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ABSTRACT
We investigate a two-dimensional system of active particles confined to a narrow annular domain. Despite the absence of explicit interac-
tions among the velocities or the active forces of different particles, the system displays a transition from a disordered and stuck state to
an ordered state of global collective motion where the particles rotate persistently clockwise or anticlockwise. We describe this behavior by
introducing a suitable order parameter, the velocity polarization, measuring the global alignment of the particles’ velocities along the tangen-
tial direction of the ring. We also measure the spatial velocity correlation function and its correlation length to characterize the two states.
In the rotating phase, the velocity correlation displays an algebraic decay that is analytically predicted together with its correlation length,
while in the stuck regime, the velocity correlation decays exponentially with a correlation length that increases with the persistence time.
In the first case, the correlation (and, in particular, its correlation length) does not depend on the active force but the system size only.
The global collective motion, an effect caused by the interplay between finite-size, periodicity, and persistent active forces, disappears as the
size of the ring becomes infinite, suggesting that this phenomenon does not correspond to a phase transition in the usual thermodynamic
sense.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051315

I. INTRODUCTION

Active matter is comprised of motile active particles that can
perform mechanical work at the expense of metabolic or environ-
mental energy, which drives the system far from equilibrium.1–4

Active particles may display fascinating collective phenomena,5 self-
organize in complex spatial patterns, and form oriented domains,
which are responsible for coherent motion.6 This is the case of flock-
ing birds7,8 at the macroscopic scale, or the so-called bacterial turbu-
lence at the microscopic scale.9 The latter, characterized by spatial
structures in the velocity field,10 has been originally observed in
dense suspensions of E. coli11 and successively in other species of
bacteria.12,13 Large spatial correlations of the velocity field have also
been observed in cell-monolayers,14,15 where the velocity correlation
lengths may reach values hundreds of times larger than the typical
cell size.16–18

Current explanations of these collective phenomena are based
on macroscopic hydrodynamic-like theories,9,19,20 in the spirit of

the Toner–Tu approach, or, at the microscopic level, by invok-
ing effective alignment interactions in the dynamics of both cell
monolayers14,21–23 and bacteria.24 However, recently, the occurrence
of finite size domains where the particles are aligned and, in gen-
eral, spatial velocity correlations are detected, has also been observed
in active dynamics of spherical particles in the absence of explicit
alignment interactions, in both two-dimensional phase-separated25

and homogeneous configurations26,27 (even in three dimensions28).
In particular, the models usually employed to describe the behav-
ior of spherical active particles—that are based on independent
active forces with a certain degree of persistence and pure repul-
sive interactions—are enough to reproduce the salient features of
the spatial patterns of the velocity field. In the infinite volume limit,
the theory of Refs. 25 and 26 is able to predict an exponential-like
shape of the spatial velocity correlations with a correlation length
that increases with the persistence time25 and is reduced by iner-
tial forces29 and in the low-density regime.26 The theory, origi-
nally developed for active solid configurations, assuming the sixfold
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symmetry, has been recently extended to active liquids30 where the
correlation length of the longitudinal modes is larger with respect to
that of the transversal modes.

On the experimental side, active cell monolayers, bacteria, and
self-propelled colloidal Quincke rollers show a rich behavior when
the system is confined in circular geometries.31–34 Indeed, these sys-
tems display a transition from an isotropic phase where the veloci-
ties of each particle are slightly correlated with another polar phase
where the whole system rotates persistently in the clockwise or anti-
clockwise direction, even forming a giant vortex spanning the whole
system size. Specifically, self-propelling Quincke rollers in narrow
closed channels may also display coexistence between a polar liq-
uid and a moving solid front of particles.35 Collective rotations were
also observed and studied in highly packed three-dimensional grains
enclosed in a cylindrical container,36–38 where each granular parti-
cle is activated by the vibration of the bottom plate. Finally, water
droplets confined in narrow channels, which self-propel due to the
Marangoni effect, are able to display a collective motion moving as
trains of particles.39

The broad experimental interest in strongly confined active
particles motivates the present paper, where we numerically study
a system of two-dimensional active disks confined by a nar-
row annulus. Here, we show that explicit alignment interactions
between the particle velocities or active forces are not necessary
to induce the collective rotations, characterized by the algebraic
decay of the spatial velocity correlation. The global alignment of
the tangential velocity field spontaneously arises from the inter-
play between repulsive interactions and persistent active forces, in
the regime of large persistence time and high density. In the oppo-
site regime, particles do not align along with the whole system
but form multiple domains with correlated velocities. Their size
depends on the model parameter, and the spatial correlations of the
velocity display an exponential decay. This second regime is simi-
lar to that observed in a previous study,27 where a one-dimensional
chain of the active Ornstein–Uhlenbeck particle (AOUP) in the
overdamped regime has been studied in the infinite-volume
limit.

This paper is structured as follows: in Sec. II, we introduce
the model employed to describe active particles confined on a ring-
like geometry, while, in Sec. III, we report the main numerical and
analytical results to explain and characterize both the stuck and
the rotating phase. In particular, we study the polarization of the
velocity field for different values of the persistence time and sys-
tem size. This study is corroborated by the numerical and ana-
lytical investigation of the spatial velocity correlations (and their
correlation length) in both regimes. Finally, a summary of results
and discussion concerning the possible applications of this study is
presented in the conclusions.

II. MODEL
We study a two-dimensional system of N interacting active

particles using the underdamped version of the Active Brown-
ian Particle (ABP) model.40–47 The particles are spatially con-
fined in an annular container created by the presence of repul-
sive soft walls, which will be described in the following. The
particle positions, xi, and velocities, vi, evolve according to the
following law:

ẋi = vi, (1a)

mv̇i = −γvi + Fi + Fw
i + fa

i +
√

2γT ηi, (1b)
where the constant γ is the drag coefficient, m is the particle mass,
and T is the solvent temperature that is related to the translational
diffusion coefficient, Dt , through the Einstein relation γDt = T/m.
The term ηi is a white noise vector with zero average and unit vari-
ance accounting for the collisions between the solvent and the active
particles such that ⟨ηi(t)ηj(t

′
)⟩ = δ(t − t′)δij. In analogy with equi-

librium colloids, the solvent exerts a Stokes drag force proportional
to the particle velocity. The particle interactions are represented
by the force Fi = −∇iU tot , where U tot = ∑i<j U(∣xi − xj∣) is a pair-
wise potential. The shape U is chosen as a shifted and truncated
Lennard-Jones potential,

U(r) = 4ϵ[(
σ
r
)

12
− (

σ
r
)

6
] (2)

for r ≤ 21/6σ and zero otherwise. The constants ϵ = 102 and σ = 1
determine the energy unit and the nominal particle diameter, respec-
tively. The term Fw

i represents the force exerted by the walls of
the container. This is an annulus centered at the origin with inner
radius, Rin, and outer radius, Rout , so that the average radius is R̄
= (Rout + Rin)/2 and its width w = (Rout − Rin). The repulsion
exerted by each wall is modeled through the same potential U(r),
introduced in Eq. (2), pointing in the radial direction both for the
inner and outer walls. Further details about the implementation of
the wall potentials are reported in Appendix A.

