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Abstract: The use of linear array pushbroom images presents a new challenge in photogrammetric
applications when it comes to transforming object coordinates to image coordinates. To address this
issue, the Best Scanline Search/Determination (BSS/BSD) field focuses on obtaining the Exterior
Orientation Parameters (EOPs) of each individual scanline. Current solutions are often impractical
for real-time tasks due to their high time requirements and complexities. This is because they are
based on the Collinearity Equation (CE) in an iterative procedure for each ground point. This study
aims to develop a novel BSD framework that does not need repetitive usage of the CE with a lower
computational complexity. The Linear Regression Model (LRM) forms the basis of the proposed
BSD approach and uses Simulated Control Points (SCOPs) and Simulated Check Points (SCPs). The
proposed method is comprised of two main steps: the training phase and the test phase. The SCOPs
are used to calculate the unknown parameters of the LR model during the training phase. Then, the
SCPs are used to evaluate the accuracy and execution time of the method through the test phase. The
evaluation of the proposed method was conducted using ten various pushbroom images, 5 million
SCPs, and a limited number of SCOPs. The Root Mean Square Error (RMSE) was found to be in the
order of ten to the power of negative nine (pixel), indicating very high accuracy. Furthermore, the
proposed approach is more robust than the previous well-known BSS/BSD methods when handling
various pushbroom images, making it suitable for practical and real-time applications due to its high
speed, which only requires 2–3 s of time.

Keywords: object-to-image transformation; pushbroom imagery; best scanline search/determination
(BSS/BSD); linear regression model (LRM); machine learning; photogrammetry

1. Introduction

Over the past few decades, linear pushbroom cameras have become increasingly
popular in various applications of remote sensing and photogrammetry [1], including
global and topographic mapping, environmental monitoring, change detection, geological
survey, target detection, and three-dimensional (3D) reconstruction [2,3]. Linear array
pushbroom cameras can provide high-resolution panchromatic or multispectral satellite
images with a wider field of view and high revisit frequency, making it easier to map at
different scales [4,5].

However, processing linear pushbroom images is more complex than processing
frame-type images [5–7]. In linear pushbroom imaging sensors, the two-dimensional
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(2D) image scene is the result of capturing sequential one-dimensional (1D) scanlines
at different instants in time, each of which has distinct Exterior Orientation Parameters
(EOPs) [8,9]. This dynamic imaging geometry complicates the process of transforming 3D
ground space to 2D image space [10,11]. Unlike frame-type images, where each image
has one set of EOPs, the position and orientation of the perspective center varies line-
by-line when using pushbroom images [12,13]. This variation in EOPs for each scanline
makes it challenging to determine the exact time of exposure required to achieve EOPs
for each ground point. This problem is called the Best Scanline Search/Determination
(BSS/BSD) and often known as determining the precise time of exposure [14,15]. The
EOPs of the corresponding scanline are required for Collinearity Equation- (CE) based
object-to-image transformation, which is unavailable for pushbroom images [16–18]. This
transformation process is fundamental in the geometric processing of linear pushbroom
images, including DTM generation [19], image matching [19], epipolar resampling [20],
stereoscopic measurements, and orthorectification [21,22].

A great deal of research has been undertaken on the topic of object-to-image space
transformation using pushbroom images, known as the Best Scanline Search (BSS). Several
methods have been proposed to solve this challenge, including the Sequential Search (SS),
the Bisecting Window Search (BWS) [23], the Newton Raphson (NR) [24], the Central
Perspective Plane (CPP) [25], the General Distance Prediction (GDP) [19], the Optimal
Global Polynomial (OGP) using the Genetic Algorithm (GA) [21], and the Artificial Neural
Network (ANN) [21].

