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Abstract

We consider the problem of describing the traces of functions in H?(£2) on the bound-
ary of a Lipschitz domain  of RV, N > 2. We provide a definition of those spaces, in
particular of H? (0€2), by means of Fourier series associated with the eigenfunctions
of new multi-parameter biharmonic Steklov problems which we introduce with this
specific purpose. These definitions coincide with the classical ones when the domain
is smooth. Our spaces allow to represent in series the solutions to the biharmonic
Dirichlet problem. Moreover, a few spectral properties of the multi-parameter bihar-
monic Steklov problems are considered, as well as explicit examples. Our approach is
similar to that developed by G. Auchmuty for the space H'(£2), based on the classical
second order Steklov problem.
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1 Introduction

We consider the trace spaces of functions in H?(2) when € is a bounded Lipschitz
domain in RV, briefly €2 is of class C 0.1 for N > 2.1t is well known that there exists
a linear and continuous operator I" called the total trace, from H 2(52) to L2(8 Q) x
L2(32) defined by I'(u) = (yo(u), y1(u)), where yo(u) is the trace of u on 92 and
y1(u) is the normal derivative of u. In particular, for u € C%(Q), yo(u) = Uj,, and
yi(u) = g—ﬁ = Vu,,, - v, where v denotes the outer unit normal to 9€2.

A relevant problem in the theory of Sobolev Spaces consists in describing the trace
spaces yo(Hz(Q)), yl(Hz(Q)), and the total trace space [(H%()). This problem
has important implications in the study of solutions to fourth order elliptic partial
differential equations.

From a historical point of view, this issue finds its origins in [23] where J. Hadamard
proposed his famous counterexample pointing out the importance to understand which
conditions on the datum g guarantee that the solution v to the Dirichlet problem

Av =0, in 2,
v=g, onodiS2,

has square summable gradient. In modern terms, this problem can be reformulated as
the problem of finding necessary and sufficient conditions on g such that g = yp(u)
for some u € H'(Q).

If the domain € is of class C%!, then it is known that yo(H?(R)) = H% (092),
yi(H2(Q)) = H2(3Q), and T (H2(Q)) = H (0) x H?(3<2), where H 3 (92) and
H 5 (0€2) are the classical Sobolev spaces of fractional order (see e.g., [22,31] for their
definitions). However, if  is an arbitrary bounded domain of class C%! there is no
such a simple description and not many results are available in the literature.

We note that a complete description of the traces of all derivatives up to the order
m — 1 of a function u € H™(K2) is due to O. Besov who provided an explicit but quite
technical representation theorem, see [6,7], see also [8]. Simpler descriptions are not
available with the exception of a few special cases. For example, when €2 is a polygon
in R? the trace spaces are described by using the classical trace theorem applied to
each side of the polygon, complemented with suitable compatibility conditions at the
vertexes, see [22] also for higher dimensional polyhedra. For more general planar
domains another simple description is given in [20].

Our list of references cannot be exhaustive and we refer to the recent monograph
[30] which treats the trace problem in presence of corner or conical singularities in R3,
as well as further results on N-dimensional polyhedra. We also quote the fundamental
paper [24] by V. Kondrat’ev for a pioneering work in this type of problems. Interested
readers can find more information in our recent survey paper [26].

Thus, the definition of the space H %(852) turns out to be problematic and for

this reason sometimes the space H %(89) is simply defined by setting H %(89) =
yo(H?(2)) without providing an explicit representation. Note that standard definitions
of H*(9Q2) when s € (1, 2] require that  is of class at least C?.
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On the explicit representation of the trace space...

In the present paper we provide decompositions of the space H2(2) of the form
H%(Q) = Hﬁ)D(Q) + H§ y(R) and H*(Q) = HS \(RQ) + H{ (). The spaces
Hé’ n(§2) and H%’ p(§2) are the subspaces of H 2(Q) of those functions u such that
y1(u) = 0 and yo(u) = 0, respectively. The spaces Hﬁ’D(Q) and HS’N(Q) are associ-
ated with suitable Steklov problems of biharmonic type (namely, problems (BS,,) and
(BS,) described here below), depending on real parameters ., A, and admit Fourier
bases of Steklov eigenfunctions, see (3.5) and (3.15). Under the sole assumptions that
Q is of class C%!, we use those bases to define in a natural way two spaces at the

boundary which we denote by S 5 (02) and S > (02) and we prove that
3
Yo(H*(R)) = yo(H} (Q)) = §2(09)

and 1
y1(H*(Q) = yi(H, (Q) = S2(3Q),

see Theorem 4.1. Thus, if one would like to define the space H% (0L2) as yo(HQ(SZ)),

our result gives an explicit description of H 3 (092).

It turns out that the analysis of problems (BS,)-(BS;) provides further informa-
tion on the total trace ['(H2(2)). In particular, we prove the inclusion I'(H 2(Q)) C
S% (092) x S% (02) and show that in general this inclusion is strict if 2 is assumed to
be only of class €. Moreover, we show that any couple (f, g) € S% (092) x S% (02)
belongs to I'(H?(2)) if and only if it satisfies a certain compatibility condition, see
Theorem 4.4.

If Qisof class C>!, we recover the classical result, namely I'(H2(Q)) = S% (02) x
S2(32), which implies that S (992) = H? (9S2) and S2 (92) = H? (3<).

The two families of problems which we are going to introduce depend on a param-
etero € ( — ﬁ, 1), which in applications to linear elasticity represents the Poisson
coefficient of the elastic material of the underlying system for N = 2.

The first family of BS,, - ‘Biharmonic Steklov 1’ problems is defined as follows:

A%y =0, in ,
(1-0) T torv =, on 9%, (BS,)

—(1 — 0)divag(D?v - v)gg — 28 = v, on dQ,

in the unknowns v, A(u), where u € R is fixed. Here D?u denotes the Hessian matrix
of u, divagq F := divF — (VF - v)v denotes the tangential divergence of a vector field
F and Fyq := F — (F - v)v denotes the tangential component of F.

The second family of BS; - ‘Biharmonic Steklov A’ problems is defined as follows:

A%u =0, in Q,
(1—0) 2% 4 o Au =20, on 9%, (BS;)

—(1 — 0)divan(D%u - v)gq — 284 = (A)u, on I,

in the unknowns u, w(A), where A € R is fixed.
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Note that since €2 is assumed to be of class C%-1, problems (BS,,) and (BS;,) have to
be considered in the weak sense, see (3.4) and (3.14) for the appropriate formulations.

Up to our knowledge, the Steklov problems (BS,,) and (BS,) are new in the liter-
ature. Other Steklov-type problems for the biharmonic operator have been discussed
in the literature. We mention the DBS - ‘Dirichlet Biharmonic Steklov’ problem

A%y =0, in ,
(1-) % 4 oav=7n, ondQ, (DBS)
v =0, on 0€2,

in the unknowns v, 7, and the NBS - ‘Neumann Biharmonic Steklov’ problem

A’u =0, in Q,
fu =0, on 92, (NBS)
—(1 — 0)divae(D%u - v)yq — 284 = £u, ondQ,

in the unknowns u, &. Problem (DBS) for 0 = 1 has been studied by many authors
(see e.g., [3,9,16-18,25,29]); for the case o # 1 we refer to [10], see also [4,17] for
o = 0. Problem (NBS) has been discussed in [25,28,29] for ¢ = 1. We point out that
problem (BS;) with @ = A = 0 has been introduced in [12] as the natural fourth order
generalization of the classical Steklov problem for the Laplacian (see also [11]). As
we shall see, problem (BS; ) shares much more analogies with the classical Steklov
problem than those already presented in [12], in particular it plays a role in describing
the space yo(H?(2)) similar to that played by the Steklov problem for the Laplacian
in describing yo(H' () (cf. [2]).

If o < 0, problem (BS,) has a discrete spectrum which consists of a divergent
sequence {A j(M)}?O:] of non-negative eigenvalues of finite multiplicity. Similarly, if
A < n1, where 1 > 0 is the first eigenvalue of (DBS), problem (BS,) has a discrete
spectrum which consists of a divergent sequence {u i) }jozl of eigenvalues of finite
multiplicity and bounded from below. (For other values of © and X the description of
the spectra of (BS,,) and (BS;,) is more involved, see Appendix C.)

The eigenfunctions associated with the eigenvalues A ; (i) define a Hilbert basis of
the above mentioned space H 5 p(§2) which is the orthogonal complement in H 2(Q)

of H% v (§2) with respect to a suitable scalar product. Moreover, the normal derivatives

of those eigenfunctions allow to define the above mentioned space S > (0€2), see (4.2).
Similarly, the eigenfunctions associated with the eigenvalues 1 ; (1) define a Hilbert
basis of the space Hf_ n (§2) which is the orthogonal complementin H 2(Q) of H%’ p(£2)
with respect to a suitable scalar product. Moreover, the traces of those eigenfunctions
allow to define the space S% (02), see (4.1).

The definitions in (4.1) and (4.2) are given by means of Fourier series and the
coefficients in such expansions need to satisfy certain summability conditions, which
are strictly related to the asymptotic behavior of the eigenvalues of (BS;,) and (BS,,).
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On the explicit representation of the trace space...