In the ABP model, the active force is chosen as a time-
dependent force, f a

i , with a stochastic evolution, that acts locally on
each particle.48–53 At this level of description, the details about the
microscopic-system-dependent origin of f a

i are not specified. This
force drives the system out of equilibrium and determines a persis-
tent motion in a random direction lasting for a time smaller than
a characteristic persistence time, τ. According to the ABP model,
the active force, f a

i = f 0ni, has constant modulus f 0 and a time-
dependent orientation, ni = (cos θi, sin θi). The angle θi evolves
stochastically via a Brownian motion,

θ̇i =
√

2Drχi, (3)

where χi is a white noise with zero average and unit variance and
Dr = 1/τ determines the persistence time of the active force. We
also remark that f 0 fixes the swim velocity induced by the self-
propulsion, namely, v0 =

f 0
γ , which is smaller as γ increases. The

value of Dt is chosen smaller than the effective diffusivity due to the
active force, Da = v

2
0τ, as in typical experimental conditions of active

colloidal and bacterial suspensions.1 We also fix γ = 102 and m = 1
so that the inertial time reads τI = m/γ = 10−2.

III. RESULTS
The dynamics (1) has been numerically integrated by setting

the channel width so that it equals the particle diameter. In this
way, the system can be treated as an effective one-dimensional
system with density ρ = N/L, where L = 2πR̄ is the length of the
ring. In the numerical study, ρ is kept constant and it is chosen
to be large enough so that the system displays almost solid-like
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one-dimensional configurations. In this regime, the ith particle
interacts with the (i + 1)th and (i − 1)th particles, which are sepa-
rated by an average distance r̄ = 2πR̄/N (along the ring) from the ith
particle. Such a “chain” of active particles is positioned at distance
R̄ = (Rin + Rout)/2 from the center of the circular crown.

Figures 1(a) and 1(b) show two different snapshot configura-
tions obtained for τ = 10−2and10, respectively. The color gradients
are chosen according to the direction of the active force confir-
ming that they are randomly distributed. Each black arrow draws the
particle velocity and reveals a fascinating scenario. For the larger τ
value, the particle velocities are aligned along the tangential direc-
tion forming a unique domain spanning the whole ring. In this
regime, the particles move coherently along the tangential direc-
tion revealing a clockwise (or an anticlockwise) motion even though
there are no explicit forces responsible for such a global alignment.
Although the study of the time-dependent properties is beyond
the aim of this work, we observe that a typical rotating configura-
tion lasts for a typical time that increases as τ. This phenomenon
disappears for smaller values of τ where one can still observe the

formation of small domains where the tangential components of the
particle velocities are aligned even if the system does not show col-
lective rotations. A further decrease in τ (corresponding to a further
increase in Dr) allows the active system to behave as a passive one
without spatial velocity correlations and with effective temperature
∼ v2

0γ/Dr , a limit that, in the absence of inertia, has been inves-
tigated both for interacting and non-interacting active systems54

(see also Refs. 55 and 56 for recent studies on the effective tem-
perature in active systems). In what follows, we identify the large
persistence regimes as those values of τ showing collective rota-
tions, while we call small persistence regimes the remaining smaller
values of τ.

A. Polarization of tangential velocity
To give a quantitative measure of the alignment degree char-

acterizing the spontaneous rotations occurring in the system, we
introduce the instantaneous collective polarization of the velocity,
V(t), defined as

FIG. 1. Global velocity alignment. Panels (a) and (b): snapshot configurations on the plane x, y obtained for two different values of τ = 10−2and10, respectively. The colors
represent the orientation of the particle active force, θi , while the black arrows are the particle velocity (for presentation reasons, we draw 1/3 of the velocity vectors). Panel
(c): modulus of the velocity polarization, ⟨∣V ∣⟩, as a function of τ, for different sizes of the systems, N = L/r̄ , as indicated in the legend. Panel (d): probability distribution of
the polarization, P(V) for different values of τ as reported in the legend, for N = 170. The other parameters are T = 10−1, γ = 102, v0 = 50, and ϵ = 102.
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V(t) =
1
N∑i

vt
i(t)
∣vt

i(t)∣
, (4)

where vt
i is the tangential component of the velocity with respect

to the center of the annulus. The variable V(t) is not to be con-
fused with the polarization of the active force that is trivially zero in
this system because the self-propulsions evolving through Eq. (3) are
independent of each other. V(t) has the following properties: (i) its
temporal average vanishes, ⟨V⟩ = 0, since no forces break the rota-
tional symmetry for finite τ and (ii) V(t) reads almost zero if vt

i(t)
are independent of each other, while it takes the values 1 and −1
for clockwise or anticlockwise rotating configurations, respectively,
occurring when the particle velocities are globally aligned. Similarly
to Ising-like models, V(t) can be interpreted as a sort of magneti-
zation and, thus, a useful way to take the temporal average without
losing the information about the alignment is to consider the average
of its absolute value, ⟨∣V ∣⟩. This observable is shown in Fig. 1(c) as a
function of τ, at fixed active speed, v0, and for different system sizes
L = r̄N and confirms the qualitative scenario already observed qual-
itatively in the snapshot configurations. In particular, for the whole
range of system size explored, ⟨∣V ∣⟩monotonically increases with τ,
from a very small value, that is ∼ 0, up to a large value ∼ 0.9 where
the particles are well-aligned to each other and the system shows
spontaneous collective rotations. This scenario is confirmed by the
study of the distribution of V(t) reported in Fig. 1(d): for the smaller
values of τ of the graph, P(V) has a Gaussian-like profile peaked
around the origin and, in this regime, increasing τ simply broadens
the distribution. In a further regime of τ, the distribution develops
pronounced deviation from the Gaussian shape and, in particular,
at some threshold value, two symmetric peaks are formed and the
distribution becomes bimodal. In this regime, the increase of τ, on
one hand, shifts the peaks toward 1 and −1 and, on the other hand,
produces higher and narrow peaks with a consequent very small
probability of having V(t) ∼ 0. However, as expected by symmetry,
clockwise and anticlockwise rotations occur with the same probabil-
ity (even in the presence of collective rotations) as confirmed by the
shape of P(V).

