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Abstract

The aim of this work is to present a model reduction technique in the frame-
work of optimal control problems for partial differential equations. We combine two
approaches used for reducing the computational cost of the mathematical numeri-
cal models: domain–decomposition (DD) methods and reduced–order modelling
(ROM). In particular, we consider an optimisation–based domain–decomposition
algorithm for the parameter–dependent stationary incompressible Navier–Stokes
equations. Firstly, the problem is described on the subdomains coupled at the inter-
face and solved through an optimal control problem, which leads to the complete
separation of the subdomain problems in the DD method. On top of that, a reduced
model for the obtained optimal–control problem is built; the procedure is based on
the Proper Orthogonal Decomposition technique and a further Galerkin projection.
The presented methodology is tested on two fluid dynamics benchmarks: the sta-
tionary backward–facing step and lid-driven cavity flow. The numerical tests show
a significant reduction of the computational costs in terms of both the problem di-
mensions and the number of optimisation iterations in the domain–decomposition
algorithm.
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1 Introduction
In the last decades, there has been a growing interest in approximation techniques for partial
differential equations (PDEs) that exploit high–performance computing within different fields
of applications: industrial applications, naval engineering, aeronautics engineering, medical
engineering, etc. Very often these problems have prohibitively high computational costs, and
there is always the need of much more effective algorithms in order to alleviate the complexities
of numerical models.

Two of the most investigated and most important topics for rendering low computational costs
are the reduced–order modelling for parameter–dependent PDEs [25] and domain–decomposition
algorithms [42]. In the former case, equations of interest usually depend on a given set of param-
eters; these parameters can describe either the physical properties of the sought quantities or the
geometrical configuration of the physical domain over which the problem is posed. Model–order
reduction is a technique based on the effective decoupling of the computationally expensive of-
fline and usually computationally cheap online phase which provides a solution for any parameter
value: for details we refer to [25]. Model order reduction has been successfully employed in
different fields such as fluid dynamics [3, 10, 12, 15, 33, 43, 46, 47, 48, 49, 50, 52] and structural
mechanics [6, 7, 23, 44, 51, 54]. Among the aforementioned applications a significant type of
problems often emerges, namely saddle-point problems [8, 17], for which special care has to
be taken in order to construct stable pairs of the reduced spaces; in particular, in fluid dynam-
ics problems this is achieved by introducing so-called velocity supremisers, see, for instance,
[5, 17, 33, 53].

Another very efficient way for reducing the computational complexity of numerical modes
is Domain Decomposition (DD) method. Any domain decomposition method is based on the
assumption that a given physical domain of interest is partitioned into subdomains; the original
problem is then recast upon each subdomain yielding a family of subproblems of reduced size that
are coupled to one another through the values and fluxes of the unknown solution at the subdomain
interfaces [41, 42]. Very often the interface coupling is relaxed at the expense of providing an
iterative process among subdomains, allowing a split of each of the subdomain solvers and making
it computationally feasible. Domain decomposition methods can be extremely advantageous in
the case of very complex geometries as well as in the case of multi-physics problems. The
latter is even more attractive if we consider that there are often available state-of-the-art codes
for a subcomponent model of a multi-physics problem which can be effectively exploited by
decoupling algorithms; see, for instance, [16, 18, 27, 32].

In this paper, we bring our attention to domain–decomposition methods using an optimisation
approach to ensure the coupling of the interface conditions between subdomains as it is presented,
for example, in [22, 19]. In particular, we exploit both aforementioned techniques: optimisation–
based domain decomposition algorithm in combination with projection–based reduced–order
models. This paper is the first step towards the development of an efficient reduced–order model
for an optimisation–based domain–decomposition algorithm for Fluid–Structure Interaction (FSI)
problems [6]. It is even more attractive in the view of the articles [29, 30] where the authors are
suggesting that this approach leads to a stable segregated model for FSI problems in the case of
added-mass effect [11]; we also mention here some already successful ROM results in developing
stable semi-implicit partitioned approaches, e.g., [4, 34, 35].

