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Abstract. We derive generalized fluctuation–dissipation relations (FDR) hold-
ing for a general stochastic dynamics that includes as subcases both equilibrium
models for passive colloids and non-equilibrium models used to describe active
particles. The relations reported here differ from previous formulations of the
FDR because of their simplicity: they require only the microscopic knowledge
of the dynamics instead of the whole expression of the steady-state probability
distribution function that, except for linear interactions, is unknown for systems
displaying non-vanishing currents. From the response function, we can extrapo-
late generalized versions of the mesoscopic virial equation and the equipartition
theorem, which still holds far from equilibrium. Our results are tested in the
case of equilibrium colloids described by underdamped or overdamped Langevin
equations and for models describing the non-equilibrium behavior of active par-
ticles. Both the active Brownian particle and the active Ornstein–Uhlenbeck
particle models are compared in the case of a single particle confined in an
external potential.
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1. Introduction

The fluctuation-dissipation relations (FDR) represent a fundamental topic in statistical
physics with a long history. It dates back to the pioneering work of Einstein about the
relation between mobility and diffusivity. Einstein’s picture was unified by Kubo [1]
that through its linear response theory was able to predict the transport coefficients
and received an outstanding contribution by the pivotal Onsager’s work on reciprocal
relations [2] holding near the equilibrium. In these cases, the equilibrium feature of the
dynamics and the consequent validity of the detailed balance lead to simple results that
played a crucial role in many areas of physics.
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The relation between the response function due to a small perturbation and suit-
able correlations evaluated in the unperturbed system still represents a fundamental
topic to explore non-equilibrium physics leading to the challenging issue of obtaining
generalized versions of the FDR holding independently of the detailed balance [3]. In
the last forty years, several formulations of generalized FDR have been derived using
different approaches. Vulpiani et al [4] and Agarwal [5] obtained independently gen-
eralized FDR for chaotic deterministic and stochastic systems, respectively. Similar
formulations connect the response functions to well-known observables in the frame-
work of stochastic thermodynamics, such as the entropy production and housekeeping
heat [6–8]. Moreover, both the relations remain, somehow, implicit since explicitly
depend on the steady-state probability distribution function, which is typically unknown
for non-equilibrium dynamics. Successively, path-integral approaches starting from the
probability associated with a stochastic trajectory have been employed to derive a new
kind of relations. At first, they were obtained in the framework of field theories using the
Martin–Siggia–Rose–Jansen–de Dominicis approach [9, 10] recently extended to irre-
versible dynamics with a known steady-state [11]. Similar methods have been employed
to calculate the FDR for systems composed of discrete spin variables [12] and for non-
equilibrium Langevin dynamics [8, 13–17], both in the overdamped and underdamped
regimes (where the steady-state distribution is unknown). Using this approach, Maes
et al focused on the different roles of entropic and frenetic contributions (see, here, for a
recent review [18]) that distinguish for their parity under time-reversal transformation.
The path-integral technique leads also to another formulation of the FDR connecting
the response to a correlation that involves the noise. The method is known as Malli-
avin weight sampling [19] (see also the Novikov theorem [20]) and has been mostly
employed in the context of glassy systems to calculate the susceptibility and the effec-
tive temperature [21–23]. While the Malliavin weight method is particularly efficient and
works also for many-body systems, often lacks transparency in the physical meaning of
the correlations that are involved in the numerical calculation.

Both the approaches have been recently applied in the context of an emergent class
of non-equilibrium dynamics, introduced to describe many biological and physical sys-
tems in the framework of active matter [24–28]. These systems usually store energy
from the environment, for instance through mechanical agents or chemical reactions, to
produce directed motion, and represent a good platform to test any version of the gen-
eralized FDR [29, 30]. Specifically, the approach of [3] has been applied to active matter
systems in the limit of small activity (in particular, small persistence time) [31]. Extend-
ing this approach far from equilibrium has the same level of complexity of solving the
non-equilibrium active dynamics. In the same spirit, near-equilibrium FDR have been
derived using path-integral techniques [32] leading to a near-equilibrium expression for
the susceptibility. More general results holding also far from equilibrium, both for small
and large activities, have been obtained after the generalization of the Malliavin weight
sampling procedure to active particle dynamics [33]. For instance, this technique has
been employed to numerically calculate (i) the effective temperature of active systems
[34–38], with a recent attention to phase-separation [39], and (ii) the transport coef-
ficients, such as the mobility, to test an approximated prediction valid at low-density
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values [40, 41] (iii) the response function due to a shear flow [42]. Finally, in recent stud-
ies based on path-integral approaches, generalized versions of the FDR holding also in
far from equilibrium regimes have been reported in the specific case of athermal active
particles [43, 44].

In this article, we derive a simple and compact version of the generalized FDR that
holds both for equilibrium and non-equilibrium systems. Our formulation is tested in the
case of an equilibrium colloid and an active particle, evaluating both underdamped and
overdamped dynamics. The article is structured as follows: in section 2, we introduce a
general stochastic model and the notations for the response due to a small perturbative
force. Section 3 reports the generalized FDR obtained through our approach unveiling its
relation with the generalized version of the mesoscopic virial equation. In section 4, we
test our FDR for the underdamped and overdamped dynamics of equilibrium colloids
and for two popular non-equilibrium models introduced to describe the behavior of
active particles. Finally, in section 5, we compare our FDR to earlier relations, while in
the last section we present the conclusions.

