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a b s t r a c t

Craigen introduced and studied signed group Hadamard matrices extensively and even-
tually provided an asymptotic existence result for Hadamard matrices. Following his lead,
Ghaderpour introduced signed group orthogonal designs and showed an asymptotic exis-
tence result for orthogonal designs and consequently Hadamardmatrices. In this paper, we
construct some interesting families of orthogonal designs using signed group orthogonal
designs to show the capability of signed group orthogonal designs in generation of different
types of orthogonal designs.

© 2017 Elsevier B.V. All rights reserved.

1. Preliminaries

A Hadamardmatrix [7,16] is a square matrix with entries from {±1} whose rows are pairwise orthogonal. An orthogonal
design (OD) [2,7,16] of order n and type (c1, . . . , ck), denoted byOD(n; c1, . . . , ck), is a squarematrix X of order nwith entries
from {0, ±x1, . . . ,±xk} that satisfies

XXT
=

( k∑
j=1

cjx2j
)
In,

where the cj’s are positive integers, the xj’s are commuting variables, In is the identitymatrix of ordern, andXT is the transpose
of X . An OD with no zero entry is called a full OD. A Hadamard matrix can be obtained by equating all variables of a full OD
to 1. The maximum number of variables in an OD of order n = 2ab, b odd, is ρ(n) = 8c + 2d, where a = 4c + d, 0 ≤ d < 4.
This number is called Radon-Hurwitz number [7, Chapter 1].

A complex orthogonal design (COD) [2,6,8] of order n and type (c1, . . . , ck), denoted by COD(n; c1, . . . , ck), is a square
matrix X of order nwith entries from {0, ±x1, ±ix1, . . . ,±xk, ±ixk} that satisfies

XX∗
=

( k∑
j=1

cjx2j
)
In,

where the cj’s are positive integers, the xj’s are commuting variables, and ∗ is the conjugate transpose.
Two matrices A and B of the same dimension are called disjoint [7,10,16] if the matrix computed via entrywise

multiplication of A and B is a zero matrix. Pairwise disjoint matrices such that their sum has no zero entries are called
supplementary [2,7].
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The Kronecker product [7,10] of two matrices A = [aij] and B of ordersm × n and r × s, respectively, denoted by A ⊗ B, is
defined by

A ⊗ B :=

⎡⎢⎢⎣
a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

am1B am2B · · · amnB

⎤⎥⎥⎦,

that is a matrix of ordermr × ns.
The non-periodic autocorrelation function [11] of a sequence A = (x1, . . . , xn) of commuting square complex matrices of

orderm, is defined by

NA(j) :=

⎧⎪⎨⎪⎩
n−j∑
i=1

xi+jx∗

i if j = 0, 1, 2, . . . , n − 1,

0 j ≥ n,

where ∗ is the conjugate transpose. A set {A1, A2, . . . , Aℓ} of sequences (not necessarily in the same length) is said to have
zero autocorrelation if for all j > 0,

∑ℓ

k=1NAk (j) = 0. Sequences having zero autocorrelation are called complementary [7].
A pair (A; B) of {±1}-complementary sequences of length n is called a Golay pair of length n. A Golay number is a positive

integer n such that there exists a Golay pair of length n. Similarly, a pair (C;D) of {±1, ±i}-complementary sequences of
length m is called a complex Golay pair of length m. A complex Golay number is a positive integer m such that there exists a
complex Golay pair of lengthm [3,4,7].

A signed group S [2,3,8] is a groupwith a distinguished central element of order two.We denote the unit of a signed group
by 1 and the distinguished central element of order two by −1. In every signed group, the set {1, −1} is a normal subgroup,
and the order of signed group S is the number of elements in the quotient group S/

⟨
−1
⟩
. Therefore, a signed group of order

n is a group of order 2n.
For instance, the trivial signed group SR = {1, −1} is a signed group of order 1, the complex signed group SC =

⟨
i :

i2 = −1
⟩
= {±1, ±i} is a signed group of order 2, the quaternion signed group SQ =

⟨
j, k : j2 = k2 = −1, jk = −kj

⟩
={

±1, ±j, ±k, ±jk
}
is a signed group of order 4, and the set of all monomial {0, ±1}-matrices of order n, SPn, forms a group

of order 2nn! and a signed group of order 2n−1n!. The distinguished central elements of SR, SC and SQ are all −1, and the
distinguished central element of SPn is −In, where In is the identity matrix of order n.