In the SS, each ground point is back projected from the ground/object space to the
image space for the total number of image scanlines, and the value of the first component
of the CE is evaluated, such that if this value approaches zero or close to zero, the corre-
sponding scanline is deemed as the best scanline. The BWS has effectively diminished
the search space of the SS by successively halving the image space and incorporating the
first and last scanlines of the image in the assessment of the CE’s first component during
an iterative procedure until the best scanline is attained. The NR has been employed to
ascertain the root of the initial component of the CE, in accordance with the inherent char-
acteristics of linear array pushbroom images. Furthermore, this methodology necessitates
the application of the CE for each ground point throughout the iterative process. The
CPP is introduced for linear array aerial images, endeavoring to address the challenge of
identifying the best scanline by delineating the CPP corresponding to each ground point
through iterative process of geometric equations. Additionally, in the final stage, the CE is
utilized within the iterative process in accuracy improvement stage, albeit with a reduced
number of iterations. The GDP approach is based on the back-projection of each ground
point to image space through the CE by employing EOPs of the first scanline. Subsequently,
the GDP, which quantifies the spatial interval between the projected image point and the
first line of the image, is computed and employed for updating value via specific math-
ematical formulations. This iterative process persists until the predetermined stopping
criterion is satisfied, leading to the identification of the best scanline corresponding to
the ground point using linear interpolation. This approach operates through an iterative
framework involving multiple interpolations, thereby necessitating a moderate number
of computational resources. The determination of the best scanline within the framework
of the OGP and ANN is conducted through a three-step procedure. Initially, the BSS is
executed by utilizing many simulated points, thereby computing the estimated scanline
value. Subsequently, the ground points transferred from the object space to the image
space using estimated scanline value, and their accuracy are refined within the image space.
Following this, a model is established to relate the final scanline values calculated for the
aforementioned points in conjunction with the computed approximate value, so that it
can facilitate the application of this model to other points in the third step, devoid of the
necessity to transfer between the two spaces and independent of the CE. In the second
stage, both GA and ANN have been employed separately.
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However, all these methods except the OGP and ANN require consecutive complicated
iterations based on the CE with high computational cost, making them unsuitable for
practical applications due to low efficiency and high time consumption. Two non-iterative
BSD methods were proposed by the authors of [21] who suggested two distinct BSD
approaches regardless of using the CE. Although these methods provide proper accuracy
in less time compared to the previous methods, their accuracy and execution time will be
highly dependent on the GA and ANN parameters and procedure, and they also require a
number of control points called Simulated Control Points (SCOPs) in the training phase.

As the current solutions to solve BSS/BSD problems are still computationally de-
manding, time-consuming, and not feasible for real-time tasks, there is a need for faster,
non-iterative, and simpler BSS/BSD methods. Since Machine Learning (ML) methods
have the advantage of simplicity in implementation and higher accuracy [26], this paper
proposes a non-iterative, innovative, and fast BSD approach by taking a new look at the
regression model as one of the ML methods. This approach removes the necessity for
iterative search and the use of the CE in the BSD process, significantly reducing the time
required. Previous methods often involved iterative procedures or the need to use the CE,
resulting in high time consumption in the object-to-image space transformation process.
In contrast, the proposed single-step LRM offers high speed and requires very little time.
The proposed method involves two main steps: the training step and the test step. In the
training phase, a few SCOPs are used to obtain the regression model parameters. In the
test phase, the proposed method performs the BSD procedure of the other set of Simulated
Check Points (SCPs) through the defined regression model without any iteration of the CE,
resulting in a very short processing time. Ten pushbroom satellite images were employed in
the proposed method, and the results were used in performance evaluation. Furthermore,
the proposed method has been compared with some previous methods such as the BWS,
NR, OGP, and ANN.

The rest of this paper is organized as follows. The relevant mathematical models,
dataset description, and explanation of the proposed method are included in Section 2.
The experimental results and accuracy assessments are provided in Section 3. Further
discussion is given in Section 4. Finally, the conclusions are outlined in Section 5.

2. Materials and Methods

This section is dedicated to the explanation of the used datasets, the theoretical foun-
dations and the description of the proposed method. Figure 1 displays the proposed BSD
method’s flowchart. The proposed method based on a regression model has two main
steps. The first stage is the training stage of the model, which is performed by employing
SCOPs, and the second stage includes the evaluation of BSD using SCPs. Section 2.3
will provide additional explanations about the SCOPs and SCPs generation as well as the
proposed method description. An overview of the proposed method is given in Table 1
for clarification.

Table 1. An overview of the proposed method.

Mathematical Model Inputs Outputs

Preprocessing steps

Space resection • MPC model

• IOPs
• Image coordinates

of GCPs
• Ground coordinates

of GCPs

• EOPs of the scanlines for
the whole image

SCOPs and
SCPs generation

• The CE
• IOPs
• EOPs
• Mean height of the

study area

• Image and ground
coordinates of SCOPs

• Image and ground
coordinates of SCPs
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Table 1. Cont.

Mathematical Model Inputs Outputs

LRM–BSD steps

Training phase • LRM model
• Image coordinates

of SCOPs
• Ground coordinates

of SCOPs

• The fitted LRM model
for object-to-image
transformation

Testing phase • LRM model • Ground coordinates
of SCPs

• Image coordinates of
SCPs predicted through
the fitted LRM model

• Accuracy assessment
(RMSE, time, drmax) 
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Figure 1. The proposed BSD approach’s flowchart.