2. The response function due to a small perturbation

To define the response function and successively derive our version of the FDR, we
introduce a general stochastic dynamics which describes the evolution of a set of N
variables, namely x = (x1, x2, . . . , xN ). The set of stochastic differential equations, of
which we refer to as the unperturbed dynamics , is the following:

ẋi = Fi(x, t) + σij · ξj, (1)

where we have adopted the Einstein summation convention. The term Fi(x, t) contains
all the deterministic contributions ruling the dynamics of xi and in the following will
be denoted as a force. This is a general function that could depend on the whole set
of the state variables and could even contain an explicit dependence on the time, t.
This choice of the force allows us to describe both equilibrium systems characterized by
Boltzmann distributions and non-equilibrium systems with non-vanishing steady-state
currents induced by Fi(x, t). The general dynamics (1) includes a broad range of non-
equilibrium models that have been largely employed to describe systems of biological
and/or technological interest, for instance in the context of active matter. These exam-
ples will be explicitly discussed in the final part of section 4. The term ξj is a white
noise with zero average and unit variance, such that

〈ξj(t) · ξi(s)〉 = 2δjiδ(t− s),

where δij is the Kronecker function and δ(t− s) is the Dirac-δ function. Finally, the
term σij is the element of a general matrix, σ, that determines the amplitudes of each
noise term (and that could also be non-symmetric). Its square gives rise to the diffusion
matrix with elements:

Dij = σikσkj.

https://doi.org/10.1088/1742-5468/abffd4 4
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The dynamics (1) has a very general form and could include also deterministic vari-
ables if the matrix σ is singular, as in the usual case of a particle described in terms
of position and velocity. From now, we choose σ as a general matrix with constant
elements, restricting our analysis to the case of additive noise and, thus, excluding any
multiplicative dynamics.

Perturbing the dynamics (1) means adding a force hi(t) smaller than the other
force contributions so that the perturbed variables, xh

i , which will be denoted by the
superscript h, evolves as:

ẋh
i = Fi(x

h, t) + σij ξj + hi(t). (2)

As a result, the set of perturbed variables xh deviate from the unperturbed set of
variables x by δxj(0). We choose hj(t) = δxj(0)δ(t), where δ(t) is the Dirac function
and δxj(0) = xh

j − xj is the deviation of the perturbed variable from the unperturbed
one. The response function, due to this small perturbation, of a general observable
A(x, t), that depends on the whole set of variables and explicitly on the time, is
defined as:

RA,xj(t) =
〈A(x(t))〉h − 〈A(x(t))〉

δxj(0)
≡ δ〈A(xh)〉

δhj(0)

∣∣∣∣
hn=0

, (3)

where δ/δhj is the functional derivative with respect to hj calculated at hj = 0. The
response function can be calculated numerically through equation (3) that requires the
knowledge of the perturbed dynamics.

3. Generalized fluctuation–dissipation relations

As mentioned in the introduction, the idea of expressing the response due to a small
perturbation in terms of unperturbed correlations has a long history. Here, we report a
version of the generalized FDR holding independently of the presence of non-vanishing
currents and, thus, valid also for non-equilibrium dynamics. This version of the FDR does
not depend explicitly on the probability distribution function but requires the explicit
knowledge of the microscopic dynamical details, i.e. the knowledge of σij and Fi(x).
Using a path-integral formalism and assuming the stationarity of the time-properties,
the response function, RA,xj(t), associated to the dynamics (1) and (2), can be expressed
as:

RA,xj(t) = −1

2
D−1

jm

[
〈A(t)Fm(0)〉+

d

dt
〈A(t)xm(0)〉

]
, (4)

where the dependence on x in A(t) = A(x(t)) and F(x(t)) = F(t) has been omitted
for notational convenience and the average on the right-hand side, 〈·〉, is calculated
through the unperturbed dynamics. Further details about the derivation of equation (4)
are reported in appendix A where we employ a generalization of the method used
in [6] obtaining similar results. In addition, we remark that these exact relations are
not simply expressed by the temporal correlation between A and another observable
at variance with equilibrium. Our FDR explicitly contains the time-derivative of the
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observable A and the state variable. Fixing A(x) = xk allows us to consider the expres-
sion for the response matrix of element Rxk ,xj(t). In this specific case, the relation (4)
further simplifies leading to the following steady-state expression that is derived in
appendix B:

Rxk ,xj(t) = −1

2
D−1

jm [〈xk(t)Fm(0)〉+ 〈Fk(t)xm(0)〉] . (5)

Relations (4) and (5) are general for every equilibrium and non-equilibrium dynamics of
the form (1). We remark that the response matrix elements assumes a form particularly
simple: they are expressed as temporal correlations between the state variables and the
forces that rule the dynamics, combined by the elements of the diffusion matrix. In the
diagonal case, Dij = δijDj, in particular, equation (5) turns to be:

Rxk ,xj(t) = − 1

2Dj
[〈xk(t)Fj(0)〉+ 〈Fk(t)xj(0)〉] . (6)

so that each element of the response matrix is given by the sum of two correlations: (i)
the time correlation between the observed variable and the force ruling the dynam-
ics of the perturbed variable and (ii) the same correlation with swapped times. In
appendices A and B, relations (4) and (5) are evaluated assuming to deal with a dynam-
ics where the detailed balance holds, showing their consistence with known equilibrium
results.

In section 4, we consider equilibrium and non-equilibrium dynamics to test our exact
relations. In particular, we evaluate the case of passive equilibrium colloids both in
the overdamped and underdamped regimes showing the agreement with other versions
of equilibrium FDR. Successively, we apply our generalized FDR to systems of active
particles to check our relations in non-equilibrium models.

3.1. Response function, generalized equipartion theorem and mesoscopic virial equation

In this section, we show that we can extract a relation between suitable steady-state
correlations from the response matrix and our version of generalized FDR. Indeed,
the response matrix at the perturbation time, Rxkxj(0), is not arbitrary because of its
definition (3). In particular, Rxkxj(0) = δjk since its diagonal elements are unitary, while
the cross elements vanish because of the causality condition. Therefore, evaluating the
FDR, equation (5), at the perturbation time, leads to the following tensorial relation:

2δjk = −D−1
j m [〈xkFm〉+ 〈Fkxm〉] . (7)

Equation (7) establishes a set of exact relations between special equal-time averages
that are functions of the state variables of the dynamics through xk and Fm(x) (that is
expressed as Fm for notational convenience). These relations hold for both equilibrium
and non-equilibrium systems and their physical interpretation will be clarified in the
explicit examples reported in section 4. In particular, we anticipate that equation (7) rep-
resent a generalization of the equipartition theorem and the mesoscopic virial equation.
Despite these equations can be obtained via other methods in many interesting cases,
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we stress that they are also contained in our version of the FDR, from which their
derivation is straightforward.