Very recently, authors of the paper [13] have introduced a novel partitioned approach for
ROMs, where they couple either two different reduced–order models on each subdomain or a
reduced–order model on one subdomain and a full–order (Finite Element) model on the other
for the case of nonstationary diffusion–advection problems. In this context, the construction
followed in this paper could be also applicable to the coupling presented in [13], as long as there
is a way of casting functions defined on the subdomain interface onto the approximation spaces
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used on the corresponding subdomains; this will be subject of future work.
As mentioned before, the use of optimisation–based domain–decomposition methods for

PDEs goes as back as the end of the 1990s, e.g., [20]. It had been successfully studied in the
case of Navier–Stokes equations as well, see [22]. As for the novelty of this work, to the best
of the authors’ knowledge, this is the first attempt of combining the aforementioned technique
with projection–based Reduced Order Models in order to provide a computationally efficient
algorithm for parametrised PDEs. Other works deal with model order reduction and domain
decomposition but basing their work on other algorithms, e.g. on Schwarz domain overlapping
methods [14, 28].

A possible extension of current work could be the application of the technique described in
this paper to optimal–control problems; in this case, as, for example, in [20], we have to deal
with multi–objective optimisation problems - one for the optimal control and another one for the
domain–decomposition part.

This work is outlined as follows. In Section 2 we introduce the monolithic and the
optimisation–based domain-decomposition formulation of the incompressible Navier–Stokes
equations in both strong and weak forms. Furthermore, we derive the optimality condition
for the resulting optimal control problem and compute the expression for the gradient of the
objective functional. Section 3 lists a gradient–based optimisation algorithm for the problem
derived in the previous section. In section 4 we describe the Finite Element discretisation of the
problem of interest and provide a finite–dimensional high–fidelity optimisation problem. Section
5 deals with the reduced–order model which is based on a reduced basis generation by Proper
Orthogonal Decomposition methodology and the Galerkin projection of the high–fidelity prob-
lem onto the lower-dimensional reduced spaces. In Section 6 we show some numerical results
for two toy problems: the backward–facing step and the lid–driven cavity flows. Conclusions
will follow in Section 7.

2 Problem formulation
In this section, starting with a monolithic formulation of the incompressible Navier-Stokes equa-
tions we introduce a two–domain optimisation-based domain-decomposition formulation in both
strong and weak forms. Then, the optimality conditions of the resulting optimal control problem
are derived followed by the expression of the gradient of the objective functional obtained by
sensitivity analysis.

2.1 Monolithic formulation
Let Ω be a physical domain of interest: we assume Ω to be an open subset of R2 and Γ to be
the boundary of Ω. Let 𝑓 : Ω → R2 be the forcing term, 𝜈 the kinematic viscosity, 𝑢𝐷 a given
Dirichlet datum. The problem reads as follows: find the velocity field 𝑢 : Ω → R2 and the
pressure 𝑝 : Ω → R s.t.

−𝜈Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝑓 in Ω, (1a)
−div𝑢 = 0 in Ω, (1b)

𝑢 = 𝑢𝐷 on Γ𝐷 , (1c)

𝜈
𝜕𝑢

𝜕𝑛
− 𝑝𝑛 = 0 on Γ𝑁 , (1d)

where Γ𝐷 and Γ𝑁 are disjoint subsets of Γ (as it is shown in Figure 1) and 𝑛 is an outward unit
normal vector to Γ𝑁 .
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ΩΓ𝐷 Γ𝑁

Figure 1: Physical domain

2.2 Domain Decomposition (DD) formulation
For the sake of simplicity of exposition, we restricted ourselves to the two–domain decomposition
method, but the multi–domain splitting case is a straightforward extension of the two–domain
case and should also bring more computational efficiency.

Let Ω𝑖 , 𝑖 = 1, 2 be open subsets of Ω, such that Ω = Ω1 ∪Ω2, Ω1 ∩ Ω2 = ∅. Denote
Γ𝑖 := 𝜕Ω𝑖 ∩ Γ, 𝑖 = 1, 2 and Γ0 := Ω1 ∩ Ω2. In the same way we define the corresponding
boundary subsets Γ𝑖,𝐷 and Γ𝑖,𝑁 , 𝑖 = 1, 2; see Figure 2.
Then the DD formulation reads as follows: for 𝑖 = 1, 2, given 𝑓𝑖 : Ω𝑖 → R2 and 𝑢𝑖,𝐷 : Γ𝑖,𝐷 →
R2, find 𝑢𝑖 : Ω𝑖 → R2, 𝑝𝑖 : Ω𝑖 → R s.t.