2.1. Dataset Description

As reported in Table 2, the experimental datasets include ten different satellite pushb-
room images acquired by various sensors including IKONOS, Pleiades 1A and 1B, Quick-
Bird, SPOT6, SPOT7, WorldView 1, and WorldView 2. A comprehensive selection of ten
images was made, illustrating a variety of sensor characteristics, including dimensions
and spatial resolutions, alongside disparate land cover and topographical conditions, such
as urban areas, flat terrains, agricultural regions, and combinations thereof, for a more
thorough assessment of the proposed BSD (see Figure 2). Specifically, the spatial resolution
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of these images exhibited a range from 0.5 to 6 m. It is noteworthy that all images utilized
in this research were supplemented by Rational Polynomial Coefficients (RPCs) files; the
necessary Ground Control Points (GCPs) were derived from these supplementary files.
Furthermore, elevation data for the GCPs as well as the average height of the study areas
were derived from the accessible Digital Elevation Model (DEM) resources.
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Table 2. Specifications of the experimental datasets.

Dataset Imaging Sensor Coverage Zone Spatial Resolution (m) Subset Size (Pixel)

SPI IKONOS Sao Paulo, Brazil 0.80 8300 × 8600
MP Pleiades 1A Melbourne, Australia 0.5 6000 × 7000
AP Pleiades 1B Annapolis, MD, USA 0.5 6057 × 5636
JQB QuickBird Jaipur, India 0.6 6000 × 6000
JS SPOT 6 Jaicos, Brazil 1.5 6200 × 6600
AS SPOT 7 Amsterdam, The Netherlands 1.5 5824 × 6616
CS SPOT 7 Curitiba, Brazil 6 2597 × 1463

BWV WorldView 1 Boulder, CO, USA 0.5 6000 × 6000
SWV WorldView 2 Sydney, Australia 0.5 6000 × 6000

SDWV WorldView 2 San Diego, CA, USA 0.5 3996 × 4015

2.2. The Collinearity Equation (CE)

From the photogrammetric point of view, the relationship between the 2D image space
and the 3D ground space is established using mathematical models [21,27]. The CE is a
well-known mathematical model based on the geometry of the image at the time of imaging,
which has been widely used for pushbroom images [4,28]. In the case of pushbroom images,
the extended CE can be expressed as Equation (1).

x = − f
ri

11(X−Xi
S)+ri

12(Y−Yi
S)+ri

13(Z−Zi
S)

ri
31(X−Xi

S)+ri
32(Y−Yi

S)+ri
33(Z−Zi

S)
= 0

y = − f
ri

21(X−Xi
S)+ri

22(Y−Yi
S)+ri

23(Z−Zi
S)

ri
31(X−Xi

S)+ri
32(Y−Yi

S)+ri
33(Z−Zi

S)

(1)

where (x, y) are 2D image coordinates of an arbitrary point, f is the focal length, (X, Y,
Z) are 3D ground coordinates of an arbitrary point, i refers to the scanline number, and
( Xi

S, Yi
S, Zi

S
)

and (ri
11, . . . , ri

33) are the positions of the perspective center in object space
and rotation matrix elements of rotation angles ω, φ and κ (EOPs), respectively.

According to Equation (1), to use the CE, reliable EOPs are necessary. Therefore, a
space resection method is required to obtain the EOPs of all scanlines, considering the
dynamic nature of pushbroom images. The Multiple Projection Center (MPC) model was
used in the space resection step in this study. The equations for the MPC model equations
can be found in Equation (2) [12,29].

Xs
i(t) = X0 + X1(ti) + X2

(
t2
i
)

Ys
i(t) = Y0 + Y1(ti) + Y2

(
t2
i
)

Zs
i(t) = Z0 + Z1(ti) + Z2

(
t2
i
)

ws
i(t) = w0 + w1(ti) + w2

(
t2
i
)

φs
i(t) = φ0 + φ1(ti) + φ2

(
t2
i
)

ks
i(t) = k0 + k1(ti) + k2

(
t2
i
)

(2)

where ti is the i-th scanline’s exposure time (equivalent to the satellites’ along-track coordi-
nate); X0, X1, . . ., and k2 are the reference scanline EOPs that were determined during the
space resection phase; Xs

i(t),Ys
i(t), . . ., and ks

i(t) are the i-th scanline’s EOPs.