A signed group S ′ is called a signed subgroup [2,3] of a signed group S, denoted by S ′
≤ S, if S ′ is a subgroup of S, and the

distinguished central elements of S ′ and S coincide. As an example, we have SR ≤ SC ≤ SQ .
Let S be a signed group and T ≤ SPn. A remrep (real monomial representation) [2,3,5] of degree n is a map φ : S → T such

that for all a, b ∈ S, φ(ab) = φ(a)φ(b) and φ(−1) = −In.
If R is a ring with unit 1R, and S is a signed group with distinguished central element −1S , then R[S] :=

{∑n
i=1siri : si ∈

ϱ, ri ∈ R
}
is a signed group ring [2,3], where ϱ is a set of coset representatives of S modulo

⟨
−1S

⟩
. The set ϱ is often referred

to as a transversal of
⟨
−1S

⟩
in S. For s ∈ ϱ, r ∈ R, we make the identification −sr = s(−r). Addition is defined termwise,

and multiplication is defined by linear extension. For instance, s1r1(s2r2 + s3r3) = s1s2r1r2 + s1s3r1r3, where si ∈ ϱ, ri ∈ R
i ∈ {1, 2, 3}.

In this work, we choose R = R. If x ∈ R[S], then x =
∑n

i=1siri, where si ∈ ϱ, ri ∈ R, and we define the conjugate of
x by x :=

∑n
i=1siri =

∑n
i=1s

−1
i ri. Clearly, the conjugate is an involution that is x = x for all x ∈ R[S], and xy = ȳx̄ for

all x, y ∈ R[S]. As some examples, for any a, b ∈ R, we have a + ib = a + īb = a + i−1b = a − ib, where i ∈ SC, and
ja + jkb = j−1a + (jk)−1b = −ja − jkb, where j, k ∈ SQ .

A circulant matrix C [2,7,10] is a square matrix whose each row vector is rotated one element to the right with respect
to the previous row vector, and we denote it by circ

(
a1, a2, . . . , an

)
, where

(
a1, a2, . . . , an

)
is its first row. The circulant

matrix C can be written as C = a1In +
∑n−1

k=1ak+1Uk, where U = circ
(
0, 1, 0, . . . , 0

)
(see [7, Chapter 4]). Therefore, any two

circulant matrices of order nwith commuting entries commute. If C = circ
(
a1, a2, . . . , an

)
, then C∗

= circ
(
a1, an, . . . , a2

)
,

where ∗ is the conjugate transpose.
Suppose that A =

(
a1, a2, . . . , an

)
is a sequence whose nonzero entries are elements of a signed group S multiplied on

the right by variables xi’s (1 ≤ i ≤ k). We use AR to denote a sequence whose elements are those of A, conjugated and in
reverse order [4,9] that is AR =

(
an, . . . , a2, a1

)
.

A signed group weighing matrix (SW) [3,5] of order n and weight w over a signed group S, denoted by SW (n, w, S), is a
(0, S)-matrix (that is a matrix whose nonzero entries are in S)W such thatWW ∗

= wIn, where ∗ is the conjugate transpose.
An SW over S with no zero entry (w = n) is called a signed group Hadamard matrix (SH) over S [2,3], denoted by SH(n, S).
Note that the matrix operations for SWs and SHs are in the signed group ring Z[S].

Two square matrices A and B are called amicable if AB∗
= BA∗, and they are called anti-amicable if AB∗

= −BA∗, where ∗

is the conjugate transpose [2,7,8,16]. If the entries of A and B belong to a signed group ring, then the matrix operations are
in the signed group ring as mentioned above.
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2. Some non-existence results for signed group orthogonal designs

A signed group orthogonal design (SOD) of order n and type
(
u1, . . . , uk

)
over a signed group S, denoted by SOD(

n; u1, . . . , uk, S
)
, is a square matrix X of order n whose nonzero entries are elements of S multiplied on the right by

commuting variables xi’s (1 ≤ i ≤ k) such that

XX∗
=

(
k∑

i=1

uix2i

)
In,

where u1, . . . , uk are positive integers, and ∗ is the conjugate transpose. Note that the conjugate of entry ϵxi (ϵ ∈ S) is
ϵxi = ϵ−1xi, and the matrix operations for SODs in this work are in the signed group ring R[S]. It is shown [8,9] that if X is
an SOD over a finite signed group, then XX∗

= X∗X . We call an SOD with no zero entries a full SOD.