−𝜈Δ𝑢𝑖 + (𝑢𝑖 · ∇) 𝑢𝑖 + ∇𝑝𝑖 = 𝑓𝑖 in Ω𝑖 , (2a)
−div𝑢𝑖 = 0 in Ω𝑖 , (2b)
𝑢𝑖 = 𝑢𝑖,𝐷 on Γ𝑖,𝐷 , (2c)

𝜈
𝜕𝑢𝑖

𝜕𝑛𝑖
− 𝑝𝑖𝑛𝑖 = 0 on Γ𝑖,𝑁 , (2d)

𝜈
𝜕𝑢𝑖

𝜕𝑛𝑖
− 𝑝𝑖𝑛𝑖 = (−1)𝑖+1𝑔 on Γ0, (2e)

for some 𝑔 : Γ0 → R2 such that the functions defined in the following way

𝑢 :=

{
𝑢1, in Ω1 ∪ Γ0,

𝑢2, in Ω2 ∪ Γ0,
𝑝 :=

{
𝑝1, in Ω1 ∪ Γ0,

𝑝2, in Ω2 ∪ Γ0,

satisfy the monolithic equations (1).
Even though in the numerical simulations we will focus on the cases where 𝑓𝑖 = 𝑓 |Ω𝑖

,
𝑢𝑖,𝐷 = 𝑢𝐷 |Γ𝑖,𝐷 for 𝑖 = 1, 2, the whole theoretical exposition in this paper works just as well for
more general functions 𝑓1, 𝑓2, 𝑢1,𝐷 and 𝑢2,𝐷 .

For any 𝑔 the solution to the problem (2) is not the same as the solution to the problem (1),
that is 𝑢1 ≠ 𝑢 |Ω1 , 𝑝1 ≠ 𝑝 |Ω1 , 𝑢2 ≠ 𝑢 |Ω2 and 𝑝2 ≠ 𝑝 |Ω2 . On the other hand, there exists a choice
for 𝑔, 𝑔 =

(
𝜈
𝜕𝑢1
𝜕𝑛1

− 𝑝1𝑛1
)
|Γ0 = −

(
𝜈
𝜕𝑢2
𝜕𝑛2

− 𝑝2𝑛2
)
|Γ0 , such that the solutions to (2) coincide with

the solution to (1) on the corresponding subdomains. Therefore, we must find such a 𝑔, so that
𝑢1 is as close as possible to 𝑢2 at the interface Γ0. One way to accomplish this is to minimise the
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Γ0Ω1 Ω2Γ𝐷,1 Γ𝑁,2

Γ𝑁,1

Γ𝐷,2

Figure 2: Domain Decomposition of the fluid domain

functional
J (𝑢1, 𝑢2) =:

1
2

∫
Γ0

|𝑢1 − 𝑢2 |2 𝑑Γ. (3)

Instead of (3) we can also consider the penalised or regularised functional

J𝛾 (𝑢1, 𝑢2; 𝑔) =:
1
2

∫
Γ0

|𝑢1 − 𝑢2 |2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔 |2 𝑑Γ, (4)

where 𝛾 is a constant that can be chosen to change the relative importance of the terms in (4).
Thus we face an optimisation problem under PDE constraints: minimise the functional (3) (or
(4)) over a suitable function 𝑔, subject to (2).

2.3 Variational Formulation of the PDE constraints
For 𝑖 = 1, 2 define the following spaces and the norms with which each of them is endowed:

• 𝑉𝑖 :=
{
𝑢 ∈ 𝐻1 (Ω𝑖 ;R2)

}
, | | · | |𝑉𝑖

= | | · | |𝐻1 (Ω𝑖 ) ,

• 𝑉𝑖,0 :=
{
𝑢 ∈ 𝐻1 (Ω𝑖 ;R2) : 𝑢 |Γ𝑖,𝐷 = 0

}
, | | · | |𝑉𝑖,0 = | | · | |𝐻1

0 (Ω𝑖 ) ,

• 𝑄𝑖 :=
{
𝑝 ∈ 𝐿2 (Ω𝑖 ;R)

}
, | | · | |𝑄𝑖

= | | · | |𝐿2 (Ω𝑖 ) .
Then, we define the following bilinear and trilinear forms: for i=1,2
• 𝑎𝑖 : 𝑉𝑖 ×𝑉𝑖,0 → R, 𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) = 𝜈(∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖

,
• 𝑏𝑖 : 𝑉𝑖 ×𝑄𝑖 → R, 𝑏𝑖 (𝑣𝑖 , 𝑞𝑖) = −(div𝑣𝑖 , 𝑞𝑖)Ω𝑖

,
• 𝑐𝑖 : 𝑉𝑖 ×𝑉𝑖 ×𝑉𝑖,0 → R, 𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) = ((𝑢𝑖 · ∇)𝑤𝑖 , 𝑣𝑖)Ω𝑖

,

where (·, ·)𝜔 indicates the 𝐿2 (𝜔) inner product.
Consequently, the variational counterpart of (2) reads as follows: for 𝑖 = 1, 2, find 𝑢𝑖 ∈ 𝑉𝑖

and 𝑝𝑖 ∈ 𝑄𝑖 s.t.

𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑖 , 𝑢𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖 , 𝑝𝑖) = ( 𝑓𝑖 , 𝑣𝑖)Ω𝑖

+
(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0, (5a)

𝑏𝑖 (𝑢𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 , (5b)
𝑢𝑖 = 𝑢𝑖,𝐷 on Γ𝑖,𝐷 . (5c)

5



Remark. In general, the fluxes through an interface Γ0 for the weak formulation of Navier–Stokes
equation lives in the space 𝐻− 1

2 (Γ0) so that, in theory, the definition (4) of functional J𝛾 is not
justified as it includes the 𝐿2 (Γ0)–norm of the function 𝑔. Although, as it will be evident in
Section 3, the family of optimisation algorithms which are used to tackle the optimal–control
problem in hand, in fact, define the respective approximation of 𝑔 that belongs to the space
𝐻

1
2 (Γ0).

2.4 Optimality system
One of the ways to address the constrained optimisation problem is to reformulate the initial
problem in terms of a Lagrangian functional by introducing the so–called adjoint variables. In
this way, the optimal solution to the original problem is sought among the stationary points of
the Lagrangian, see, for instance, [21, 26].

We define the Lagrangian functional as follows:

L(𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝜆1, 𝜆2; 𝑔) := J𝛾 (𝑢1, 𝑢2; 𝑔) −
2∑︁
𝑖=1

[𝑎𝑖 (𝑢𝑖 , 𝜉𝑖) (6)

+𝑐𝑖 (𝑢𝑖 , 𝑢𝑖 , 𝜉𝑖) +𝑏𝑖 (𝜉𝑖 , 𝑝𝑖) + 𝑏𝑖 (𝑢𝑖 , 𝜆𝑖)] +
2∑︁
𝑖=1

( 𝑓𝑖 , 𝜉𝑖)Ω𝑖
+

2∑︁
𝑖=1

((−1)𝑖+1𝑔, 𝜉𝑖)Γ0 .

Notice that technically we should have also included Lagrange multipliers corresponding to
the non–homogeneous Dirichlet boundary conditions (5c) in the definition of the functional L,
but since the functional J𝛾 does not explicitly depend on 𝑢1,𝐷 and 𝑢2,𝐷 the corresponding
Dirichlet boundary conditions for the adjoint equation that we are going to derive below will be
homogeneous on these parts of the boundaries.

We now apply the necessary conditions for finding stationary points of L. Setting to zero
the first variations w.r.t. 𝜉𝑖 and 𝜆𝑖 , 𝑖 = 1, 2 yields the state equations (5a)-(5b). Setting to zero
the first variations w.r.t. 𝑢1, 𝑝1, 𝑢2 and 𝑝2 yields the adjoint equations:

𝑎𝑖 (𝜂𝑖 , 𝜉𝑖) + 𝑐𝑖 (𝜂𝑖 , 𝑢𝑖 , 𝜉𝑖) + 𝑐𝑖 (𝑢𝑖 , 𝜂𝑖 , 𝜉𝑖) + 𝑏𝑖 (𝜂𝑖 , 𝜆𝑖)

= ((−1)𝑖+1𝜂𝑖 , 𝑢1 − 𝑢2)Γ0 ,
∀𝜂𝑖 ∈ 𝑉𝑖,0, (7a)

𝑏𝑖 (𝜉𝑖 , 𝜇𝑖) = 0, ∀𝜇𝑖 ∈ 𝑄𝑖 . (7b)

Finally, setting to zero the first variations w.r.t. 𝑔 yields the optimality condition:

𝛾(ℎ, 𝑔)Γ0 + (ℎ, 𝜉1 − 𝜉2)Γ0 = 0, ∀ℎ ∈ 𝐿2 (Γ0). (8)

2.5 Sensitivity derivatives
In order to obtain the expression for the gradient of the optimisation problem in hand, we will
resort to the sensitivity approach, see, for instance, [21, 26]. The approach consists of finding
equations for direction derivatives of the state variable with respect to control, called sensitivities.