2.3. Proposed Method
2.3.1. SCOPs and SCPs Generation

As previously mentioned, the proposed method comprises two key phases—a training
step and a testing step—utilizing two distinct groups of points: Simulated Control Points
(SCOPs) and Simulated Check Points (SCPs). While both sets are generated in a similar
manner, SCOPs are utilized during the training phase with a limited number of points,
whereas SCPs are employed in the testing phase with a substantially larger quantity of
points. To generate the points, regular grids are created separately in the image space for
both SCOPs and SCPs, giving them image coordinates based on where they are placed in
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the grid. Then, the image-simulated points are transferred to the object space using the CE,
the study area’s average height (determined from real GCPs), and the EOPs of all scanlines
obtained through the MPC model. This results in sets of SCOPs and SCPs with known
image coordinates as well as object coordinates, which are ready for processing and the
evaluation of BSD.

2.3.2. Linear Regression

One of the simplest and most widely used methods among statistical and machine
learning algorithms is the linear regression model [30,31]. Linear regression is a method used
to establish the linear relationship between dependent and independent variables [32,33].

In regression models, the independent variables predict the dependent variables [31].
The regression model with a single independent variable is known as Simple Linear
Regression (SLR) [32]. The formula for SLR is given by Equation (3):

y = a0 + a1x (3)

where y is the dependent variable, x is the independent variable, a0 and a1 are the intercept
and linear term values, respectively.

The goal of Multivariate Linear Regression (MLR) is to model the linear relation
between one or more independent variables and a dependent variable [32]. The formula
for simple MLR is given by Equation (4):

yi = a0 + a1xi1 + · · ·+ amxim, 1 ≤ i ≤ n (4)

Y =

(y1
y2
)

...
yn

, A =

(a0
a1
)

...
am

, X =


1 x11 · · · x1m
1 x21 · · · x2m
...

...
...

...
1 xn1 · · · xnm


where yi is the single dependent variable, (a0,. . ., am) are the coefficients forming the A
matrix, and xij are the independent variables forming the X matrix.

Finally, the least square method (LSM), Equation (5) is used to find the best line or
curve that fits the data sets, minimizing the cumulative squared residual errors [34,35].

A=
(

XTX
)−1

XTY (5)

2.3.3. Polynomial Regression Model (PRM)

Polynomial regression is a type of multiple regression that involves modeling with
an nth degree polynomial. This regression is used when there is a curvilinear relationship
between the independent and dependent variables [36]. The general model for PR is
represented by Equation (6) [37].

y = a0 + a1x + a2x2 + · · ·+ amxn (6)

In Equation (6), y represents the dependent variable, x represents independent variable,
(a0, . . ., am) are the regression coefficients of the independent variable, and n represents
the polynomial degree or order of the regression model. If there are multiple independent
variables, Equation (6) can be rewritten using the X matrix, like Equation (4), but with an
nth degree polynomial.

2.3.4. Linear Regression BSD Model

The Linear Regression Model (LRM)–BSD is divided into two steps, namely the
training step and the test step. In the training step, the SCOPs with known ground and
image coordinates are used to obtain the model parameters. The SCPs are then used for
every unknown ground point for accuracy assessment. During the Least Squares Method
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(LSM), the unknown parameters of the MLR model are calculated using SCOPs. The MLR
model takes the ground coordinates (X, Y) as input parameters and the row number (r)
as the target parameter. This way, the transformation between ground space and image
space is established. In the test step, the MLR model is applied to the ground coordinate (X,
Y) of SCPs, and the row values are estimated. Finally, the accuracy assessment of SCPs is
performed using a Root Mean Square Error (RMSE) value. The PRM is also applied to the
proposed method for a more accurate evaluation using SCOPs and SCPs. The two steps
and the accuracy assessment are like the case of using the MLR model.

2.3.5. Accuracy Assessment

In evaluating the efficiency of the proposed method both in comparison with prior
research and with the effective parameters of the current method, several measurement
criteria have been employed. These criteria include the Root Mean Square Error (RMSE),
drmax (the maximum BSD error among all SCPs), and execution time. The RMSE and
drmax values are acquired by comparing the best scanline value derived from the proposed
LRM–BSD approach with the exact scanline value provided during the simulation stage.
Additionally, the number of SCOPs and suitability of the models are examined to obtain a
robust model.

