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A B S T R A C T

Optical flow estimation is a crucial task in computer vision that provides low-level motion information. Despite
recent advances, real-world applications still present significant challenges. This survey provides an overview
of optical flow techniques and their application. For a comprehensive review, this survey covers both classical
frameworks and the latest AI-based techniques. In doing so, we highlight the limitations of current benchmarks
and metrics, underscoring the need for more representative datasets and comprehensive evaluation methods.
The survey also highlights the importance of integrating industry knowledge and adopting training practices
optimized for deep learning-based models. By addressing these issues, future research can aid the development
of robust and efficient optical flow methods that can effectively address real-world scenarios.
. Introduction

Optical flow enables motion understanding by examining pixel dis-
lacements across a sequence of frames. This method estimates the 2D
rojections of 3D point motion on the camera plane, determining pixel
hifts between consecutive images in a sequence, and holds significant
mportance in computer vision thanks to its applicability to various
igher-level tasks that range from separating moving objects from back-
rounds (Brox et al., 2004a) to object identification and tracking (Bailer
t al., 2017) as well as approximating the three-dimensional structure
f a scene (Vedula et al., 1999).

The seminal formulation of optical flow has been proposed by Gib-
on (1950), but it took nearly three decades for the development of the
irst frameworks capable of computing dense optical flow fields. Horn
nd Schunck (1981) proposed the first pioneering variational frame-
ork that minimizes an energy function composed of a data term and a

egularization term to ensure smoothness in the estimated motion field.
ver time, numerous approaches have been devised to improve the
ccuracy and robustness of the estimated flow field by incorporating
andcrafted features and strategies. Section 3 will review all these
dvances in detail.

While classical optical flow computation frameworks have made
ubstantial advancements, their application has often been limited
ue to the significant computational demands and constrained perfor-
ance (Shah et al., 2021). On the contrary, the advent of deep learning
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marked the beginning of significant progress. Deep learning models
can directly estimate optical flow from image pairs, overcoming the
need to use handcrafted features that are often too expensive to extract
and poorly generalizable, thus introducing important improvements
in both accuracy and computational efficiency (Ilg et al., 2017). In
this respect, FlowNet (Fischer et al., 2015) represented a pioneering
optical flow deep learning model. Following this approach, Ilg et al.
(2017) enhanced the FlowNet by stacking multiple modules, leading
to the creation of FlowNet 2.0. This marked a significant milestone
as it was the first instance where a deep learning model exceeded the
performance of classical algorithmic methods.

Interestingly, the integration of classical methods with deep learn-
ing has proved to be a promising direction. In fact, classical methods
still play a fundamental role in modern advancements and continue
to stimulate innovation in this field (Shah et al., 2021; Savian et al.,
2020). For instance, Ranjan and Black (2017) combined the traditional
spatial-pyramid framework with deep learning, resulting in a model
that matched the effectiveness of FlowNet (Fischer et al., 2015) but
with a remarkable 96% reduction in the number of parameters. From
here, Sun et al. (2018) further incorporated classical techniques such as
pyramidal processing, warping, and cost volume calculations to create
PWC-Net. This model outperformed FlowNet 2.0 with a significantly
smaller architecture, approximately 17 times lighter. Similarly, Hui
et al. (2018) have introduced a network (LiteFlowNet) which, by
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combining pyramid processing with flow regularization, maintains a
comparable accuracy despite being 30 times smaller than FlowNet 2.0
and 1.36 times faster. Moreover, in addition to augmenting model
performance, embedding optical flow knowledge into neural network
algorithms opens up the way for unsupervised and semi-supervised
training methods, thereby reducing the dependence on labeled data (Tu
et al., 2019; Dobrički et al., 2022b; Yu et al., 2016)

The enormous development of these methodologies has led to vari-
ous surveys, each focusing on different aspects of the field. Fortun et al.
(2015) present a survey on classical optical flow computational frame-
works, (Shah et al., 2021), (Tu et al., 2019), and (Savian et al., 2020)
discuss both classical and neural network-based methods. Dobrički
et al. (2022b) concentrate on unsupervised learning methods, Zhai et al.
(2021) explore optical flow alongside the broader concepts of 2.5D and
3D scene flow. Guney et al. (2018) outline various fields of application,
and Mathur (2020) provide an extensive survey of optical flow datasets.
Previous surveys have thoroughly examined the theoretical foundations
of optical flow methods, but a crucial gap remains in understanding
the practical challenges encountered in real-world scenarios. While
modern deep learning-based approaches often excel on standardized
benchmarks, their effectiveness in diverse real-world settings remains
uncertain. To bridge this gap, this survey systematically investigates
the most representative challenges involved in optical flow compu-
tation, providing insights into developing more robust and adaptable
models. Recognizing the demand for real-time computation in many
applications, we examine classical and current strategies to accelerate
processing while maintaining performance. In this survey, we also take
into account the added challenges presented by training and assessing
deep learning models. Acquiring real-world data with accurate optical
flow ground truth is a current challenge, often leading researchers to
depend on generic synthetic datasets. However, these datasets often
struggle to effectively transfer knowledge to real-world, task-specific
situations. To address this limitation, our literature review provides
the largest collection of large optical flow datasets to date, helping
researchers identify the most suitable datasets for their needs. Addition-
ally, the black-box nature of deep learning models can raises concerns
about their evaluation, particularly in relation to specific challenges
and project needs. This survey directly addresses these concerns, pro-
viding insights into evaluating performance in the context of real-world
applications.

The rest of this work is organized as follows: in Section 2, we first
go over some important optical flow methods and identify the most
important applications of optical flow, presenting a large collection of
examples. In Section 3, we explore the main problems faced in optical
flow computation, such as occlusion, large displacements, changes in
light, and computational constraints, while also presenting the main
methods used to deal with these problems, focusing on the assumptions
and strategies used in classical approaches. In Section 4, we go into
the process of evaluating methods of computation, providing a detailed
analysis of both traditional and advanced ways to measure perfor-
mance. In Section 5, we present the most comprehensive collection
of optical flow datasets by the knowledge of the authors. Lastly, in
Section 6, we look at potential future research directions in optical flow
computation and bring up some unanswered questions in the optical
flow literature and its application to real-world situations, and draw
our conclusion in Section 7.

2. Preliminaries

In this section, we review the evolution of the leading optical
flow techniques from classical algorithmic methods to transformer-
based deep learning models and discuss the most relevant fields in
which these techniques have been applied. To guarantee a complete
overview of the main aspects raised by previous studies, in Section 2.1,
we will retrace the evolution of optical flow methods, providing an
overview ranging from variational methods to transformer-based mod-
els. Subsequently, in Section 2.2, we will see the most relevant fields
of application for optical flow.
 𝐼

2

Fig. 1. Depiction of the aperture problem. Upper row: Actual movement of the purple
rectangle. Lower row: Perceived movement of the purple rectangle on the smaller area
(red), where only the horizontal component of the motion is evident. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

2.1. Progress in optical flow estimation techniques

The field of optical flow estimation has seen significant progress
since its introduction in the 1950s (Gibson, 1950). The assumption that
makes estimating these flow vectors possible is the brightness constancy
constraint, which states that the intensity of a pixel remains constant
as it moves. Formally, this is expressed as:

𝜕𝐼
𝜕𝑡

+ 𝑢 𝜕𝐼
𝜕𝑥

+ 𝑣 𝜕𝐼
𝜕𝑦

= 0, (1)

where 𝐼 represents the image intensity, 𝑢 and 𝑣 are the horizontal and
vertical components of the optical flow vector, and 𝜕𝐼

𝜕𝑡 , 𝜕𝐼
𝜕𝑥 , and 𝜕𝐼

𝜕𝑦 are
he temporal and spatial derivatives of 𝐼 .

However, this constraint alone introduces the so-called aperture
roblem, depicted in Fig. 1, arising from the inherent ambiguity in
etermining an object’s motion based solely on information observed
ithin a small local region (i.e., the ‘‘aperture’’). Specifically, attempt-

ng to solve for both 𝑢 and 𝑣 using only Eq. (1) results in an under-
etermined system. To resolve this ambiguity and obtain a well-posed
roblem, additional constraints or assumptions must be introduced.

Specifically, we can introduce two variational frameworks for com-
uting dense optical flow from consecutive frames: the global HS
ethod by Horn and Schunck (1981), which uses a global smoothness

onstraint, and the local LK method by Lucas and Kanade (1981),
hich instead introduce local constancy.

The HS method addresses the aperture problem and minimizes
istortions in optical flow by introducing a global constraint of smooth-
ess, which imposes smooth flow variation between neighboring pixels.
t formulates the optical flow as a global energy functional to be
inimized:

= ∬
[

(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)2 + 𝛼2(‖∇𝑢‖2 + ‖∇𝑣‖2)
]

𝑑𝑥 𝑑𝑦 (2)

here 𝐼𝑥, 𝐼𝑦, and 𝐼𝑡 are gradients of the image intensity along the x,
, and time dimensions, respectively, 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) form the optical
low vector at position (𝑥, 𝑦), 𝛼 is a regularization constant that controls
he balance between data fidelity and smoothness in the estimated
low, and ∇𝑢 and ∇𝑣 denote the spatial gradients of the optical flow
omponents.