In the case of diagonal diffusion, such that Dij = Djδij, equation (7) assumes a
simpler form. These relations provide general constraints for the matrix, M, of elements
Mjk = 〈xjFk〉, involving the steady-state correlation between the state variable xj and
the deterministic force that determines the evolution of xk. The diagonal elements of
M satisfy:

Dj = −〈xkFj〉δjk, (8)

that can be interpreted as a generalized version of the equipartition theorem as illus-
trated in section 4. Instead, the off-diagonal elements of M are constrained by the
following relation:

〈xkFj〉 = −〈xjFk〉, (9)

with k �= j. Therefore, the matrix M is anti-symmetric. As we can see in section 4, the
relation (9) represents a generalized version of the mesoscopic virial equation. These
relations have been derived for the specific case of a particle, following the Langevin
dynamics, by Falasco et al [45] using a different approach while, here, are extended to
a more general dynamics and connected to our version of the generalized FDR.

4. Examples

4.1. Passive colloidal dynamics

To test our general results, we start by considering the equilibrium dynamics describing
the motion of a passive colloidal particle in a solvent. In this case, the generalized FDR
need to be consistent with the well-known FDR holding at equilibrium. Specifically,
assuming that the colloid is in equilibrium with the solvent at temperature, T , and
neglecting hydrodynamics interactions, the dynamics for the particle position, x, and
the particle velocity, v, reads:

ẋ = v (10)

mv̇ = −γv+F+
√

2γTξ, (11)

where m is the mass of the colloid, γ the drag coefficient and T the solvent temperature
that satisfies the Einstein relation with the diffusion coefficient, γDt = T . The term
F accounts for external forces due to a potential, such that F = −∇U(x), while the
term −γv ≡ Fs is the Stokes force proportional to the velocity. This term balances the
injection of energy due to the collisions of the solvent particles that are modeled through
a white noise. The diffusion matrix is diagonal, such that σij = δij

√
2Tγ/m, since there

are no temperature gradient. In this case, the response of an observable A(v,x) due to
the additional perturbative force hj reads:

RA,vj(t) =
〈A(x(t))〉h − 〈A(x(t))〉

δvhj (0)
= m

δ〈A(xh)〉
δhj

∣∣∣∣
hj=0

, (12)
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where we remind that the average 〈·〉h is realized through the perturbed measure and the
Latin indices are used to denote the Cartesian components of the vectors, here and in
the next examples. Thus, in this case, the set of variables is composed of the d Cartesian
components of position and velocity where d is the dimension of the system.

Applying the general formula (5) with the dynamics (10), i.e. replacing Fj =
−γvj/m−∇xjU/m, leads to the following result for the response matrix:

Rvk ,vj(t) =
m

T
〈vk(t)vj(0)〉+

m

2Tγ

[
〈vk(t)∇xjU(0)〉+ 〈∇xkU(t)vj(0)〉

]
, (13)

where U(t) = U(x(t)). Since, by definition, the system is in equilibrium, the detailed bal-
ance holds and we can further manipulate equation (13) by using the time-reversibility
of the steady-state correlation such that 〈vk(t)∇xjU(0)〉 = −〈∇xjU(t)vk(0)〉. In addi-
tion, we can use the symmetry among different Cartesian components, such that
〈∇xkU(t)vj(0)〉 = 〈∇xjU(t)vk(0)〉, that is valid for central potentials. Using these prop-
erties, the square brackets in equation (13) vanish and we obtain the well-known equilib-
rium result, Rvk ,vj(t) =

m
T
〈vk(t)vj(0)〉. Finally, choosing A(x,v) = xk one can calculate

the cross terms of the response matrix (coupling position and velocity) starting from
equation (4):

Rxk ,vj(t) =
m

2T
〈xk(t)vj(0)〉+

m

2Tγ
〈xk(t)∇xjU(0)〉 − m2

2Tγ
〈vk(t)vj(0)〉. (14)

We observe that in equilibrium systems the relations (14) vanish term by term except
for j = k where only the second and the third terms survive. Using the time-reversibility,
the equation of motion and tricks similar to those employed to manipulate equation (13),
also in this case, we can recover the well-known result holding in equilibrium, that is
Rxk ,vj(t) =

m
T
〈xk(t)vj(0)〉.

4.1.1. Overdamped dynamics. The dynamics of an equilibrium colloidal particle is
often described by an overdamped stochastic differential equation for the position, x,
because the inertial forces play a negligible role. In this case, the evolution of each colloid
is described by the following equation:

γẋ = −∇U +
√

2γTξ. (15)

In the overdamped case, one can calculate the response function of an observable A(x)
perturbing directly the particle position that is a noisy variable, i.e. the dynamics (15).
Therefore, the response function, RA,xj(t), is defined as:

RA,xj(t) =
〈A(x(t))〉h − 〈A(x(t))〉

δxj(0)
= γ

δ〈A(xh)〉
δhj

∣∣∣∣
hn=0

. (16)

Now, the set of variables involved in the FDR contains only the d Cartesian components
of the position. After identifying Fk = −∇xkU/γ and σjk = δjk

√
2T/γ, we can apply

formula (5) so that the response function reads:

Rxk ,xj(t) =
1

2T

[
〈xk(t)∇xjU(0)〉+ 〈∇xkU(t)xj(0)〉

]
. (17)
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The well-known FDR can be recovered again by using the time-reversibility so that
〈∇xkU(t)xj(0)〉 = 〈xj(t)∇xkU(0)〉. The absence of currents also implies that the system is
invariant for changes of Cartesian components so that 〈xj(t)∇xkU(0)〉 = 〈xk(t)∇xjU(0)〉.
In this way, equation (17) reduces to the well-known equilibrium result, Rxk ,xj(t) =
1
T
〈xk(t)∇xjU(0)〉.