The system size does not change qualitatively the picture so
far presented and, in particular, the monotonic increase of ⟨∣V ∣⟩
with τ. However, the larger L = r̄N, the smaller ⟨∣V ∣⟩ (at fixed τ),
so that the occurrence of spontaneous rotations needs larger values
of τ for increasing L. This is a first clue that the scenario presented
(and, in particular, the collective phase) does not survive the infinite
volume limit and, thus, does not correspond to a phase transition
in the usual thermodynamic sense. Moreover, it is still remarkable
that the finite size of the system can induce a transition from a
disordered state, not showing global rotations, to an ordered state,
characterized by collective rotations, despite the absence of explicit
alignment interactions that couple particle velocities or active
forces.

B. Spatial velocity correlations and correlation length
Disordered and ordered states are studied in terms of the spatial

connected correlation function, Cc(r),57–59 that provides the infor-
mation about the spatial correlation between observables at separa-
tion r. To capture the effective one-dimensional aspect of the system,
we study the spatial correlation of the velocity component tangent to

the ring. We first introduce the correlation, C(r), as

C(r) =
⟨vt
(r)vt

(0)⟩
⟨(vt)2⟩

, (5)

normalized with respect to the second moment of the tangential
velocity, ⟨(vt

)
2
⟩, and the connected correlation defined as

Cc(r) =
⟨δvt
(r) δvt

(0)⟩
⟨[δvt(0)]2⟩

, (6)

where δvt
(r) = vt

(r) − v̄t represents the deviation of the velocity
variable from its spatial average v̄t

= 1/N∑iv
t
i and r is the spatial

coordinate along the ring. The argument of both correlations can-
not exceed the maximal distance along with the ring, ∼ πR̄. We
remark that using the connected velocity correlation function, one
can define the correlation length even in the case of non-ergodic
systems and, in particular, when the spatial average, V(t), over the
whole system does not vanish57 (as found for the larger values of τ).
To include these possibilities, the correlation length λ is defined as57

λ = ∫
r0

0 r Cc(r) dr

∫
r0

0 Cc(r) dr
, (7)

where r0 is the distance where Cc(r0) = 0. In the case of an expo-
nential decay where Cc(r0) ≥ 0, we assume r0 ≈ πR̄ (see Ref. 59 for a
recent review on such a method).

1. Small persistence regime
C(r) and Cc(r) are shown for several values of τ in Figs. 2(a)

and 2(b), respectively. In the small τ regime (i.e., when the sys-
tem does not display global collective rotations, ⟨∣V ∣⟩ ≈ 0), C(r)
= Cc(r). Both observables decay exponentially with a typical corre-
lation length that increases with τ. The Fourier transform of the tan-
gential velocity correlation has the following form (see Appendixes B
and C):

⟨v̂t
(q)v̂t

(−q)⟩∝
1

1 + 2 ℓ2

r̄2 [1 − cos(q)]
, (8)

where q = 2πj/N, with j = 0, 1, 2, . . . , N − 1, is a one-dimensional
wave-vector belonging to the reciprocal Fourier space and v̂t

(q)
is the Fourier transform of the tangential velocity. We have also
assumed T ≪ v2

0 as observed in the experiments (the full expression
is reported in Appendix C). The length scale, ℓ, can be expressed in
terms of the model parameters,

ℓ2
= r̄2 U′′(r̄)

m
τ2

1 + τ
τI

, (9)

and it depends both on the density (via the second derivative of
the potential and r̄) and on the typical relaxation times governing
the dynamics, namely, m/γ and τ. The q-space correlation (8) can
be transformed back to real space in the limit ℓ≪ L, as shown in
Appendix D, leading to an exponential behavior in agreement with
Figs. 2(a) and 2(b),

Cc(r) = C(r)∝ e−r/ℓ. (10)

The prediction (10) is in good agreement with the numerical data as
revealed in Figs. 2(a) and 2(b) for the smaller values of τ reported in
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FIG. 2. Spatial velocity correlations. Spatial correlations of the tangential velocity, C(r), and its connected version, Cc(r), for panels (a) and (b), respectively. The correlations
are reported for different values of τ as shown in the legend of panel (b), which is also shared by panel (a). The solid black curve in panel (a) plots the phenomenological
curve 1 − r/r̄/N, while the solid black line in panel (b) corresponds to the theoretical prediction (11). The dashed black lines in both panels are obtained from the other
theoretical prediction (9). Finally, the other black lines are eye-guides, the dashed horizontal one marks zero while the dotted-dashed vertical one determines the maximal
distance that the system is allowed to explore corresponding to L = πR̄. The other parameters are T = 10−1, γ = 102, v0 = 50, N = 170, and ϵ = 102.

the numerical study (see the comparison between colored data and
dashed black lines). This range depends on the system size and is
larger as L = r̄N increases. We also remark that, when the prediction
(10) holds, the dynamical parameter ℓ coincides with the correla-
tion length, λ, as can be seen from its definition (7). This agreement
is numerically confirmed in Fig. 3(a) comparing λ (colored points)
and the prediction (9) (solid black lines) for different values of the
system size. The agreement between data and theory holds for small
τ for a range of values, which increases when L = r̄N is increased as
shown in Fig. 3(a) and as expected from the analysis in Sec. III A.
In particular, in this regime such that λ ≈ ℓ, λ scales as τ/

√
1 + τ/τI

so that λ∝ τ1/2 in the overdamped limit when τI ≪ τ and λ∝ τ in

the opposite inertial regime such that τI ≫ τ. Increasing the inertia
(higher m or lower γ) decreases the value of ℓ (and, in this regime,
the value of λ) because of the τI dependence in Eq. (9). In addition,
Eq. (9) reveals the asymmetric role of m and γ since their depen-
dence is not simply contained through τI . A specific study supported
by numerical simulations on the role of the inertia for this model is
reported in Ref. 29 and confirms our findings.

