝑀 to molecules by multiplying the values by the volume 𝑉 = 10−15L (taken from E. Coli
volume13,36) and the Avogadro number 𝑁0 = 6.022 ⋅ 1023. This way, all but parameters 𝛾 and 𝜅 are set. With respect to 𝛾 we
assume an mRNA half-life of 2 minutes28, so that 𝛾 = log(2)∕120 = 5.8 ⋅ 10−3s−1. Finally, 𝜅, the translation rate per mRNA
molecule, is taken from37 and is set equal to 24.6 amino acids per seconds: by assuming an average number of 300 amino
acid/protein38, it comes that parameter 𝜅 is set equal to 0.0819 protein copy number per mRNA copy number per second. We
summarize the parameters of the model in Table 1.

We point out that, with this setting of the parameters, the condition (28) for the existence of an equilibrium point of the first
order moment in terms of the burst size 𝜇 is

𝜇 <
𝑘5𝛾
𝜅𝑟0

≈ 10, (41)

and we see in Fig. 1 the graphical solution (for 𝑏̄) of the algebraic system (24)–(26) for some values of the burst size, namely
𝜇 ∈ {1, 3, 5, 7, 9}.

TABLE 1 Nominal model parameters. ♯ denotes 𝐴 or 𝐵 the copy numbers, whilst ‡ denotes mRNA copy numbers.

𝛾 = 5.8 ⋅ 10−3𝑠−1 𝑟0 = 2.56 ‡ 𝑠−1

𝜅 = 0.08♯ ‡−1 𝑠−1 𝜂 = 45.21♯2𝑠−1

𝑘1 = 1.5 ⋅ 10−5♯−1𝑠−1 𝜃 = 270♯
𝑘2 = 3.04 ⋅ 10−6♯−2𝑠−1 𝜈 = 2
𝑘5 = 361.32♯𝑠−1 𝜁 = 49.17♯
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5 ANALYSIS OF NOISE PROPAGATION FROM GENE EXPRESSION

Two main frameworks are here considered. One refers to a deterministic burst size, i.e. we assume that transcription occurs
according to a burst of fixed size whenever it happens. It is worth noticing that, although the burst size is fixed (i.e. not stochastic),
the sojourn time is a random variable18. The other refers to a geometric probability distribution for the burst size. The 𝜏-
leaping version of the Gillespie SSA22 is adopted to make numerical Monte Carlo simulations of the Stochastic Hybrid System
described by the discrete jumps (11)-(12) and by the continuous flow (13)-(15) between any two jumps. Indeed, because of the
continuous-time variation of species 𝑏, the transition intensity (12) also varies continuously in time, which makes the underlying
stochastic process non-homogeneous and the exact Gillespie algorithm inapplicable. As a consequence, the 𝜏-leaping algorithm
is exploited in our simulations, where the transition intensity (12) is considered to be changing with sampling time of duration
𝜏 > 0, and is approximated as a constant in the inter-sampling period.

5.1 Deterministic burst size
According to the deterministic (or fixed) burst size assumption33, there is only one transition intensity function (12), i.e.

𝜆𝑗(𝑏) = Ψ(𝑏)𝛿(𝑗 − 𝜇),

where Ψ(⋅) is defined in (12) and 𝛿(⋅) is the Kronecker function, assuming a nontrivial value (equal to 1) only for a null entry.
Because of (41), in order to have an equilibrium point satisfying (24)–(26), the deterministic burst size 𝜇 ∈ {1, 2,… , 9}.

Fig. 2 shows the probability density functions of the equilibrium point 𝑥̄ = (𝑚̄, 𝑎̄, 𝑏̄) for different values of the burst size. In
particular, the purple curve indicates the probability density function of 𝑚̄ (top left), 𝑎̄ (top right) and 𝑏̄ (bottom), for different
values of the deterministic burst size (𝜇 = 1, 2, 3, 4), obtained with a 𝜏-leaping Gillespie stochastic simulation with time horizon
107s and 𝜏 = 0.05s of the underlying SHS (13)–(15). Instead, the pale green impulse indicates the solution 𝑚̄ (top left), 𝑎̄ (top
right) and 𝑏̄ (bottom) of (24)–(26), i.e. the deterministic equilibrium. We notice that, by increasing the burst size 𝜇, the variance
of such densities increases.