In contrast, the 𝐿𝐾 method assumes that the flow is essentially
onstant in a local neighborhood and solves the optical flow equa-
ions for all pixels within that neighborhood. The brightness constancy
ssumption leads to the following equation:
𝑥(𝑝) ⋅ 𝑉𝑥 + 𝐼𝑦(𝑝) ⋅ 𝑉𝑦 = −𝐼𝑡(𝑝). (3)



A. Alfarano, L. Maiano, L. Papa et al. Computer Vision and Image Understanding 249 (2024) 104160

s

𝐴

Fig. 2. Relevant application fields of Optical flow estimation.
s
a
f
r
f
m
o
h
f
2
a
A
o
2

t
e

By aggregating data from nearby pixels (𝑞1, 𝑞2,… , 𝑞𝑛), the LK method
ets up a system of linear equations 𝐴𝑣 = 𝑏:

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)
𝐼𝑥(𝑞2) 𝐼𝑦(𝑞2)

⋮ ⋮
𝐼𝑥(𝑞𝑛) 𝐼𝑦(𝑞𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑣 =
[

𝑉𝑥
𝑉𝑦

]

, 𝑏 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝐼𝑡(𝑞1)
−𝐼𝑡(𝑞2)

⋮
−𝐼𝑡(𝑞𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

. (4)

As this system is generally overdetermined, the LK method uses the
least squares principle, solving for 𝑣 as:

𝑣 = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏. (5)

Despite these fundamental contributions, the Horn-Schunck and
Lucas-Kanade methods introduce several challenges in handling com-
plex scenarios, leading to continued research and advancement in op-
tical flow estimation techniques. For example, the (Brox et al., 2004a)
method integrated high-order pyramid smoothness constraints to pre-
serve motion boundaries and improve optical flow estimation in com-
plex scenes. Another example is DeepFlow (Weinzaepfel et al., 2013)
and EpicFlow (Revaud et al., 2015), which combine traditional varia-
tional frameworks with matching by correspondence to estimate mo-
tion displacement between two consecutive frames. They work by first
analyzing the features that make up the input frames and then by
matching the correspondence (Shah et al., 2021).

The advent of deep learning led to the development of FlowNet (Fis-
cher et al., 2015), which introduced two groundbreaking architectures
for optical flow estimation: the FlowNet-S and the FlowNet-C. These
architectures are based on the encoder–decoder’s U-Net (Ronneberger
et al., 2015) structure and facilitate efficient feature extraction and mo-
tion estimation. The FlowNet 2.0 (Ilg et al., 2017) builds upon the orig-
inal FlowNet architecture by stacking multiple FlowNet sub-networks
and registered a significant improvement in state of art accuracy,
although its application remains challenging in resource-constrained
environments (Hui et al., 2018). Differently, the SPyNet (Ranjan and
Black, 2017) architecture offered a compact network for optical flow
estimation, combining the coarse-to-fine approach of traditional meth-
ods with deep learning techniques. Despite its reduced size, its accuracy
and ability to handle large motions were limited compared to FlowNet
2.0. The PWC-Net (Sun et al., 2018) proposed a modified spatial
pyramid network for optical flow estimation, integrating traditional
stereo matching, feature extraction, and cost volume with deep learning
techniques. The RAFT (Teed and Deng, 2020) network introduced
an innovative method using recurrent all-pairs field transforms and a
recurrent update operator, deviating from traditional spatial pyramid
networks and offering a unique perspective on optical flow estimation.

With the growing prominence of transformers in computer vision
tasks, their application to optical flow computation presents exciting
prospects (Vaswani et al., 2017). Transformer-based optical flow mod-
els, such as FlowFormer (Huang et al., 2022), utilize self-attention
mechanisms to capture long-range dependencies and spatial relation-
ships between pixels, which is essential for accurate optical flow esti-

mation. s

3

2.2. Fields of application

This section discusses the most relevant applications of optical flow,
as summarized in Fig. 2.

Recognition and Classification. Optical flow provides valuable
information for recognition and classification tasks. For example, Zeng
et al. (2023) conducted a comprehensive survey on the use of optical
flow for micro-expression recognition, emphasizing the potential of
optical flow in detecting subtle facial movements essential for emotion
recognition and human–computer interaction. Similarly, optical flow
methods have been applied in Deepfake detection (Jiang et al., 2019;
Rössler et al., 2019) by analyzing inconsistencies in the temporal
changes of pixel intensities between consecutive generated frames. The
generation process can, in fact, introduce subtle discrepancies in the
motion of facial features (Li and Lyu, 2018; Sabir et al., 2019; Amerini
et al., 2019; Caldelli et al., 2021; Matern et al., 2019; Agarwal et al.,
2020). Ren et al. (2018) investigated the application of optical flow
in 3D action recognition, demonstrating the utility of optical flow in
extracting critical motion information from 3D skeletal data. This inte-
gration results in more accurate and robust action recognition across
diverse scenarios. Finally, Agarwal et al. (2016) reviewed the role
of optical flow in enhancing the robustness and efficiency of moving
object detection. They demonstrated that incorporating optical flow
into the process could improve the detection and tracking of moving
objects in complex and dynamic environments.

Behavioral Analysis. Optical flow techniques have found appli-
cations in crowd analysis, providing insights into crowd dynamics
and behavior (Kajo et al., 2015). Additionally, optical flow has been
employed for the detection of abnormal or violent behavior in crowd
settings, contributing to improved safety and security measures (Huang
and Chen, 2014; Gkountakos et al., 2020).

Medical Applications. Optical flow techniques have been exten-
ively applied in the medical domain, contributing to various diagnostic
nd therapeutic processes. For instance, researchers have used optical
low to predict infantile cerebral palsy by analyzing motion patterns in
ecorded movements (Stahl et al., 2012). Moreover, the optical flow has
acilitated neural investigations (Huang et al., 2016) and the measure-
ent of strain in myocardium tissue (Xu et al., 2010). The assessment

f organ movements and dynamics is another area where optical flow
as shown significant potential. Researchers have employed optical
low for the examination of the vocal tract (Andrade-Miranda et al.,
018), the evaluation of the respiratory system (Benameur et al., 2017),
nd the study of other organ dynamics (Angelini and Gerard, 2006).
dditionally, optical flow has been instrumental in compensating for
rgan movements during magnetic resonance therapy (Zachiu et al.,
015).
Robot Navigation. Optical flow has emerged as a fundamental

echnique for mapless robot navigation, playing an important role in
stimating the direction and velocity of a robot as it moves from its

tarting point to a target destination. The inspiration for employing
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Fig. 3. Challenges faced during optical flow estimation and related relevant methods.
optical flow in robot navigation stems from the observation of bees’ fly-
ing behavior, where they navigate complex environments using visual
motion cues. Optical flow has been successfully implemented in vari-
ous scenarios, such as Unmanned Aerial Vehicles (UAVs) and robotic
navigation systems (Chao et al., 2014, 2013). For instance, Editya
et al. (2022) demonstrated the utility of optical flow in drone collision
estimation, improving the safety and reliability of UAV operations in
crowded or dynamic environments. Additionally, Raudies and Neu-
mann (2012) explored the use of optical flow for ego-motion estima-
tion, which is vital for understanding the robot’s movement relative to
its surroundings and adjusting its trajectory accordingly.

Enhancing and Post-Processing. Image interpolation and super-
resolution necessitate precise and detailed pixel alignment. Optical flow
techniques have been employed in various image-enhancing and post-
processing pipelines. Optical flow is used for motion compensation in
video super-resolution (Tu et al., 2022a) (Makansi et al., 2017) and
video segmentation (Anthwal and Ganotra, 2019; Xiao and Lee, 2016).
Some video super-resolution methods used optical flow to improve
surveillance recordings (Tu et al., 2022b; Lin et al., 2005). Additionally,
optical flow has been utilized for video denoising purposes, resulting in
enhanced image quality (Fassold, 2022).

Frames Interpolation. Optical flow can be used in general for
Image Interpolation of two consecutive images in an image sequence
(Chen and Lorenz, 2012). For example, it has been utilized for 3D
reconstruction from monocular sequences, enabling the creation of
detailed 3D models from 2D image data (Zhang et al., 2016)

Physical Applications. Optical flow has emerged as a valuable
tool for estimating fluid dynamics, providing non-intrusive measure-
ments that do not alter the flow patterns (Osman et al., 2016; Mendes
et al., 2022). This non-contact approach enables the analysis of various
fluid systems, even in complex and challenging environments. For
instance, Osman and Ovinis (2020) reviewed the application of optical
flow methods to estimating oil spill flow rates in intricate deep-water
settings. In another application, Radhakrishnan et al. (2017) focused on
river flow measurement using video recordings of the water surface,
eliminating the need for in-situ measurements and making it partic-
ularly suitable during flood events. Finally, Ghalenoei et al. (2014)
employed optical flow techniques to estimate sea surface currents.

Object Tracking. Optical flow can be used for object tracking in
various applications (Yin et al., 2016; Husseini, 2017). By estimating
the displacement of the tracked object between consecutive frames,
optical flow enables the accurate determination of the object’s position
and movement over time (Agarwal et al., 2016).
4

3. Challenges and strategies

From the initial formulation of optical flow in 1950 (Gibson, 1950),
it took almost three decades to develop the first computational frame-
work (Horn and Schunck, 1981). The difficulties associated with optical
flow estimation are mainly due to several challenges that estimation
systems must efficiently address to be applied in the real world. Fig. 4
gives an overview of those challenges on MPI-Sintel (Butler et al., 2012)
a popular animation benchmark created for replicating such challenges
in a controlled environment. For example, changes in a scene’s light-
ing conditions can change the brightness of displaced pixels without
implying actual motion, leading to incorrect matches. Furthermore, it
is not uncommon in real-world settings for one object to be partially
hidden behind another, making it impossible to establish a direct pixel
match. Additionally, optical flow methods must demonstrate resilience
to noise and other imaging artifacts in real-world data.

All these challenges need to be addressed not only effectively but
also efficiently. Optical flow, which provides low-level motion informa-
tion for high-level vision tasks, is often used in vision pipelines where
fast response times, minimal resource usage, and real-time processing
are crucial requirements.