Note that
3 1
A C —j w d Ai(p) ~C, —j v j + (1.1)
. ~ a; ; ~ , as J — 00, .
M,/( ) N 109 1 ju N 109 J

where Cy, C ;\, depend only on N, see Appendix B. In view of (1.1) and (4.1)—(4.2),

we can identify the space S > (02) with the space of sequences

{6, er: (G5 € 2} (1.2)
and the space S 2 (0€2) with the space

{652, eR® s s, e 2], (13)

Observe the natural appearance of the exponents % and % in (1.2) and (1.3). It is
remarkable that, in essence, a summability condition analogous to that in (1.3) is
already present in [23, Formula (3)] for the case of the unit disk D of the plane and
the space H2 (9D) = yo(H'(D)).

Using the representations (4.1) and (4.2) we are able to provide necessary and
sufficient conditions for the solvability in H 2(2) of the Dirichlet problem

A%u=0, inQ,
u=f, ondQ, (1.4)
g—ﬁzg, on 0€2,

under the sole assumption that €2 is of class C%! andto represent in Fourier series the
solutions. We note that different necessary and sufficient conditions for the solvability
of problem (1.4) in the larger space H (A, 2) = {u e HY(Q): Au e Lz(Q)} have
been found in [4] by using the (DBS) problem witho = 1 and the classical Dirichlet-to-
Neumann map. We also refer to [5,15,34,35] for a different approach to the solvability
of higher order problems on Lipschitz domains. Note that in [5,15,34,35] the authors
consider notions of weak solutions which differ substantially from the standard vari-
ational one used in this paper, and the solutions to problem (1.4) are allowed to have
infinite Dirichlet energy. For instance, in [15, Thm. 3.1] the boundary data f, g belong
to L%(E) Q), L%(d2) respectively, and are assumed by the solution u as non-tangential
limits; accordingly, u is not expected to belong to H>(£2) but just to H3/%($2), see [15,
p. 110].

Since we have not been able to find problems (BS,,) and (BS,) in the literature, we
believe that it is worth including in the present paper also some information on their
spectral behavior, which may have a certain interest on its own. In particular, we prove
Lipschitz continuity results for the functions i +— A;(u) and A — (1) and we
show that problems (DBS) and (NBS) can be seen as limiting problems for (BS,,) and
(BSy) as u — —oo and A — —o0, respectively. We also perform a complete study
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of the eigenvalues in the unit ball in RV for ¢ = 0, and we discuss the asymptotic
behavior of A j(u) and p ; (A) on smooth domains when j — +o0. Finally, we briefly
discuss problems (BS,,) and (BS;,) also when ;& > O and A > ;.

Our approach is similar to that developed by G. Auchmuty in [2] for the trace space
of H1(2), based on the classical second order Steklov problem

Au=0, in €,
g—‘:zku, on 0%2.

We also refer to [32] for related results.
This paper is organized as follows. In Section 2 we introduce some notation and
discuss a few preliminary results. In Section 3 we discuss problems (BS,,) and (BS;,)

when © < 0 and A < n1. In Section 4 we define the spaces S% (0€2) and S%(BQ)
and the representation theorems for the trace spaces of H2(£2). In Subsect. 4.1 we
prove a representation result for the solutions of the biharmonic Dirichlet problem.
In Appendix A we provide a complete description of problems (BS,) and (BS;) on
the unit ball for ¢ = 0. In Appendix B we briefly discuss asymptotic laws for the
eigenvalues. In Appendix C we discuss problems (BS,) and (BS;) when u > 0 and
A>ny.

2 Preliminaries and notation

For a bounded domain (i.e., a bounded open connected set) €2 in RY, we denote
by H'(Q) the standard Sobolev space of functions in L2(§2) with all weak deriva-
tives of the first order in L2(2) endowed with its standard norm lullgry ==

1
<||Vu||i2(9) + ||u||iz(9)) “forallu € H! (£2). Note that in this paper we consider

L?(Q) as a space of real-valued functions and we always assume N > 2.
By H?(2) we denote the standard Sobolev space of functions in L?(2) with all
weak derivatives of the first and second order in L?(€2) endowed with the norm

1

il 2y = (I|D2ulliz(9) + ||u||iz(m)2 for all u € H2(2). We denote by H_ (%)
the closure of C2°(Q) in H'() and by H; (Q2) the closure of C2°(R) in H(S2). The
space C2°(2) is the space of all functions in C*°(£2) with compact support in 2. If
the boundary is sufficiently regular (e.g., if Q is of class C%!), the norm defined by
Z|a\52 | D%ull 2 (g is @ norm on H?(Q) equivalent to the standard one.

By definition, a domain of class C%! is such that locally around each point of its
boundary it can be described as the sub-graph of a Lipschitz continuous function.
Also, we shall say that Q is of class C>! if locally around each point of its boundary

the domain can be described as the sub-graph of a function of class C>!.
By (-, -)sq we denote the standard scalar product of L2(0Q), namely

(u,v)yq = / uvdo , Vu,v e LZ(SQ).
0
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On the explicit representation of the trace space...

We denote by yp(u) € L?(3) the trace of u and by y1(u) € L%(3Q) the normal
derivative of u, that is, y; (u) = Vu - v. By I we denote the total trace operator from
H?(Q) to L*(3Q) x L?*(9) defined by

Pa(u) = (vo(u), y1(u)) ,

for all u € H?(R2). The operator I" is compact. If Q is of class C>! then I' is a

linear and continuous operator from H 2(Q) onto H %(8 Q) x H %(8 2) admitting a
right continuous inverse. We refer to e.g., [31] for more details.

Here H 3 0R), H 5 (0£2) denote the standard Sobolev spaces of fractional order (see
e.g., [22,31] for more details). For any o € (— ﬁ, 1),u. 2 € Randu, v € HX(Q)
we set

Qy(u,v) = (1 —a)/ D?u : D*vdx —}—0/ AulAvdx,
Q Q

Qu.p(u, v) = Qs (u, v) — ulyo ), Yo(v)ag,

and Qs n (. v) = Qa(u, v) — A1 @), 11 (0)ses

2y
where D?u : D*v = Z,N j=1 d)?, o) dx dx denotes the Frobenius product of the Hes-

1

sians matrices. Note that if o € ( T

1), then the quadratic form Q, is coercive
1

in H%(Q) and the norm (Qg (u, u) + |Jul)? 2 (Q)) is equivalent to the standard norm

of H*(Q), see e.g., [14].
It is easy to see that if © is a bounded domain of class C%! then the space H?(2)
can be endowed with the equivalent norm

1
2

(102 gy + 10132 )

We set
H3 p(Q) = {u e HX(Q) : yolu) = 0}

and
H2 V(@) = {u e HX Q) : y1(u) = 0} .

The spaces ’H% p(£2) and H% N (€2) are closed subspaces of H?%(Q) and H%,N(Q) N
Hg p(Q) = HZ(Q) We also note that H3 ;, = H*(Q) N H} (Q).
It is useful to recall the so-called blharmomc Green formula

3%y 9
/ Dy : D2pdx =/(A21ﬂ)<pdx~l—/ YV 99 4o
Q Q a0 31)2 8v

IAY
—/ <d1vm(D vv)eq + —) pdo, 2.1
Fre 0

valid for all sufficiently smooth ¥, ¢, see [1].
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The biharmonic functions in H2(£2) are defined as those functions u € H?(2) such
that fQ D%y : D2<pdx =0forallp € Hg(Q), or equivalently, thanks to (2.1), those
functions u € HZ?(R) such that fQ AulApdx = 0 for all ¢ € Hg(Q) . We denote
by By (£2) the space of biharmonic functions with zero normal derivative, that is the
orthogonal complement of HOZ(Q) in H%, v (8) with respect to Qy:

By () = {u € H2 () : Oy, 9) =0,V € HOZ(Q)} . 2.2)

By formula (2.1) and a standard approximation we deduce that
By(R) == {u e My (Q): / Aulpdx =0,Yp € Hg(sz)} . (23)
Q

We note that By (€2) is the space of the biharmonic functions in H(z), ~ (£2). Thus

Hon () = Hy (Q) & By ().

Analogously, we denote by Bp the space of biharmonic functions with zero boundary
trace, that is the orthogonal complement of HOZ(Q) in H%’ p(€2) with respect to Q,:

Bp(S) = {u € H2 p(Q): Qu(u,9) =0,V € Hg(sz)} . (2.4)

By formula (2.1) and standard approximation we deduce that
Bp(Q) = {u € My p(Q) : / Aulpdx =0,Vg € HOZ(Q)} ) (2.5)
Q

We note that Bp (€2) is the space of biharmonic functions in H%’ p(§2). Thus
H3.p(R) = Hy(Q) & Bp().

Finally, by N we denote the set of positive natural numbers and by Ny the set
N U {0}.

3 Multi-parameter Steklov problems

In this section we provide the appropriate weak formulations of problems (BS,,) and
(BS,). In particular we prove that both problems have discrete spectrum provided
n < 0and A < 1y, respectively. Here n; is the first eigenvalue of problem (3.1) below,
which is the weak formulation of (DBS). We remark that n; > 0 and that £, = 0 is
the first eigenvalue of problem (NBS), hence the condition & < O reads u < &;. We
also provide a variational characterization of the eigenvalues.

Through all this section €2 will be a bounded domain of class C%! and o € ( —

w7, 1) will be fixed.
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On the explicit representation of the trace space...