Fig. 3 summarizes the first-order moments (expected values) of the aforementioned densities and the solution of (24)–(26),
i.e. the deterministic equilibrium, for burst sizes 𝜇 < 10 (which is the constraint (41)). Finally, Fig. 4 presents the behaviour
of the squared Coefficient of Variation 𝐶𝑉 2 (40) computed through the analytical approximated closed form expressions and
through the 𝜏-leaping Gillespie SSA for the feedback case and the no-feedback case. The curves exhibit good agreement between
the a priori approximated theoretical values and the a posteriori empirical values. The comparison feedback vs no-feedback is
carried out by assigning to the no-feedback case the same equilibrium points obtained for the feedback case (and pictured in Fig.
3). To this end, parameter 𝜂̄ is chosen according to (32). Fig. 4 confirms the feedback noise reduction paradigm, i.e. feedback
works in order to reduce noise propagation.

5.2 Stochastic burst size
As anticipated at the beginning of the Section, we adopt here a geometric probability distribution 𝑝(𝑗) for the transition intensities
(12), namely:

𝑝(𝑗) =
(

1 − 1
𝜇

)𝑘−1 1
𝜇
, with

+∞
∑

𝑗=1
𝑗𝑝(𝑗) = 𝜇. (42)

Note that in this case 𝜇 is the average burst size, and we recall again that, even in this case, 𝜇 must satisfy equation (41) in order
to let 𝑥̄ be an equilibrium point satisfying (24)–(26). Figs. 5 and 6 are obtained according to the aforementioned philosophy to
fix the same equilibrium points for both the feedback/no-feedback cases, by setting parameter 𝜂̄ in (31) according to (32). Again,
these simulations stress the improvement provided by the feedback in noise propagation.

Dealing with both deterministic and stochastic burst sizes, it has to be stressed that the higher mismatch between analytical and
numerical results is observed for large average burst sizes (see Figs. 4-6): indeed, by increasing 𝜇, we get progressively closer to
violating condition (41) on the existence of the equilibrium point (this is apparent for the simulations reported in Fig.4, where
we come very close to the upper bound for 𝜇). This fact might make both numerical and approximated analytical results less
reliable. On the other hand, it is worth noticing that the feedback enhances results reliability, since the maximum discrepancy
error between numerical and analytical results is strongly reduced (from a 9.88% for the feedback case to a 27.38% for the no-
feedback case). A last set of simulations involves the following framework: (i) stochastic burst size, achieved with a geometric
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FIGURE 2 Case of deterministic burst size. Probability density functions of the equilibrium point 𝑥̄ = (𝑚̄, 𝑎̄, 𝑏̄) of the SHS for
different values of the burst size (𝜇 = 1, 2, 3, 4) obtained with a 𝜏-leaping Gillespie stochastic simulation with time horizon 107s
and 𝜏 = 0.05s.

3700

3800

3900

4000

4100

4200

4300

4400

1 2 3 4 5 6 7 8 9

burst size µ

copy number of mRNA

SHS expectation
ODE equilibrium 200

300

400

500

600

1 2 3 4 5 6 7 8 9

burst size µ

copy number of reagent A

SHS expectation
ODE equilibrium

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9

burst size µ

copy number of product B

SHS expectation
ODE equilibrium

FIGURE 3 Case of deterministic burst size. Steady-state first-order moments of the SHS for 𝜇 = 1, 2,… , 9 obtained with a
𝜏-leaping Gillespie stochastic simulation with time horizon 107s and 𝜏 = 0.05s and the deterministic equilibrium.

distribution providing an average burst size 𝜇 = 4; (ii) all but 𝜃 model parameters are kept fixed to the values of Table 1. Figs. 7,
8 and 9 analyze the behaviour of the steady-state first-order moments, standard deviations and 𝐶𝑉 2 with respect to 1∕𝜃 which
corresponds to the repression strength13. As a matter of fact, when the repression strength vanishes, that is 1∕𝜃 → 0 (i.e. when
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FIGURE 4 Case of deterministic burst size. Steady-state𝐶𝑉 2 of product𝐵 for different values of the deterministic burst size for
the feedback case and no-feedback case. In particular, the 𝐶𝑉 2 is obtained through a 𝜏-leaping Gillespie stochastic simulation
with time horizon 107s and 𝜏 = 0.05s and the analytical closed form approximation (40).
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FIGURE 5 Case of stochastic burst size. Steady-state 𝐶𝑉 2 of product 𝐵 for different average values 𝜇 of the stochastic burst
size for the feedback case and no-feedback case. In particular, the 𝐶𝑉 2 is obtained through a 𝜏-leaping Gillespie stochastic
simulation with time horizon 107s and 𝜏 = 0.05s and the analytical closed form approximation (40).