Before the advent of end-to-end computation enabled by Neural Net-
works (NNs), these estimation challenges were managed using meticu-
lously crafted features and strategies grounded in domain knowledge.
These approaches necessitated a profound understanding of the prob-
lem and its efficient integration into an algorithmic framework. In this
section, we examine these significant challenges and suggest a few
notable methods, as depicted in Fig. 3. In Section 3.1, we discuss the
large displacement challenges, i.e., the difficulty in estimating correspon-
dences between objects that are far apart due to rapid motion on the
image plane. In Section 3.2, we address the problem of occlusion, that
is, the complexity of estimating correspondences between obscured or
hidden parts of objects. Section 3.3 focuses on the illumination variation
challenge, which concerns the struggle to estimate optical flow while
maintaining robustness to the varying illumination conditions of the
scene. Finally, Section 3.4 covers the difficulties in creating methods
that can withstand variations in the input frames (like noise) or that
can self-detect failures in their predictions, such as unrealistic motion
models or smoothed discontinuities in the optical flow maps.

3.1. Large displacement

Handling large displacements is a critical issue in real-world optical
flow applications, arising from factors such as rapidly moving objects,
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Fig. 4. Representation of some challenges faced during optical flow estimation on the MPI-Sintel benchmark (Butler et al., 2012), with actual ground truth provided. (A) Large
Displacement: Fast-moving objects causing displacements, creating difficulties in finding correspondences. (B) Occlusion: Objects in the scene blocking each other, leading to missing
or ambiguous flow information. (C) Illumination Variation: Changes in lighting conditions affecting the consistency of flow estimation. (D) Outliers: Presence of motion blur and
fog potentially introducing noise and inaccuracies in flow calculation.
low frame rates, and objects that are close to the camera. Establishing
correspondences between distant pixels is a complex task, and many
high-performing classical methods have developed strategies to ad-
dress large displacements. The importance of managing large displace-
ments is also remarked by the characteristics of well-known benchmark
datasets such as KITTI (Geiger et al., 2012) and MPI-Sintel (Butler
et al., 2012), which often feature vast pixel displacements, sometimes
exceeding 100 pixels.

Coarse-to-Fine Pyramidal Methods. Coarse-to-fine pyramidal
methods, popularized by Brox et al. (2004a), serve as a crucial tool for
dealing with large displacement scenarios in optical flow computation.
The approach calculates optical flow at multiple resolution scales,
starting from a downsampled, lower-resolution version of the original
frames. This allows for the initial capture of large motion vectors in a
much easier and computationally efficient manner due to the reduced
image complexity. This coarse match provides a rough estimate of the
flow field and serves as the starting point for iterative refinement. The
process then incrementally refines the match, using information from
coarser levels to guide the flow estimation at the finer scales. Pyramidal
Methods ensure that large displacements, which might be difficult
to capture directly at the original resolution, are taken into account
from the outset and refined over iterations. However, this method has
some drawbacks. As highlighted by Brox et al. (2004a), small objects
subjected to large displacements may become indiscernible at coarser
scales due to the blurring effects that are introduced by downsampling.
Furthermore, Xu et al. (2011) pointed out that even small displacement
motion could be affected by this issue. Overlaying layers of motion
at coarser levels can lead to inaccuracies and errors, which could
propagate and amplify as the computation proceeds at finer scales.
Pyramidal methods to handle large displacements are used in notable
neural networks like Raft (Teed and Deng, 2020) and PWC-Net (Sun
et al., 2018).

Correspondence Methods. Optical flow computation can be inter-
preted as discerning correspondences between points across frames dur-
ing motion-related shifts. Tu et al. (2019) details two main approaches
to this matching problem: (1) patch-based and (2) feature-based. The
patch-based approach, such as PatchMatch (Barnes et al., 2009), finds
matches between patches of two image regions. Another architecture

following this approach is DeepFlow (Weinzaepfel et al., 2013), which

5

provides robustness to large displacements and appearance changes by
leveraging information from surrounding pixels. On the other hand,
feature-based approaches like EpicFlow (Revaud et al., 2015) rely on
sparse matching algorithms to pinpoint correspondences between key
points in two images that are then interpolated to produce a dense opti-
cal flow field. Although effective on regions with unique characteristics,
these techniques can introduce ambiguities when applied to regions
with repetitive textures or lacking distinct features (Bailer et al., 2017;
Trinh and Daul, 2019). Furthermore, the exhaustive search between
all feature matches can be computationally expensive, presenting a
significant challenge for real-time applications or large datasets.

Several strategies have been proposed to enhance both the descrip-
tor and matching stages. These include (1) improving the initial esti-
mated motion field using the nearest neighbor field (Chen et al., 2013),
(2) using a regular grid as a heuristic to speed up the correspondence
search (Chen and Koltun, 2016), and (3) employing a hierarchical
tree approach (Bailer et al., 2019). DeepMatching (Weinzaepfel et al.,
2013) uses multiscale scoring of matches to overcome the lack of dis-
tinctiveness in small patches and weak textures. Finally, some studies
propose hybrid CNN-based matching techniques that leverage CNNs
for robust feature descriptors along with traditional matching search
algorithms (Bailer et al., 2017).

State-of-the-art deep learning models, including PWC-Net
(Sun et al., 2018), Raft (Teed and Deng, 2020), and effectively employ
correspondence-based methods using conventional cost volumes to
estimate the displacement between frame pixels.

3.2. Occlusion

Occlusion is a common occurrence in realistic scenes that can cause
errors in optical flow estimation. It arises when a pixel in one image
does not have a correspondence in the other image. This can be caused
when a moving point gets occluded behind an object due to camera
motion or self-occlusion due to an object changing its orientation.
Occlusion violates many of the classical optical flow assumptions and is
especially challenging when the scene also presents large displacement
between moving objects. Some of the most successful classical optical
flow methods utilize occlusion as supplementary evidence to compute
optical flow (Shah et al., 2021).
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Bidirectional Consistency. This technique is devised to tackle the
roblem of verifying the forward and backward flow between a pair of
rames, ensuring flow coherence in both directions within the realm of
ptical flow estimation (Jeong et al., 2022). By comparing the forward
low from the first frame to the second frame with the backward flow
rom the second frame to the first, inconsistencies can be effectively
dentified. If the consistency falls below a predefined threshold, the
lgorithm perceives the region as occluded. In addition, bidirectional
onsistency can aid in refining flow estimation by reducing the errors
nd ambiguities associated with occlusions (Bailer et al., 2019). This
ulminates in more reliable and precise motion estimations. Notably,
he state-of-the-art performance achieved by VideoFLows (Shi et al.,
023) is attributed to its utilization of a TRi-frame Optical Flow mod-
le (TROF), a technique that jointly estimates bi-directional optical
lows for three consecutive frames in videos, further enhancing the
nderstanding of complex motion patterns.
Features Exploitation. These methods detect occlusion by us-

ng frames and optical flow features (Tu et al., 2019). For instance,
picFlow by Revaud et al. (2015) uses edge information to refine
he flow, and occlusion is inferred from the mismatches between
he initial estimate and the refined flow. Differently, the Occlusion-
et (Dinesh Reddy et al., 2019) uses a graph encoder to classify

nvisible edges and a graph decoder network to correct the occluded
eypoint locations.
Occlusion Detection and Joint Prediction. Occlusion detection

nvolves three steps: (1) estimating the optical flow while disregarding
cclusion, (2) identifying occlusion areas using the (unreliable) esti-
ated optical flow, and then, (3) correcting the optical flow using the

omputed occlusion areas (Ince and Konrad, 2008). A modern variation
f this technique jointly computes occlusion maps and the optical flow
ields, sharing useful information during the calculations. Ince and
onrad (2008) propose a variational formulation capable of implicitly
etecting occlusion and extrapolating optical flow in occluded areas
sing anisotropic diffusion. The MaskFlowNet (Zhao et al., 2020) em-
loys an encoder–decoder architecture complemented by an additional
ask branch for occlusion prediction. The MirrorFlow network (Janai

t al., 2018) applies a symmetry constraint. This method is based on the
ssumption that a scene is observed from multiple viewpoints between
ifferent frames and that the motion between these viewpoints follows
piecewise rigid model. Finally, the OAFlow model (Wang et al., 2018)

ncorporates a photometric loss term and an occlusion regularizer in its
oss function to model occlusion explicitly by leveraging unsupervised
earning.
Energy Minimization and Regularization. This strategy leverages

nergy minimization methods that promote spatial continuity and regu-
arization terms that model occlusion (Zach et al., 2007). The main idea
s that the occlusion areas will introduce abrupt changes in the optical
low. Thus, energy minimization and regularization methods can be
sed to detect these changes and smooth out the flow in occluded areas.