Remark 2.1. In the definition of SOD in [8,9], the author says that the entries of an SOD are from {0, ϵ1x1, . . . , ϵkxk} (ϵi ∈ S).
What the authormeans by this arrangement is that each variablemay appear in the SODwith various signed group elements
as coefficients. In this paper, we also use the notation SOD

(
n; u1, . . . , uk, S

)
instead of SOD

(
n; u1, . . . , uk

)
over a signed

group S.

Example 2.1. Consider the following square matrix:

X =

⎡⎢⎣jkx1 jx2 kx3 x3
jx2 jkx1 x3 kx3
kx3 x3 jkx1 jx2
x3 kx3 jx2 jkx1

⎤⎥⎦,

where x1, x2, and x3 are commuting variables and j, k ∈ SQ . We have

XX∗
= XX

T
=

⎡⎢⎣jkx1 jx2 kx3 x3
jx2 jkx1 x3 kx3
kx3 x3 jkx1 jx2
x3 kx3 jx2 jkx1

⎤⎥⎦
⎡⎢⎢⎣

jkx1 j̄x2 k̄x3 x3
j̄x2 jkx1 x3 k̄x3
k̄x3 x3 jkx1 j̄x2
x3 k̄x3 j̄x2 jkx1

⎤⎥⎥⎦.

Let ωa,b be the entry of the row a and column b of matrix XX∗. We have

ω1,1 = (jkx1)(jkx1) + (jx2)(j̄x2) + (kx3)(k̄x3) + (x3)(x3)

= jkjkx1x1 + j̄jx2x2 + kk̄x3x3 + x3x3
= x21 + x22 + 2x23

Similarly, it can be verified that ω2,2 = ω3,3 = ω4,4 = x21 + x22 + 2x23. Moreover,

ω1,3 = (jkx1)(k̄x3) + (jx2)(x3) + (kx3)(jkx1) + (x3)(j̄x2)

= jkk̄x1x3 + jx2x3 + kjkx3x1 + j̄x3x2
= jx1x3 + jx2x3 − jx1x3 − jx2x3 commuting variables
= j(x1x3 − x1x3) + j(x2x3 − x2x3)
= 0.

It can be verified that ωa,b = 0 for 1 ≤ a ̸= b ≤ 4. Therefore, XX∗
= (x21 + x22 + 2x23)I4, and so X is SOD(4; 1, 1, 2, SQ ).

Remark 2.2. Equating all variables to 1 in any SOD results in an SW. Equating all variables to 1 in any full SOD results in an
SH. An SOD over the trivial signed group SR is an OD, and an SOD over the complex signed group SC is a COD.

The following lemma is immediate from the definition of SOD.

Lemma 2.1 ([8, Chapter 6]). If A is an SOD over a signed group S, then permutations of the rows or columns of A do not affect the
orthogonality of A, and multiplication of each row of A from the left or each column of A from the right by an element in S does
not affect the orthogonality of A.

We now show some non-existence results for SODs. The following lemma is shown in [9], and for the sake of
completeness, we give a proof.

Theorem 2.1. There does not exist any full SOD of order n over any signed group, if n is odd and n > 1.
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Proof. Assume that there is a full SOD of order n > 1 over a signed group S. Equating all variables to 1 in the SOD, one
obtains a SH(n, S) = [hij]

n
i,j=1. From the second part of Lemma 2.1, one may multiply each column of the SH(n, S) from the

right by the inverse of corresponding entry of its first row, h1j, to get an equivalent SH(n, S) with the first row all 1 (see [3,4]
for the definition of equivalence). By orthogonality of the rows of the SH(n, S), the number of occurrences of a given element
s ∈ S in each subsequent row must be equal to the number of occurrences of −s. Therefore, n has to be even. □

Lemma 2.2. There does not exist any SW (6, 3, S).

Proof. Assume that A is SW (6, 3, S). From Lemma 2.1, one may permute the rows and columns of A to obtain a matrix of the
following form:

A1 =

⎡⎢⎢⎢⎢⎢⎣
⋆ ⋆ ⋆ 0 0 0
⋆
⋆
0
0
0

⎤⎥⎥⎥⎥⎥⎦,

where the⋆’s are elements in S. Using orthogonality of the first and second rows of A1, only one of the entries at second row
and second column or at second row and third column must be zero. Similarly, since the first and second columns of A1 are
orthogonal, one of the entries at second row and second column or at third row and second column must be zero. From the
first part of Lemma 2.1, since A1 is an SW, the following matrix must be also an SW.