3. Results

The proposed BSD method’s performance is assessed for efficiency in both LRM
and PRM modes. The model structure is clear, and the number of unknown parameters
is known, allowing for an examination of the required SCOPs to solve the model and
achieve desired accuracy. The number of SCOPs considered are ten, thirty, fifty, and
one hundred per image, with five million SCPs employed for each image. Results are
compared with other methods, such as the NR, BWS, ANN, and OGP using quantitative
measures including RMSE, computation time, drmax, and the number of required SCOPs
for comparison.

Experimental results are achieved using Intel Core i7 hardware with a 2.90 GHz
processor, HD graphics 620, and 8 GB RAM. The analysis of changes in the number of
SCOPs is performed by applying four groups of SCOPs. A numerous number of SCPs
provides a more accurate assessment of the proposed BSD method’s robustness. According
to the results presented in Table 3, increasing the number of SCOPs has a negligible effect on
ultimate accuracy in terms of the RMSE and drmax. Interestingly, no significant difference
is found in the computational time between these four groups (around 2 s). This issue
reveals that the limitation in obtaining, and the number of SCOPs does not interfere with
the proposed BSD, and it achieves very high accuracy (the RMSE is equal to ten to the
negative power of nine) with only a small number of SCOPs (up to 50) in a very short
amount of time.

The SPI image includes urban areas with dense buildings, and this issue can be the
reason for its lower accuracy compared to other images (an order of accuracy reduction in
the RMSE). Furthermore, taking into account that the CS image, possessing a resolution of
6 m, represents the lowest resolution within the used dataset, the obtained RMSE of this
image reached 10 to the power of negative 10. Thus, despite using images with different
characteristics, there is no correlation between the number of SCOPs, land cover, spatial
resolution of the images, and final accuracy. This confirms the success of the proposed BSD
using a variety of satellite images from all aspects.

The comparison results of the proposed BSD with other methods like the NR, BWS
ANN–BSD, and OGP–BSD are reported in Table 4. Quantitative metrics including the RMSE,
computation time, drmax, and the number of SCOPs are used to conduct the comparison.
The results of this comparison are also illustrated in Figures 3–5 for better comprehension.
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Table 3. The results of the proposed BSD by testing different number of SCOPs.