3.1 The (DBS) and (NBS) problems

Before analyzing problems (BS,) and (BS;) we need to recall a few facts about
problems (DBS) and (NBS).
Problem (DBS) is understood in the weak sense as follows:

v
/(1 —0)D*v : D*¢ + 0 AvApdx = / WO o Vo € H} p(Q), (3.1)
Q aQ 0V v ’

in the unknowns v € H(Z)’ p(82), n € R. Note that formulation (3.1) is justified by

formula (2.1). Indeed, by applying formula (2.1), one can easily see that if v is a

smooth solution to problem (3.1), then v is a solution to the classical problem (DBS)

(the same considerations can be done for all other problems discussed in this paper).
We have the following theorem.

Theorem 3.1 Let Q2 be a bounded domain in RN of class CO' andleto € (— ﬁ, 1).
The eigenvalues of problem (3.1) have finite multiplicity and are given by a non-
decreasing sequence of positive real numbers 1 ; defined by

Qs (v, v)

n;= min max —————— (3.2)

Vigél)(m f;ﬁo faQ( ) do’

where each eigenvalue is repeated according to its multiplicity. Moreover, there exists
a Hilbert basis {v j } Lof Bp(R2) of eigenfunctions v associated with the eigenvalues

n;j. Finally, by normallzmg the eigenfunctions v; with respect to Qy for all j > 1,
the functions V; := . /n;v1(v;) define a Hilbert basis of L2(3Q) with respect to its
standard scalar product.

Problem (NBS) is understood in the weak sense as follows:

/;Z(I—G)Dzu:Dzw—i—aAuA(pdx:é Qmpda, Vo € Hi v(R).  (3.3)
d

in the unknowns u € ’Hé N (£2), § € R. We have the following theorem.

Theorem 3.2 Let Q be a bounded domain in RN of class C%' and let o € (— ﬁ, 1).
The eigenvalues of problem (3.3) have finite multiplicity and are given by a non-
decreasing sequence of non-negative real numbers & defined by

Qo (u, u)

&= min max—————
2
UCHON(Q) ueU fBQ u da
dimU=j

where each eigenvalue is repeated according to its multiplicity. The first eigenvalue
& = 0 has multiplicity one and the corresponding eigenfunctions are the constant
functions on Q2. Moreover, there exists a Hilbert basis {uj }] of By (R2) of eigenfunc-
tions u j associated with the eigenvalues & ;. Finally, by n()rmalzzmg the eigenfunctions
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u;j with respect to Qq for all j > 2, the functions 12]- = &vowj), j = 2, and
i1 = 10|12 define a Hilbert basis of L*>(3S2) with respect to its standard scalar
product.

The proofs of Theorems 3.1 and 3.2 can be carried out exactly as those of Theorems

3.3 and 3.10 presented in Subsects. 3.2 and 3.3. Note that the condition o € (— ﬁ, 1)

is used to guarantee the coercivity of the form Q, discussed in the previous section.

3.2 The BS,, eigenvalue problem

For any v € R, the weak formulation of problem (BS,) reads

/(1 —o0)D%v: D2<p + o AvApdx — u/ vodo
Q Q

= | —:—vdo, Vo € HX(Q), (3.4)

in the unknowns v € H%(Q), A(pn) € R, and can be re-written as

Qu.p(W, @) = A1) (11 (V), V1@ » Yo € HX(SQ).

We prove that for all © < 0, problem (BS,,) admits an increasing sequence of eigen-
values of finite multiplicity diverging to 400 and the corresponding eigenfunctions
form a basis of Hi’ p(£2), where Hi p(§2) denotes the orthogonal complement of

H% N (§2)in H 2(Q) with respect to the scalar product Q,, p, namely

H; (Q) = {v € HX(Q): Qupv,9) =0, Vg € H%,N(Q)} . (3.5)

To do so, we recast problem (3.4) in the form of an eigenvalue problem for a compact
self-adjoint operator acting on a Hilbert space. We consider on H2(2) the equivalent
norm

1l p = Qu.p(v, v)
which is associated with the scalar product defined by
<v7 go)/L,D = Q[,L,D(v7 (p)a

for all v, € H 2(Q). Then we define the operator B, p from H 2(Q) to its dual
(H?(R))' by setting

BupWIpl = (v, 0)up, Yv,9 € H Q).
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By the Riesz Theorem it follows that By, p is a surjective isometry. Then we consider
the operator J; from H2(§2) to (HZ(Q))’ defined by

H)lel = (@), n@)aa. Yv,¢ € H(Q). (3.6)

The operator J; is compact since y; is a compact operator from H 2(Q) to L2(8 Q).
Finally, we set

Tup =B\ ol (3.7)

From the compactness of J; and the boundedness of B, p it follows that 7, p isacom-
pact operator from H2() to itself. Moreover, (T, p), @) .0 = (1 (V), Y1())sg,
for all u, ¢ € HZ(SZ), hence T, p is self-adjoint. Note that Ker 7, p = Ker J; =
H%’ ~ (£2) and the non-zero eigenvalues of 7), p coincide with the reciprocals of the
eigenvalues of (3.4), the eigenfunctions being the same.

We are now ready to prove the following theorem.

Theorem 3.3 Let Q2 be a bounded domain in RN of class CY' andleto € (— ﬁ 1).
Let 1 < 0. Then the eigenvalues of (3.4) have finite multlpllcny and are given by a
non-decreasing sequence of positive real numbers {X (,u)} | defined by

Aj(u) = min max M, 3.8)

52
VCH?(Q) veV v
dinv(j)@#o o (53) do

where each eigenvalue is repeated according to its multiplicity.

Moreover there exists a basis {v j, M}] L of H p(§2) of eigenfunctions v, asso-
ciated with the eigenvalues A j ().

By normalizing the eigenfunctions v; , with respect to Q,, p, the functions defined

by {{’j,u} = {,/)L (W y1(vj, u)} 1form a Hilbert basis 0fL2(BQ) with respect
to its standard scalar product.

Proof Since Ker T, p = H%’ - by the Hilbert-Schmidt Theorem applied to the com-
pact self-adjoint operator TM p it follows that 7, p admits an increasing sequence

of positive eigenvalues {q j} bounded from above, converging to zero and a cor-
responding Hilbert basis {v j, u} _, of elgenfunctlons of H 2 p(§). Since g # 0 is
an eigenvalue of T}, p if and only 1f A = - isan elgenvalue of (3.4) with the same
eigenfunctions, we deduce the validity of the first part of the statement. In particular,
formula (3.8) follows from the standard min-max formula for the eigenvalues of com-
pact self-adjoint operators. Note that 1 (u) > 0, since Q, p(v, v) = 0 if and only if
v=0.

To prove the final part of the theorem, we recast problem (3.4) into an eigenvalue
problem for the compact self-adjoint operator T}, , = y1 o B/(;L? o J{, where J|

denotes the map from L2(32) to the dual of H2(2) defined by
Tl = 0, ni(@)aa, Yve L*(0RQ),¢ € H(Q).

@ Springer



P.D. Lamberti, L. Provenzano

We apply again the Hilbert-Schmidt Theorem and observe that 7, p and T’ _p admit
the same non-zero eigenvalues and that the eigenfunctions of T,i p are exactly the
normal derivatives of the eigenfunctions of 7, p. From (3.4) we deduce that if the
eigenfunctions v; , of T, p are normalized by Q,, p(v; i, Vk,;) = 8k, Where § i is
the Kronecker symbol, then the normalization of the traces of their normal derivatives
in L2(dQ) are obtained by multiplying y; (v j.10) by /A j (). This concludes the proof.

O

We present now a few results on the behavior of the eigenvalues of (3.4) for u €
(=00, 0), in particular we prove a Lipschitz continuity result for the eigenvalues A ; (1)
with respect to p and find their limits as u — —oo0.

Theorem 3.4 For any j € Nand § > 0, the function \; : (=00, —=6] — (0, +00)
which takes u € (—o0,—68] to Aj(u) € (0,+00) is Lipschitz continuous on
(—o00, —4].

Proof Without loss of generality we assume that 1, o € (—oo, —§] and that u; <
wa. Let v e H*(2). Then

- Qui,pw,v)  Qu,p(,v) — Gtr — ) [yg v2do

fy (38)" do fasz( 1)’ do o (22)? do

(w2 — 1) Quy.p(w,v)

2
"1 Jaa (3_3) do

Hence
Qu,.p (W, v) Qm,D(vz, v) (3.9)
fasz( ) do fasz (g_g) d
and
Q.0 V) Quy.p(, ) < n (n2 —Ml)) (3.10)
faQ( )dU fafz( ) at

By taking the infimum and the supremum over j dimensional subspaces of H?(2)
into (3.9) and (3.10), and by (3.8), we get

(1) [ — w1l
2 — ] < Aj(pn)———.

A
IAj (1) — Aj(u2)| < =2 <
! ! 1] 8

This concludes the proof. O

We now investigate the behavior of the eigenvalues A; () as u — —oo. First,
we need to recall a few facts about the convergence of operators defined on variable
spaces. As customary, we consider families of spaces and operators depending on a
small parameter ¢ > 0 with ¢ — 0. This will be applied later with ¢ = _;% and
L — —00.
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Let us denote by H, a family of Hilbert spaces for all ¢ € [0, g9) and assume that
there exists a corresponding family of linear operators E. : Ho — H, such that, for
any u € Hy

IEe)ll3, — llully, . ase— 0.

We recall the definition of compact convergence of operators in the sense of [33].