4.1.2. Generalized virial equation and equipartition theorem. In the case of a passive
underdamped colloid, following the dynamics (10), the relation (7) turns to be:

m〈vkvj〉+
m

γ
〈vj∇xkU〉 = Tδkj. (18)

The diagonal elements of this relation for j = k can be further manipulated since
〈vk∇xkU〉 = 1/tf

∫ tf
0 d/dtU(x(t))dt = [U(x(tf))− U(x(0))]/tf, that is the potential energy

difference from the initial and the final state. Since this term gives a negligible con-
tribution in the steady-state (tf →∞), the relation (18) trivially holds and states that
〈v2k〉 = T , in agreement with the equilibrium distribution ∝ exp (−U/T −m

∑
kv

2
k/2T ).

The equation for the off-diagonal terms implies that 〈vkvj〉 = − 1
γ
〈vj∇xkU〉. where each

correlation is zero. The cross-correlation of the response matrix, coupling position and
velocity, i.e. equation (14) at the perturbation time, leads to the following relation:

〈xjvk〉+ 〈xj∇xkU〉 −m〈vjvk〉 = 0. (19)

if j = k, the first term vanishes because is a boundary term, such that 〈xkvk〉 =
1/tf

∫ tf
0
d/dtx(t)2/2dt = [x2(tf)− x2(0)]/(2tf), that is irrelevant for large times (tf →∞).

Moreover, the second term of equation (19) can be identified as the virial pressure and
is related to the kinetic energy by this formula. If U contains also an interacting poten-
tial with other colloidal particles, this equation is nothing but the Virial mesoscopic
equation, that has been derived in [45] using a different method.

In the case of passive overdamped colloids following the dynamics (15), we can apply
the relation (7), obtaining:

δjkT = 〈xj∇xkU〉. (20)

Equation (20) can be derived directly from equations (18) and (19) assuming that the
inertial time m/γ is small, just by considering the different contributions in powers of
m/γ. Again, this equation holds since the equilibrium distribution is ∝ exp (−U/T ) and
states that the virial pressure is determined by the solvent temperature.

4.2. Self-propelled particles

Active particles are usually described by stochastic equations that resemble those of
passive colloids moving in viscous solvents except for the addition of a time-dependent
stochastic force called self-propulsion or simply active force. Usually, the active force
is chosen to reproduce the typical time-persistence of the active trajectory at a coarse-
grained level that neglects its mechanical or chemical origin (which depends on the sys-
tem under consideration). This force, except for a few special cases, breaks the detailed
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balance [46, 47] condition producing a non-vanishing entropy production [48–53]. There-
fore, active dynamics are good platforms to evaluate generalized FDR in far-equilibrium
systems.

The most popular and simple models to reproduce the self-propulsions through a
stochastic process are the active Brownian particle (ABP) dynamics [54–62] and the
active Ornstein-Uhlenbeck particle (AOUP) one [63–69]. Both have been used to repro-
duce the non-equilibrium phenomenology of self-propelled particles. In the ABP case,
the self-propulsion force, fa has a constant modulus and reads:

f a = γv0n,

being v0 the swim velocity induced by the self-propulsion and γ the viscous solvent. The
term n = (cos θ, sin θ) is a unit vector representing the particle orientation since θ is
the orientational angle that evolves via a Brownian motion:

θ̇ =
√

2Drξ,

where Dr is the rotational diffusion coefficient and ξ is a white noise with zero average
and unit variance. According to the AOUP scheme, the self-propulsion of each particle
is described by a vectorial Ornstein–Uhlenbeck process:

τ ḟa = −f a + γv0
√
τ η, (21)

where τ is the persistence time of the process, η is a vector of white noises with
zero average and unit variance, and the other parameters have been already intro-
duced. Here, the term v20γ

2 is the variance of the self-propulsion whose square root also
represents the average value of its modulus, which, thus, provides the same average
swim velocity of the ABP. Despite the different shapes of ABP and AOUP models,
they share some time-dependent properties that are considered responsible for their
common phenomenology. Indeed, the time correlation of the active forces in the two
models has the same exponential shape after imposing the condition τ = 1/Dr [58,
70]. Even if many experimental systems of active matter have microscopic sizes [25]
and usually move in environments with large viscosity (in such a way that inertial
forces are negligible), recently, the effects of inertia [71] have been highlighted in many
experimental active systems, such as vibro-robots [72], Hexbug crawlers and camphor
surfers [73] and vibration-driven granular particles [74–76] (in the granular case, the
response function has been also calculated experimentally [77]). To include the active
force in these physical systems, the active Langevin model has been introduced [71, 72,
78–82] (that is essentially the underdamped version of the ABP or the AOUP models)
so that the equation of motion of the active particle is described by its position, x,
and velocity, v:

ẋ = v (22)

mv̇ = −γv+F+ f a +
√

2Tγw, (23)

where w is a white noise vector with zero average and unit variance, fa is the
active force discussed above, and the other terms have been already introduced below
equation (10).
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Both for ABP and AOUP active forces, we can obtain a generalized FDR for the
elements of the response matrix, defined by equation (12), by applying the formula (5)
with Fj = −γvj/m−∇xjU/m+ faj/m and σij = δij

√
2Tγ/m:

Rvk ,vj(t) =
m

T
〈vk(t)vj(0)〉+

m

2Tγ

(〈
vk(t)∇xjU(0)