Image # of SCOPs RMSE Time drmax

SPI

10 4.5 × 10−9 2.72 7.4 × 10−9

30 4.0 × 10−9 2.37 7.6 × 10−9

50 1.2 × 10−9 2.00 2.7 × 10−9

100 4.0 × 10−9 2.02 7.2 × 10−9

MP

10 3.1 × 10−9 2.10 6.4 × 10−9

30 2.3 × 10−9 2.29 3.3 × 10−9

50 2.3 × 10−9 2.13 4.4 × 10−9

100 4.8 × 10−9 2.25 9.0 × 10−9

AP

10 1.5 × 10−9 2.48 4.0 × 10−9

30 2.1 × 10−9 2.25 4.5 × 10−9

50 2.9 × 10−9 2.40 5.8 × 10−9

100 1.7 × 10−9 2.68 3.1 × 10−9

JQB

10 7.0 × 10−10 2.52 1.6 × 10−9

30 4.4 × 10−10 2.25 9.5 × 10−10

50 5.9 × 10−10 3.16 1.0 × 10−9

100 2.6 × 10−9 2.75 3.9 × 10−9

JS

10 8.8 × 10−10 3.11 2.4 × 10−9

30 2.0 × 10−9 2.60 4.4 × 10−9

50 9.9 × 10−10 2.28 3.3 × 10−9

100 2.1 × 10−9 2.63 3.3 × 10−9

AS

10 5.7 × 10−10 2.49 1.0 × 10−9

30 3.1 × 10−10 2.31 7.6 × 10−10

50 1.8 × 10−10 2.34 3.9 × 10−10

100 1.6 × 10−9 2.82 2.1 × 10−9

CS

10 1.7 × 10−10 2.60 3.7 × 10−10

30 2.8 × 10−10 2.36 5.5 × 10−10

50 2.8 × 10−10 2.42 5.5 × 10−10

100 6.0 × 10−10 2.09 1.2 × 10−9

BWV

10 1.8 × 10−9 2.30 4.3 × 10−9

30 9.8 × 10−10 2.41 2.5 × 10−9

50 3.3 × 10−9 2.38 5.5 × 10−9

100 3.9 × 10−9 2.50 7.2 × 10−9

SWV

10 9.0 × 10−10 1.94 1.7 × 10−9

30 3.2 × 10−9 1.95 4.1 × 10−9

50 3.9 × 10−9 1.79 7.3 × 10−9

100 3.0 × 10−9 1.93 4.3 × 10−9

SDWV

10 1.0 × 10−9 2.29 1.7 × 10−9

30 2.6 × 10−9 1.95 4.5 × 10−9

50 1.1 × 10−9 1.95 1.8 × 10−9

100 1.4 × 10−9 2.03 2.1 × 10−9

The proposed method requires significantly less time than all the other methods.
The NR and BWS require 250 and 750 times more computational time than the proposed
method, respectively. The reason for this significant reduction in time is the non-iterative
procedure used in the proposed method, regardless of using the CE. On the other hand,
the NR and BWS require a lot of CE iterations for each ground point, and their accuracy
depends on this. However, the BWS cannot achieve sub-pixel accuracy, which is essential
for photogrammetric applications since the drmax value for this method is one pixel. Addi-
tionally, the BWS takes the most computation time due to the large search space and more
iteration of the CE required.
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Table 4. The results of the proposed BSD compared to some previous studies.

Dataset Measurement Criteria

Method

Newton Raphson
(NR)
[24]

Bisecting
Window Search

(BWS) [23]

ANN–BSD
[21]

OGP–BSD
[21]

Proposed Method
(LRM)

SPI

RMSE (pixel) 5.9 × 10−10 0.60 0.28 0.28 1.2 × 10−9

Time (second) 512.00 1491.20 3.30 6.80 2.00
drmax (pixel) 1.73 × 10−9 1 0.61 0.57 2.7 × 10−9

Number of SCOPs - - 400 400 50

MP

RMSE (pixel) 1.0 × 10−9 0.58 0.30 0.30 2.3 × 10−9

Time (second) 591.70 1415.10 3.43 7.94 2.29
drmax (pixel) 2.6 × 10−9 1 0.67 0.67 3.3 × 10−9

Number of SCOPs - - 500 500 30

AP

RMSE (pixel) 9.6 × 10−10 0.58 0.30 0.30 1.5 × 10−9

Time (second) 520.21 1396.87 3.40 7.64 2.48
drmax (pixel) 1.2 × 10−9 1 0.67 0.77 4.0 × 10−9

Number of SCOPs - - 500 500 10

JQB

RMSE (pixel) 4.4 × 10−10 0.58 0.30 0.30 4.4 × 10−10

Time (second) 425.94 1324.22 3.81 7.84 2.25
drmax (pixel) 1.2 × 10−9 1 0.72 0.69 9.5 × 10−10

Number of SCOPs - - 500 500 30

JS

RMSE (pixel) 6.2 × 10−10 0.58 0.30 0.30 8.8 × 10−10

Time (second) 484.48 1355.63 3.77 9.96 3.11
drmax (pixel) 2.2 × 10−9 1 0.73 0.63 2.4 × 10−9

Number of SCOPs - - 500 1000 10

AS

RMSE (pixel) 2.5 × 10−10 0.58 0.29 0.31 1.8 × 10−10

Time (second) 460.37 1270.50 4.45 8.31 2.34
drmax (pixel) 6.2 × 10−10 1 0.58 0.81 3.9 × 10−10

Number of SCOPs - - 700 500 50

CS

RMSE (pixel) 6.6 × 10−10 0.58 0.29 0.29 1.7 × 10−10

Time (second) 415.30 890.40 3.39 7.07 2.60
drmax (pixel) 2.4 × 10−9 1 0.61 0.55 3.7 × 10−10

Number of SCOPs - - 400 200 10

BWV

RMSE (pixel) 1.2 × 10−9 0.56 0.29 0.28 9.8 × 10−10

Time (second) 477.54 1376.80 3.57 7.97 2.41
drmax (pixel) 2.7 × 10−9 1 0.52 0.52 2.5 × 10−9

Number of SCOPs - - 400 400 30

SWV

RMSE (pixel) 9.9 × 10−10 0.57 0.32 0.32 9.0 × 10−10

Time (second) 475.13 1250.78 3.31 7.80 1.94
drmax (pixel) 2.5 × 10−9 1 0.72 0.71 1.7 × 10−9

Number of SCOPs - - 500 500 10

SDWV

RMSE (pixel) 3.9 × 10−10 0.57 0.30 0.30 1.0 × 10−9

Time (second) 490.56 1285.10 3.71 8.80 2.29
drmax (pixel) 9.3 × 10−10 1 0.57 0.58 1.7 × 10−9

Number of SCOPs - - 500 500 10

Furthermore, the discrepancies between the RMSE and drmax of the proposed method
and NR are negligible, (Both have the RMSEs and drmax values of the order of 10 to the
power of 9 or 10). The comparison of the ANN–BSD and OGP–BSD with the proposed
method reveals that the LRM achieves a higher RMSE by using fewer SCOPs in less time.
The main reason for this difference is that the ANN–BSD and OGP–BSD require more
SCOPs than the LRM in the error modeling phase. The number and distribution of these
SCOPs directly affect the final accuracy of modeling and computation time to ensure
accuracy in determining the best scanline.