Definition 3.5 We say that a family {K¢},c[o ¢,) of compact operators K. € L(H.)
converges compactly to Ky if

i) for any {ue}oc,6) With llug — Ec(u)lly, — 0 as e — 0, then [|Ke(ue) —
E. (Ko@), — Oase — 0;

ii) for any {ue}oc(0,69) With ue € He, [luellp, = 1, then {Ke(ue)loc(o,ey) iS Pre-
compact in the sense that for all sequences &, — 0 there exist a sub-sequence
en, — 0and w € Hy such that I1Ke,, (g, ) — Es,, (w)||7.[£nk — 0ask — +oo.

We also recall the following theorem, where by spectral convergence of a family of
operators we mean the convergence of the eigenvalues and the convergence of the
eigenfunctions in the sense of [33], see also [17, §2].

Theorem 3.6 Let {K.},c[0.¢,) be non-negative, compact self-adjoint operators in the
Hilbert spaces He. Assume that their eigenvalues are given by {O’J (8)} If K;

compactly converge to Ko, then there is spectral convergence of K to Ky as ¢ — 0.
In particular, for every j e Noj(e) — 0;(0), ase — 0.

Let Tp : H%’D(Q) — H%,D(Q) be defined by Tp = Bgl) o Ji, where Bp is the
operator from H(Z)y p(£2) to its dual (H% (€)' given by

Bp()lpl = Qs(v.9). Yv.¢ € Hj ().

and Jj is defined in (3.6). By the Riesz Theorem it follows that Bp is a surjective
isometry. The operator T is the resolvent operator associated with problem (3.1) and
plays the same role of 7}, p defined in (3.7). In fact, as in the proof of Theorem 3.3
it is possible to show that Tp admits an increasing sequence of non-zero eigenvalues
{q /} bounded from above and converging to 0. Moreover, a number g # 0 is

% is an eigenvalue of (3.1), with the same

an elgenvalue of Tp if and only if n =
eigenfunctions.

We have now a family of compact self-adjoint operators 7, p each defined on the
Hilbert space H?(2) endowed with the scalar product Q.. p, and the compact self-
adjoint operator Tp defined on ’H p(€2) endowed with the scalar product Q,,. We are

ready to state and prove the followmg theorem.

Theorem 3.7 The family of operators {T

w,D }ue(—oo,O) compactly converges to Tp as

u — —oo. In particular,
lim A;(u) =n;j, (3.11)
JL—>—00

forall j € N, where n; are the eigenvalues of (3.1).
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Proof For each u € (—00,0) we define the map £, = E : H%ﬁD(Q) — HX(Q)
simply by setting E(u) = u, forall u € H(Z) p(£2).
In view of Definition 3.5, we have to prove that

i) if{”/i};mo C H*(Q)andu € Hé‘D(Q) are suchthat @, p(u; —u, u,—u) — 0
as 4 — —oo, then

Qu.p(Typuy)—Tpw), Ty p(uy) —Tpm)) — 0, aspu — —o0;

ii) if{”#},KO C H%(Q) is such that Qu,puy, u,) = 1forall u < 0, then for every
sequence p, — —oo there exists a sub-sequence p,, — —ooandv € H(z)’ p(£2)
such that

Qﬂnk’D(TﬂnkaD(uﬂnk) — v, T/Lnka(MUfnk) —v)—> 0, ask— +oo. (3.12)

We start by proving i). By the assumptions in 1), it follows that u,, is uniformly
bounded in H%(£2) for u in a neighborhood of —oo. Indeed, by definition

ou,, d
Qu,D(Tu,D(uu),fp)=/ T2 4o, Y e HA(Q), (3.13)
3 OV dv

hence, by choosing ¢ = T, p(u,), we find that the family {TM,D () }u<0 is bounded

in HZ(SZ). Thus, possibly passing to a sub-sequence, T, p(u;)—v in HZ(Q), and
vo(Ty,p(uy)) — yo(v) in L2(32), as u — —oo, which implies that yp(v) = 0 since
the term —1u [, Ty, p(uy,)*do is bounded in . Thus v € H&D(Q).

Choosing ¢ € H(z)’ p(§2) and passing to the limit in (3.13) we have that

du g

) = __d ) A 2 Q )
s (v, @) ./asz 3y 3 2 ¢ € Hp p(£2)

hence v = Tp(u). Thus T, p(u,)—Tp(u) in H?(2). Moreover, the convergence is
stronger because

,ullfiloo Q;/.,D(T;/.,D(uu) —Tpu), T/L,D(uﬂ) — Tp(u))
= /,LEIPOO (QM,D(TM,D(MM)9 Ty, p(uy))
=29, p(Ty,p(up), Tpw)) + Qu p(Tp (), Tp(u)))
= Qo (Tp(u), Tp(u)) —2Qs(Tp(u), Tp(u)) + Qo (Tp(u), Tp(u)) = 0,

which proves point 1).
Note that the equality lim,—, _oo Q. p (T, (W), Ty, p(uy)) = Qo (Tp(u), Tp (1))
is a consequence of

@ Springer
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ou, dT,
oly u,D(uu)dO_

li T, , T = 1
p_—yllooQM’D( M,D(ull.) ;J,,D(uu)) —1>moo b OV 90
ou BTD(u)
-/ — Q, (Tp(w), Tp(w).
IR 8\) av
The proof of point ii) is similar. If Q, p(u,,u,) = 1, up to sub-sequences

uy—u € H*(Q), yo(uy) — you), and y1(u,) — yi(u) as p — —oo. More-
over, HVO(uH)”i%aQ) < —l , hence ”VO(“/‘)”iZ(aQ) — 0 as u — —oo. This implies
that yp(u) = O and thatu € HO p(£2). Then itis possible to repeat the same arguments

above to conclude the validity of (3.12) with v = Tp (u).
Thus 7;, p compactly converges to Tp and (3.11) follows by Theorem 3.6. O

Remark 3.8 We also note that each eigenvalue A ; (1) is non-increasing with respect to
wu, for u € (—oo, 0). In fact from the Min-Max Principle (3.8) it immediately follows
that for all j € N, A (1) < Aj(u2) if g > po.

Now we consider the behavior of the first eigenvalue as @ — 07.
Lemma 3.9 We have

Ilim A(n) =0
n—0~

Proof Let p € RY be fixed. From (3.8) we get

Qup®.v) _ Qu.p(p-x.p-x) s (P - X)*do

0<A(n) = min K. < =wDiP 2p Z—M/Cm—z,
veH2<sz> o (2)? do Joa(p - v)2do Jaa(p - v)*do

for all u € (—o0, 0). By letting ©# — 0~ we obtain the result. O

3.3 The BS eigenvalue problem

The weak formulation of problem (BS,) reads

/(1 —0)D%u : D2(p + o Aulpdx — k/ — —do
Q IQ av v

= M(x)/ updo , Vo € HX(Q), (3.14)
Q
in the unknowns u € H%(Q), w(A) € R, and can be re-written as

Qi N, @) = () (o), W(@)ag » Ve € H ().
We prove that for all A < np, where n; is the first eigenvalue of (DBS), problem
(BS;) admits an increasing sequence of eigenvalues of finite multiplicity diverging to

400 and the corresponding eigenfunctions form a basis of ny ~(§2), where H. )% N (€2)
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denotes the orthogonal complement of H%’ p()in H 2(Q) with respect to Q;, , that
is
H y(Q) = {u € HX(Q): Qunu,9) =0, Vg € Hg,D(sz)] . (3.15)

Since in general 9, x is not a scalar product, we find it convenient to consider on
H?2(2) the norm
Il = Qun (s 1) + bl )72 (3.16)

where b > 0 1is a fixed number which is chosen as follows. If A < 0, no restrictions are
required on b > 0, since the norm || - ||, 5 is equivalent to the standard norm of H 2(Q)
for all b > 0. Assume now that 0 < A < 1. From Theorem 3.7 and Lemma 3.9 we
have that (0, n1) € X1 ((—00, 0)), hence there exists u € (—oo, 0) and € € (0, 1) such
that A (n) = )]# < n1. Then

&

Qv u) =eQ_1 yu,u)+ (1 —&)Qy,qo,n U, u)
> Q1N (1) + (1= )l 7250, (3.17)

Thus, by choosing any b satisfying
b>—(1-epu, (3.18)

it follows by (3.17) and (3.18) that || - ||x, v iS @a norm equivalent to the standard norm
of HX(Q).
The norm || - ||, n is associated with the scalar product defined by

(u, )N = QN @) + b)), vo(@)aa, (3.19)

forall u, ¢ € H*().

We now recast problem (3.14) in the form of an eigenvalue problem for a compact
self-adjoint operator acting on a Hilbert space. To do so, we define the operator B) y
from H2() to its dual (H?(2))’ by setting

By Nl = (u, ¢)sn, Vu, ¢ € H ().

By the Riesz Theorem it follows that Bj y is a surjective isometry. Then we consider
the operator Jy from H 2(Q) to (H2(R2))’ defined by

Jo)[@] = (vo(w), vo(@))aa, Yu, ¢ € H*(Q). (3.20)

The operator Jy is compact since yq is a compact operator from H 2(Q) to L2(3Q).
Finally, we set
T.n = By o Jo. (3.21)

From the compactness of Jy and the boundedness of B;, y it follows that 7y isacom-
pact operator from H?(2) to itself. Moreover, (Ba.n(u), o). N = (o), vo(@))ag,
forall u, p € H?*(2), hence T;_y is self-adjoint.
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Note that Ker 7, y = Ker Jop = H D(Q) and the non-zero eigenvalues of 7, y
coincide with the reciprocals of the elgenvalues of (3.14) shifted by b, the eigenfunc-
tions being the same.