Moreover, both for overdamped and underdamped cases, λ is
not affected by the system size. This correlation length determines
the average size of the domains where the velocities are correlated
and, thus, aligned. Besides, the condition λ = ℓ≪ L = πR̄, holding in
this regime, guarantees the presence of many domains along with

FIG. 3. Correlation length. Panel (a): correlation length, λ, as a function of τ, for different system sizes N = L/r̄ as indicated in the legend. The dashed black horizontal lines
are obtained from Eq. (13) for each system size, while the solid black line plots Eq. (9). The vertical dotted-dashed lines are marked in correspondence of τ = τc for each
system size according to the color notation of the legend. The τc values are obtained from Eq. (17). Panel (b): λ as a function of N for different values of τ as indicated in
the legend. Here, the black dashed line is obtained from Eq. (13). The remaining parameters are T = 10−1, γ = 102, v0 = 50, and ϵ = 102.
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the whole ring with different velocity directions, in such a way that
V(t) ≈ 0. We also observe that if λ = ℓ ≲ r̄ the spatial velocity corre-
lation is negligible (being smaller than the particle diameter or the
lattice constant) and the system behaves as a passive one with almost
uncorrelated particle velocities.

As a further remark, the correlation length λ depends mostly
on τ and the inertial time, τI . In agreement with previous theoretical
results on two-dimensional infinite systems,29 λ does depend neither
on the swim velocity v0 nor on the solvent temperature T. In other
words, the dynamical phenomenon reported here does not have a
thermal origin and is a dynamical collective effect. In addition, ℓ
increases as the density grows because of the U′′(r̄) dependence in
Eq. (9): the larger ρ, the smaller r̄, and, consequently, the larger ℓ in
agreement with Ref. 26.

2. Large persistence regime
For the larger values of τ such that V(t) ≠ 0, the system is non-

ergodic and the spatial velocity correlations, shown in Fig. 2, reveal
an interesting behavior. For τ ≳ τ∗, the decay becomes slower than
exponential and, in particular, C(r) does not decay toward zero, as
emerged by Fig. 2(a). This is because the system displays a non-zero
polarization of the velocity, as previously discussed, and confirms
that when the spontaneous rotations take place the particle velocities
of the whole systems are strongly correlated. When C(r) does not
decay to zero, Cc(r) starts differing from C(r). The profiles of Cc(r)
for different values of τ are reported in Fig. 2(b) for a given value of
the system size taken as a reference case. In particular, Cc(r) goes
below zero at some value r0, which varies as τ increases until satu-
ration occurs. In this case, the profiles of Cc(r) for large values of τ
collapse onto the same curve (roughly for τ ≳ 10−1). This saturation
profile displays an algebraic decay that results in good agreement
with the theoretical prediction derived in Appendix E, which reads

Cc(r) ≈ 1 −
r
r̄
π2

N
+

r2

r̄2
2π2

N2 . (11)

This expression holds up to O(r4
/(N4 r̄4

)) and, thus, becomes inac-
curate as r/N increases but shows a good agreement at least up to
r ≈ r0 [the value such that Cc(r0) = 0]. For this reason, it can be
employed in the calculation of λ. The condition to get Eq. (11) is that
ℓ≫ L, a parameter that, in this regime, does not represent anymore
the correlation length of the system. It is remarkable that, according
to Eq. (11), Cc(r) only depends on the system size, L = r̄N and on
the distance between neighboring particles, r̄. The other parameters,
such as persistence time, swim velocity, viscosity, and temperature,
are completely irrelevant in this regime.

Figures 3(a) and 3(b) show λ as a function of τ for different
system sizes, L = r̄N, and as a function of L = r̄N for different τ,
respectively. As already observed, λ increases with τ and does not
depend on the system size for the smaller values of τ in agreement
with the theoretical prediction (9). This holds up to a threshold
value, τ∗, that increases with L. A dependence on L = r̄N emerges
for τ > τ∗ [panel (a)] that lowers λ with respect to the value pre-
dicted by Eq. (9). The smaller the L, the larger the discrepancy with
this prediction. In practice, the size of the system acts as a natu-
ral cutoff for the correlation length. The length λ saturates to λc
at some value of τc, which is again determined by the system size

[we anticipate that a theoretical estimate for τc will be provided by
Eq. (17)]. λc is τ-independent and scales linearly with L, as clearly
shown in panel (b). The dependence on L becomes slower than a
linear function when τ < τc. The value of λc can be theoretically pre-
dicted by its definition (7), using the approximated profile of Cc(r),
namely, Eq. (11). Indeed, it is possible to analytically calculate the
value of r0 such that Cc(r0) = 0, which reads

r0 ≈ αL, (12)

where α = 1
4(1 −

√

1 − 8
π2 ) < 1 is a numerical factor that does not

depend on the parameters of the model and on the system size.
The validity of Eq. (12) is checked in Appendix F by comparison
with numerical simulations. Plugging the prediction (12) into the
definition of λ [Eq. (7)] and using the explicit expression for Cc(r),
we obtain

λ ≈ βL, (13)

where β is another numerical constant, depending neither on the
system size nor on the parameters of the active force, which reads

β = α(
1
2
−

1
12
π2α +

π2

6
(1 −

π2

4
)α2
) +O(α3

). (14)

The prediction (13) is in fair agreement with the numerical data as
shown both in Figs. 3(a) and 3(b), confirming that, in this regimes of
parameters, λ [as also Cc(r)] does not depend on the parameters of
the model but is purely determined by the size of the system.

C. Absence of criticality in the infinite-volume limit
and intermediate persistence regime

Figures 3(a) and 3(b) indicate the absence of any criticality or
scale-free properties surviving to the infinite volume limit. This find-
ing can be rationalized by remarking that, after expanding Eq. (8) for
small q, the Fourier transform of the tangential velocity correlation
has the same Ornstein–Zernike form as the mean-field spin–spin
correlation of the one-dimensional Ising model. However, at vari-
ance with the Ising model, since ℓ2

> 0, there are no values of the
parameters for which Eq. (8) diverges in the infinite volume limit,
i.e., for q values arbitrarily small. In other words, a system of ABPs
does not show any criticality in the infinite volume limit for finite
τ. In our periodic geometry, this limit can be achieved by setting
R̄→∞, but, in practice, coincides with the condition ℓ≪ L, which
leads to the exponential prediction (10).