A2 =

⎡⎢⎢⎢⎢⎢⎣
⋆ ⋆ ⋆ 0 0 0
⋆ ⋆ 0 ⋆ 0 0
⋆ 0
0 ⋆
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦.

Now, orthogonality of the first and second rows with the third row of A2 forces A2 to be of the following form:

A2 =

⎡⎢⎢⎢⎢⎢⎣
⋆ ⋆ ⋆ 0 0 0
⋆ ⋆ 0 ⋆ 0 0
⋆ 0 ⋆ ⋆ 0 0
0 ⋆
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦,

which contradicts orthogonality of the fifth and sixth columns of A2, so there is no SW (6, 3, S). □

Theorem 2.2. There exists no SOD (6; 3, 3, S) and no SOD (6; 2, 2, 2, S).

Proof. If there is SOD (6; 3, 3, S), then equating one of its variables to 0 and the other one to 1 results in SW (6, 3, S) which
contradicts Lemma 2.2, so there is no SOD (6; 3, 3, S).

Now suppose that B is SOD (6; 2, 2, 2, S). By Lemma 2.1, if one permutes the rows and columns of B, then one of the
following forms is obtained:⎡⎢⎢⎢⎢⎢⎣

ϵ11a ϵ12a ϵ13b ϵ14b ϵ15c ϵ16c
ϵ21a ϵ22a ϵ23b ϵ24b ϵ25c ϵ26c
ϵ31b ϵ32b ϵ33c ϵ34c ϵ35a ϵ36a
ϵ41b ϵ42b ϵ43c ϵ44c ϵ45a ϵ46a
ϵ51c ϵ52c ϵ53a ϵ54a ϵ55b ϵ56b
ϵ61c ϵ62c ϵ63a ϵ64a ϵ65b ϵ66b

⎤⎥⎥⎥⎥⎥⎦ or

⎡⎢⎢⎢⎢⎢⎣
γ11a γ12a γ13b γ14b γ15c γ16c
γ21a γ22a γ23c γ24c γ25b γ26b
γ31b γ32b γ33a γ34a γ35c γ36c
γ41b γ42b γ43c γ44c γ45a γ46a
γ51c γ52c γ53a γ54a γ55b γ56b
γ61c γ62c γ63b γ64b γ65a γ66a

⎤⎥⎥⎥⎥⎥⎦,

where ϵij, γij ∈ S (1 ≤ i, j ≤ 6), and a, b, c are commuting variables.
For the left matrix, consider ϵ11 = ϵ12 = 1, so as in the proof of Theorem 2.1, orthogonality of the first row with the

second and third rows forces ϵ21 to be −ϵ22 and ϵ31 to be −ϵ32. Thus, the second and third rows will not be orthogonal,
which is a contradiction.

For the right matrix, consider γ21 = γ22 = 1, so as in the proof of Theorem 2.1, orthogonality of the second row with the
third and sixth rows forces γ31 to be −γ32 and γ61 to be −γ62. Thus, the third and sixth rows will not be orthogonal, which
is a contradiction. Hence, there is no SOD (6; 2, 2, 2, S). □

From Theorems 2.1 and 2.2, there is no SOD
(
1 · 3; 1, 1, 1, S

)
, SOD

(
2 · 3; 2, 2, 2, S

)
and SOD

(
3 · 3; 3, 3, 3, S

)
. However,

it is shown [8,9] that there exists SOD
(
4 · 3; 4, 4, 4, S

)
and more generally for any k-tuple

(
u1, . . . , uk

)
of positive integers,
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there exists SOD
(
4u; 4u1, . . . , 4uk, S

)
, where u =

∑k
i=1ui. An asymptotic existence result for full ODs is obtained in [8,9]

by applying Theorem 3.3 to these full SODs, which in turn improved the asymptotic existence result for Hadamard matrices
obtained by Seberry [7, Chapter 7] and Craigen [3].

3. Constructions for ODs using SODs of order 2n

In this section, we construct SODs of order 2n with 2n variables over some signed groups, and by using some well-known
theorems, we obtain a family of full CODs which, as we shall show, implies the existence of a family of full ODs. We use the
notation u(k) to show u repeats k times.