We are now ready to prove the following theorem.

Theorem 3.10 Let 2 be a bounded domain in RN of class col 5 € ( — ﬁ 1),
and ) < ny. Then the eigenvalues of (3.14) have ﬁnite multiplicity and are given by a
non-decreasing sequence of real numbers {,u j (A)} | defined by

u,u
wj(A) = nnzn ma&( % (3.22)
H?(Q) Uue u-ao
U D o Jo%

where each eigenvalue is repeated according to its multiplicity. Moreover, there exists
a Hilbert basis {ulk}joz of HfﬁN(Q) (endowed with the scalar product (3.19)) of

eigenfunctions u j ; associated with the eigenvalues (1) and the following state-
ments hold:

i) If A < O then wi(X) = 0 is an eigenvalue of multiplicity one and the cor-
responding eigenfunctions are the constant functions. Moreover, if ii j 5 denote
the normalizations of u; ; with respect to Q; n for all j > 2, the functions
Ajy = /1) oli; ), j =2 and iy ; := |0Q~"/? define a Hilbert basis of
L2(3Q) with respect to its standard scalar product.

ii) If 0 < A < ny, then w(X) = 0 is an eigenvalue. Moreover, if i j,(A) is the first
positive eigenvalue, and il ; denote the normalizations of u ; with respect to
Q,.nNforall j > jo, and {u j, A} denotes a orthonormal basis with respect to

the L*(3) scalar product of the eigenspace associated to 1 (A), ..., W jo—1(A)
restricted to 0S2, then the functions iij; = /Myt ), j = Jjo, and
{ﬁj,o}-j’?:‘ll, define a Hilbert basis of L*>(3S2) with respect to its standard scalar
product. Finally, if . = 0, then jo = N + 2 and the eigenspace corresponding
to u1(0) = --- = un+1(0) = 0 is generated by {1, x1, ..., xy}; if . > 0O, then
ui(d) <O.

Proof Since Ker Jy = H(Z)’ p(§2), by the Hilbert-Schmidt Theorem applied to 7;, y it
follows that T) » admits a non-increasing sequence of positive eigenvalues { Dj }ji]

bounded from above, converging to zero and a corresponding Hilbert basis {u j, ;\} of
eigenfunctions of Hf ~ (£2). We note that p # 0 is an eigenvalue of 7}  if and only

if w = L — b is an eigenvalue of (3.14), the eigenfunction being the same.
Formula (3.22) follows from the standard min-max formula for the eigenvalues of
compact self-adjoint operators.

If A < 0,then p1 (1) = 0and acorresponding eigenfunction u  satisfies D2u1 A=

u
0 in 2, hence it is a linear function; moreover, since 01 2 — () on 9, u1, has to be

constant.

If » = 0, then u = 0 is an eigenvalue and a corresponding eigenfunction is a
linear function. Hence ©1(0) = --- = un+1(0) = 0 and the associated eigenspace is
spanned by {1, xq, ..., xn}.
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If 0 < A < nq, then by (3.11) and Lemma 3.9, there exists 4 < 0 such that
A1(u) = A, hence u is an eigenvalue of (3.14). Moreover, by definition we have that
for all u € H>(R) with yo(u) # 0

QN ) QN u) "
Jyqurdo Jaqurdo 7

hence w1 (A) = u < 0.
To prove the final part of the theorem, we recast problem (3.14) into an eigenvalue

problem for the compact self-adjoint operator T, y = ypoB )(fl\l,) o J;), where J; denotes

the map from L?(9<2) to the dual of H?(2) defined by
Jo@lel = u, y0(@))se. Yu € L2(9Q), ¢ € H*(Q).

We apply again the Hilbert-Schmidt Theorem and observe that 7 x and T)i’ y admit
the same non-zero eigenvalues and that the eigenfunctions of T)\” n are exactly the
traces of the eigenfunctions of T n. From (3.14) we deduce that if we normalize the
eigenfunction u; ; of Tj y associated with positive eigenvalues and we denote them
by i ;., then the normalization of their traces in L?(32) are obtained by multiplying
vo(iij ;) by /1 j(1). The rest of the proof easily follows. O

As we have done for problem (3.4), we present now a few results on the behavior
of the eigenvalues of (3.14) for A € (—oo, 11). We have the following theorem on the
Lipschitz continuity of eigenvalues, the proof of which is similar to that of Theorem
3.4 and is accordingly omitted.

Theorem 3.11 Forany j € Nand§ > 0, the functions jvj : (—o0, n;—38] — [0, +00)
whichtakes . € (—00, n1—38]to i j (1) € Rare Lipschitz continuous on (—o0, n1—4].

We now investigate the behavior of the eigenvalues w;(A) as A — —oo. In order
state the analogue of Theorem 3.7, we consider the operator Ty : H%, N(€2) —

H(%’N(Q) defined by Ty = B](V_l) o Jo, where By is the operator from H%,N(Q)
to its dual (H%’N(Q))/ given by

By()[g] = Qs (v, 9) + b (V). Yo(@)aa. Vv, € Hj y(Q), (3.23)

and b has the same value as in the definition of the operator T, n, see (3.18), and Jp
is defined in (3.20). Note that the constant b can be chosen to be independent of X for
X < 0. By the Riesz Theorem it follows that By is a surjective isometry. The operator
Ty is the resolvent operator associated with problem (3.3) and plays the same role of
T). n defined in (3.21). In fact, as in the proof of Theorem 3.10 it is possible to show
that T admits an increasing sequence of non-zero eigenvalues { Dj }jil bounded from
above and converging to 0. Moreover, a number p # 0 is an eigenvalue of Ty if and
only if £ = % — b is an eigenvalue of (3.3), with the same eigenfunctions.
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We have now a family of compact self-adjoint operators 7 n each defined on the
Hilbert space H>(£2) endowed with the scalar product (3.19), and the compact self-
adjoint operator Ty defined on ’H(z), n (§2) endowed with the scalar product defined by
the right-hand side of (3.23). We have the following theorem, the proof of which is
similar to that of Theorem 3.7 and is accordingly omitted.

Theorem 3.12 The family of operators {T) n}ye(—oco,n) compactly converges to Ty
as . — —oo. In particular,

lim u;(A) =&, (3.24)
A——00
forall j € N, where &; are the eigenvalues of (3.3).

Remark 3.13 We also note that each eigenvalue i ;(A) is non-increasing with respect
to A, for A € (—o0, n1). In fact from the Min-Max Principle (3.22) it immediately
follows that forall j e N, (A1) < pj(A2) if A1 > Ap.

4 Characterization of trace spaces of H2(Q) via biharmonic Steklov
eigenvalues

In this section we shall use the Hilbert basis of eigenfunctions v; , and 0; , given by
Theorem 3.3 and the Hilbert basis of eigenfunctions u ;,, it ; ; given by Theorem 3.10,
forall u € (—o0,0) and A € (—o0, n71). We recall that by definition, the functions v; ,,
and u j ; are normalized with respect to Q,, p(-, -) and Q; n (-, ) +b(¥0(-), Yo(-)Dag
respectively, while ¥ , and 7 ; are normalized with respect to the standard scalar
product of L2(3Q).

We will also denote by /2 the space of sequences s = (s j)?‘;l of real numbers

satisfying ||S||122 = Z?il 512' =00

We define the spaces

3 3 s 0
S1(HQ) = S (09) == {f e L’ : f =Y aji;, with (,/W,(A)mj)j_l c 12] ,
j=1 B
“.1)
and

SHOQ) = 81 (9Q) = {f € LR : f =Y bjbj, with ( A,(M)Ej):l c 12} . (4.2)

j=1
These spaces are endowed with the natural norms defined by

Jo—1 )
=D i+ ) mihaj.
=1

J Jj=Jo

I£11% 5

S7(39)
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where jg is as in Theorem 3.10, and

LAy =D xwbs.

S7(39) =

Recall thatif A =0, jo = N + 2 and if A < 0, then jj = 2.
3
These spaces allow to describe the trace spaces for H 2(Q). In particular, S;7 (32)

1
and Sj; (3€2) turn out to be independent of A and x. Namely, we have the following.

Theorem 4.1 Let Q be a bounded domain in RN of class C%'. Then

3
Yo(H2(Q)) = yo(HE y(Q) = 83 (39) (= S2(99)) 4.3)

and

1
N(HA(Q)) = 71 (H2 p(Q) = ST(09) (= S (0Q)). (4.4)

3 1
In particular, the spaces Sf (0R2) and S,f (0R2) do not depend on ) € (—oo, n1) and
e (—o0,0).
Moreover; if Q is of class C>! then

T(H2(Q)) = S (9) x S (IN),

hence , s
S2(0Q) = H2(0Q)

and 1 |
S2(0Q2) = H2(0R2).