〉
+ 〈∇xkU(t)vj(0)〉

)

− m

2Tγ

(〈
vk(t)f

a
j (0)

〉
+ 〈fak(t)vj(0)〉

)
. (24)

The first term in the right-hand-side of equation (24) represents the response in
the equilibrium regimes, i.e. for v0 → 0 that corresponds to the well-known results for
passive Brownian particles reported in equation (13). Following [83], this term can be
interpreted as double the ‘two-time’ kinetic energy (divided by T ). The second and third
terms are non-equilibrium contributions of the response that differ in non-equilibrium
systems but exactly balance at equilibrium where the detailed balance holds (since these
terms are odd under time-reversal symmetry). The fourth and fifth terms of the sec-
ond line, instead, are truly non-equilibrium contributions that explicitly contain the
self-propulsion force. These two couples of terms can be interpreted as the retarded-
anticipated power injected [83] by the gradient force −∇U and by the active force fa,
respectively. We remark that we do not need to specify the parity under time-reversal
transformation of the active force since this information is not required for the calcula-
tion of the response. In a similar way, we can calculate the cross elements of the response
matrix, choosing A(x,v) = xk in equation (24), obtaining:

Rxk ,vj(t) =
m

2T
〈xk(t)vj(0)〉+

m

2Tγ
〈xk(t)∇xjU(0)〉 − m

2Tγ
〈xk(t)f

a
j (0)〉

− m2

2Tγ
〈vk(t)vj(0)〉. (25)

We remark that both equations (24) and (25) hold far from the equilibrium without
restriction in the parameters of the self-propulsion, at variance with other approaches
where the active force is considered as a small perturbation [84, 85].

We check our theoretical results by studying the elements of the response matrix,
Rvj ,vj(t) and Rvj ,xj(t), confining the system through a linear and a quartic potential in
two dimensions. The time is calculated in unit of t∗ = m/γ. In both cases, the cross ele-
ments of the response function (Rvk ,vj(t) and Rxk ,vj(t) with k �= j) are zero for symmetric
arguments: indeed, each correlation appearing in the FDR should be invariant under
the transformation xj →−xj, vj →−vj and fa

j →−fa
j at fixed j. Since all the terms

appearing in the cross elements of equation (27) are odd under this transformation, the
only possibility is that Rvk,vj (t) = Rxk,vj(t) = 0 if k �= j.

The response in the harmonic passive case, with U(x) = k|x|2/2 (where k is the
potential constant), can be analytically solved because the velocity correlation appearing
in the FDR can be calculated as a function of t and depends on the inertial time
t∗ = m/γ and on the frequency ω2 = k/m− (t∗)−2/4, as known in the literature. As
shown in figure 1(a), the profile of Rvj ,vj(t) and Rxjvj(t) both for the AOUP and the
ABP dynamics remains the same as a result of the linearity of the force. This occurs even
if, in both cases, the functional form of the FDR changes because of the non-vanishing
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Figure 1. Elements of the response matrix, Rvj ,vj (t/t
∗) and Rxj ,vj(t/t

∗), obtained
numerically using the definition (12) (colored lines) and using the relation (24)
and (25) (dashed black lines). (a) Rvjvj(t/t

∗) and Rxjvj (t/t
∗) are studied for the

harmonic confinement, U (x) = k|x|2/2, for passive, AOUP and ABP particles. The
shapes of Rvj ,vj(t/t

∗) and Rxj ,vj (t/t
∗) are reported for a single set of parameters

(also in the active cases) since the only dependence on them is contained in t∗ =
m/γ and ω2 = k/m− (t∗)−2/4. In addition, we have simply plotted the passive
profile, R(t) = exp(−t/t∗) [cos(ωt)− sin(ωt)/(2t∗ω)], for the passive system. (b), (c)
Rvj ,vj(t/t

∗) and Rxj ,vj (t/t
∗), respectively, for a system confined through a quartic

potential, U(x) = k|x|4/4. Here, the additional dotted black lines are eye-guides.
The other parameters are k = 3, γ = 1, T = 1, τ = 1 and v0 = 1.

time correlation between xk and fak. Figure 1(b) reports a similar study when passive
or active dynamics are confined by the quartic potential, U(x) = k|x|4/4. In this case,
there are no analytical solutions for 〈vj(t)vj(0)〉 (and for the other correlations) neither
in the passive nor in the active cases, because of the non-linearity of the dynamics.
Therefore, the validity of the FDR is checked numerically by comparing the elements of
R(t) calculated by their definition (12) and by the FDR, and shows a good agreement.
Besides, the functional forms of Rvj ,vj (t) and Rxj ,vj (t) in the active cases (both ABP
and AOUP) display more pronounced oscillations that also occur for smaller times with
respect to the passive profile of the response. Additionally, the difference between AOUP
and ABP dynamics appears only in the limit v20 � T (and increases with the growth of
v20/T , while in the opposite limit (not shown) the AOUP and ABP responses become
equal to each other before converging to the passive profiles when the active force is
negligible.

4.2.1. Overdamped dynamics for self-propelled particles. We also study the active
dynamics directly in the overdamped regime. Since the inertial forces are usually neg-
ligible in many experimental active systems, the overdamped limit has been largely
employed in most of the numerical studies about active matter and, thus, deserves par-
ticular attention. The resulting dynamics is a stochastic differential equation for the
particle position, x:

γẋ = F+ f a +
√
2Tγw. (26)
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Once the velocities have been eliminated, the positions evolve through a stochastic
dynamics and we can calculate the response function, defined by equation (16). Taking
σij = δij

√
Dt and Fj = −∇xjU/γ + faj /γ, we apply the general equation (5) to calculate

Rxkxj(t) obtaining the following FDR for the elements of the response matrix:

Rxk ,xj(t) =
1

2T

(〈
xk(t)∇xjU(0)

〉
+ 〈∇xkU(t)xj(0)〉

)
− 1

2T

(〈
xk(t)f

a
j (0)

〉
+ 〈fak(t)xj(0)〉) . (27)

The first and the second terms are the equilibrium-like contributions of the response
that coincides only if the detailed balance holds while, in general, are different. Instead,
the second and third terms are the non-equilibrium contributions involving the time-
correlation of active force and position that disappears in the equilibrium limit, v0 → 0.