Theorem 3.1 ([7, Chapter 1]). For each positive integer m, there is a set

A =

{
Im, A1, A2, . . . , Aρ(m)−1

}
of pairwise disjoint anti-amicable signed permutation matrices of order m, and equivalently there is OD

(
m; 1(ρ(m))

)
, where ρ(m)

is the Radon-Hurwitz number.

Remark 3.1. Since the set A in Theorem 3.1 is a set of pairwise anti-amicable matrices, Ai = −AT
i for 1 ≤ i ≤ ρ(m) − 1, and

so A2
i = −Im and AiAj = −AjAi for 1 ≤ i ̸= j ≤ ρ(m) − 1.

Theorem 3.2. There is SOD
(
2n

; 1(2n), S
)
such that S admits a remrep of degree 22n−1

−1, n > 2.

Proof. Let m = 22n−1
−1. It is not hard to see that ρ(m) = 2n, for n > 2. By Theorem 3.1, there is a set A ={

A0, A1, A2, . . . , A2n−1
}
of pairwise disjoint anti-amicable signed permutation matrices of orderm, where A0 = Im. Let

T =
⟨
A1, . . . , A2n−1

⟩
. (1)

It can be seen that T is a signed subgroup of SPm. Thus, for eachM ∈ T ,M = M−1
= MT. Now let B =

{
B0, B1, . . . , B2n−1

}
be

a set of supplementary matrices obtained from all possible n-fold Kronecker products of I and P , where

I =

[
1 0
0 1

]
and P =

[
0 1
1 0

]
.

It is easy to see that the matrices in the set B are pairwise amicable of order 2n. Now we show that

D =

2n−1∑
i=0

AixiBi,

is SOD
(
2n

; 1(2n), T
)
, where the xi’s are commuting variables. Note that the Aixi is treated as a scalar multiplied on every entry

in the Bi. We have

DD∗
= DD

T
=

(2n−1∑
i=0

AixiBi

)(2n−1∑
i=0

AixiBT
i

)

=

2n−1∑
i=0

(AixiBi)(AixiBT
i ) +

2n−1∑
i=0

2n−1∑
j=i+1

(
(AixiBi)(AjxjBT

j ) + (AjxjBj)(AixiBT
i )
)

=

2n−1∑
i=0

AiAix2i BiBT
i +

2n−1∑
i=0

2n−1∑
j=i+1

(AiAjxixjBiBT
j + AjAixjxiBjBT

i )

=

2n−1∑
i=0

Imx2i I2n +

2n−1∑
i=0

2n−1∑
j=i+1

(AiAjxixjBiBT
j − AiAjxixjBiBT

j )

=

(2n−1∑
i=0

x2i
)
I2n .

Therefore, D is SOD
(
2n

; 1(2n), T
)
. One may choose the identity map π from T to T which is clearly a remrep of degreem, and

so D is an SOD over T admitting the remrep π of degreem. □
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Example 3.1. We show that there is SOD
(
23

; 1(23), S
)
such that S admits a remrep of degree 23. Let

B0 = I ⊗ I ⊗ I, B4 = I ⊗ P ⊗ P,

B1 = I ⊗ I ⊗ P, B5 = P ⊗ I ⊗ P,

B2 = I ⊗ P ⊗ I, B6 = P ⊗ P ⊗ I,
B3 = P ⊗ I ⊗ I, B7 = P ⊗ P ⊗ P .

Let S be the signed group in (1) with n = 3. It can be verified that D =
∑7

i=0AixiBi is the desired SOD, where the xi’s are
commuting variables. Note that S admits a remrep of degree 8 that is related to the existence of full ODs of type (1(8)). From
Theorem 3.1, form > 8, there cannot existm pairwise disjoint anti-amicable signed permutation matrices of orderm.

Remark 3.2. In the proof of Theorem 3.2, noting Remark 3.1, one may let

S =
⟨
s1, . . . , s2n−1 : s2α = −1, sαsβ = −sβsα, 1 ≤ α ̸= β ≤ 2n

− 1
⟩
, (2)

and define a map φ : S −→ T by φ(sα) = Aα for 1 ≤ α ≤ 2n
− 1 such that multiplication is preserved [1, Section 2.3].

Therefore, D =
∑2n−1

i=0 sixiBi, where s0 = 1S , is also SOD
(
2n

; 1(2n), S
)
such that S admits the remrep φ of degreem.