Proof Let us begin by proving (4.3). By the definition of Hf n (£2) givenin (3.15) and
by Theorem 3.10 we have that any u € H>(£2) can be written as

u=u;+vp

where vp € H(z) p(§2) and

o)
u) = Zajuj,;\
j=1

. ) . . ) 2 ) 00
for some coefficients a; satisfying Y72, a7 < oo. Here {u],,x}jzl

basis of Hf’N(Q) with respect to the scalar product (3.19) with b satisfying (3.18).
Let jo be as in Theorem 3.10. Hence we can write

is a orthonormal
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Jo—1
u; = Zajujx+ Za Uj
j=o
Jo—1
Ui\
Js
= Z aju;j; + Z ( ,/Qx,zv(uj,x,uj,x)) :
= VN, U )
Jo—1
= Z ajujat Z ajijn,
i=Jo
~ uj . . . .
where i ) = ———1% ___ are the eigenfunctions normalized with respect to QN
N Qo N (W pujn)

and a; still satisfy Z?O:joﬂ &]2. < oo(infactO < Q) n(uj s, uj ) < lforall j > jo).
Clearly yo(u) = yo(u).), hence by the continuity of the trace operator we have that

Jo—1
Yo) = Y ajyouj) + Z ajyoliij.)
j=1 Jj=Jo

Jo—1

= Z_: \/ﬁ . (\/l/vj()\) +b- VO(Mj,A)) + i \/% 0 (mﬁjx)

J=Jo

Jo—1

o0
= 2 :‘11”/14' 2 :aJ”//\—ZaJ‘ﬁj,kv

Jj=Jo Jj=1

where we have set

a; = =,/ b-
aj = W M/()‘) + )’0(’4/ k)

forj=1,..., jo—1and

[SHY

= W \//’L/()“) VO(”/ 2)

3
for j > jo. This proves that yo(Hf,N(Q)) C S (09).

3
We prove now the opposite inclusion. Let f € S; (3K2). Then f = Z?‘;l aji
with 3792 4 ()]a7 < oo. Letu := 352, aju; , where

aj=,/mjA)+b-a; 4.5)
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By definition, u € H 2(Q) since Z;’il a% < 00. Moreover, we note that

A

O ; IO + by,

(4.6)

Mg

hence f = yo(u) € yo(H*(2)).
The proof of (4.4) follows the same lines as that of (4.3) and is accordingly omitted.
3 1

j=1

We deduce then that the spaces Sf (02) and SE (02) do not depend on the partic-
ular choice of A € (—00,7n1) and u € (—o0, 0). In particular, we have proved that
3 1

['(H?(Q)) C Sf (0Q2) x SE(BQ).
3 1
Assume now that s of class Cz’l.WeprovethatSA2 (BQ)xS2 (3Q) C T(H*(Q)).
3 1
This will imply I'(H?(Q)) = 87 (32) x S2 (3Q).
3 1

Let (f,g) € S7(32) x S;(99). This means that f = yo(up), & = yi(vy) for
some u; € HAZN(SZ), v, € Hi p(£2). We claim that there exist vp € ’H% p(§2) and
Uy € H%YN(Q) such that u; + vp = v, + uy. To do so, it suffices to prove the
existence of vp € H(z) p(&)anduy € H(z) n (§2) such that u; — vy, = uy —vp. We

claim that
H*(Q) = Hj p(Q) + Mgy (Q). 4.7

Indeed, givenu € H 2 (£2), one can find by the classical Total Trace Theorem a function
up € HZ(Q) such that yp(u1) = 0 and y1(u1) = y1(u). Thus u = uy + (u — u) with
y1(u — u1) = 0 and the claim is proved. Thus the existence of functions vp and uy
follows by (4.7) and the function u = u; + vp = v, + uy is such that f = yo(u)
and g = y1(u). O

Remark 4.2 Theorem 4.1 gives an explicit spectral characterization of the space
Yo(H?(2)) of traces of functions in H2(£2) when  is a bounded domain of class

%! in RV This space corresponds to H > (092) when Q is of class C%!. In this case

explicit descriptions of the space H 2 (9€2) are available in the literature and typically
are given by means local charts and explicit representation of derivatives, see e.g.,
[22,31].

For domains of class C%!, it is not clear what is the appropriate definition of
H 5 (0€2). Sometimes H% (0€2) is defined just by setting

H2(0Q) = yo(H2(%2)).

According to this definition, Theorem 4.1 implies that H3 (32) = S3 (9$2) also for
domains of class C%!.

From Theorem 4.1 it follows that if  is a domain of class C%!, then
T(H(Q) € 8> (09) x S? (09), (4.8)

@ Springer



On the explicit representation of the trace space...

and equality holds if €2 is of class C>!. We observe that if 2 is not of class C*!, then in
general equality does not hold in (4.8). Indeed, we have the following counterexample.

Counterexample 4.3 Let Q@ = (0, 1) x (0, 1) be unit square in R>. We prove that
T(H2(Q)) C 82 (3Q) x S (3Q).

To do so, we consider the real-valued function ¢ defined in Q2 by ¢(x1, x2) = x1 for
all (x1,x2) € Q2 and we prove that the couple (yo(¢),0) € (S3(9Q) x S2(IR)) \

C(H2(Q)). It is obvious that v (p) € S%(BQ) since ¢ € H2(Q). Assume now by
contradiction that (yy(¢), 0) € ['(H?()), that is, there exists u € H*(Q) such that
yo(u) = yo(@) and y1(u) = 0. Clearly, since yo(u) = yo(@), there exists vp € H%’D
such that

u=¢-+vp
and hence
y1(wp) = y1(u) — y1(p) = =Vxi - v),q = —v1.
It follows that vp is a function in Hz(Q) such that yo(vp) = 0 and y1(vp) = —v1, but

this opposes a well-known necessary (and sufficient) condition for a couple (f, g) €
H'(3Q) x L2(3Q) to belong to T(H%(Q)), namely

9
a—fz L gve H2(9Q), (4.9)
T

where T is the unit tangent vector (positively oriented with respect to the outer unit v
to Q), see [21,22]. Indeed, the couple (0, —v1) does not satisfy condition (4.9).

In order to characterize those couples (f, g) € S 3 (0R2) x S 7 (0€2) which belong

to I'(H?(R2)) when Q is of class C%!, we need the spaces Y%(BQ) and 5”%(89)
defined by

S0 = (M3 ) = 1By ()
and
SR = y1(H} p) = 1 (Bp(Q).
Tl;e spaces . 1% (0R2) and .7 %(BQ) have explicit descriptions similar to those of

Sf (0R2) and SE (0€2), namely

S5 (09) = {f eL*OQ): f= Zajﬁj with (/€;¢,)52, € 12} . (4.10)

J=1
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and

o0
S (09Q) = {g eL*3Q): g= Zc?jﬁj with (/7;d))72, € 12} . (411
j=1

Here u ji= \/g vo(uj), j = 2, where { uj }(;i ] is a Hilbert basis of eigenfunctions of
problem (3.3), normalized with respect to Q. , with the understanding that u; and i
equal the constant 32| ~!/2, and ; = /571 (v;), where {vj};il is a Hilbert basis
of eigenfunctions of problem (3.1) normalized with respect to Q.

Note that

F3OQ) x L2 (0R) = T(HE N (Q) + HE (@) € T(HA(Q)).

One can see by similar arguments as in Counterexample 4.3 that in general . 3 (082) x

Y% (0R2) ¢ T (H%(Q)) if Qis not of class C>!, while equality occurs if €2 is of class
C>! by (4.7).

We are now ready to characterize the trace space I'(H 2(Q)) for domains €2 of class
coL.

Theorem 4.4 Let Q be a bounded domain in RN of class C%1. Let (f, g) € S% (092) x
3 1
S%(BQ) = 87 (02) x 81 (9R2) be given by

o o0
f=Y ajaj., g= bjbj, (4.12)
j=l1 j=1

A o0
for some i € (=00, ), € (~00,0), with (/Tu;Maj) 2, . (,/A,-(,L)bj)jzl c
1. Then (f, g) belongs to T (H*()) if and only if

o0
Y i) — g € SO, (4.13)
j=1

where a;j are given by (4.5).
Equivalently, (f, g) belongs to ['(H?*(Q)) if and only if

o
ijyo(vj’ﬂ) — fe 5’%(89), (4.14)
j=1

where bj = /A j (,u)l;j.

Proof Assumethat (f, g) € I'(H*(R)).Then f = yo(u,+vp) wherevp € Hj ()
andu; = Z?OZ] aju; j with the coefficients a; given by (4.5). Moreover, g = y (1), +
vp) by the continuity of the trace operator. We deduce that
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i) — g = —y1(vp) € S (DKQ).

This proves (4.13). Vice versa, assume that (4.13) holds. Then there exist vp €
H%’D(Q) such that y;(vp) = Z(;il ajyi(uj ) — g. Thus

o0
vi|Y ajujs—vp|=¢
Jj=1
and
o0
Y0 Zajuj,A —vwp | =f
j=1

by (4.6). The proof of the second part of the statement follows the same lines as that
of the first part and is accordingly omitted. O

4.1 Representation of the solutions to the Dirichlet problem

Using the Steklov expansions in (4.1) and (4.2) and the characterization of the total
trace space I'(H?(2)) given by Theorem 4.4 we are able to describe the solutions to
the Dirichlet problem (1.4).

Corollary 4.5 Let Q be a bounded domain in RN of class C%', (f, g) € L*>(3Q) x
L%(32). Then, there exists a solution u € H>(Q) to problem (1.4) if and only if

the couple (f, g) belongs to S%(BQ) X S%(E)Q) and satisfies condition (4.13) or,
equivalently, condition (4.14). In this case, if f, g are represented as in (4.12), then
the solution u can be represented in each of the following two forms:
i) ifuy = Z‘;‘;l ajuj where a;j are given by (4.5) and g — y1(u;,) is represented
by Y32, dj0; € S7(9), then

u=u)—+vp

withu, € H)?,N(Q) andvp = Z;ildjvj € Bp(Q),d; = /njcijforallj e N
ii) if v, = Zjil bjvj, whereb; = ,/Aj(u)éj and f — yo(vy) is represented by
Y%, &jij € 33K, then

u=v,+uy

with vy, € Hi’D(Q) anduy = Z?il cjuj € By(Q), ¢cj = \/§;¢j forall j €N,
j>2c¢=¢1.