The first derivative 𝑑J𝛾

𝑑𝑔
of J𝛾 is defined through its action on variation 𝑔̃ as follows:〈

𝑑J𝛾

𝑑𝑔
, 𝑔̃

〉
= (𝑢1 − 𝑢2, 𝑢̃1 − 𝑢̃2)Γ0 + 𝛾(𝑔, 𝑔̃)Γ0 , (9)

where 𝑢̃1 ∈ 𝑉1,0, 𝑢̃2 ∈ 𝑉2,0 are the solutions to:
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𝑎𝑖 (𝑢̃𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢̃𝑖 , 𝑢𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑖 , 𝑢̃𝑖 , 𝑣𝑖)

+𝑏𝑖 (𝑣𝑖 , 𝑝𝑖) = ((−1)𝑖+1𝑔̃, 𝑣𝑖)Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0, (10a)

𝑏𝑖 (𝑢̃𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 . (10b)

We can make use of the adjoint equations (7) in order to find the representation of the gradient
of the functional J𝛾 . Let 𝜉1 and 𝜉2 be the solutions to (7), 𝑢̃1 and 𝑢̃2 be the solutions to (10). By
setting 𝜂𝑖 = 𝑢̃𝑖 in (7a), 𝜇𝑖 = 𝑝𝑖 in (7b), 𝑣𝑖 = 𝜉𝑖 in (10a) and 𝑞𝑖 = 𝜆𝑖 in (10b) we obtain:

(𝑢1 − 𝑢2, 𝑢̃1 − 𝑢̃2)Γ0 = (𝑔̃, 𝜉1 − 𝜉2)Γ0 ,

so that it yields the explicit formula for the gradient of J𝛾 :

𝑑J𝛾

𝑑𝑔
(𝑢1, 𝑢2; 𝑔) = 𝛾𝑔 + (𝜉1 − 𝜉2) |Γ0 , (11)

where 𝜉1 and 𝜉2 are determined from 𝑔 through (7). Notice that the gradient expression (11) is
consistent with the optimality condition (8) derived in the previous section.

3 Gradient–based algorithm for PDE–constraint opti-
misation problem

In view of being able to provide a closed–form formula for the gradient for the objective functional
J𝛾 , the natural way to proceed is to resort to a gradient–based iterative optimisation algorithm.

In order to keep the exposition simple, we consider the following simple gradient method
with a constant step size 𝛼 > 0: given a starting guess 𝑔 (0) , let

𝑔 (𝑛+1) = 𝑔 (𝑛) − 𝛼
𝑑J𝛾

𝑑𝑔

(
𝑢
(𝑛)
1 , 𝑢

(𝑛)
2 ; 𝑔 (𝑛)

)
. (12)

Combining this with (11) we obtain:

𝑔 (𝑛+1) = 𝑔 (𝑛) − 𝛼

(
𝛾𝑔 (𝑛) + (𝜉 (𝑛)1 − 𝜉

(𝑛)
2 ) |Γ0

)
, (13)

or
𝑔 (𝑛+1) = (1 − 𝛼𝛾) 𝑔 (𝑛) − 𝛼(𝜉 (𝑛)1 − 𝜉

(𝑛)
2 ) |Γ0 , (14)

where 𝜉
(𝑛)
1 and 𝜉

(𝑛)
2 are determined from (7) with 𝑔 replaced by 𝑔 (𝑛) .

In summary, we have the following algorithm: Algorithm 1.
1. Choose 𝑔 (0) , 𝛼 > 0.
2. For n=0,1,2,... until convergence

(a) Determine 𝑢
(𝑛)
1 ∈ 𝑉1, 𝑢 (𝑛)2 ∈ 𝑉2 by solving (5a)–(5b) with 𝑔 = 𝑔 (𝑛) .

(b) Determine 𝜉
(𝑛)
1 ∈ 𝑉1,0, 𝜉 (𝑛)2 ∈ 𝑉2,0 by solving (7) with 𝑢1 = 𝑢

(𝑛)
1 , 𝑢2 = 𝑢

(𝑛)
2 .

(c) Update 𝑔 (𝑛+1) by setting

𝑔 (𝑛+1) := (1 − 𝛼𝛾) 𝑔 (𝑛) − 𝛼

(
𝜉
(𝑛)
1 − 𝜉

(𝑛)
2

)
|Γ0 .