Here, we focus attention on finite-size periodic systems (similar
to those experimentally analyzed in Refs. 32–34), where the regime
ℓ≫ L is accessible even experimentally. In this case, the expres-
sion for ⟨v̂(q)v̂(−q)⟩ is dominated by the contribution for small q.
Subtracting the term corresponding to the zero mode, q = 0, from
⟨v̂(q)v̂(−q)⟩ in Eq. (8), and taking into account the finite size of
the system, the first accessible value of q is qmin = 2π/N. By defining
δv̂(q) = v̂(q) − v̂(0), if the following condition holds:

ℓ2
≫

r̄2

q2
min
=

L2

4π2 = ℓ
2
c , (15)
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we can approximate

⟨δv̂(q)δv̂(−q)⟩∝
1

ℓ2[1 − cos(q)]
, (16)

with q = (2π/N)j with j = 1, 2, . . . , N − 1 [we remind that we have
assumed T ≪ v2

0 to get Eq. (16)]. We also remark that, upon nor-
malizing Eq. (16), the profile of the normalized spatial velocity cor-
relation does not depend on the details of the model but just on the
system size as observed in the numerical study for the larger values
of τ. Therefore, the condition (15) allows us to define a “crossover”
value τc from ℓc, below which the prediction (13) fails,

τc =
L2

8π2
γ

r̄2U′′(r̄)

⎛
⎜
⎝

1 +

¿
Á
ÁÀ1 +

16π2

L2 r̄2U′′(r̄)
m
γ2

⎞
⎟
⎠

. (17)

The predictions from (17) are plotted in Fig. 3(a) as vertical dashed-
dotted lines for each system size, L = r̄N. This analysis confirms that
Eq. (17) is a good marker to select the range of τ values such that λ
reaches its plateau. We also remark that the value of τc increases as
L2 when subleading orders in powers of L are neglected. This is a fur-
ther confirmation that the predictions (11) and (13) cannot hold in
the infinite volume limit. In addition, we remark that τc, Eq. (17),
depends also on m and γ and decreases as the density increases
[again, its dependence is contained in U′′(r̄) through the average
distance between neighboring particles r̄]. Therefore, we expect that
collective rotations could be enhanced (or suppressed) varying also
m, γ, and ρ.

1. The finite-size scaling ansatz
The spatial velocity correlation function discussed so far is

characterized by two length scales that are the infinite-system cor-
relation length ℓ [given by Eq. (9)] and the size of the system L. ℓ
coincides with the correlation length of the system, λ, in the small
persistence regime, where ℓ≪ L. On the other hand, L is the only rel-
evant length scale in the large persistence regime, where ℓ≫ L, and
λ becomes independent on the model parameters being only deter-
mined by L according to Eq. (13). Unfortunately, in the regime of
parameters such that ℓ ≈ L (roughly corresponding to τ∗ ≲ τ ≲ τc), λ
cannot be easily predicted theoretically. However, by following stan-
dard scaling arguments,60,61 we expect that a smooth function of the
ratio ℓ/L describes the behavior of λ also in this crossover regime. To
corroborate this hypothesis, we formulate the following finite-size
scaling ansatz:

λ = L g(ℓ/L), (18)

where g(ℓ/L) is a function whose detailed form is unknown except
for its asymptotic behavior, which can be extrapolated by our the-
oretical arguments: g(ℓ/L) = const as ℓ/L→∞ and g(ℓ/L) = ℓ/L
when ℓ/L→ 0. Note also that the consistency with Eq. (13) implies
g(ℓ/L→∞) = β. The scaling law (18) is checked in Fig. 4, where
λ/(βL) is plotted as a function of ℓ/L for several values of τ and
L. Data with different values of τ but the same L are plotted with
the same color, revealing a good data collapse. This confirms the
validity of the ansatz (18) in the whole range of parameters analyzed
so far.

FIG. 4. Rescaled correlation length, λ/(Lβ), as a function of ℓ/L, for different
system sizes N = L/r̄ as indicated in the legend. The dashed black horizontal
lines are eye guides marked in correspondence of zero and λ/(Lβ) = 1. The
other parameters are T = 10−1, γ = 102, v0 = 50, and ϵ = 102.

IV. CONCLUSION
In this article, we have studied a system of repulsive active

particles evolving with the underdamped ABP model confined to
an annular region by soft walls. Despite the absence of explicit
alignment interactions between the particle velocities and/or active
forces, the particles synchronize, showing the occurrence of velocity
alignment producing collective rotations. In particular, when the
persistence of the active force increases, our system shows a tran-
sition from (i) a stuck disordered state to (ii) a globally ordered
state characterized by a collective rotating motion that alternates
clockwise and anticlockwise rotations. State (i) is characterized by
an almost vanishing polarization of the velocity and by exponential
profiles of the spatial velocity correlations, whose correlation length
is independent of the system size and increases with the persistence
time in agreement with previous studies. In the rotating state (ii),
the velocity polarization reaches large values and the system is non-
ergodic since the spatial average of the particle velocities does not
coincide with its temporal average. Moreover, the connected version
of the spatial velocity correlations assumes negative values and dis-
plays a correlation length that is uniquely determined by the system
size and does not depend on the parameters of the active force. How-
ever, these effects (and, in particular, the rotating states) disappear in
the infinite volume limit, and thus, they do not signal a phase transi-
tion in the thermodynamic sense. However, it is still remarkable that
collective alignment effects spontaneously emerge in finite-size sys-
tems confined in a periodic geometry even in the absence of explicit
alignment interactions.