To check the results also in the overdamped case, we numerically study the response
function considering the same confining potentials studied in the underdamped case:
(i) quadratic potential, U(x) = k|x|2/2 and (ii) quartic potential U(x) = k|x|4/4 where
k is the potential constant. In both cases, the cross elements of the response function
(Rxi,xj(t) with i �= j) are zero for the same symmetric arguments already explained for
the underdamped dynamics. The time, t, is evaluated in unit of the typical time, t∗,
that rules the response decay of the passive overdamped system, given by t∗ = γ/k for

the harmonic potential and t∗ =
√
γ/

√
T k for the quartic potential. With this time

rescaling, Rxi,xj(t) does not depend on the model parameters, in the passive case.
In both cases, the response function evaluated numerically from the perturbed

dynamics see definition (12) is compared with the FDR, equation (27), showing a good
agreement for different values of v20/T both for the AOUP and ABP models. This con-
firms the validity of our exact relations also in non-equilibrium dynamics. Figure 2(a)
illustrates the response function in the harmonic case, where the decay is exponential,
Rxjxj(t) = e−t/t∗, as analytically predicted in [86] for the athermal AOUP. In the har-
monic case, we observe that there are no differences between AOUP, ABP, and passive
systems. As a consequence, the shape of the active force is irrelevant despite the non-
Gaussian form of the active force in the ABP model. In figure 2(b)–(d), the response
function in the quartic potential case shows a richer behavior. The rescaled Rxjxj(t/t

∗)
has an exponential profile that does not depend on the choice of k/γ and T in the passive
case. This profile coincides with the active one, in the equilibrium limit v20  T (shown
in (c) for T/v20 = 10), where AOUP and ABP cannot be distinguished because the active
force plays a negligible role (only the ABP is reported in (c)). Increasing the ratio v20/T ,
the active response starts decreasing faster even if there are no clear differences between
AOUP and ABP models, that appear only for further values of v20/T . In general, the
decay of Rxjxj(t) is faster for the ABP model than the AOUP one, and the difference
between the two models increases when v20/T grows (figure 2(b)). In this regime, the
decay is characterized by two distinct time-regimes, as explicitly shown in figure 2(d).
As also discussed in [44] for T = 0, these two regimes can be easily explained because
an active particle (in the large persistence regime, considered here, for v20 � T ) confined
in a quartic potential accumulates on a circular crown far from the potential minimum
showing pronounced non-Gaussianity in the probability distribution [87]. We observe
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Figure 2. Response function, Rxx(t/t
∗), obtained numerically using the definition

(16) (colored lines) and using the relation (27) (dashed black lines). (a) Rxx(t/t
∗)

is studied for the harmonic confinement, U(x) = k|x|2/2, in the cases of passive,
AOUP and ABP particles. In this case, we report the expression for a single set
of parameters (also in the active cases) since the only dependence on them is con-
tained in t∗ = t/γ. In addition, we have simply plotted the exponential profile,
exp(−t/t∗), for the passive system. (b), (c) Rxx(t/t

∗) for the quartic potential case,
U(x) = k|x|4/4. The active response is plotted for different values of the ratio v20/T
comparing ABP and AOUP models according to the legend of each panel. The
passive case reported in (c), obtained for v0 = 0, is temperature independent since
the only dependence on the parameters is contained in t∗ =

√
γ/

√
T k and, thus,

is simply shown for T = 1. (d) The comparison (in the quartic potential case)
between equation (27) for T/v20 = 10−2 and equation (C.1) for T = 0, showing the
good agreement between the two FDR. Here, the additional dashed black lines are
eye-guides to evidence the different time regimes. The other parameters are k = 3,
γ = 1, τ = 1 and v0 = 1.

that the formulation (27) of the FDR reported in this work does not coincide with the
recent one, obtained for an AOUP particle with zero solvent-temperature. Indeed, the
FDR for T = 0, reported in [44] involves the second derivative of the potential that is not
contained in equation (27). Moreover, equation (27) is not well-defined at T = 0 even if
can be numerically evaluated for T arbitrarily small. In figure 2(d), the expression (27)
and the formulation of reference [44] (that for completeness is reported in appendix C)
reveals a good agreement between the two formulations of the AOUP response function
when T  v20 revealing the convergence of the two generalized FDR in the athermal
limit.

4.2.2. Generalized virial equation and equipartition theorem. In the case of an active
particle in the underdamped regime following the dynamics (22), the relation (18) (for
a passive colloid) turns to be:

m〈v2k〉+
m

γ
〈vj∇xkU〉δjk = T +

m

γ
〈vjfak〉δjk, (28)

where we have reported the relation for j = k for simplicity. In practice, the interpreta-
tion of the terms involved in this equation does not change with respect to equation (18),
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except for the presence of a new term, i.e. 〈vjfak〉, appearing in the generalized version of
the equipartition theorem. This can be easily interpreted as the work done by the active
force that is responsible for the increase of the particle kinetic energy. A similar scenario
occurs by generalizing equation (19) to the active dynamics. In particular, taking j = k,
we obtain:

〈xj∇xkU〉δjk = 〈xjf
a
k〉δjk +m〈v2k〉. (29)

Now, the generalized virial equation contains a new term that depends on the active force
via its correlation with the particle position, which is proportional to minus the swim
pressure (see [88–90]). The term on the left-hand side of equation (29) is proportional
to the virial pressure (as in the case of passive colloids). We remark that, in the active
case, the virial pressure is not simply determined by the kinetic energy but is affected
by the swim pressure.