Moreover the solution u is unique
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Proof The first part of the statement is an immediate consequence of Theorem 4.4.
Indeed, if there exists a solution u € HZ(Q) then (f, g) belongs to F(H2(§2)), hence
it satisfies (4.13) and (4.14).

Vice versa, if (f, g) satisfies (4.13), then u) € H;%,N(Q), vp € Bp(R2) are well-
defined and u = u; + vp is a biharmonic function in H%(2) such that vo(u) =
vo(uy) = f and y1(vp) = g — y1(u;), hence yy(u) = y1(uy + vp) = g.

Similarly, if (f, g) satisfies (4.14), then v, € Hi,D(Q), uy € By(R2) are well-
defined and u = v, + uy is a biharmonic function in H 2(Q2) such that yi(u) =
y1(vy) = g and yo(un) = f — yo(vy), hence yo(u) = yo(vy +un) = f.

The uniqueness of the solution in H 2(Q) follows from the fact that a solution u in
H2(Q) of (1.4) with f = g = 0 must belong to Hoz(Q) and, since it is biharmonic, it
must also belong to the orthogonal of HOZ(Q), hence u = 0. O

Funding Open Access funding provided by Universitd degli Studi di Padova.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Eigenvalues and eigenfunctions on the ball

In this section we compute the eigenvalues and the eigenfunctions of (BS,,) and (BS;)
when Q = B is the unit ball in RY centered at the origin and o = 0. It is convenient
to use spherical coordinates (r,0), where 6 = (01, ...,0n—1). The corresponding
transformation of coordinates is

x1 = rcos(fy),

xo = rsin(0y) cos(6y),

xny—1 = rsin(fy) sin(6) - - - sin(Oy_2) cos(On_1),
xny = rsin(f;) sin(6,) - - - sin(Oy_») sin(Oy_1),

with 61, ...,0y_2 € [0, ], Ony_1 € [0, 277) (here it is understood that ; € [0, 2) if
N =2).
The boundary conditions for fixed parameters A, u € R

2
37‘2’ :)\g—’:, on 0B, (A1)
—divoe(D%u - v)jg — 284 = pu, on 3B,
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are written in spherical coordinates as

2% — ) du
Brz |y=1 ) or |r:l’ (A2)
A (e w) _dAe

258\ T ar |y MHl=1o

where Ag is the Laplace-Beltrami operator on the unit sphere. It is well known that
the eigenfunctions can be written as a product of a radial part and an angular part
(see e.g., [13] for details). In particular, the radial part is given in terms of power-type
functions, while the angular part is written in terms of spherical harmonics. We have
the following theorem.

Theorem A.1 Let @ = B be the unit ball in RN and (%, i) € R2. Then there exists a
non-trivial solution to problem A*u = 0 on B with boundary conditions (A.1) if and
only if there exists | € Ng such that detM;(r, u) = 0, where M;(A, i) is the matrix
defined by

B I —1—2) I+2)A+1-2)
Mi(x, ) = <l(l +N=-2(—1)—pldd—=5+N(I—-1)—2)— Ha) Ay

foralll € No. If (A, n) € R2 solves the equation detM; (A, u) = 0 for some | € N,
then the associated solutions can be written in the form

u(r,0) = (A + Bir'*?) Hi(©),

where (A;, B)) € R? solves the linear system Mj(A, ) - (A7, B;) = 0 and H;(0) is a
spherical harmonic of degree | in RN .

Proof It is well-known that the weak solutions of A%x« = 0 in the unit ball com-
plemented with (A.1) are smooth (see e.g., [19, §2]). Moreover, we recall that any
function u satisfying A%y = 0 on the unit ball B along with the two homogeneous
boundary conditions (A.2) can be written in spherical coordinates in the form

ur(r, 0) = (Arl + Brt2 Hy(0), (A.4)

forl € N, where A, B € R are arbitrary constants and H;(0) is a spherical harmonic
of degree [ in RN (see e.g., [12, §5-6] for details). By using the explicit form (A.4)
in (A.2), we find that the constants A, B need to satisfy a homogeneous system of
two linear equations, whose associated matrix is given by (A.3). Hence a non-trivial
solution exists if and only if the determinant of (A.3) is zero. The rest of the statement
is now a straightforward consequence. O

By Theorem A.l1 we immediately deduce the following characterization of the
eigenvalues of (BS,,) and (BS; ). Here by m; we denote the dimension of the space of
the spherical harmonics of degree I € Ny in RY, that is

Q@+ N-2)(1+N-3)!
B II(N = 2)! ’

my
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Corollary A.2 Any eigenvalue A(11) of (BS,) on B satisfies the equation

A (28 + (N = D2 = (N =21 - u)

= (314 FOUN 2B —(N+ D2 —(N-2)[—(1+ 2zm) . (AS5)

for some | € Ny. Any eigenvalue (1) of (BS, ) on B satisfies the equation

1) Q2L +1-2)
= (31 +2(N =) = (N + DI = (N =2)l — (2> + (N = DI> = (N = 2)I) ),
(A.6)

for some | € Ny. The multiplicity of w()) and L(u) corresponding to an index € Ny
equals the dimension m; of the space of the spherical harmonics of degree [ in RV .

By using similar arguments, one can easily prove that the eigenvalues of problems
(DBS) and (NBS) on the unit ball B can also be determined explicitly.

Theorem A.3 Any eigenvalue n of problem (DBS) on B is of the form
n=21+1 (A7)

for some |l € Ng and its multiplicity equals the dimension m; of the space of spherical
harmonics of degree | in RV .
Any eigenvalue & of problem (NBS) on B is of the form

=12+ (N—-1)I—-N+2), (A.8)

for some |l € Ng and its multiplicity equals the dimension m; of the space of spherical
harmonics of degree | in RV

By combining Corollary A.2 and Theorem A.3 we can prove the following state-
ment, where Ay (u), wgy(A), ngy and &y denote the eigenvalues of (BS,), (BS;),
(DBS) and (NBS), respectively, associated with spherical harmonics of order / € Nj.

Theorem A4 Foralll € Nand n # &

(31* +2(N = 2)1* — (N + DI* = (N = 2)1 = nyn)

N _ A9
o () (En — 1) A9
For alll € Nand A # nq
4 3 2 (N 2
oy = CEFAN =D - (VA DE-N =2 —0})

(nay —»)

Moreover, Ay () = noy = 1 forall p € R and vy (1) = &) = 0 forall » € R.
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Proof According to the change of notation for eigenvalues, we denote by Aq)(u),
na(A), ngy and &y the eigenvalues of problems (BS,), (BS;), (DBS) and (NBS)
corresponding to the choice of [ € Ny in (A.5), (A.6), (A.7) and (A.8). Each of such
eigenvalues has multiplicity m;.

We note that (A.5) and (A.6) can be rewritten as

Ao (B — 1) = (314 +2(N =) = (N + DI> = (N —2)] — na)u) (A.11)
and
w3 (g — 1) = (314 F2N =2 — (N + D> — (N —2)l — g(,)x) . (A12)

If] € N, then from (A.11) and (A.12) we deduce the validity of (A.9) when . # &)
and of (A.10) when A # 5. If I = 0, the condition detMy (X, u) = O can be written
in the form (X — 1) = 0 which allows to conclude the proof. O

‘We note that
Mll)rlloo)»(z) () =na
and
lim  uagy(A) = &q)
A——00

for all [ € Ny. This is coherent with Theorems 3.7 and 3.12. Moreover,

lim )L(]) ([,L) =to00
n—£G,

and

lim pg)(A) = £o0
).*)]’](il)

for all I € N. We have shown that the branches of eigenvalues A ;) (1) and () (A) are
analytic functions of their parameters on R\ {§(;) };en, and R\ {n(;) };en, respectively. In
particular, the branch A () is a equilateral hyperbole with 1) as horizontal asymp-
tote and &y as vertical asymptote, if / > 1, while it is coincides with {(u, 1) : n € R}
for [ = 0. The branch ;) (A) is a equilateral hyperbole with &(;) as horizontal asymp-
tote and 7 as vertical asymptote, if / > 1, while it is coincides with {(A, 0) : u € R}
for I = 0. The situation is illustrated in Fig. 1.
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Fig.1 Eigenvalues 1(7) () of (BS;) as functions of A (the parameter A correspond to the abscissa). Vertical
asymptotes are the eigenvalues 7y of (DBS). Horizontal asymptotes are the eigenvalues &) of (NBS). A
reflection along the angle bisector of the first and third quadrant gives the eigenvalues ;) (w) of (BS,,) as
functions of

Appendix B. Asymptotic formulas
It is proved in [28,29] that if € is a bounded domain in RY with C* boundary,

then the eigenvalues of problems (DBS) and (NBS) with o = 1 satisfy the following
asymptotic laws

1
dr [ j \TT
N—1
WDy
and ,
() o
! o1 \ 1092 ’ '
WDy_q
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as j — oo. Here wy—1 denotes the volume of the unit ball in RN-L
We state the following theorem, whose proof is omitted since it follows exactly the
same lines as those of Theorems 1.1 and 1.2 of [29].