It would also be interesting to study how these effective align-
ments affect the rectification efficiency in asymmetric geometries.
It has been indeed observed in both experiments and simulations
that the behavior of ratchet motors driven by active particles can be
quite erratic62–64 unless the orientations of the active particles are
fixed.65,66 It could be that the confinement-induced collective align-
ment of active particles, as the one studied in this paper, could be
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exploited to improve the performances of micromotors based on
these particles.
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APPENDIX A: DETAILS ON THE WALL GEOMETRY

In this appendix, we provide the technical details on the wall
implementation responsible for the confinement of the particles
into an annular region, which is realized through a narrow circu-
lar crown. Both the outer and inner walls exert a force, Fw

out and
Fw

in , respectively, that acts on each particle (in this appendix, the
particle index is suppressed to simplify the notation). As stated in
Sec. II, the two forces are obtained from the truncated and shifted
Lennard-Jones potential, U(r), described by the profile (2) (also
used to model the repulsion between two active particles) and point
radially with respect to the center of the ring, which is placed at the
origin. Specifically, we have

Fw
out = −U′(R − R̄out)R̂, (A1)

Fw
in = U′(R − R̄in)R̂, (A2)

where R is the radial coordinate of the particle position (calculated
with respect to the center of the ring) and R̂ is the unit vector point-
ing radially (outward with respect to the origin). Rout and Rin are the
positions of the outer and the inner radius of the circular crown,
respectively. U′ is simply the derivative of the potential U with
respect to its argument. As a consequence, Fw

in is a force defined for
R > Rin while Fw

out for R < Rout that confine the radial coordinate of
each particle to be in the interval (Rin, Rout). Finally, the total force
Fw appearing in the dynamics of each particle [see Eq. (1)] is simply
given by

Fw
= Fw

in + Fw
out .

We remark that in the effective one-dimensional system such that
w = Rout − Rin ≲ σ, the force Fw fixes the radial coordinate to be
R ≈ R̄ = (Rout + Rin)/2 precluding the dynamics on the radial
direction.

APPENDIX B: RADIAL AND TANGENTIAL
COORDINATES

Before taking advantage of the circular geometry, it is useful to
manipulate the particle interactions, Fi. Following Refs. 26 and 27,
we truncate the interparticle potential U tot = ∑i<j U(∣xi − xj∣) at the
first non-vanishing order performing a Taylor expansion around the
equilibrium interparticle distance. Our effective one-dimensional
geometry allows the particle i to interact only with the particles
i + 1 and i − 1 (with the exceptions of the particle i = 1, which inter-
acts with i = 2 and i = N, and of the particle i = N, which interacts
with i = 1 and i = N − 1, because of the periodicity of the circular
geometry). With these assumptions, Fi reads

Fi ≈ −K(2xi − xi+1 − xi−1),

where the constant K is

K ≈ U′′(r̄).

The harmonic approximation of the potential works because we are
considering systems with a large density such that neighboring par-
ticles could just oscillate around their average interparticle distance,
r̄, by small deviations.

The circular symmetry of the geometry suggests natural coordi-
nates to study the dynamics (1) and develop a suitable theory. Since
the particles are arranged on a ring at distance R̄ from the origin,
each particle position is described by the radial coordinate Ri and
the polar angle ψi. The velocity vector of each particle, vi, could be
decomposed into its radial and tangential components vr

i and vt
i ,

respectively. With this choice, we have

Ṙi = v
r
i , (B1)

Rψ̇i = v
t
i , (B2)

while the components of the velocity evolve with

v̇r
i =
(vt

i)
2

Ri
+ Fr

i − γv
r
i + ( f a

i )
r
+
√

2γTηr
i + Fw

i , (B3)

v̇t
i = −

vr
i v

r
i

Ri
+ Ft

i − γv
t
i + ( f a

i )
t
+
√

2γTηt
i . (B4)

In these equations, ηr and ηt are two white noises with zero average
and unit variance, while Fr

i and Ft
i are the radial and tangential com-

ponents of the force due to the interparticle interactions. The same
notation applies to the active force components. Fw

i is the force due
to the walls, constraining the particles on the ring, and acts along
with the radial component only.

When the motion is constrained to an annular region (i.e.,
a ring), we can assume that v̇r

i = 0, vr
i = 0, and Ri = R̄ so that the

dynamics is ruled only by Eq. (B5) that further simplifies and reads

v̇t
i = Ft

i − γv
t
i + ( f a

i )
t
+
√

2γTηt
i . (B5)

The tangential component of the force due to the repulsion of the
other particles, Fi, can be expressed as

Ft
= −ŷFx + x̂Fy,

where x̂ = cos ψ and ŷ = sin ψ are unit vectors along the x and y
directions. Specifically, the tangential component reads

Ft
i ≈ −R̄K[sin(ψi − ψi+1) + sin(ψi − ψi−1)]

≈ −R̄K[2ψi − ψi+1 − ψi−1]

= −K[2ri − ri+1 − ri−1]. (B6)

where ri = R̄ψi defines the tangential coordinate along the ring of the
ith particle.

The expansion of the sinus function for small Δψi = ψi − ψi+1
can be performed if the ring contains a large number of particles so
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that Δψi is small. With this effective one-dimensional approxima-
tion, the dynamics reads

v̇t
i = −K[2ri − ri+1 − ri−1] − γvt

i + ( f a
i )

t
+
√

2γTηt
i . (B7)

To proceed further, it is convenient to switch from the ABP to the
active Ornstein–Uhlenbeck particle (AOUP) model,4,67–70 approxi-
mating the active force of each particle, f a

i (in particular, its tan-
gential component), with a one-dimensional Ornstein–Uhlenbeck
process,

τḟ a
i = − f a

i + v0
√

2τwi, (B8)

where τ = 1/Dr is the persistence time of the active force. This
strategy is particularly suitable to get analytical results both at the
single-particle71,72 and at the collective level.27,73–76 Indeed, AOUP
and ABP active forces are characterized by the same temporal auto-
correlation function.73,77 This ingredient seems to be crucial, and,
as a consequence, the AOUP can reproduce the main phenomenol-
ogy experienced by the ABP model, such as the accumulation near
boundaries78–80 and the motility induced phase separation.74,81 In
particular, it has been recently employed to analytically predict the
spatial profile of the velocity correlations in dense homogeneous
systems of ABP.26,27 The success of this approach has been corrob-
orated, in Ref. 82, by the direct comparison between the single-
particle velocity distribution of ABP and AOUP at high density,
which reveals a good agreement between the two models for a
broad range of parameters. For these reasons, we adopt the AOUP
approximation to proceed further.