.3. Illumination variation

Popular classical optical flow frameworks assume that the intensity
r brightness of a pixel remains constant between consecutive frames
n a sequence of images or a video (Horn and Schunck, 1981). This
lassical assumption is called 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (BCA),
nd in other words, when an object moves within the field of view,
he brightness of the object’s pixels is expected to stay the same
s it moves from one frame to the next. This simplifies the optical
low computational problem by estimating the displacements of the
ntensity pattern rather than the true motion of the pixels between
wo pictures. However, the motion of an object between frames is not
olely correlated to its brightness path. In real-world scenarios, changes
n lighting conditions are frequent due to factors such as the sun, the

louds, the transitions from lights to shadows, or moving a light source t

6

n front of a stationary object, which will produce changes in brightness
ithout moving any object in the scene.
Robust Feature Description. These approaches mitigate false

atches resulting from feature descriptors that are sensitive to illumi-
ation changes. Trinh and Daul (2019) propose a local illumination
hange model that mathematically verifies whether a descriptor is
nvariant or susceptible to illumination variations between images. The
ame work also introduces two general mathematical formulations,
hich can be applied to devise a range of new illumination-invariant
escriptors. Mohamed et al. (2014) suggest an illumination-robust
ptical flow method. In their approach, the data term of the variational
odel is extracted from texture features via the local directional
attern descriptor applied to two consecutive frames. The Histogram
f Oriented Gradients (HOG) descriptor (Dalal and Triggs, 2005) is
nother widely adopted method due to its invariance to changes in
llumination. HOG effectively encapsulates edge information and gra-
ient orientation within an image, making it well-suited for detecting
otion in various scenarios. Additionally, robust feature descriptors

ike the Scale-Invariant Feature Transform (SIFT) (Lowe, 2004) and
he Speeded Up Robust Feature (SURF) (Bay et al., 2006) have been
ncorporated into optical flow frameworks to overcome the problems
osed by illumination variation. Chen et al. (2023) introduce a log-
orrelation transform (LCT) descriptor which operates on feature maps
erived from a neighborhood of pixels to eliminates common illumina-
ion parameters shared by near pixels, thereby mitigating the impact of
omplex illumination changes. These descriptors not only show resis-
ance to changes in illumination but also to others alterations such as
mage scaling, rotation, and affine distortion, making them particularly
seful for increase robustness in optical flow methodologies.
Domain Change. These methods tackle illumination variations by

mploying photometric invariant domains. One commonly used tech-
ique is Structure-Texture Decomposition, also known as Cartoon De-
omposition. It segments the input image into structure and texture
egments (Xu et al., 2012; Aujol et al., 2006). This procedure assists
n differentiating between image components that are differentially
nfluenced by illumination changes. The final image is then synthe-
ized as a linear combination of these components, emphasizing the
exture component. Typically, additive illumination variations impact
he structure more significantly, leaving the texture component less
isturbed. However, this technique could potentially lose relevant in-
ormation, especially when brightness variations are absent. Wulff and
lack (2015) use Principal Component Analysis (PCA) to transition
he input frame into a smaller subspace represented by the most
elevant features. The dense optical flow field is then determined by
stimating the position in the PCA subspace that best accounts for
he sparse matches. Reformulating the problem within a physics-based
ramework, can be an effective method to face challenging illumination
ariations, as proposed by Liao et al. (2023). In this method, illumina-
ion variations are modeled using a linear brightness transformation,
ncorporating a multiplicative component to account for velocity diver-
ence and an additive diffusion component to mitigate the impact of
llumination changes. The resulting physics-based optical flow model
nder varying illumination (PBOFVI) is then solved through a two-
hase optimization procedure with a smoothness-sparsity constraint
o preserve motion discontinuities. Photometric invariant color spaces
an also be employed to manage illumination changes. Resilience dur-
ng brightness fluctuations is attained by performing a color channel
ransformation, which transforms input color images into a color space
here channels are invariant to illumination shifts. Investigated color

paces include HSV (Mileva et al., 2007), HSI (van de Weijer and
evers, 2004), normalized RGB (Zickler et al., 2008), and spherical

paces (Van de Weijer et al., 2005). Frequency filters are another
ethod that exploits the frequency domain to render the optical flow

omputation invariant to lighting changes. Fleet and Jepson (1990) in-

roduces velocity-tuned filters to extract flow components from varying
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spatial frequencies of the image. These filters can be applied concur-
rently to the image at different scales and orientations, leading to more
robust flow estimation. Laplacian filtering offers a solution to illumi-
nation invariance in optical flow estimation (Babaud et al., 1986). It
involves computing the Laplacian of the input images, i.e., the second-
order derivative in both spatial dimensions. The Laplacian emphasizes
areas with swift intensity changes, enhancing edges and dampening
low-frequency components related to gradual illumination changes. By
focusing on high-frequency image components, the Laplacian filter can
minimize the impact of illumination variations on optical flow estima-
tion, making it more robust to lighting changes. However, excessive
filtering might result in the loss of valuable information in areas with
subtle intensity gradients. Finally, census transform has attracted atten-
tion for its application in optical flow estimation (Zabih and Woodfill,
1994). This method generates a bit string representing the relative pixel
values in a patch compared to its center pixel. By ignoring absolute
intensity values and focusing solely on the neighborhood structure,
the Census signature demonstrates resistance to changes in lighting
conditions. Despite its effectiveness in outdoor settings and vehicular
driving scenarios, incorporating the Census transform into variational
optical flow proves complex due to its non-linear nature.

3.4. Outliers, discontinuities, and artifacts

Traditional optical flow estimation frameworks leverage several
assumptions to filter out outliers and augment the quality of the com-
puted optical flow map. Outliers, discontinuities, and artifacts pervade
two primary areas: the input frames and the estimated optical flow
field. The issues they cause can significantly deteriorate the quality of
optical flow estimation, making their effective management critical for
enhancing the accuracy and reliability of the optical flow estimation.

Pre-processing and post-processing in Optical Flow Estimation.
When judiciously applied, pre-processing and post-processing can both
mitigate noise and enhance frame structures (Sun et al., 2010), bol-
stering the accuracy of optical flow estimation (Tomasi and Manduchi,
1998; Sun et al., 2014).

In the realm of image pre-processing, the primary objective is to
suppress unwanted fluctuations in images. This reduction in variance
sets a stable foundation for subsequent algorithmic processes, ensuring
they operate under optimal conditions. A representative category of
such pre-processing techniques is the Gaussian filter, which has its
roots in the seminal works of Horn and Schunck (1981), which is
well known for its efficacy in blurring and noise reduction. Another
notable technique is the Partial Differential Equation (PDE) filters,
as described by Rudin et al. (1992). Differently, non-local filtering
focuses on a broader pixel search area. It enhances images by aver-
aging pixels with similar characteristics. This ensures noise reduction
without compromising vital details. This concept is well explained in
the work by Liu and Freeman (2010). At the forefront of modern
approaches, there is the Hybrid GBF and Gaussian filter (HGBGF)
proposed by Tu et al. (2014). This method seeks to sidestep the over-
smoothing tendencies of Gaussian kernels while preserving the intrinsic
structure of input frames within an efficient computational frame-
work. Frames pre-processing can also increase the efficiency of deep
learning models. Dobrički et al. (2022a) offer interesting insights.
Driven by the ambition to optimize the efficiency of deep learning
models, they carried out a comprehensive evaluation of image pre-
processing methodologies. Among their foremost recommendations for
pre-processing are grayscale representations, directional derivatives,
gradient norms, and Gaussian blurring.

Post-processing refining can significantly enhance the precision of
optical flow estimation. In fact, not only some apparent outliers can
be removed, but also some inaccurate flow components can be cor-
rected (Tu et al., 2014). Common techniques are Median Filtering (Sun
et al., 2010) and Bilateral Filter. The advantage of the latter is that

rather than focusing solely on noise reduction, it strikes a balance i

7

by preserving vital image edges. This dual focus on spatial prox-
imity and pixel value similarity ensures a comprehensive filtering
approach (Xiao et al., 2006). Unfortunately, excessive application of
post-processing filters could lead to unintentional outcomes, such as
the dreaded over-smoothing or the misdirection of flow information,
especially in occluded regions (Xiao et al., 2006). Recognizing these
potential pitfalls, the scientific community has proposed strategies for
meticulous tuning of denoising filter parameters (Sharmin and Brad,
2012). Tu et al. (2014) proposed Combined Post-Filtering (CPF), which
leverages flow edges and occlusion detection to refine the intermediate
flow field during the estimations, avoiding loose formations. Post-
processing flow refining can also be learned and performed by using
convolutional layers, as proposed by the LiteFlowNet model (Hui et al.,
2018). Embarking on a novel path, this solution incorporates a feature-
driven local convolution layer at each pyramid level. Tailored to sync
with the encoder, flow estimate, and occlusion probability map, this
approach has proven pivotal in addressing challenges like outliers,
discontinuities, and artifacts in optical flow estimation. Yet, one must
remain cognizant of the potential increase in model complexity this
innovation might bring, beckoning further exploration and research.

Segmentation. Integrating segmentation techniques into optical
low estimation has been recognized as an effective strategy to maintain
he integrity of flow discontinuities (Black and Anandan, 1996). This
s significant as it helps to preserve the accurate depiction of object
oundaries and motion within a scene, thus leading to more accu-
ate and robust optical flow estimates. Joint estimation-segmentation
odels, as proposed by Mémin and Pérez (1998) and Brox and Malik

2010), have proved very effective. These models employ a mix of
ocal smoothness and region-wise parametrization to preserve flow field
iscontinuities. In essence, they segment the image into distinct regions
nd then apply the optical flow estimation separately to each region,
hich allows for differing motion patterns across regions and better
reservation of discontinuities at the boundaries. Moreover, a multi-
cale approach that fuses segmentation and optical flow was introduced
y Nir et al. (2008). This approach utilizes global motion patterns to
uide segmentation and then refines the optical flow estimation with
he resulting segmentation. This method highlights the reciprocal ben-
fits of using segmentation and optical flow in conjunction, where each
an help refine the other to improve overall results. Layered representa-
ion provides another route for enhancing optical flow computation. A
otable development in this area is the localized layer model by Sevilla-
ara et al. (2016), which is particularly useful for semantic image
egmentation. This model treats the image as composed of several
ayers of objects or regions, each with its own motion pattern, which
an help provide more nuanced and detailed optical flow estimates.
owever, while these techniques provide a promising pathway for

mproved optical flow estimation, they are not without their challenges.
or instance, they often involve additional computational complexity
nd may require careful parameter tuning.
Prior Motion Statistics. The integration of natural motion statis-

ics can significantly enhance the performance of various computer
ision tasks, including optical flow estimation. A particularly effective
trategy involves the extrapolation of motion pattern statistics and
heir application to refine flow fields (Roth and Black, 2009). This
ethod contributes to reducing uniformity in areas marked by texture

nd discontinuities, improving the overall quality of the optical flow
stimate. Another efficient model that assists in achieving spatial uni-
ormity is the Field-of-Experts (Roth and Black, 2007), which utilizes an
nterconnected network of local image models to capture the statistical
ehaviors of natural scenes.