According to Figures 3–5 among the compared methods, it can be observed that
the NR and LRM exhibit superior accuracy, characterized by the RMSEs approximately
zero. Subsequently, the OGP and ANN present the RMSEs of about 0.3 pixels. The BWS
demonstrates the greatest level of RMSE, with a recorded value of 0.6 pixels. Furthermore,
the BWS exhibits the most considerable computational time, amounting to 1300 s, due to
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the necessity of more repetition of the CE for each ground point across all images. The NR
follows closely in terms of time consumption, requiring 500 s, which is the second longest
duration after BWS. This issue can also be ascribed to the iterative application of the CE;
however, it is noteworthy that the frequency of repetitions for the NR is lower than that of
the BWS. In contrast, the OGP demonstrates an average execution time of merely 7 s, while
both ANN and LRM exhibit equivalent processing times ranging from 2 to 3 s. It is essential
to highlight that the RMSE of the LRM is very close to zero, whereas the RMSE of the ANN
is approximately 0.3 pixels. Additionally, the behavior of the drmax can be inferred from
the RMSE values. Consequently, the BWS, characterized by the drmax equivalent to one
pixel, exhibits the maximum error in comparison to the other methods. The LRM and NR,
both exhibiting the drmax values of approximately zero, reside at the lower boundary of the
graph, while the ANN and OGP occupy a mid-range position among the methodologies,
achieving sub-pixel accuracy within the interval of 0.5 to 0.7 pixels. Based on this evidence,
the proposed LRM is preferable to previous studies for real-time applications due to its
high accuracy, low required time, and minimum drmax.
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4. Discussion

The task of searching/determining the best scanline for mapping the object space onto
the image space is a key issue when dealing with pushbroom images. Well-known existing
research in this domain commonly relies on the principle of the CE, which often leads to
significant computational demands due to its intricate nature. In response to this challenge,
a novel approach has been introduced to reduce the computational process, minimize time
requirements, and eliminate the necessity for the CE.

The accuracy and time-consumption of the BSS/BSD method directly affect the accu-
racy and total time required for photogrammetric products. So, the proposed method’s
efficiency can be evaluated based on these two factors. As expected, the experiments
demonstrated that the LRM–BSD achieved sub-pixel accuracy in the shortest possible time
compared to previous studies. A notable decrease in time is attributed to the omission of
the individual usage of the CE for each ground point. In the previous approaches, BSS
methods like NR and BWS the transformation of ground coordinates to image coordinates
necessitated the application of the CE through an iterative procedure, involving a search in
the image space for each projected ground points. Conversely, the proposed method elimi-
nates the dependence on the CE by determining the best scanline for each ground point
through an LRM regardless of searching in iterative manner. The ANN and OGP do not
depend on the CE; nevertheless, the LRM–BSD is considered more advantageous due to its
improved precision, efficiency, and minimum number of SCOPs requirements. The RMSE
achieved by the LRM method (10−9 ≈ 0) is suitable for photogrammetric applications, such
as orthorectification with low computation time for many points.

Considering that SCOPs are pivotal for the training and computation of LRM parame-
ters, the distribution and precision of these points substantially impact the final accuracy of
the proposed algorithm making use of SCPs. In the simulation phase of SCOPs and SCPs,
the sole source of error arises from inaccuracies in the specification of EOPs. Given that
these parameters have been derived and approximated utilizing real GCPs through the
MPC model, any discrepancies in the GCPs will consequently spread to the determination
of the EOPs. Furthermore, the LRM inherently possesses a degree of error and uncertainty,
which can be acknowledged as a potential source of methodological errors. Nonetheless,
based on the achieved RMSE and drmax, the influence of above-mentioned error sources on
the final accuracy can be deemed negligible.