APPENDIX C: SPATIAL VELOCITY CORRELATIONS IN
THE FOURIER SPACE

In this appendix, we derive the profile of the spatial velocity
correlation in the Fourier space, given by Eq. (8). The dynamics (B5)
with the force (B6) has the same structure as the equation of motion
of the one-dimensional system (one-dimensional active particles on
a line with periodic boundary conditions) studied in Ref. 27, upon
replacing the position on the line with the position on the ring. In
particular, it is convenient to introduce the displacement of the nth
particle, un = rn − nr̄, from its positions nr̄ on the ring and then eval-
uate Eqs. (B2), (B7), and (B8) in Fourier space. The discrete Fourier
transforms of uj, of the tangential velocity, vj, and of the active force
along the tangential direction, f a, are defined as

û(q) =
1
N

N

∑
n=1

e−in⋅qun, (C1)

v̂(q) =
1
N

N

∑
n=1

e−in⋅qvn, (C2)

f̂ a
(q) =

1
N

N

∑
n=1

e−in⋅q f a
n, (C3)

where we have omitted the superscript t, for simplicity, and q
= 2πj/N, with j = 0, 1, 2, . . . , N − 1. The dynamics in Fourier space
assumes a simple form

d
dt

û(q) = v̂(q), (C4)

d
dt
v̂(q) = −ω2

(q)û(q) − γv̂(q) + f̂ a
(q) +

√
2γTη̂, (C5)

d
dt

f̂ a
(q) = −

f̂ a
(q)
τ
+

√
2
τ
v0 η̂, (C6)

where the frequency ω2
(q) reads

ω2
(q) = 2K[1 − cos(q)].

The crucial difference between the analysis on the ring and that on
an infinite line (or with periodic boundary conditions) regards the
infinite volume limit. A ring of radius R̄ can accommodate a maxi-
mal number of particles Nm fixed by the density of the system. This
implies the presence of a physical lower cutoff in Fourier space. The
one-dimensional theory developed in Ref. 27 can be easily adapted
to the active underdamped case, following Ref. 29. The tangential
velocity correlation function between different particles in Fourier
space reads

⟨v̂(q)v̂(−q)⟩ =
T
m
+

f 2
0

m
τ
γ

1
1 + τ/τI

1
1 + τ2

1+τ/τI
ω2(q)

, (C7)

where we have omitted the superscript, t, for conciseness. This pro-
file Eq. (C7) coincides with Eq. (8) if we neglect the first term taking
the limit T ≪ f 2

0γ2
= v2

0 . Equation (C7) is of the form

⟨v̂(q)v̂(−q)⟩ = A +
B

1 + 2 ℓ2

r̄2 (1 − cos q)
,

where
A =

T
m
≪ B, (C8)

B =
f 2

0

m
τ
γ

1
1 + τ/τI

, (C9)

and

ℓ2
= r̄2 τ2

1 + τ/τI

K
m

.

The Fourier coefficient of this function is

⟨vi+nvi⟩ = Aδn,0 + B∑
q

cos(qn)
1 + 2 ℓ2

r̄2 (1 − cos q)
, (C10)

where q = 2πj/N with j = 0, . . . , N − 1. We switch to the integral rep-
resentation approximating the sum with an integral, and subtracting
the mode with j = 0, we have

⟨δvi+nδvi⟩ =
B
π∫

π

2π/N
dq

cos(qn)
1 + 2 ℓ2

r̄2 (1 − cos q)
, (C11)

where δvt
(r) = vt

(r) − v̄t and δvt
(0) = vt

(0) − v̄t , with v̄t

= 1/N∑iv
t
i , i.e., the spatial average. The integration limits of the

integral provide the physical cutoff associated with the system.
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APPENDIX D: SMALL PERSISTENCE REGIME, ℓ≪ L

In this appendix, we derive the spatial profile of Cc(r) in the
limit ℓ≪ L, i.e., Eq. (10). Let us start from the infinite volume limit,
which allows the approximation 2π/N → 0. The discrete nature of
n allows us to solve the integrals (C11) for every n. Explicitly, the
integral can be evaluated in terms of algebraic functions that can be
calculated by introducing the variable

u2
= 1 +

r̄2

2ℓ2 = 1 +
m

2K τ2

1+τ/τI

.

Specifically, we get

g1 = ⟨vi+1vi⟩ =
B

2ℓ2 [
u2

√
u4 − 1

− 1] =
B

2ℓ2 [
u2
−
√

u4 − 1
√

u4 − 1
], (D1)

g2 = ⟨vi+2vi⟩ =
B

2ℓ2 [
−1 + 2u4
√

u4 − 1
− 2u2

] =
B

2ℓ2

(u2
−
√

u4 − 1)
2

√
u4 − 1

. . . ,

(D2)

gn = ⟨vi+nvi⟩ =
B

2ℓ2

(u2
−
√

u4 − 1)
n

√
u4 − 1

. (D3)

It is convenient to express gn in terms of the variable p = r̄2
/(2ℓ2

),
obtaining

gn =
B

2ℓ2

(1 + p −
√
(1 + p)2 − 1)

n

√
(1 + p)2 − 1

.

By performing a Taylor expansion for small p, holding in the regime
of parameters τ2

1+τ/τI
≫ m/K, we have

gn ∝
(1 −
√

2
√

p)
n

√
2
√

p
.

Now, taking formally the limit n→∞ [more physically n
≫ n(

√
2p) and thus 1/(

√
2p)≫ 1], we have

gn ∝

(1 − n
√

2
√

p
n )

n

√
2
√

p
→

e−n
√

2p
√

2
√

p
,

which leads to the exponential profile of the prediction (10) upon
plugging the definition of p in the above expression,

C(r)∝ exp(−
nr̄
ℓ
),

where

ℓ2
= r̄2 U′′(r̄)

m
τ2

1 + τ
τI

.

We stress again that these results hold if we can consider the
limit N → 0 to perform the integral, a condition holding only if
ℓ≪ L.