Maintaining temporal consistency is another critical aspect of accu-
ate optical flow estimation. This can be achieved using techniques like
alman filtering (KF) (Welch and Bishop, 1995), which is a predictive

iltering approach that incrementally refines estimates with each new
easurement, thus enhancing their accuracy over time. A notable

mplementation of this approach is the KalmanFlow 2.0 method by Bao
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et al. (2019). In this model, each pixel’s motion flow is treated as
a time-variant state vector and is optimally estimated by considering
both the measurement and system noise levels. This method leverages
the power of compact features derived from pre-trained convolutional
neural networks, which provide a rich, context-aware representation of
the image for improved estimation.

Using prior knowledge about motion statistics can lead to supe-
rior predictions in various real-world scenarios. For example, Leung
et al. (2011) applied this concept to medical tracking by incorporating
statistical models of cardiac motion into the optical flow framework.
Similarly, Chen et al. (2022) introduced a novel framework for complex
fluid flow estimation that combines an advanced optical flow method
with a joint motion model based on the Helmholtz decomposition
theorem. However, it is important to note that using prior motion
statistics is challenging. These might include potential inaccuracies in
the prior statistics, the computational complexity of some methods, or
the need for careful parameter tuning.

3.5. Computational constraints

The need for real-time processing in applications such as robotics,
autonomous vehicles, and augmented reality has made efficiency in
optical flow estimation a critical focus. This is especially important for
resource-constrained devices. Factors such as response time, memory
usage, and computational efficiency play a crucial role in determining
the overall performance and viability of an optical flow method. Tra-
ditional variational methods have explored various strategies to reduce
the computational demands of their iterative optimization procedures.
On the other hand, deep learning models offer a promising alternative
with their potential for parallel computation on GPUs, but they can be
hindered by large model sizes and complex architectures.

Pyramidal Warping Iteratively aligning one image with another
using the estimated motion from previous iterations (Brox et al., 2004b;
Bruhn et al., 2005) is a classical approach to reduce computational
requirements. This method begins with a coarse, low-resolution version
of the images to simplify the problem and facilitate a rapid initial
estimate. The process subsequently refines the flow field at progres-
sively higher resolutions, effectively reducing the search space and
employing a coarse-to-fine refinement strategy. For instance, SPyNet
reduces the complexity seen in earlier models like FlowNet (Fischer
et al., 2015) by 96% by employing warping at each level of a pyramid
structure. Rather than minimizing a classical objective function at each
level, SPyNet uses a convolutional network trained from coarse to
fine to predict incremental flow changes, thus ensuring displacements
remain minimal. DDVM (Saxena et al., 2023) employs a coarse-to-fine
approach, initially estimating flow across the entire field of view at a
low resolution and subsequently refining these estimates in a patch-
wise manner. This strategy mitigates the challenges associated with
training high-resolution diffusion models allowing the inference of high
resolution optical flow maps.

Approximated cost volumes. Cost volumes represent the matching
costs between pixels across frames for various displacement hypothe-
ses. While constructing a full cost volume remains computationally
prohibitive for real-world applications, several studies have introduced
the concept of ‘‘partial’’ cost volume estimation (Xu et al., 2017). This
method limits the search range, either at the window level (Hosni et al.,
2012) or globally (Barnard, 1989), incorporating explicit smoothness
assumptions to manage computational demands effectively.

Deep learning models such as PWCnet (Sun et al., 2018) and FD-
FlowNet (Kong and Yang, 2020) have integrated warping and partial
cost volume estimation to enhance computational efficiency. PWCnet
constructs a partial cost volume at each pyramid level and uses a warp-
ing layer to link different levels, thereby estimating large displacement
flows more effectively. FDFlowNet introduces a novel U-shaped net-
work architecture that integrates multi-scale warping information more

efficiently than traditional pyramid structures. LiteFlowNet (Hui et al.,
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Table 1
Comprehensive comparison of optical flow methods on the MPI Sintel Benchmark,
sorted by Clean (train) scores.

Method MPI-Sintel Parameters

Clean Final

VideoFlow 0.991 1.649 13.5M
DDVM 1.01 2.40 –
FlowFormer 1.16 2.09 18.2M
RAFT 1.61 2.86 5.3M
LRFlow 1.98 3.81 3.00M
LiteFlowNet3 2.99 4.45 5.20M
VCN-small 3.26 4.73 5.20M
LiteFlowNet2 3.48 4.69 6.42M
FDFLowNet 3.71 5.11 5.79M
FlowNet2 3.96 6.02 162.4M
EpicFlow 4.12 6.29 –
LiteFlowNet 4.54 5.38 5.37M
FastFlowNet 4.89 6.08 1.37M
PWC-Net+ 5.04 5.47 8.75M
PWC-Net-small 5.05 5.32 4.08M
DeepFlow 5.38 7.21 –
SpyNet 6.69 8.43 1.2M
FlowNetS 7.28 8.81 –
FlowNetC 7.42 8.43 –
HS 8.739 9.610 –

2018) and its successors (Hui et al., 2021; Hui and Loy, 2020) further
refine approximated cost volumes approach by employing a cascaded
flow inference method, which allows for early error correction and
efficient, accurate flow estimation. These networks utilize novel layers
to address challenges such as vague boundaries and outliers, improving
descriptor matching and enabling efficient short-range matching with
sparse cost volumes. The development of optimized optical flow losses,
such as the RCELoss (Fan and Cai, 2024), has demonstrated significant
potential in training more efficient deep learning models with fewer
parameters.

4. Evaluation methods and metrics

Accurate error metrics are paramount for precise comparison of
optical flow methods. Optical flow estimation’s efficacy is typically
gauged by the deviations between the estimated optical flow vectors
and the ground truth vectors. The two prevalent measures for this are
Endpoint Error (EPE) and Angular Error (AE). While traditional metrics
have provided foundational assessments, the increasing intricacy and
variety of real-world situations demand a more comprehensive evalu-
ation. This section illustrates the metrics that aim to provide insights
into the precision and adaptability of optical flow methodologies across
different scenarios.

The Endpoint Error (EPE) measures the average Euclidean distance
etween the estimated optical flow vectors and the ground truth vectors
or all pixels in the image. Formally:

PE = 1
𝑁

𝑁
∑

𝑖=1

√

(𝑢𝑖 − �̂�𝑖)2 + (𝑣𝑖 − �̂�𝑖)2, (6)

here 𝑁 is the total number of pixels in the image, 𝑢𝑖 and 𝑣𝑖 are the
orizontal and vertical components of the ground truth optical flow
ector at the 𝑖th pixel, respectively, and �̂�𝑖 and �̂�𝑖 are the horizontal
nd vertical components of the estimated optical flow vector at the 𝑖th
ixel, respectively.

Table 1 compares some key optical flow methods. We can appreciate
ow EPE can help to evaluate different model performances under the
PI Sintel dataset (Butler et al., 2012). The Clean and Final columns

ndicate different render passes used in the dataset.
The Angular Error (AE) quantifies the difference in orientation

etween the estimated and the ground truth optical flow vectors:

E = arccos

⎛

⎜

⎜

⎜

𝑓 ⋅ 𝑓 + 1
√

(𝑓 ⋅ 𝑓 + 1)(𝑓 ⋅ 𝑓 + 1)

⎞

⎟

⎟

⎟

, (7)
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where 𝑓 and 𝑓 represent the ground truth and the estimated optical
flow vectors, respectively, and 𝑓 ⋅ 𝑓 represents their dot product.
Although AE is well-suited for small displacements, it underestimates
large motions, making it less suitable for larger vectors. In contrast, EPE
is more appropriate for larger vectors and is more frequently employed
in contemporary research.

Such traditional metrics calculate the difference between the ground
truth and the estimated optical flow. While effective, these evaluation
methods offer a generic view and do not consider the specific challenges
of calculating optical flow. This limitation has inspired a new class
of better evaluation methods under challenging scenarios (Sun et al.,
2010). For instance, the MPI Sintel dataset (Butler et al., 2012) uses
traditional EPE and several additional metrics to assess model perfor-
mance under various conditions, particularly focusing on challenging
regions of input frames. MPI Sintel proposes the EPE unmatched metric,
which measures the error in regions visible in only one of two con-
secutive frames, while other metrics like d0-10, d10-60, and d60-140
measure EPEs within specific pixel distances from the nearest occlusion
boundary. Mehl et al. (2023) introduced an advanced expansion to the
MPI Sintel evaluation, incorporating new metrics to assess optical flow
estimation with rigid, non-rigid, and sky regions.

The evaluation of optical flow algorithms can also employ robust
measures like the Weighted Area Under the Curve (WAUC) (Richter
et al., 2017). WAUC calculates inlier rates for a range of thresholds
and integrates these rates, assigning higher weights to lower-threshold
rates. The thresholds and weights used are inversely proportional,
allowing for a more nuanced evaluation of the algorithm’s performance.
The KITTI-FL metrics (Cabon et al., 2020) provide a different approach,
deeming a pixel correctly estimated if the flow endpoint error is less
than three pixels or within 5% of the ground truth. This approach
illustrates how varying the evaluation criteria can expose different
strengths and weaknesses in optical flow estimation algorithms.