As mentioned earlier, providing SCOPs characterized by suitable distribution across
each image and precision will lead to robust accuracy of the proposed method. Keeping
this point in mind regarding the inputs of the LRM, the level of uncertainty associated
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with the outputs was assessed in terms of two key parameters: drmax and the RMSE
(overall accuracy). Based on the quantity of results derived from all images pertaining
to these two parameters, the proposed method exhibits a minimal degree of uncertainty,
which is deemed advantageous. Thus, due to the improved accuracy metrics presented
by the LRM, compared to the previous studies, this method is superior for application in
photogrammetric contexts.

The space resection phase to obtain EOPs preceded the LRM–BSD, but if EOPs are
available from other sources, the space resection step can be omitted. Therefore, the pro-
posed LRM–BSD approach can be used even in the absence of EOPs. This issue emphasizes
the algorithm’s potential to perform independently of presumptions or obligatory param-
eters. Nonetheless, it is imperative to establish real GCPs in instances where EOPs are
unavailable, in addition to preparing a finite quantity of SCOPs for the training phase.
Moreover, the proposed LRM–BSD requires fewer SCOPs than the ANN and OGP BSD
due to the fixed and certain unknown parameters of the model (three unknown parameters
based on the LRM structure). Although there were no significant differences in computation
time and the RMSE found by increasing the number of SCOPs, it is preferable to use a
smaller number of them due to the limitation in providing SCOPs.

Further investigation was undertaken using the PRM–BSD, and the results obtained
from this analysis had the same accuracy as the LRM–BSD. The coefficients with degrees
higher than linearity had values close to zero, indicating the adequacy of the LRM in
solving the BSD problem.

5. Conclusions

This paper presents an approach to object-to-image transformation using satellite
pushbroom images through the LRM in BSD. This method is based on the LRM, comprising
of training and test phases involving SCOPs and SCPs respectively. It is easy to implement
and not dependent on using the CE iteratively. The accuracy assessment was carried out
using ten, thirty, fifty, and one hundred groups of SCOPs along with five million SCPs.
Additionally, the LRM–BSD was compared to other methods, such as the BWS, NR, ANN,
and OGP methods based on evaluation metrics, such as the RMSE, drmax, and execution
time. The experimental results indicate that the proposed LRM–BSD procedure is faster
than the other methods and has a better sub-pixel accuracy. The LRM is 250 times faster
than the NR, but both methods have the same level of accuracy with the RMSEs very close
to zero (pixel). The BWS is not capable of obtaining accuracies better than 0.5 pixels based
on the obtained drmax and requires significant execution time, on average of 1300 s. On the
other hand, the LRM obtains much better accuracies than the ANN and OGP (the RMSE
values ranged between 0.28 and 0.32 pixels) in a shorter time and with fewer required
SCOPs. The required time of these two methods is between 3 and 8 s, and the number
of required SCOPs is 500. However, the LRM takes 2 s on average, and the maximum
number of needed SCOPs is 50. The proposed LRM has potential applications in orthophoto
generation, epipolar resampling, and other similar tasks. Therefore, future research will
focus on applying the LRM to these tasks. It is suggested that the LRM on different aerial
pushbroom images be applied in future research to further confirm the findings.
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Abbreviations

ANN Artificial Neural Network
AP image of Annapolis, Pleiades
AS image of Amsterdam, SPOT
BSD Best Scanline Determination
BSS Best Scanline Search
BWS Bisecting Window Search
BWV image of Boulder, WorldView
CE Collinearity Equation
CPP Central Perspective Plane
CS image of Curitiba, SPOT
DTM Digital Terrain Model
DEM Digital Elevation Model
EOPs Exterior Orientation Parameters
GA Genetic Algorithm
GCPs Ground Control Points
GDP General Distance Prediction
IOPs Interior Orientation Parameters
JQB image of Jaipur, QuickBird
JS image of Jaicos, SPOT
LR Linear Regression
LRM Linear Regression Model
LSM Least Square Method
MLR Multivariate Linear Regression
MP image of Melbourne, Pleiades
MPC Multiple Projection Center
NR Newton Raphson
OGP Optimal Global Polynomial
PR Polynomial Regression
PRM Polynomial Regression Model
RAM Random Access Memory
RMSE Root Mean Square Error
RPCs Rational Polynomial Coefficients
SCOPs Simulated Control Points
SCPs Simulated Check Points
SDWV image of San Diego, WorldView
SLR Simple Linear Regression
SPI image of Sao Paulo, IKONOS
SS Sequential Search
SWV image of Sydney, WorldView
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