APPENDIX E: LARGE PERSISTENCE REGIME, ℓ ≫ L

In this appendix, we derive the analytical predictions for Cc(r)
and λwhen ℓ≫ L, namely, Eqs. (11) and (13). In principle, to obtain
these predictions, one should be able to analytically perform the inte-
gral (C11) for every n without assuming the condition N →∞. To
achieve this goal, we approximate the integral (C11) as follows:

⟨δviδvi+n⟩ ≈
B
2

r̄2

ℓ2∫

π

2π/N
dq
π

cos(qn)
(1 − cos q)

=
B
2

r̄2

ℓ2 I(n, N). (E1)

To obtain Eq. (E1) from Eq. (C11), we have used two approxima-
tions: (i) we have assumed that T ≪ v2

0 (in such a way that A≪ B)
and, also for n = 0, we can neglect the first term (proportional to
δn,0) in Eq. (C11); (ii) we have also assumed the following relation
between ℓ and the system size L:

ℓ2
≫

L2

4π2 =
N2 r̄2

4π2 . (E2)

This condition is necessary to proceed analytically since it is crucial
to neglect the factor 1 in the denominator of the integrated func-
tion in Eq. (C11). This approximation can be performed because
2π/N, namely, the lower cutoff on the integral, sets the minimal q
value at which the integrated function needs to be evaluated. Even if
the expression (E1) is divergent for q→ 0 at variance with Eq. (C11)
that is always finite, we remark that Eq. (E1) almost coincides with
Eq. (C11) for all the q values allowed by the system if the condition
(E2) is satisfied.

The integral (E1) can be solved for generic n in terms of a series
of trigonometric functions and reads

I(0, N) =
cos(π/N)
π sin(π/N)

(E3)

for n = 0, while for generic n > 0, we have

I(n, N) =
n
N
(2 −N) +

n
π

cos(π/N)
sin(π/N)

−
n

π sin(π/N)

n−1

∑
j=1

1
j(j + 1)

× cos[(2j + 1)
π
N
]. (E4)

Assuming to deal with a large number of particles N ∼ 102, 103 (as
in the numerical work), the expression can be further simplified
assuming that N ≫ 1,

I(n, N) =
n
N
(2 −N) +

n
π2 N −

n
π2 N

n−1

∑
j=1

1
j(j + 1)

× cos[(2j + 1)
π
N
], (E5)

where we have neglected orders 1/N. We can also rewrite the cosine
as an infinite series,

cos[(2j + 1)
π
N
] = 1 +M[j],
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where

M[j] =
∞
∑
k=1

(−1)k

(2k)!
(2j + 1)2k

(
π
N
)

2k
.

In this way, the normalized spatial velocity correlation reads

⟨δviδvi+n⟩

⟨δv2
i ⟩

=
π2

N
I(n, N), (E6)

since I(0, N) ≈ N/π2 (neglecting orders 1/N), and thus,

⟨δviδvi+n⟩

⟨δv2
i ⟩

=
π2n
N2 (2 −N) + n − n

n−1

∑
j=1

1 +M[j]
j(j + 1)

= 1 +
π2n
N2 (2 −N) − n

n−1

∑
j=1

M[j]
j(j + 1)

, (E7)

where we have used that∑n−1
j=1

1
j(j+1) = 1 − 1

n . To proceed further, we
note that the leading contributions in the remaining sum are those
where j appears at the maximal power in each of the infinite terms
of the sum defining M[j]. To fix the ideas, we evaluate the first two
terms of the sum,

−n
n−1

∑
j=1

M[j]
j(j + 1)

= −n(−
1
2
π2

N2 [4n − 3 −
1
n
]

+
π4

4!N4 [
16
3

n3
+

8
3

n −
21
3
−

1
n
]) + ⋅ ⋅ ⋅

≈ 2(
n
N
)

2
π2
−

2
9
(

n
N
)

4
π4, (E8)

where we have neglected orders n/N2 and higher orders [such
as 1/N2, (n/N2

)
2, n/N4, and 1/N4]. The other terms involved in

the sum contain higher-order powers of the form (n/N)α, with α
= 6, 8, 10, . . .. Plugging the results together, we have

⟨δviδvi+n⟩

⟨δv2
i ⟩

≈ 1 −
π2n
N
+ 2(

n
N
)

2
π2
−

2
9
(

n
N
)

4
π4, (E9)

where we have just neglected orders (n/N)6 and subleading orders
(n/N2

). All the terms of the orders (n/N)k can be summed together.
In particular, we get

−n
n−1

∑
j=1

M[j]
j(j + 1)

≈ −
∞
∑
k=1

(−1)k

(2k)!
(

2πn
N
)

2k 1
2k − 1

= −[1 − cos(
2πn
N
) −

2πn
N

SinInt(
2πn
N
)] (E10)

that is exact unless the subleading order n2k−1
/N2k. We can easily

observe that, by expanding the cosine and the sinintegral function in
powers of n/N, we get the correcting terms appearing in the profile
of the spatial velocity correlation functions, i.e., Eq. (E9).

Switching to a continuous notation such that vi → v(r), with r
being the coordinate along the ring, one obtains

⟨δv(r)δv(0)⟩
⟨δv2⟩

= 1 −
r
r̄
π2

N
+ 2(

x
r̄N
)

2
π2, (E11)

FIG. 5. r0 as a function of τ for different values of the system size L = r̄N, as
indicated in the legend. The dashed black lines are marked in correspondence with
the values predicted by Eq. (12). The other parameters are T = 10−1, γ = 102,
v0 = 50, and ϵ = 102.

where r̄ is the average distance between neighboring particles along
the ring (and v ≡ vt is the tangential component of the particle
velocity). Equation (E11) corresponds to the prediction (11), and the
main correction occurs at the order (r/L)4.

APPENDIX F: NUMERICAL STUDY
OF THE PARAMETER r0

In this appendix, we study the parameter r0 to check the rela-
tion (12), for completeness. We remind that r0 is defined as the
distance at which the connected spatial correlation of the veloc-
ity (here, its tangential component with respect to the center of
the ring) vanishes, Cc(r0) = 0. Figure 5 plots r0 as a function of
τ for different values of the system size, L = r̄N. This observable
cannot be evaluated for small values of τ (for which the system is
in the small persistence regime). Indeed, in that case, the correla-
tion function has an exponential decay and does not reach negative
values. Thus, the plot shows values such that τ ≥ 10−1. Each curve
(at fixed L = r̄N) increases with τ until it saturates when the sys-
tem enters the large persistence regime characterized by collective
rotations. The value of the plateau, which is determined by the sys-
tem size, is calculated using Eq. (12) (see the comparison between
colored points and dashed black lines in Fig. 5), showing a fair agree-
ment between data and the theoretical predictions for each system
size.
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