While the presented evaluation methods focus on minimizing the
numerical difference between the predicted flow and the ground truth,
exploiting the geometry of the motion can improve the evaluation. Fan
and Cai (2024) introduce the Random Epipolar Constraint Loss (RE-
CLoss), including geometric constraints derived from epipolar geometry
into the evaluation loss, shifting the emphasis from numerical accuracy
to more interpretable geometric consistency.

In conclusion, it is crucial to consider the specific scenario when
evaluating model performance. As we will discuss in Section 6, this
factor significantly impacts the performance of the model. Ultimately,
the definition of a unique framework for model evaluation remains
an open question, underlining the importance of multiple metrics in
modern benchmarks. As optical flow estimation continues to cater to
more intricate and specific application scenarios, the refinement of
these metrics and the development of new ones to better capture the
nuances of model performance become increasingly crucial.

5. Datasets

Optical flow pioneered the establishment of standard datasets in the
early days of computer vision, facilitating rigorous, quantitative evalu-
ations of a plethora of algorithms (Barron et al., 1994). As algorithms
and estimation techniques evolved, especially with the advent of deep
learning models, there emerged a pressing need for richer and more
nuanced datasets. These datasets not only aimed to offer improved
methodological comparisons but also to emulate the realism of diverse
real-world application scenarios.

During the infancy of this evolution, benchmarks were rather ele-
mentary, focusing predominantly on basic transformations like trans-
lations or rotations. These transformations were applied to either au-
thentic images or synthetic sequences with predefined motions. Yet,
as the field expanded, this foundational simplicity gave way to a
more intricate representation. Datasets evolved to mirror the chaotic

and unpredictable nature of real-world environments. Consequently,
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contemporary benchmarks adapted, encapsulating scenarios marked by
fluctuating lighting, pronounced displacements, abrupt changes, and a
host of other complexities inherent to real-world situations.

In this section, we provide an extensive collection of available
optical flow datasets. For every dataset discussed in the following
paragraphs, there is a comprehensive description of its resolution, an
exact breakdown of frames designated for training and evaluation, and
an emphasis on its multimodal attributes. These details are crucial as
they can inspire other computational pursuits, particularly in training
multifunctional models. Moreover, a special focus is given to datasets
supplemented with annotations like scene flow (Zhai et al., 2021),
disparity maps, occlusion maps, and depth maps, underscoring their
enhanced utility. For readers seeking a concise overview, a summary is
presented in Table 2.

General purpose. This collection of datasets caters to a range
of general-purpose computer vision tasks. We first introduce some
pioneering classical datasets that drive the progress of classical optical
flow methods, and after that, we will discuss some modern datasets.
The Yosemite dataset, as presented by Barron et al. (1994), is an early
exemplar of optical flow datasets and comprises synthetic images of a
mountainous landscape. It is the first optical flow dataset designed to
evaluate different methods over naturalistic images, and it is notable
for its variation in noise levels and inclusion of ground truth flow
fields. Another noteworthy dataset is UCL-Flow (Mac Aodha et al.,
2012), which contains real-world grayscale image pairs with known
camera motions. Its real-world image data makes it particularly well-
suited for evaluating optical flow algorithms in realistic conditions.
Middlebury (Baker et al., 2011) stands as a prominent optical flow
dataset, containing a blend of synthetic and real-world images complete
with ground truth flow fields. This dataset has garnered wide acclaim
and serves as a benchmark for optical flow algorithm comparisons.
Moving on, Flying Chairs (Fischer et al., 2015) is the first large dataset
designed for training deep neural networks. It takes a novel approach
by using synthetic image pairs of randomly arranged flying chairs.
This unconventional setup is specifically designed to offer ground truth
optical flow data for training and evaluation of optical flow algorithms.
Flying Chairs2 (Ilg et al., 2018) builds on the structure of the original
Flying Chairs dataset by retaining its foundational structure while
integrating additional modalities for more comprehensive evaluations.
FlyingThings3D (Mayer et al., 2016) diverges from flying chairs to
concentrate on intricate 3D shapes in motion. This synthetic dataset
includes an assortment of 3D objects and is not only equipped with
ground truth data for optical flow but also depth and disparity data.
Consequently, it is an invaluable resource for the development and
assessment of scene flow algorithms, which necessitate more intricate
data on object motion and depth in 3D space. EDEN (Le et al., 2021) is
a specialized multi-modal dataset containing outdoor scenes for nature-
oriented applications. Finally, SceneNet RGB-D (McCormac et al., 2017)
is a large-scale dataset that incorporates synthetic RGB-D images with
ground truth optical flow, depth, and object segmentation data. It is
versatile, supporting training and evaluation for a variety of computer
vision tasks, including optical flow estimation.

Animation. Datasets in the animation category are particularly
engaging as they tend to encompass imagery from animated films,
which are often rich in detail and complexity. A standout dataset in
this domain is the MPI-Sintel dataset (Butler et al., 2012), which is
constructed from sequences of the open-source 3D animated short film
Sintel. The realism in the sequences, coupled with the availability of
ground truth optical flow data, makes MPI-Sintel a great dataset for
optical flow algorithms. Notably, it features sequences with dynamic
illumination changes, large displacements, and occlusions, emulating
real-world scenarios, which is imperative for assessing the tenacity of
optical flow algorithms in real-life complexities. Contrasting MPI-Sintel,
the Monkaa dataset (Mayer et al., 2016) offers synthetic sequences
extracted from the animated movie Monkaa. Although it also provides
ground truth optical flow data, the synthetic environment is somewhat
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Table 2
Reviewed datasets. For each dataset, we summarize the most important aspects and available information.

Dataset name year Real world Scene FLow Disparity map Occlusion map Depth map Segmentation total frames Resolution

General porpuse Yosemite 1994 – – – – – – 15 316 × 252
UCL-Flow 2013 – – – – – – – –
Middlebury 2011 – – – – – – 72 640 × 480
Flying Chairs 2015 – – – – – – 22 872 512 × 384
Flying Chairs 2 2018 – ✓ – ✓ – – 22 872 512 × 384
FlyingThings3D 2016 – ✓ ✓ – – ✓ 26 066 960 × 540
EDEN 2020 – – ✓ – ✓ ✓ 300 000 480 × 640
SceneNet RGB-D 2017 – – – ✓ ✓ ✓ 5,000,000 320 × 240

Animation MPI-Sintel 2012 – – ✓ – ✓ ✓ 2194 1024 × 436
Monkaa: 2016 – ✓ ✓ – – ✓ 8591 960 × 541
Spring 2023 – ✓ ✓ – – – 6000 4k
Creative Flow+ 2019 – – – ✓ ✓ ✓ 134,000 1500 × 150

Driving/Urban KITTI2015 2015 ✓ ✓ – – ✓ ✓ 600 1242 × 375
Virtual KITTI 2016 – ✓ – – ✓ ✓ 21,260 1242 × 375
Virtual Kitti2 2020 – ✓ – – ✓ ✓ 21,260 1242 × 375
Driving (scene flow) 2016 – ✓ ✓ – – ✓ 4392 960 × 542
HD1k 2016 ✓ – ✓ – – ✓ 3563 2560 × 1080
SynWoodScape 2022 – – – – ✓ ✓ 80 000 1280 × 966
VIsual PERception (VIPER) 2017 – – – – – ✓ 250 000 1920 × 1080
City Scene 2022 – – – – – – 3468 –

Challenging Scene ChairsSDHom 2017 – – – – – – – 512 × 384
FlowDark 2020 – – – – – – 1200 –
FVR-600 2018 – – – – – – – 388 × 584
NUS-100 2018 ✓ – – – – – – 388 × 584
GOF (Gyroscope Optical Flow) 2021 ✓ – – – – – 2000 600 × 800

Human activities refresh 2018 – ✓ – – ✓ – 83 164 –
humanFLow 2019 – – – – – – 146 020 256 × 256
CrowdFlow 2018 – – – – – – 3200 1280 × 720
OmniFlow 2021 – – – – – – 23.653 2,048 × 2,048

Special cameras Equirectangular FlyingThing 2022 – – – – – – 2211 –
Flow360 2022 – ✓ – – ✓ – 4000 512 × 1025
EVIMO 2020 ✓ – – – ✓ ✓ – –
EVIMO2 2021 ✓ – – – ✓ ✓ 6000 640 × 480 and 2080 × 1552
SPIFT 2022 – – – – – – 55 000 –
PHM 2022 – – – – – – 25 100 –
eventVision-evbench 2016 – – – – ✓ – – –
SlowFlow 2017 ✓ – – ✓ – – 2560 × 1440 –

Dataset generators AutoFlow 2021 – – – – – – – –
Real flow 2022 – – – – – – – –
Arap_flow 2021 – – – – – – – –
more controlled than the MPI-Sintel dataset. This controlled setting can
be crucial for laying a solid foundation for understanding optical flows
before delving into more complex and unpredictable environments.
The Spring dataset (Mehl et al., 2023) introduces a different flavor by
concentrating on high-resolution synthetic image sequences. What sets
the Spring dataset apart is the complexity of motion it encompasses.
It is purpose-built for evaluating how well optical flow algorithms
can perform in areas with high levels of detail and to appraise their
proficiency in handling both rigid and non-rigid regions, as well as
sky regions. This dataset is particularly advantageous for analyzing
the versatility of algorithms in diverse settings. Lastly, the Creative
Flow+ dataset (Shugrina et al., 2019) carves a niche by including
artistic image sequences along with the usual ground truth optical
flow. Its main objective lies in evaluating optical flow algorithms
within the framework of non-realistic, artistic imagery. This departure
from traditional imagery poses fresh challenges and paves the way for
the application of optical flow algorithms in the burgeoning creative
industry. In a field that thrives on innovation, Creative Flow+ could
play a pivotal role in heralding novel applications and solutions.