Theorem B.1 Let Q2 be a bounded domain in RN of class C*°. Then formulas (B.1) and
(B.2) hold for all o € ( — ﬁ, 1). Moreover, the two following asymptotic formulas
hold for the eigenvalues of problems (BS,,) and (BS;,)

3 (1) 3”(j>N' (B.3)
() ~ T _
1w el

N—1
and

1273 [ j \¥7

&\

N—1
as j — oo.

We note that the principal term in the asymptotic expansions of the eigenvalues
depends neither on the Poisson’s ratio o nor on u or A. However, lower order terms
have to depend on  and A, since, as u, A — —o00, Aj(u) — nj and u;(A) — §&;,
and asymptotic formulas of A ;(u) and n;, and of 1 ;(A) and &}, differ from a factor %.

Remark B.2 We remark that the approach used in [29] requires that the boundary of
Q is of class C*°. However, as proved by another technique in [28], the asymptotic
formulas for the eigenvalues of (DBS) and (NBS) when o = 1 hold when €2 is of class
c2.

We now show that in the case of the unit ball B in R" it is possible to recover
formulas (B.1), (B.2), (B.3) and (B.4) by using the explicit computations in Appendix
A.

Note that for a fixed / € N, the dimension of the space of spherical harmonics of

degree less or equal than [ is W By (A.8) we deduce that

£ =12 +(N -1l - N +2) (B.5)
whenever j € N is such that

QAN-HN+1=3)! . _@Q+N-DEN+1-2)

(—DN-D /= 1IN — 1)! (B.6)

Moreover,

QI+ N —=3)(N+1-3)! 2IN!

=t (=DIN—1)! (N=D!
_ gy GAN-DWN A= N
=2 1N — D! TN
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From (B.5) and (B.6) we deduce that

N4 3. 3 .
& ~2V-T(N — DIN-Tj¥-T | as j — +o0.

We note that this is exactly (B.2). Indeed, recalling that |0 B| = Nwy, a standard
computation shows that

N-4 3 16’ 1
2N-T(N — DIN-T = ﬁ . m
oyy 194
for which it is useful to note that
N N—1
ONON-1 = —

In the same way we verify that

N2 [T
nj ~ 2N-T(N — )IN-T jN-1

)

1

3,03 I
kj(w) ~ Z2VT(N = DIV AT,
and
3, =t 3.3
/'Lj(}‘) ~ ZQ.N* (N — DIN-TjN-T,
as j — +o0, and these asymptotic formulas correspond to formulas (A.7), (A.5) and

(A.6).

Appendix C. The (BS,) and (BS,) problems for 1 > 0and 1 > 1,
In this section we briefly discuss problem (BS,,) for 4 > 0 and problem (BS;) for
A > .

We begin with problem (BS,,). Assume that 4 € Ris such that §; < u < &j1
for some j € N. Recall that &; denote the eigenvalues of problem (NBS). We denote

by U; the subspace of H 2(§2) generated by all eigenfunctions u; associated with the
eigenvalues & with i < j and we set

Uf = {ue B Quog) =0, VpeU,|.

The space U ]J- is a closed subspace of H?(2). We have the following result.

Theorem C.1 Let Q be a bounded domain in RN of class C%' and assume that §j <
n < &4 for some j € N. Then

H*(Q)=U; & Uj. (C.1)
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Moreover, there exists b > 0 such that the quadratic form Q, p(u,v) +
b(y1(w), y1(v))aq, u, v € H2(Q), is coercive on Uf‘.

Note that the decomposition (C.1) is not straightforward since Q,, p does not define
a scalar product for © > 0. However, in order to prove Theorem C.1 one can easily
adapt the analogous proof in [27, Theorem 5.1] but we omit the details.

We observe that, whenever u € U f, one can consider only test functions ¢ € U /L
in the weak formulation of (3.4). Indeed, adding to ¢ a test function ¢ € U; leaves
both sides of the equation unchanged. Hence one can perform the same analysis as in
the case 1 < 0 and state an analogous version of Theorem 3.3 with the space H>($2)
replaced by U jJ- We leave this to the reader.

Remark C.2 If o = &; for some j € N the situation is more involved and is not
analyzed here. However, if we assume that &; is an eigenvalue of (3.3) of multiplicity
m such that

Qo (u, ) = Ej (o), vo(9))aa, Yo € H*(Q),u € Ug;, (C.2)

where Ug; is the eigenspace generated by all the eigenfunctions {u}, u']’.1} in
H%’ ~ (§2) associated with &;, the problem becomes simpler. Indeed, any function
w € H%(Q) can be written in the form w = u + v, where u € Ug; and v € Hszj(Q),
where

H%«n:{peH%Qy(mwxmmpn9=0ﬂmmj=1w”m}

Hence, whenever u € ng (£2), one can consider only test functions in ¢ € ngj (2)

in the weak formulation (3.4) with 1 = §;. In fact, adding to ¢ a function ¢ € Uk,
leaves both sides of the equation unchanged. Thus we can perform the same analysis
of Theorem C.1 with H?(2) replaced by Hézj ().

Note that equation (C.2) is satisfied with &, = 0 and u a constant function.

We also have an analogous result for problem (BS;) with A > 5. Assume that
A € Ris such that n; < A < 5,4 for some j € N. Recall that n; denote the
eigenvalues of problem (DBS). We denote by V; the subspace of H 2($2) generated by
all eigenfunctions v; associated with the eigenvalues n; with i < j and we set

W&:heH%m:QMww@=0,V¢EW{

The space V].J- is a closed subspace of H?(£2). We have the following result.

Theorem C.3 Ler Q be a bounded domain in RN of class C*' and assume that n j<
A < 1jt1. Then
H(Q) =V, @ Vi (C.3)

Moreover, there exists b > 0 such that the quadratic form Q n(u, v)+b(yo(u), yo(v))sq,
u,v € HX(Q), is coercive on VjJ‘.
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We observe that, whenever v € Vf, one can consider only test functions ¢ € Vf
in the weak formulation of (3.14). In fact, adding to ¢ a test function ¢ € V; leaves
both sides of the equation unchanged. Hence one can perform the same analysis as
in the case A < 11 and state an analogous version of Theorem 3.10 with the space
H? () replaced by VJ.J-. We leave this to the reader.

Remark C.4 As in Remark C.2, one can treat the case A = n; for some j in the special
situation when 7 is an eigenvalue of (3.1) of multiplicity m such that

Qs (v,9) =0 (Y1(W), Y1 (), Yo € H*(Q),v eV,

where V;; is the eigenspace generated by all the eigenfunctions {v}, e v;.”} in
H(Z), p(§2) associated with n;. This happens in the case of the unit ball with n; = 1. We

observe that any function w € H 2(2) can be written in the form w = v + u, where
veV, andu e H,fj (), where

H2 (@) = {u € HA(Q) : (i), 11 (v})ag = O foralli = 1, ..., m} .

Hence, whenever v € anj (£2), one can consider in the weak formulation (3.14) with
A = n; only test functions in ¢ € anj (€2). In fact, adding to ¢ a function ¢ € V),
leaves both sides of the equation unchanged. Thus we can perform the same analysis
of Theorem C.3 with H2() replaced by Hn2j ().

We conclude this section with a few more remarks. We have observed that the
eigenvalue u = 0is always an eigenvalue of (3.14) when A < 17, and that the constant
functions belong to the eigenspace associated with i = 0, and in particular belong to
the space H%’ v (£2) and are eigenfunctions associated with the first eigenvalue &; = 0
of problem (NBS). Such a situation may occur also for other eigenvalues, as well as
for problem (3.4) (as we have seen in the case of the ball in RY with the eigenvalue
A(pn) = np = 1 for all u € R). The following lemma clarifies this phenomenon.

Lemma C.5 Let j € N. Then one of the following two alternatives occurs for problem
(3.4):

i) Aj(n) <njforall u € (—o0,0);
ii) there exists 1o € (—00, 0) such that A (o) = n;. In this case, nj = A;(u) for
all p € (—oo, wol and n; is an eigenvalue of problem (3.4) for any n € R.

Proof From the Min-Max Principles (3.2) and (3.8) we have that 1;(u) < n; for
all u € (—00,0), j € N. Assume now that there exists ng € (—oo, 0) such that
Aj(mo) = n;. Again from (3.2) and (3.8) we deduce that we can choose an eigenfunc-
tion v; ,, associated with A j (o) which belong to H%y p(£2) and which coincide with
an eigenfunction u; of problem (3.1) associated with n;. In fact the eigenfunctions
associated with A j (i) are exactly the functions realizing the equality in (3.8). We also
note that

Qu(uj, @) = Qupluj, @), Yoe H (Q),neR,

@ Springer



On the explicit representation of the trace space...

hence

Qupuj,¢) =n;u;, 0)sa, Yo H*(Q),neR,

hence 7; is an eigenvalue of (3.4) for all © € R and in particular n; = A; () for all
u € (—o0o, rol. This concludes the proof. O

In the same way one can prove the following.

Lemma C.6 Let j € N. Then one of the following two alternatives occurs for problem
(3.14):

i) i) <& forall h € (—o0, n1);
ii) there exists Ay € (—00, 1) such that j1j (o) = &;. In this case, §; = |1 (A) for

all & € (—oo, Aol and &; is an eigenvalue of problem (3.14), for any A € R.
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