𝜃 → +∞), the feedback does not exert its influence anymore, since Ψ(𝑏) ≃ 𝜂. This kind of analysis may be of some help within
the synthetic biology framework, in order to tune the model parameters to reduce noise propagation. Indeed, by looking at Fig.
9 it is apparent that there is not a monotonic behavior by varying the repression strength: there can be found a worst case when
𝐶𝑉 2 reaches its maximum value for a given 𝜃.

As usual, we notice the good agreement between the a priori approximated theoretical values (obtained through Eqs. (40) and
(A8)) and the a posteriori empirical values (provided by the 𝜏-leaping Gillespie SSA with time horizon 107s and 𝜏 = 0.05s).
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FIGURE 7 Case of stochastic burst size. Steady-state first-order moments of the SHS obtained with a 𝜏-leaping Gillespie
stochastic simulation with time horizon 107s and 𝜏 = 0.05s and the deterministic equilibrium with respect to the repression
strength, i.e. 1

𝜃
. In particular, the average burst size has been set 𝜇 = 4.

6 CONCLUSIONS AND FUTURE DIRECTIONS

For the proposed self-regulation stochastic model, the noise reduction paradigm in the presence of negative feedback is con-
firmed. A closed form approximated expression of the variance of the product of the chemical network is provided and it allows
to analyze the noise propagation from gene expression in an easier way than according to numerical simulations (like SSA),
potentially cumbersome and time-consuming. Many other future directions can be taken in consideration. A positive feedback
case has shown to provide bi-stability in a deterministic framework: it would be interesting to investigate whether a bimodal
stationary probability distribution comes out in the stochastic framework. Further future directions could be the use of a more
accurate model accounting for cell division and cell cycle duration variability that have profound effects on the shape of mRNA
distributions39, or even to account for a spatial dimension like in26.



12 Borri ET AL.

40

60

80

100

120

0 0.002 0.004 0.006 0.008

repression strength 1
θ

mRNA

st.dev. Gillespie SSA
st.dev. analytical approx.

5

10

15

20

0 0.002 0.004 0.006 0.008

repression strength 1
θ

reagent A

st.dev. Gillespie SSA
st.dev. analytical approx.

0

200

400

600

800

0 0.002 0.004 0.006 0.008

repression strength 1
θ

product B

st.dev. Gillespie SSA
st.dev. analytical approx.

FIGURE 8 Case of stochastic burst size. Standard deviations of the steady-state first-order moments (𝜏-leaping Gillespie
stochastic simulation with time horizon 107s and 𝜏 = 0.05s) and the analytic approximated standard deviations computed
through (A8) with respect to the repression strength, i.e. 1
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FIGURE 9 Case of stochastic burst size. Steady-state 𝐶𝑉 2 of product 𝐵 (𝜏-leaping Gillespie stochastic simulation with time
horizon 107s and 𝜏 = 0.05s) and its analytic approximation computed through (40) with respect to the repression strength, i.e.
1
𝜃
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APPENDIX

A EXPRESSIONS OF THE APPROXIMATED SECOND-ORDER MOMENT DYNAMICS

We provide here the expressions of the approximated ODEs describing the dynamics of the second-order moments. Define
Γ =

∑

𝑗 𝑗2𝑝(𝑗). By taking into account equation (16) and according to the linear approximations of the ODE nonlinearities
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(13)-(15) as well as of the nonlinear transition intensities (12) we get
d
⟨

𝑚2(𝑡)
⟩

d𝑡
≈ −2𝛾

⟨

𝑚2(𝑡)
⟩

+ 2𝜇Ψ′(𝑏̄) ⟨𝑚(𝑡)𝑏(𝑡)⟩ + 2𝜇
(

Ψ(𝑏̄) − 𝑏̄Ψ′(𝑏̄)
)

⟨𝑚(𝑡)⟩ + ΓΨ′(𝑏̄)
(

⟨𝑏(𝑡)⟩ − 𝑏̄
)

+ ΓΨ(𝑏̄), (A1)

d
⟨

𝑎2(𝑡)
⟩

d𝑡
≈ −4𝑎̄

(

𝑘1 + 𝑘2𝑏̄
) ⟨

𝑎2(𝑡)
⟩

+ 2𝜅 ⟨𝑚(𝑡)𝑎(𝑡)⟩ − 2𝑘2𝑎̄2 ⟨𝑎(𝑡)𝑏(𝑡)⟩ + 2𝑎̄2
(

𝑘1 + 2𝑘2𝑏̄
)

⟨𝑎(𝑡)⟩ , (A2)

d
⟨

𝑏2(𝑡)
⟩

d𝑡
≈ 2

(

𝑘2𝑎̄
2 − 𝑘5Λ′(𝑏̄)