Remark 3.3. Comparing themaximum number of variables in an ODwith the number of variables in the SOD constructed in
Theorem 3.2, one can observe that the maximum number of variables in an SOD over a signed group depends on the type of
signed group. Determination of the maximum number of variables in an SOD over different signed groups is an interesting
and challenging problem.

Craigen [3] showed that if there is SH(n, S) such that S admits a remrep of degree m, then there is a Hadamard matrix of
ordermn, wherem is the order of a Hadamard matrix. Following his lead, Ghaderpour [8,9] showed the following theorem.

Theorem 3.3 ([8, Theorem 6.26]). If there is SOD
(
n; u1, . . . , uk, S

)
such that S admits a remrep π of degree m, then there is

OD
(
mn; mu1, . . . ,muk

)
, where m is the order of a Hadamard matrix.

Using the remrep from SC to SP2 defined in [8,9], we have the following corollary.

Corollary 3.1. If there exists COD
(
n; u1, . . . , uk

)
, then there exists OD

(
2n; 2u1, . . . , 2uk

)
.

Craigen, Holzmann and Kharaghani in [4] showed that if g1 and g2 are complex Golay numbers and g is an even Golay
number, then gg1g2 is a complex Golay number. Using this fact, they showed the following theorem.

Theorem 3.4. All numbers of the form m = 2a+u3b5c11d13e are complex Golay numbers, where a, b, c, d, e and u are non-
negative integers such that b + c + d + e ≤ a + 2u + 1 and u ≤ c + e.

Following similar techniques to [12], we show the following theorem.

Theorem 3.5. Suppose that r is a Golay number, and k1, k2, . . . , k2n−3−1 are complex Golay numbers, where n > 2. If
m = 2

∑2n−3
−1

j=1 kj + r + 1, then there is

COD
(
2qm; 2q, 2qr, 2q+1k1, . . . , 2q+1k2n−3−1

)
,

where q = 2n−1
+ n − 1.

Proof. Let n be a positive integer greater than 2. Suppose that H is a Hadamard matrix of order 2n−2, (A; B) is a Golay pair of
length r , and

(
C (j)

;D(j)
)
is a complex Golay pair of length kj

(
1 ≤ j ≤ 2n−3

− 1
)
. Let m = 2

∑2n−3
−1

j=1 kj + r + 1. Consider the
following two symbolic arrays:

E =

(
y, x1C (1), . . . , x2n−3−1C

(2n−3
−1), zA, x2n−3−1C

(2n−3
−1)

R
, . . . , x1C

(1)
R

)
,

F =

(
y, x1D(1), . . . , x2n−3−1D

(2n−3
−1), zB, x2n−3−1D

(2n−3
−1)

R
, . . . , x1D

(1)
R

)
,

where the xj’s, y and z are commuting variables. Let e be the 2n−2-dimensional column vector of ones. At this point, the
sequences A, B, C (j)’s and D(j)’s are treated as scalars, so E and F can be seen as row vectors of dimension 2n−2, and so eE and
eF are square matrices of order 2n−2 whose entries are these sequences multiplied by the variables. Let ⊙ denote entrywise
multiplication. For each j, 1 ≤ j ≤ 2n−2, let Ej and Fj be the circulant matrices of order m whose first rows are the expanded
jth rows of eE ⊙ H and eF ⊙ H , respectively. In other words, the rows of eE ⊙ H and eF ⊙ H have a similar form as the
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arrays E and F in which expanding the sequences A, B, C (j)’s and D(j)’s results in row vectors of dimensionm. It can be verified
(see [12]) that

2n−2∑
j=1

(
EjE∗

j + FjF∗

j

)
= 2n−1

(
y2 + rz2 + 2

2n−3
−1∑

j=1

kjx2j

)
Im. (3)

For each j, 1 ≤ j ≤ 2n−2, let

E ′

j =
1
2

(
Ej + E∗

j

)
, E ′′

j =
i
2

(
Ej − E∗

j

)
, F ′

j =
1
2

(
Fj + F∗

j

)
, F ′′

j =
i
2

(
Fj − F∗

j

)
.