In a similar way, we can apply equation (7) to the overdamped active dynamics,
equation (26), obtaining a set of relations, that we report for j = k, for simplicity:

〈xj∇xkU〉δjk = δjkT +
1

γ
〈xjf

a
k〉δjk. (30)

Equation (30) is the equation of state (mesoscopic virial equation) for the active dynam-
ics, that can also be obtained by equations (28) and (29) in the limit m/γ  1. Here,
the virial pressure is modified by the swim pressure as in equation (29) and the kinetic
energy has been replaced by the solvent temperature.

5. Comparison with other versions of the FDR

Under very general hypothesis, the response function due to a small perturbation for the
general dynamics (1) can be expressed in terms of suitable temporal correlations that
involves the log-derivative of the steady-state probability distribution, P s(x), [3, 30].
This result has been independently derived by Agarwal [5] in the context of stochastic
processes and Vulpiani et al [4] for chaotic deterministic dynamics, and reads:

RA,xj(t) = −
〈
A(t)

d

dxj
log Ps(x(0))

〉
. (31)

This relation allows us to express the response function in terms of a temporal corre-
lation that has a very simple form. The application of equation (31) does not require
the dynamical knowledge of the deterministic or stochastic contributions appearing in
equation (1) since the knowledge of the steady-state distribution is enough to express
the generalized FDR. However, P s(x) is known for a few cases: (i) linear dynamics with
additive noise (ii) equilibrium dynamics characterized by zero currents. Indeed, in gen-
eral, when the detailed balance does not hold the distribution is unknown and the use of
equation (31) requires the numerical calculation of d

dxj
log Ps(x). Therefore, this relation

remains, somehow, an implicit relation. We remark that, through this approach, one can
calculate the response function directly from the experimental data in the absence of per-
turbation but, also in this case, still requires to recognize the leading variables appearing
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in the dynamics. On the contrary, our exact relations (4) and (5) for a general observ-
able and for A = xk, respectively, reveal also that the response function cannot be easily
expressed in the same form of equation (31), i.e.

RA,xj(t) = 〈A(t)C(0)〉 ,

except when the detailed balance holds. Indeed, equations (4) and (5) contain additional
terms that cannot easily be recast onto this form. Finding the functional form of C is
a problem with the same difficulty of finding the functional form of the steady-state
probability distribution of a non-equilibrium system.

Several later formulations of the FDR based on a path-integral approach focused
on the importance of the time-reversal symmetry in the different contributions of the
response function. For instance, in [18], the response function has been decomposed in
terms of an entropic and a frenetic contributions. However, this decomposition goes
beyond the aim of this study and, in general, cannot be achieved unless one knows
the parity under the time-reversal transformation of each variable appearing in the
dynamics. This parity is often unknown, as occurs for the active force appearing in
the dynamics [67] and could depend on the physical system under consideration. Our
formulation of the FDR does not need this information and is expressed in a simple and
compact form.

6. Conclusions

In this paper, we have derived a new version of the generalized FDR that holds both for
equilibrium and non-equilibrium dynamics. The advantage of our relations is that they
are expressed in a very compact and simple form in terms of time correlations between
the observed variable and the force ruling the dynamics of the perturbed variable. For
this reason, our FDR only requires the knowledge of the deterministic forces and the
diffusion matrix appearing in the dynamics and does not need the numerical calcu-
lation of the steady-state probability distribution, at variance with other approaches.
From our FDR, we have also derived generalized equations that constrain the steady-
state (equal-time) correlation functions of the dynamical variables. These equations are
interpreted as generalized versions of the mesoscopic virial equation and equipartition
theorem.

Our general results have been checked in the case of an equilibrium underdamped
and overdamped colloidal particle, where our FDR agree with the well-known equilib-
rium picture. Finally, we have also applied our relations to a non-equilibrium system
of active particles finding the generalized FDR, the mesoscopic virial equation and the
equipartition relation both for overdamped and underdamped dynamics. The present
study can be easily generalized to the case of many interacting particles, both for
the passive and the active case and could be useful to make further advances in the
calculation of the transport coefficients in non-equilibrium dynamics, especially in sys-
tems of active matter, going beyond the results obtained for active crystals [91] or low
densities [40].
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Appendix A. Derivation of equation (4)

To derive equation (4), we employ a path-integral approach to estimate the probability
of the trajectory associated to the unperturbed dynamics (1). In the following, we use
the compact notation, x = {x}Tt0 , to denote the time-history of the trajectory of the
variable x between the initial time, t0, and the final time, T . The explicit introduction
of a source of noise in the dynamics, produces a probability, P[x|x0], of observing a path
x given the initial state x0 at time t0 that is generated by the probability associated
with the noise hystory. In the following, we consider Gaussian noises, η, which are
entirely specified by mean values and correlations and that satisfies ηi = σijξj . Under
these assumptions, the probability of observing the noise path, η, reads:

P[η|ηt0 ] ∝ exp

[
−1

4

∫ T

t0

dsD−1
ij ηj(s)ηi(s)

]
, (A.1)

where we dropped an irrelevant normalization factor and used the Einstein convention
for repeated indices.