In practice, the typical methods used to solve problems like the one considered in this
paper are Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Newton Conjugate Gradient (CG)
algorithms which tend to show much faster convergence and higher efficiency with respect to the
steepest-decent algorithm.
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4 Finite Element Discretisation
In this section, we present the Finite Element spatial discretisation for the optimal control problem
previously introduced. In order to be able to apply FE discretisation, the domains Ω𝑖 , 𝑖 = 1, 2
and the interface Γ0 are assumed to be polygonal. We consider two well-defined triangulations
T1 and T2 over the domains Ω1 and Ω2 respectively, and an extra lower-dimensional triangulation
T0 of the interface Γ0; additionally, we assume that T1, T2 and T0 share the same degrees on
freedom relative to the interface Γ0. We can then define usual Lagrangian FE spaces 𝑉𝑖,ℎ ⊂ 𝑉𝑖 ,
𝑉𝑖,0,ℎ ⊂ 𝑉𝑖,0, 𝑄𝑖,ℎ ⊂ 𝑄𝑖 , 𝑖 = 1, 2 and 𝑋ℎ ⊂ 𝐿2 (Γ0) endowed with 𝐿2 (Γ0)-norm; the spaces
𝑉𝑖,ℎ, 𝑉𝑖,0,ℎ and 𝑄𝑖,ℎ for 𝑖 = 1, 2 are endowed the same norms as their continuous counterparts.
Since the problems at hand have a saddle-point structure, in order to guarantee the well-posedness
of the discretised problem, we require the FE spaces to satisfy the following inf-sup conditions:
there exist positive constants 𝑐1, 𝑐2, 𝑐3 and 𝑐4 s.t.

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,ℎ

| |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖 , 𝑖 = 1, 2, (15)

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,0,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,0,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖+2, 𝑖 = 1, 2. (16)

A very common choice in this framework is to use the so-called Taylor–Hood finite element
spaces, namely the Lagrange polynomial approximation of the second-order for velocity and of
the first-order for pressure. We point out that the order of the polynomial space 𝑋ℎ will not lead
to big computational efforts as it is defined on the 1-dimensional curve Γ0.

Using the Galerkin projection we can derive the following discretised optimisation problem:
minimise over 𝑔ℎ ∈ 𝑋ℎ the functional:

J𝛾,ℎ (𝑢1,ℎ, 𝑢2,ℎ; 𝑔ℎ) :=
1
2

∫
Γ0

��𝑢1,ℎ − 𝑢2,ℎ
��2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔ℎ |2 𝑑Γ (17)

under the constraints that 𝑢𝑖,ℎ ∈ 𝑉𝑖,ℎ, 𝑝𝑖,ℎ ∈ 𝑄𝑖,ℎ satisfy the following variational equations for
𝑖 = 1, 2:

𝑎𝑖 (𝑢𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑐𝑖 (𝑢𝑖,ℎ, 𝑢𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑏𝑖 (𝑣𝑖,ℎ, 𝑝𝑖,ℎ)

= ( 𝑓𝑖 , 𝑣𝑖,ℎ)Ω𝑖
+ ((−1)𝑖+1𝑔ℎ, 𝑣𝑖,ℎ)Γ0

∀𝑣𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (18a)

𝑏𝑖 (𝑢𝑖,ℎ, 𝑞𝑖,ℎ) = 0 ∀𝑞𝑖,ℎ ∈ 𝑄𝑖,ℎ, (18b)
𝑢𝑖,ℎ = 𝑢𝑖,𝐷,ℎ on Γ𝑖,𝐷 , (18c)

where 𝑢𝑖,𝐷,ℎ is the Galerkin projection of 𝑢𝑖,𝐷 onto the trace–space 𝑉𝑖,ℎ |Γ𝑖,𝐷 .
Notice that the structure of the equations (18) and of the functional (17) is the same as the

one of the continuous case so that it enables us to provide the following expression of the gradient
of the discretised functional (17):

𝑑J𝛾,ℎ

𝑑𝑔ℎ
(𝑢1,ℎ, 𝑢2,ℎ; 𝑔ℎ) = 𝛾𝑔ℎ + (𝜉1,ℎ − 𝜉2,ℎ) |Γ0 , (19)

where 𝜉1,ℎ and 𝜉2,ℎ are the solutions to the discretised adjoint problem: for 𝑖 = 1, 2 find
𝜉𝑖,ℎ ∈ 𝑉𝑖,0,ℎ and 𝜆𝑖,ℎ ∈ 𝑄𝑖,ℎ that satisfy

𝑎𝑖 (𝜂𝑖,ℎ, 𝜉𝑖,ℎ) + 𝑐𝑖
(
𝜂𝑖,ℎ, 𝑢𝑖,ℎ, 𝜉𝑖,ℎ

)
+ 𝑐𝑖

(
𝑢𝑖,ℎ, 𝜂𝑖,ℎ, 𝜉𝑖,ℎ

)
+ 𝑏𝑖 (𝜂𝑖,ℎ, 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,ℎ, 𝑢1,ℎ − 𝑢2,ℎ)Γ0 ,

∀𝜂𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (20a)

𝑏𝑖 (𝜉𝑖,ℎ, 𝜇𝑖,ℎ) = 0, ∀𝜇𝑖,ℎ ∈ 𝑄𝑖,ℎ . (20b)
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We would also like to stress that at the algebraic level the discretised minimisation problem
can be recast in the setting of the finite–dimensional space R𝑝 , where 𝑝 is the number of Finite
Element degrees of freedom which belong to the interface Γ0.