Note that the coefficients of elements of the E ′

j ’s, E
′′

j ’s, F
′

j ’s and F ′′

j ’s are in {0, ±1, ±i} because of the form of the arrays E and
F . Now it can be seen that the set

Ω =

{
E ′

j − E ′′

j , E
′

j + E ′′

j , F
′

j − F ′′

j , F ′

j + F ′′

j ; 1 ≤ j ≤ 2n−2
}

consists of 2n Hermitian circulant matrices. Moreover,

2n−2∑
j=1

((
E ′

j − E ′′

j

)(
E ′

j − E ′′

j

)∗
+
(
E ′

j + E ′′

j

)(
E ′

j + E ′′

j

)∗
+
(
F ′

j − F ′′

j

)(
F ′

j − F ′′

j

)∗
+
(
F ′

j + F ′′

j

)(
F ′

j + F ′′

j

)∗)
= 2

2n−2∑
j=1

(
E

′2
j + E ′′2

j + F
′2
j + F ′′2

j

)

=
1
2

2n−2∑
j=1

((
Ej + E∗

j

)2
−
(
Ej − E∗

j

)2
+
(
Fj + F∗

j

)2
−
(
Fj − F∗

j

)2)

= 2
2n−2∑
j=1

(
EjE∗

j + FjF∗

j

)
from (3)

= 2n
(
y2 + rz2 + 2

2n−3
−1∑

j=1

kjx2j

)
Im.

From Theorem 3.2, there is SOD
(
2n

; 1(2n), S
)
such that S admits a remrep of degree 22n−1

−1. By Theorem 3.3, there is

OD
(
2q

; 22n−1
−1

(2n)

)
, where q = 2n−1

+ n − 1. Replacing variables in this OD by the Hermitian circulant matrices in the
set Ω , one obtains the desired COD. □

Example 3.2. Using Theorem 3.5, we show that there is

COD
(
211

· 31; 211
· 1, 211

· 8, 211
· 22

)
.

Let e be the 4-dimensional column vector of all ones, (A; B) be a Golay pair of length 8, and (C;D) be a complex Golay pair of
length 11 as follows:

A = (1, 1, 1, −, 1, 1, −, 1), B = (1, 1, 1, −, −, −, 1, −),

C = (1, i, −, 1, −, i, i, −, i, i, 1), D = (1, 1, i, i, i, 1, 1, i, −, 1, −).

Let E =
(
y, xC, zA, xCR

)
, F =

(
y, xD, zB, xDR

)
and

H =

⎡⎢⎣1 1 1 1
1 − 1 −

1 1 − −

1 − − 1

⎤⎥⎦.

We have

eE ⊙ H =

⎡⎢⎣y xC zA xCR
y −xC zA −xCR
y xC −zA −xCR
y −xC −zA xCR

⎤⎥⎦ and eF ⊙ H =

⎡⎢⎣y xD zB xDR
y −xD zB −xDR
y xD −zB −xDR
y −xD −zB xDR

⎤⎥⎦.
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Let

E1 = circ
(
y, xC, zA, xCR

)
, F1 = circ

(
y, xD, zB, xDR

)
,

E2 = circ
(
y, −xC, zA, −xCR

)
, F2 = circ

(
y, −xD, zB, −xDR

)
,

E3 = circ
(
y, xC, −zA, −xCR

)
, F3 = circ

(
y, xD, −zB, −xDR

)
,

E4 = circ
(
y, −xC, −zA, xCR

)
, F4 = circ

(
y, −xD, −zB, xDR

)
.

Note that the first rows of the circulant matrices above have dimension 31, and we wrote them symbolically because of
space limitations. From each of the circulant matrices above, one obtains two Hermitian circulant matrices. As an example,
E3 is the circulant matrix with the following first row:(

y, x, ix, x, x, x, ix, ix, x, ix, ix, x, z, z, z, z, z, z, z, z, x, ix, ix, x, ix, ix, x, x, x, ix, x
)
,

where umeans−u. The following rows are the first rows of the supplementary Hermitian circulantmatrices E ′

3 =
1
2 (E3+E∗

3 )
and E ′′

3 =
i
2 (E3 − E∗

3 ), respectively:(
y, 0(11), z, 0, z, 0, 0, z, 0, z, 0(11)

)
,(

0, ix, x, ix, ix, ix, x, x, ix, x, x, ix, 0, iz, 0, iz, iz, 0, iz, 0, ix, x, x, ix, x, x, ix, ix, ix, x, ix
)
.

Therefore, E ′

3 + E ′′

3 and E ′

3 − E ′′

3 are the desired two Hermitian circulant matrices obtained from E3. Continuing this
process, one obtains 16 complementary Hermitian circulant matrices of order 31. Replacing these matrices with variables
in OD

(
211

; 27
(16)

)
obtained from Theorems 3.2 and 3.3, one finds

COD
(
211

· 31; 211
· 1, 211

· 8, 211
· 22

)
.