) ⟨

𝑏2(𝑡)
⟩

+ 4𝑎̄
(

𝑘1 + 𝑘2𝑏̄
)

⟨𝑎(𝑡)𝑏(𝑡)⟩ − 2
(

𝑘1𝑎̄
2 + 2𝑘2𝑎̄2𝑏̄ + 𝑘5Λ(𝑏̄) − 𝑘5𝑏̄Λ′(𝑏̄)

)

⟨𝑏(𝑡)⟩ , (A3)

d ⟨𝑚(𝑡)𝑎(𝑡)⟩
d𝑡

≈ 𝜅
⟨

𝑚2(𝑡)
⟩

−
(

𝛾 + 2𝑘1𝑎̄ + 2𝑘2𝑎̄𝑏̄
)

⟨𝑚(𝑡)𝑎(𝑡)⟩ − 𝑘2𝑎̄2 ⟨𝑚(𝑡)𝑏(𝑡)⟩ + 𝜇Ψ′(𝑏̄) ⟨𝑎(𝑡)𝑏(𝑡)⟩

+ 𝜇
(

Ψ(𝑏̄) − 𝑏̄Ψ′(𝑏̄)
)

⟨𝑎(𝑡)⟩ − 𝑎̄
(

𝑘1 − 2𝑘1𝑎̄ − 2𝑘2𝑎̄𝑏̄
)

⟨𝑚(𝑡)⟩ , (A4)
d ⟨𝑚(𝑡)𝑏(𝑡)⟩

d𝑡
≈ 2𝑎̄

(

𝑘1 + 𝑘2𝑏̄
)

⟨𝑚(𝑡)𝑎(𝑡)⟩ −
(

𝛾 − 𝑘2𝑎̄2 + 𝑘5Λ′(𝑏̄)
)

⟨𝑚(𝑡)𝑏(𝑡)⟩ + 𝜇Ψ′(𝑏̄)
⟨

𝑏2(𝑡)
⟩

+
(

𝑘1𝑎̄ − 2𝑘1𝑎̄2 − 2𝑘2𝑎̄2𝑏̄ − 𝑘5Λ(𝑏̄) + 𝑘5𝑏̄Λ′(𝑏̄)
)

⟨𝑚(𝑡)⟩ + 𝜇
(

Ψ(𝑏̄) − 𝑏̄Ψ′(𝑏̄)
)

⟨𝑏(𝑡)⟩ , (A5)
d ⟨𝑎(𝑡)𝑏(𝑡)⟩

d𝑡
≈ 2𝑎̄

(

𝑘1 + 𝑘2𝑏̄
) ⟨

𝑎2(𝑡)
⟩

− 𝑘2𝑎̄2
⟨

𝑏2(𝑡)
⟩

−
(

2𝑘1𝑎̄ + 2𝑘2𝑎̄𝑏̄ − 𝑘2𝑎̄2 + 𝑘5Λ′(𝑏̄)
)

⟨𝑎(𝑡)𝑏(𝑡)⟩ + 𝜅 ⟨𝑚(𝑡)𝑏(𝑡)⟩

+
(

𝑘1𝑎̄ − 2𝑘1𝑎̄2 − 2𝑘2𝑎̄2𝑏̄ − 𝑘5Λ(𝑏̄) + 𝑘5𝑏̄Λ′(𝑏̄)
)

⟨𝑎(𝑡)⟩ + 𝑎̄2
(

𝑘1 + 2𝑘2𝑏̄
)

⟨𝑏(𝑡)⟩ , (A6)

where ⟨𝑚(𝑡)⟩,⟨𝑎(𝑡)⟩ and ⟨𝑏(𝑡)⟩ are the dynamics of the first-order moments approximated by (21)–(23), and 𝑥̄ = (𝑚̄, 𝑎̄, 𝑏̄)⊤ is a
point in the state space. In particular, in order to obtain (A1)-(A6) we use the first-order approximation of the functions Ψ(𝑏)
around 𝑏̄, namely Ψ(𝑏) ≈ Ψ(𝑏̄) + Ψ′(𝑏̄)(𝑏 − 𝑏̄), of the functions 𝑎2 and 𝑎2𝑏, around 𝑎̄ and 𝑏̄, namely 𝑎2 ≈ 𝑎̄2 + 2𝑎̄(𝑎 − 𝑎̄) and
𝑎2𝑏 ≈ 𝑎̄2𝑏̄ + 2𝑎̄𝑏̄(𝑎 − 𝑎̄) + 𝑎̄2(𝑏 − 𝑏̄), and of the function Λ(𝑏) around 𝑏̄, namely Λ(𝑏) = Λ(𝑏̄) + Λ′(𝑏̄)(𝑏 − 𝑏̄).