5 Reduced-Order Model
As it was highlighted in section 1, Reduced–Order methods are efficient tools for significant
reduction of the parameter–dependent PDEs. This section deals with the reduced–order model
for the problem obtained in the previous section, where the state equations, namely Navier–Stokes
equations, are assumed to be dependent on a set of physical parameters. First, we introduce two
practical ingredients we will be using in the course of the reduced–basis generation, namely a
lifting function and the pressure supremiser enrichment. Then, we describe the offline phase
based on the Proper Orthogonal Decomposition technique, which is followed by the online phase
based on a Galerkin projection onto the reduced spaces.

5.1 Lifting Function and Velocity Supremiser Enrichment
In the following, we are going to discuss a snapshot compression technique for the generation
of reduced basis functions. In order to do so we need to introduce two important ingredients in
this context, namely the lifting function technique and the supremiser enrichment of the velocity
space.

The use of lifting functions is quite common in the reduced basis method (RBM) framework;
see, for example, [25, 5]. It is motivated by the fact that in the chosen model we are supposed
to tackle the non-homogeneous Dirichlet boundary condition on the parts of the boundaries
Γ𝑖,𝐷 , 𝑖 = 1, 2. From the implementation point of view, this does not present any problem
when dealing with the high-fidelity model since there are several well-known techniques for non-
homogeneous essential conditions, in particular at the algebraic level. However, these boundary
conditions create some problems when dealing with the reduced basis methods. Indeed, we seek
to generate a linear vector space which is obtained by the compression of the set of snapshots, and
this clearly cannot be achieved by using snapshots which satisfy different Dirichlet conditions –
the resulting space would not be linear. This problem is solved by introducing a lifting function
𝑙𝑖,ℎ ∈ 𝑉𝑖,ℎ, 𝑖 = 1, 2 during the offline stage, such that 𝑙𝑖,ℎ = 𝑢𝑖,𝐷,ℎ on Γ𝑖,𝐷 . We define two
new variables 𝑢𝑖,0,ℎ ∈ 𝑉𝑖,0,ℎ, 𝑖 = 1, 2 by setting 𝑢𝑖,0,ℎ := 𝑢𝑖,ℎ − 𝑙𝑖,ℎ. Clearly, the variables
𝑢𝑖,0,ℎ, 𝑖 = 1, 2 satisfy the homogeneous condition 𝑢𝑖,0,ℎ = 0 on Γ𝑖,𝐷 and so they can be used
to generate the reduced basis linear space. We remark that the lifting function is needed only in
the domain where the Dirichlet boundary is non–empty, i.e. where Γ𝑖,𝐷 ≠ ∅ for 𝑖 = 1, 2. It is
important to point out that the choice of lifting functions is not unique; in our work, we chose
to use the solution of the Stokes problem in one of the domains Ω, Ω1 or Ω2 (depending on the
particular model we are investigating) with the velocity equal to 𝑢𝐷 on the corresponding parts
of the boundaries and the homogeneous Neumann conditions analogous to the original problem
setting.

The other ingredient we will use in the following exposition is the so-called velocity
supremiser. This is necessary to obtain a stable approximation of the saddle-point problem
at the reduced level discussed in the following subsections. The well–posedness of the problem
is again assured by satisfying the inf-sup conditions like (16). The supremiser variables 𝑠𝑖,ℎ,
𝑖 = 1, 2 are defined as the solution to the following problem: find 𝑠𝑖,ℎ ∈ 𝑉𝑖,0,ℎ such that(

∇𝑣𝑖,ℎ,∇𝑠𝑖,ℎ
)
= 𝑏𝑖,ℎ

(
𝑣𝑖,ℎ, 𝑝𝑖,ℎ

)
∀𝑣𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (21)
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where 𝑝𝑖,ℎ, 𝑖 = 1, 2 are the finite-element pressure solutions of the Navier-Stokes problem and
the left-hand side is the scalar product which defines a norm on the space𝑉𝑖,0,ℎ. For more details,
we refer to [5, 17]. Another way to apply the supremiser is to apply it directly to the reduced basis
of the velocity spaces, but this might lead to parameter–dependent reduced spaces [5]. Other
simplifications may work in a similar fashion, we might compare them in future works.