Driving/Urban Environment. The datasets tailored for driving and
urban environments hold critical importance, especially considering the
rapid advancements in autonomous vehicle technology. Evaluating and
training optical flow algorithms under this setting can substantially
contribute to the safety and performance of autonomous systems as
they navigate through complex urban landscapes. A highly revered
dataset in this context is the KITTI2015 (Menze and Geiger, 2015),
which is designed with a specific focus on autonomous driving. It in-
corporates real-world stereo image pairs along with the corresponding
ground truth optical flow data, all captured from a moving vehicle.
The incorporation of real-world data renders KITTI2015 invaluable for
assessing algorithms in realistic driving conditions. On the synthetic
side, Virtual KITTI (Cabon et al., 2020) and Virtual KITTI 2 (Cabon
et al., 2020) serve as synthetic equivalents to the KITTI dataset. What is
distinctive about these datasets is that they allow evaluations of optical
flow algorithms under a plethora of weather conditions, lighting sce-
narios, and camera viewpoints. This sort of control over environmental
variables is instrumental in synthetic datasets as it permits thorough
assessments under diverse conditions that might not be feasible with
real-world datasets. The driving (scene flow) dataset (Mayer et al.,
10
2016) is another synthetic dataset that focuses on driving scenes.
It furnishes ground truth scene flow, depth, and optical flow data.
Its goal is to evaluate optical and scene flow algorithms in driving
contexts. Having depth information at hand is especially beneficial as it
provides insights into how algorithms respond to objects at varying dis-
tances. The HD1k dataset (Kondermann et al., 2016) distinguishes itself
through its high-resolution imagery. It comprises real-world sequences
captured at 1 K resolution and serves as a benchmark for evaluat-
ing how optical flow algorithms grapple with high-resolution images.
This is vital for detecting minute details in a scene. SynWoodScape
dataset (Sekkat et al., 2022) is another synthetic dataset that includes
images of densely populated urban settings with ground truth optical
flow. It targets the training and evaluation of optical flow algorithms
in scenarios characterized by dense urban traffic and constructions,
which require high levels of accuracy. Shifting the focus to visual
perception, the Visual PERception (VIPER) dataset (Richter et al., 2017)
is tailored for training and evaluating visual perception algorithms,
including optical flow. It encompasses synthetic image sequences with
ground truth data under a variety of environmental conditions, thus
allowing for an analysis of algorithm adaptation to different settings.
Lastly, the City Scene dataset (Li et al., 2022) is crafted to simulate
procedurally generated cityscapes and incorporates over 300 vehicles
with collision detection. With its subsets varying in complexity and
configuration, City Scene offers a wealth of resources for pre-training,
experimentation, and evaluation of algorithms in simulated urban en-
vironments. The inclusion of collision detection adds an extra layer
of realism and complexity, making it an excellent tool for developing
sophisticated navigation and detection algorithms.

Challenging Scenes. Addressing challenging scenarios is pivotal
for developing robust optical flow algorithms that can operate effi-
ciently under various conditions. Datasets that focus on challenging
scenes often target specific problems like untextured regions, low-
light conditions, or weather effects and help in creating algorithms
that are resilient to such adversities. ChairsSDHom (Fischer et al.,
2015) is a synthetic optical flow dataset that specifically targets the
challenges posed by untextured regions and small displacements. It
features random configurations of flying chairs that are meticulously
designed to mimic realistic scenarios. The deliberate avoidance of over-
fitting to any specific situation makes ChairsSDHom a versatile tool for
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understanding and overcoming the difficulties inherent in untextured
regions. FlowDark (Zheng et al., 2020) takes on the challenge of low-
light conditions. It is a low-light optical flow dataset synthesized by
simulating noise models on dark, raw images. This allows models to
learn optical flow directly from noisy, low-light images. Moreover,
FlowDark encompasses a wide gamut of exposure levels for benchmark-
ing purposes, enabling the training of models that are not only precise
in low-light conditions but also exhibit superior performance compared
to existing methods. FVR-600 and NUS-100 (Li et al., 2018) blend
real rain images with synthesized object motions to create a hybrid
dataset named FVR-660 with known ground truths. It consists of 660
sequences. In addition, the NUS-100 dataset contains 100 sequences
of real rain and real motion, with the ground truth obtained through
human annotation. These datasets are especially valuable for train-
ing optical flow algorithms to work effectively with rainy conditions,
which is a common and challenging weather condition for vision-
based systems. Finally, the GOF (Gyroscope Optical Flow) dataset (Li
et al., 2021a) is designed to assess optical flow algorithms that leverage
gyroscope data. It contains image sequences coupled with gyroscope
data and ground truth optical flow. The integration of gyroscope data
is significant as it provides additional information regarding camera
motion, which can be invaluable in scenarios where visual data alone
may be insufficient or unreliable.

Human Activities. When it comes to understanding and analyzing
human activities through visual data, optical flow algorithms play an
important role. Datasets that focus on human activities range from
capturing the subtle motions of a single individual to analyzing the
complex movements of crowds. These datasets are essential for appli-
cations such as action recognition, human–computer interaction, and
video surveillance. The Refresh dataset (Lv et al., 2018) contains real-
world image sequences along with ground truth optical flow data. It
is specially tailored for evaluating optical flow algorithms in video
inpainting and frame interpolation tasks. This dataset is particularly
beneficial for applications such as video editing and special effects,
where the accurate reconstruction of human movements is essential.
The HumanFlow dataset (Ranjan et al., 2018, 2020) comprises two
distinct datasets containing image sequences of single and multi-human
motion. These datasets provide ground truth optical flow, and they are
handy for studying and understanding the intricacies of human motion.
Whether it is the detailed movement of a single person or the complex
interplay of multiple individuals, HumanFlow serves as a rich resource.
CrowdFlow (Schröder et al., 2018) specifically targets crowded scenes,
containing image sequences of such scenes along with ground truth
optical flow. Evaluating optical flow algorithms on challenging crowd
motion is crucial for applications like crowd management and surveil-
lance, where understanding the dynamics of large groups of people
is key. The OmniFlow dataset (Seidel et al., 2021) introduces a dif-
ferent facet by focusing on household activities. The dataset contains
rendered images of various household activities and the corresponding
forward and backward optical flow. Such a dataset is particularly
valuable in developing smart homes and robotic applications, where
understanding and interpreting human activities within a household
setting is vital. Overall, these datasets are indispensable for developing
optical flow algorithms that are sensitive and responsive to human
movements and have diverse applications in many applications ranging
from entertainment to security.

Special Cameras. When developing new optical flow solutions,
it is crucial to take the diverse imaging technologies and camera
configurations into account. Specialized cameras, such as panoramic
cameras and event-based cameras, capture data in unique ways, and
corresponding datasets provide an opportunity to develop specialized
algorithms. The EquirectFlyingThings dataset (Li et al., 2022) is in-
spired by the FlyingChairs and FlyingThings3D datasets but employs
panoramic cameras to capture randomly distributed objects from Stan-
ford’s ShapeNet dataset. With a higher object count due to the use
11
of panoramic cameras, the dataset includes 300 rendered objects un-
dergoing random translations and rotations. It is ideal for algorithms
focused on panoramic imagery and contains sub-datasets with dif-
ferent quantities of image pairs. The Flow360 dataset (Shi et al.,
2022) contains 360-degree panoramic image sequences with ground
truth optical flow data. This dataset is specially designed for training
and evaluating optical flow algorithms on omnidirectional images,
and it is particularly useful for applications like virtual reality and
360-degree video processing. EVIMO (Mitrokhin et al., 2019) and
its updated version EVIMO2 (Burner et al., 2022) focus on event-
based cameras. These datasets contain event camera data along with
ground truth optical flow, which captures changes in the scene with
high temporal resolution and is ideal for high-speed and low-light
scenarios. The EVentVision-evbench (Barranco et al., 2016) aims at
evaluating both frame-free and frame-based optical flow methods in
visual navigation tasks. It contains synthetic and real scenes captured
with various sensors, including an event-based camera (DAVIS) and
RGB+Depth sensors. The dataset provides a comprehensive set of data,
including images, events, optical flow, 3D camera motion, scene depth,
and calibration procedures, facilitating rigorous algorithm evaluation.
SlowFlow (Janai et al., 2017) contains slow-motion video sequences
along with ground truth optical flow data. It is designed to evaluate op-
tical flow algorithms, specifically on slow-motion videos, which require
accurate motion estimation over long time intervals. The SPIkingly Fly-
ing Things (SPIFT) and Photo-realistic High-speed Motion (PHM) (Hu
et al., 2022) datasets are both tailored for research involving spiking
cameras. SPIFT captures high-speed and unpredictable scenarios, mak-
ing it valuable for testing algorithms in dynamic environments. On
the other hand, PHM contains structured high-speed scenes, offering
a controlled setting for validating the performance of algorithms with
spiking cameras. In conclusion, datasets created with special cameras
provide an opportunity to evaluate and develop optical flow algorithms
under unique conditions, including panoramic imaging, event-based
data capture, slow motion, and more. These datasets are crucial in
advancing the optical flow field, particularly in applications requiring
specialized imaging technologies.