When 𝑥̄ = (𝑚̄, 𝑎̄, 𝑏̄)⊤ satisfies (24)–(26), the approximated stationary points of the second order moments can be written
through the linear algebraic matrix equation (39), where Π and Υ are given by

Π =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝛾 0 0 0 −2Ψ̃ 0
0 −𝜅𝛿 0 𝜅 0 −𝑘̄2
0 0 Λ̃ 0 0 𝜅𝛿
−𝜅 0 0 𝛾 + 𝜅𝛿 𝑘̄2 −Ψ̃
0 0 Ψ̃ 𝜅𝛿 Λ̃ − 𝛾 0
0 𝜅𝛿 −𝑘̄2 0 𝜅 Λ̃ − 𝜅𝛿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Υ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ΓΨ(𝑏̄)
0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A7)

where we recall 𝛿 = 2 𝑚̄
𝑎̄

, 𝑘̄2 = 𝑘2𝑎̄2, Λ̃ = 𝑘̄2 − 𝑘5Λ′(𝑏̄) and Ψ̃ = 𝜇Ψ′(𝑏̄).
Finally, the analytical expression of the solution to (39) can be written as

𝜒𝑗 = 𝜋⋆𝑗 ΓΨ(𝑏̄), (A8)

where

𝜋⋆1 = 1
Δ
(

Λ̃3𝛿𝜅 + Λ̃3𝛾 − Λ̃2𝛿2𝜅2 − 2Λ̃2𝛿𝛾𝜅 − 2Λ̃2𝛿𝜅𝑘̄2 − Λ̃2𝛾2 − Λ̃2𝛾𝑘̄2 + Ψ̃Λ̃2𝜅 + Λ̃𝛿2𝛾𝜅2 + 2Λ̃𝛿2𝜅2𝑘̄2 + Λ̃𝛿𝛾2𝜅

+ 2Λ̃𝛿𝛾𝜅𝑘̄2 − Ψ̃Λ̃𝛿𝜅2 + Λ̃𝛿𝜅𝑘̄22 + Λ̃𝛾2𝑘̄2 − Ψ̃Λ̃𝛾𝜅 − 𝛿2𝛾𝜅2𝑘̄2 + Ψ̃𝛿2𝜅3 − 𝛿2𝜅2𝑘̄22 − 𝛿𝛾
2𝜅𝑘̄2 + Ψ̃𝛿𝛾𝜅2 − Ψ̃𝛿𝜅2𝑘̄2

)

, (A9)

𝜋⋆2 = 1
Δ
(

𝑘(Λ̃3 − 𝛿Λ̃2𝜅 − 𝑔Λ̃2 + 𝛿𝛾Λ̃𝜅 + Ψ̃𝛿𝜅2 − 𝛿𝛾𝑘̄2𝜅)
)

, (A10)

𝜋⋆3 = 1
Δ
(

𝛿𝜅3(Λ̃ − 𝛾 − 𝛿𝜅)
)

, (A11)

𝜋⋆4 = 1
Δ
(

𝜅(Λ̃3 − Λ̃2𝑘̄2 − Λ̃2𝛾 + Λ̃𝛾𝑘̄2 − Λ̃2𝛿𝜅 + Ψ̃𝛿𝜅2 − 𝛿𝛾𝜅𝑘̄2 + Λ̃𝛿𝛾𝜅 + Λ̃𝛿𝜅𝑘̄2)
)

, (A12)

𝜋⋆5 = 1
Δ
(

𝛿𝜅2(Λ̃𝑘̄2 − Ψ̃𝜅 − Λ̃2 + Λ̃𝛿𝜅 − 𝛿𝜅𝑘̄2)
)

, (A13)

𝜋⋆6 = 1
Δ
(

Λ̃𝜅2(𝛾 − Λ̃ + 𝛿𝜅)
)

, (A14)

with

Δ = 2(Λ̃𝛾 + Ψ̃𝜅 − 𝛾𝑘̄2)(Λ̃2𝛿𝜅 + Λ̃2𝛾 − Λ̃𝛿2𝜅2 − 2Λ̃𝛿𝛾𝜅 − 𝑘̄2Λ̃𝛿𝜅 − Λ̃𝛾2 + 𝛿2𝛾𝜅2 + 𝑘̄2𝛿2𝜅2 + 𝛿𝛾2𝜅 + Ψ̃𝛿𝜅2). (A15)
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