Observing that the functional derivative with respect to the perturbation, hj, is
equivalent to the functional derivative with respect to the noise, ηj, we obtain an
expression for the response function starting from its definition (3):

RA,xj(t− s) =
δ〈A(xh(t))〉

δhj(s)

∣∣∣∣
hn=0

=

∫ t

D[η]P[η|ηt0 ]
δ

δηj(s)
A(x(t)) (A.2)

= −
∫ t

D[η]A(x(t))
δ

δηj(s)
P[η|ηt0 ], (A.3)

where in the last equality we have just performed an integration by parts. Using the
expression (A.1) and performing the derivative, we get:

RA,xj(t− s) =
1

2
〈A(t)D−1

kj ηk(s)〉. (A.4)

Using the dynamics (1), one can express the noise η in terms of the state variables x
through a change of variables, so that, formally, we have η = η[x, ẋ]. By replacing this
relation into (A.4), we obtain:

RA,xj(t− s) =
1

2

〈
A(t)D−1

kj [ẋk(s)− Fk(s)]
〉
. (A.5)

Because of the stationarity of the correlations, the following relation holds:

〈
A(t)D−1

kj ẋk(s)
〉
=

d

ds

〈
A(t)D−1

kj xk(s)
〉
= − d

dt

〈
A(t)D−1

kj xk(s)
〉
,
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so that we can express equation (A.5) as

RA,xj(t− s) = −1

2
D−1

kj o

[
〈A(t)Fk(s)〉+

d

dt
〈A(t)xk(s)〉

]
, (A.6)

that corresponds to equation (4) after choosing s = 0.

A.1. Assuming the detailed balance

Assuming the equilibrium condition or the detailed balance means the possibility of
flipping the time in the temporal correlation appearing in equation (A.6). In particular,
using this property, we get:

〈A(t)xk(s)〉 = ±〈xk(t)A(s)〉 ,

where the plus or minus sign is needed if the product between xkA is even or odd under
time-reversal transformation, respectively. In this way, equation (A.6) reads

RA,xj(t− s) = −1

2
D−1

kj

[
〈A(t)Fk(s)〉 ∓

d

dt
〈xk(t)A(s)〉

]

= −1

2
D−1

kj [〈A(t)Fk(s)〉 ∓ 〈Fk(t)A(s)〉] = −D−1
kj 〈A(t)Fk(s)〉 , (A.7)

where, in the last equality, we have used again the reversibility condition and that Fk

needs to have the same parity of xk in equilibrium dynamics. This equilibrium result is
in agreement with the other version of the FDR [3, 30], given by equation (31). Indeed,
if the detailed balance holds the distribution associated with the dynamics (1) is simply:

Ps ∝ exp

(∫
dxiD

−1
k iFk

)
.

Appendix B. Derivation of equation (5)

To derive equation (5), we start fom the formula (4). Choosing A(x(t)) = xk, we obtain:

Rxk ,xj(t) = −1

2
D−1

mj

[
〈xk(t)Fm(0)〉+

d

dt
〈xk(t)xm(0)〉

]
. (B.1)

Replacing d/dtxk with the equation of motion (1), we get:

Rxk ,xj(t) = −1

2
D−1

mj [〈xk(t)Fm(0)〉+ 〈Fk(t)xm(0)〉] , (B.2)

which corresponds to the result (5). We remark that to obtain equation (B.2) from
equation (B.1) we have used the causality condition, such that 〈ηk(t)xm(0)〉 = 0. This
trick can be also used in the more general case A = A(x(t)):

d

dt
〈A(x(t))xm(0)〉 =

〈
ẋj(t)∇xjA(x(t))xm(0)

〉
=

〈
Fj(t)∇xjA(x(t))xm(0)

〉
+

〈
ηj(t)∇xjA(x(t))xm(0)

〉
. (B.3)
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Moreover, in this case, the correlation involving the noise does not vanish because the
causality condition cannot be applied. At variance with the specific case reported in
equation (5), this last general relation is not simply expressed in terms of state variables
and, thus, has the same level of complexity as equation (4).

B.1. Assuming the detailed balance

Even if we have shown the result for a general observable A, it is instructive to use
the time-reversibility to further manipulate equation (5). In particular, if the product
Fj(t)xk(0) is even under time-reversal transformation, the second term in equation (5)
becomes

〈Fj(t)xk(0)〉 = 〈xk(t)Fj(0)〉,

while, if the product Fj(t)xk(0) is odd, the following relation holds:

〈Fj(t)xk(0)〉 = −〈xk(t)Fj(0)〉.

Thus, the response matrix can be expressed as:

Rxj ,xn(t) = −1

2
D−1

nk [〈xj(t)Fk(0)〉 ± 〈xk(t)Fj(0)〉] . (B.4)

Further manipulation of this expression can be obtained accounting for the symme-
try of the system. For instance, if the equilibrium is guaranteed by a force due to an

external potential that depends only on the distance
√∑

jx
2
j , the system is invari-

ant for the inversion of each component and Fj needs to an odd function of xj.
Thus, the non-vanishing elements of the response matrix are those with j = n and
Fj and 〈xj(t)Fk(0)〉 = 〈xk(t)Fj(0)〉. In this way, equation (B.4) leads to the well-known
equilibrium result.

Appendix C. FDR for zero solvent temperature

In this appendix, we report the FDR obtained in the case of overdamped active particles
evolving with the AOUP model with vanishing solvent temperature, i.e. the dynamics
(22) with T = 0 and active force evolving via equation (21). In this case, the formulation
(27) of the FDR does not hold since the equation of motion is not of the form (2). Indeed,
the perturbation, h, affects the dynamics of a state variable xj with a deterministic
equation of motion, since the noise appears only in the evolution of the active force.

For completeness, we report the FDR expression derived in [44], holding for the
athermal AOUP, that has been employed in the inset of figure 2(b), for the quartic
potential case:

2DaγRxjxi(t) = 〈xj(t)∇xiU(0)〉+ 〈∇xiU(t)xj(0)〉 (C.1)

+ τ 2〈vj(t)∇xj∇xkU(0)vk(0)〉+ τ 2〈vk(t)∇xi∇xkU(t)vj(0)〉,
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where the particle velocity, defined as vj = ẋj, satisfies the following relation:

γvj = faj −∇xjU

We also remark that equation (C.1) depends on the details of the active force. In partic-
ular, it does not hold for the athermal ABP model, for which explicit generalized FDR
have not been derived, to the best of our knowledge.
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