Dataset Generators. Automating data generation can significantly
streamline the process of training and evaluating optical flow algo-
rithms. This approach allows for the creation of diverse and accu-
rate synthetic data that closely approximates real-world scenarios,
leading to improved generalization and performance. Among several
techniques, AutoFlow (Sun et al., 2021) is an automated system for
generating optical flow training data. This method employs learn-
able hyperparameters to control the motion, shape, and appearance
of objects within rendered scenes. The generated data can be used to
optimize the performance of optical flow models, helping to create al-
gorithms that are more robust and accurate. Arap_flow (Lê et al., 2021)
is another automatic data generative method. It extracts and matches
objects from video frames, calculates initial constraints, and applies
deformation to generate dense optical flow fields. This method allows
for the automatic creation of comprehensive optical flow datasets from
pre-existing video data. RealFlow (Han et al., 2022) takes a slightly
different approach, creating large-scale optical flow datasets from un-
labeled realistic videos. It estimates optical flow between video frames
and uses these estimates to synthesize new images and corresponding
flows. This method effectively transforms unlabeled video data into
valuable training data for optical flow algorithms. Finally, Kubric (Greff
et al., 2022) is an open-source Python framework that facilitates the
generation of high-quality, task-specific datasets. By interfacing with
PyBullet and Blender, it can produce photorealistic scenes with rich an-
notations, significantly streamlining the dataset generation process. In
conclusion, automated dataset generators such as AutoFlow, Arap_flow,
RealFlow, and Kubric enable more efficient and effective training of
optical flow models. By providing a means to rapidly generate diverse
and accurate training data, these methods foster the development of

more robust and sophisticated optical flow algorithms.
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6. Discussion

In 2018, Guney et al. (2018) raised the question is optical flow
solved?. At that time, the advent of deep learning in optical flow
estimation had already led to significant improvements in benchmark
datasets. For instance, Guney et al. (2018) reported a 92% accuracy in
the KITTI benchmark and an average endpoint error of fewer than 5
pixels in the Sintel benchmark.

The relevance of applying optical flow in real-world situations
persists, as challenges in these contexts often surpass those represented
in current datasets. Factors such as severe lighting changes, complex
motion patterns, occlusions, and texture variations can confound even
the most sophisticated models. Furthermore, the effectiveness of deep
learning models is often linked to the availability of large amounts of
data for training, which is not always possible in numerous applica-
tion scenarios. Furthermore, real-world applications require not only
precision but also computational efficiency, real-time performance,
and robustness. Thus, it is unsurprising that traditional variational
methods are still widely used and often more successful in real-world
applications, whereas the application of deep learning models remains
challenging.

This reminder of this section is structured as follows: In Section 6.1,
we explore how the availability of current data prevents the application
of state-of-the-art deep learning models in numerous real-world scenar-
ios. Finally, in Section 6.2, we suggest innovative research directions
that can enhance optical flow estimation in real-world applications.

6.1. Data availability for real-world applications

Deep learning for optical flow estimation is an exciting and rapidly
evolving field. This growth is largely fueled by the ability of algorithms
to effectively learn from large datasets, as shown by Fischer et al.
(2015). Unfortunately, one of the biggest limitations in the adoption
of deep learning in real-world applications lies in the deficiency of
domain-specific datasets. A thorough analysis of optical flow applica-
tions shows a considerable gap between its wide-ranging uses and the
availability of dedicated datasets. This disconnection poses a major
barrier to fully leveraging the power of contemporary optical flow
techniques in specialized fields. A clear example can be seen in areas
such as fluid dynamics and medical imaging (Trinh and Daul, 2019).
For example, in medical endoscopy imaging, optical flow algorithms
are expected to tackle challenges and features that are significantly
different from those encountered in the context of traditional datasets.
These include the need to handle surfaces that lack discernible features
and are laden with artifacts, the need to identify correspondences in
complex anatomical structures, and the need to conquer the challenges
posed by ground truth depth estimation (Yang et al., 2021).

The scarcity of domain-specific datasets has driven researchers to
explore alternative methods, often with suboptimal results. Custom
dataset creation is complex and limited (Mendes et al., 2022), while
synthetic data, though invaluable, often fails to capture real-world
photometric details, leading to a disconnect between synthetic and
real-world data distributions (Butler et al., 2012; Mayer et al., 2016).
Benchmark datasets like MPI-Sintel and KITTI are crucial for evaluating
optical flow models, but high performance on these benchmarks does
not guarantee generalization to other domains. Unsupervised models,
trained on abundant unlabeled video data, offer a solution by avoiding
training-test data mismatches. These models are training by regulariz-
ing prediction with domain knowledge assumptions like photometric
consistency, or smooth motion consistency (Dobrički et al., 2022b;
Jonschkowski et al., 2020). Representative model of this category are
DDFlow (Liu et al., 2019), which introduce self-supervised learning to
distil reliable predictions from a teacher network to guide a student
network in learning optical flow from unlabeled data and OAFlow (Li
et al., 2021b) uses photometric loss between the target image and

the warped subsequent image, while incorporating an occlusion map
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to improve accuracy by focusing the loss on non-occluded regions.
However, despite unsupervised methods are a promising direction,
unsupervised models still lag behind supervised ones (Jonschkowski
et al., 2020; Yin et al., 2022; Yang et al., 2021; Mocanu et al., 2021),
leaving room for improvements.

6.2. Future research directions

The field of optical flow estimation is on the brink of transformative
innovations that could overcome existing limitations and expand the
range of possibilities. As such, it opens the way to several promising
research directions.

Unsupervised learning has the potential to revolutionize optical
flow estimation by eliminating the need for labeled data. However, a
drawback is its generally lower accuracy compared to supervised learn-
ing. Jonschkowski et al. (2020) demonstrate how in-depth model inves-
tigation can lead to significant improvements, focusing on optimizing
photometric losses, occlusion estimation, self-supervision, smoothness
constraints, and other factors like pretraining, image resolution, and
data augmentation. While photometric losses have been explored for
training unsupervised methods, epipolar constraint loss functions like
RECLoss (Fan and Cai, 2024) could further enhance these methods with
more robust domain knowledge and reduce reliance on synthetic data.

Semi-supervised learning could offer a balanced solution, utilizing
labeled data where possible and supplementing it with insights gained
through unsupervised learning. This combination could lead to the
development of optical flow models that are both proficient and free
from data availability constraints (Yin et al., 2022).

As we develop more sophisticated models, the datasets that feed
them must also evolve. Automated dataset creation represents a future
where algorithms and computer-generated environments collaborate
to create custom datasets (Mayer et al., 2016). This approach brings
two significant benefits: it reduces resource demands and accelerates
the pace at which models can be improved. Crucially, it opens up
the possibility of creating datasets specific to niche application areas,
laying the groundwork for specialized optical flow models. Regardless
of how advanced our algorithms become, they cannot make up for a
lack of high-quality, realistic datasets. Thus, innovating data collection
techniques is essential. High frame rate cameras could be useful to
create new datasets with high realism (Janai et al., 2017) thanks to
their ability to capture detailed motion. These realistic datasets could
ensure that our models, while theoretically sound, can handle the
unpredictability and variety of real-world scenarios.

The Spring dataset (Mehl et al., 2023) provides a glimpse into the
evolution of benchmarks. In comparison to its predecessors like MPI-
Sintel, the Spring dataset distinguishes itself with its high resolution,
extensive range of scenes, and complex motion types. Additionally, its
highly detailed ground truth and its versatility for various tasks such
as scene flow, optical flow, and stereo make it an invaluable resource
for researchers. These realistic datasets could ensure the development
of models that can handle the unpredictability and variety of real-
world scenarios. Moreover, as models face diverse challenges like large
displacements, changes in lighting, and occlusions, the metrics used to
assess their performance need to adapt as well. The commonly used
End-Point-Error (EPE) loss tends to have a narrow focus in its evalua-
tion, often ignoring the relationship between image pairs and optical
flow (Savian et al., 2020). Transitioning towards more comprehensive
metrics that can holistically assess model performance against a range
of challenges is essential.

The way optical flow models are trained is just as important as
their architecture. Research has shown that even slight modifications
to training strategies can lead to significant improvements. For ex-
ample, reordering training data or adjusting training schedules can
boost performance by 20%–30% (Ilg et al., 2017), while including
geometric constraints on the loss terms can significantly improve per-

formance (Fan and Cai, 2024). This underlines the need to critically
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examine and innovate upon the training methodologies in use. Encour-
aging experimentation and analysis could reveal new strategies that
maximize performance without requiring more complex model archi-
tectures. Tools that automate certain aspects of model development can
play a key role in enhancing performance. Autoflow (Sun et al., 2021),
for instance, shows how automated tools can be used to fine-tune
popular deep learning models like PWC-Net and RAFT. By automating
repetitive and time-consuming tasks, researchers can concentrate on
more fundamental aspects of model development.

Lastly, diffusion models (Ho et al., 2020, 2022) have emerged as a
promising direction in computer vision (Croitoru et al., 2023), depart-
ing from traditional approaches and offering a unique perspective by
modeling the gradual transformation of data from noise to structured
images. This process is governed by a Markov chain of diffusion steps,
where each step progressively refines the image representation by
denoising the input. By learning to reverse this diffusion process, the
model gains the remarkable ability to generate high-quality images
from random noise. This shift in paradigm has yielded impressive
results in various domains, from generating photorealistic images of
faces and landscapes to synthesizing creative artwork. Saxena et al.
(2023) leverage diffusion processes, to enhances optical flow estimation
by capturing temporal consistency across image sequences. Its effec-
tiveness is demonstrated by its outperformance of traditional baselines
on various benchmarks, indicating both improved accuracy and ro-
bustness in diverse conditions. Future research can extend this work
by integrating the model into broader video processing frameworks,
potentially leading to advancements in video analysis, compression,
and enhancement.

7. Conclusion

Optical flow estimation has come a long way since its introduction.
Advances in deep learning have substantially improved its accuracy
and efficiency. However, current benchmarks and measurements limit
further progress and do not adequately represent real-world scenarios.
To advance the field, future research should focus on developing more
representative standards, refining evaluation metrics, and improving
pipeline design. By striking a balance between accuracy and resource
constraints, incorporating domain knowledge, and optimizing training
procedures, the computer vision community can drive the develop-
ment of more robust and efficient optical flow methods for real-world
applications.
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