Remark 3.4. Themethod of constructing the COD above and the infinite family of CODs in Theorem3.5 is interesting because
it uses (complex) Golay pairs and circulant matrices. Moreover, these CODs have no zero entries. Applying Corollary 3.1 to
the COD above, one obtains

OD
(
212

· 31; 212
· 1, 212

· 8, 212
· 22

)
.

4. Other constructions for ODs using SODs

Suppose thatm = 22n−1
−1 for some n > 2. By Theorem 3.1, there is a set A =

{
Im, A1, A2, . . . , A2n−1

}
of pairwise disjoint

anti-amicable signed permutation matrices of order m. If we let A′
= A2n−3A2n−2A2n−1 and T ′

=
⟨
A′, A1, . . . , A2n−4

⟩
, then

clearly T ′
≤ T ≤ SPm, where T is the signed group in (1). Let

S ′
=

⟨
s, s1, . . . ,s2n−4 : s2 = 1, s2α = −1,

ssα = −sαs, sαsβ = −sβsα, 1 ≤ α ̸= β ≤ 2n
− 4

⟩
. (4)

It is easy to see that S ′
≤ S, where S is the signed group in (2). We define a map π : S ′

−→ T ′ by π (s) = A′ and π (sα) = Aα

for 1 ≤ α ≤ 2n
− 4 such that multiplication is preserved.

In the following example, we show how one can construct a full SOD over S ′ admitting the remrep π , which leads to a
full OD.

Example 4.1. In order to construct a full SOD of type (1, 1, 1, 9, 9, 11), wemay first construct a full SOD of type (1(8), 8, 8, 8).
To do so, first let n = 4 in signed group S ′ in (4) that admits a remrep of degree 27, and let

A =

[
s1 1
1 s1

]
, Is =

[
s 0
0 s

]
, Ps =

[
0 s
s 0

]
,

where s, s1 ∈ S ′, s2 = 1, s21 = −1 and ss1 = −s1s. It can be seen that A, Is and Ps are pairwise amicable. Also, let

B1 = I ⊗ I ⊗ Is ⊗ Is ⊗ Is, B9 = P ⊗ I ⊗ A ⊗ A ⊗ A,

B2 = I ⊗ I ⊗ Is ⊗ Is ⊗ Ps, B10 = I ⊗ P ⊗ A ⊗ A ⊗ A,

B3 = I ⊗ I ⊗ Is ⊗ Ps ⊗ Is, B11 = P ⊗ P ⊗ A ⊗ A ⊗ A.

B4 = I ⊗ I ⊗ Ps ⊗ Is ⊗ Is,
B5 = I ⊗ I ⊗ Is ⊗ Ps ⊗ Ps,
B6 = I ⊗ I ⊗ Ps ⊗ Is ⊗ Ps,
B7 = I ⊗ I ⊗ Ps ⊗ Ps ⊗ Is,
B8 = I ⊗ I ⊗ Ps ⊗ Ps ⊗ Ps,
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It can be easily verified that the Bi’s are supplementary pairwise amicable matrices. Using the relationships s = s, s1s = s1s,
ssαsβ = sαsβs, s1sαsβ = sαsβs1 and sαsβ = −sβsα for 2 ≤ α ̸= β ≤ 12, it can be verified that

∑11
i=1Bisi+1xi is

SOD
(
25

; 1(8), 8, 8, 8, S ′
)
such that S ′ admits the remrep of degree 27, where xi’s are commuting variables. Equating variables

in this SOD over S ′, one obtains SOD
(
25

; 1, 1, 1, 9, 9, 11, S ′
)
such that S ′ admits the remrep of degree 27. From Theorem 3.3,

one also obtains

OD
(
27

· 25
; 27

· 1(3), 27
· 9(2), 27

· 11
)
.

5. Discussion

Hadamard matrices, ODs and CODs have many applications in coding theory, cryptography, signal processing, wireless
networking and communications [13–15].We observed that Hadamardmatrices, ODs, CODs, SWs and SHs are specific SODs.
An SOD over a signed group other than SR or SC may also have applications in the areas mentioned above. As we showed
in Section 2, there exist types and orders in which there are no SODs of those types and orders. We also constructed some
interesting families of full SODs. Using some special signed groups and extensive algebra may result in constructing other
interesting families of full SODs and consequently full ODs and Hadamard matrices.
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