5.2 Reduced Basis Generation
Once we obtain the homogenised snapshots 𝑢𝑖,0,ℎ and the pressure supremisers 𝑠𝑖,ℎ for 𝑖 = 1, 2,
we are ready to construct a set of reduced basis functions. A very common choice when dealing
with Navier-Stokes equations is to use the Proper Orthogonal Decomposition (POD) technique,
which is based on the Singular Value Decomposition of the snapshot matrices; see, for instance,
[25]. In order to implement this technique we will need two main ingredients: the matrices of the
inner products and the snapshot matrices. First, we define the basis functions for the FE element
spaces used in the weak formulation (17), (18) and (20) as follows:

U𝑖,0,ℎ =

{
𝜙
𝑢𝑖
1 , ..., 𝜙

𝑢𝑖

N𝑢𝑖
ℎ

}
− the FE basis of the space 𝑉𝑖,0,ℎ, 𝑖 = 1, 2,

P𝑖,ℎ =

{
𝜙
𝑝𝑖
1 , ..., 𝜙

𝑝𝑖

N𝑝𝑖
ℎ

}
− the FE basis of the space 𝑄𝑖,ℎ, 𝑖 = 1, 2,

Ξ𝑖,0,ℎ := U𝑖,0,ℎ, N 𝜉𝑖
ℎ

:= N𝑢𝑖
ℎ
, 𝑖 = 1, 2,

G𝑖,ℎ =

{
𝜙
𝑔

1 , ..., 𝜙
𝑔

N𝑔

ℎ

}
− the FE basis of the space 𝑋ℎ,

where N∗
ℎ
, ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔} denotes the dimension of the corresponding FE space.

We proceed by building the snapshot matrices. In doing so we sample a parameter space and
draw a discrete set of 𝑀 parameter values; there are various sampling techniques, among which
we point out the uniform sampling. Then, the snapshots are taken as a high–fidelity, i.e. Finite
Element, solutions at each parameter value in the sampling set.

We proceed by building the snapshot matrices S𝑢𝑖 ∈ RN
𝑠
ℎ
×4𝑀 , S𝑠𝑖 ∈ RN

𝑠
ℎ
×4𝑀 , S𝑝𝑖 ∈

RN
𝑠
ℎ
×4𝑀 , S𝜉𝑖 ∈ R

N𝑎
ℎ
×2𝑀 for 𝑖 = 1, 2 and S𝑔 ∈ RN

𝑔

ℎ
×𝑀 defined as follows:

S𝑢1 = [𝑢1
1,0,ℎ, ..., 𝑢

𝑀
1,0,ℎ, 0, ..., 0, 0, ..., 0, 0, ..., 0],

S𝑠1 = [𝑠1
1,ℎ, ..., 𝑠

𝑀
1,ℎ, 0, ..., 0, 0, ..., 0, 0, ..., 0],

S𝑝1 = [0, ..., 0, 𝑝1
1,ℎ, ..., 𝑝

𝑀
1,ℎ, 0, ..., 0, 0, ..., 0],

S𝑢2 = [0, ..., 0, 0, ..., 0, 𝑢1
2,0,ℎ, ..., 𝑢

𝑀
2,0,ℎ, 0, ..., 0],

S𝑠2 = [0, ..., 0, 0, ..., 0, 𝑠1
2,ℎ, ..., 𝑠

𝑀
2,ℎ, 0, ..., 0],

S𝑝2 = [0, ..., 0, 0, ..., 0, 0, ..., 0, 𝑝1
2,ℎ, ..., 𝑝

𝑀
2,ℎ],

S𝜉1 = [𝜉1
1,ℎ, ..., 𝜉

𝑀
1,ℎ, 0, ..., 0], S𝜉2 = [0, ..., 0, 𝜉1

2,ℎ, ..., 𝜉
𝑀
2,ℎ],

S𝑔 = [𝑔1
ℎ
, ..., 𝑔𝑀

ℎ
],

where N 𝑠
ℎ
= N𝑢1

ℎ
+ N 𝑝1

ℎ
+ N𝑢2

ℎ
+ N 𝑝2

ℎ
, N𝑎

ℎ
= N 𝜉1

ℎ
+ N 𝜉2

ℎ
and 𝑀 is the number of snapshots.

Notice that since all the snapshots of the variables 𝜉1,ℎ and 𝜉2,ℎ are divergence-free on the
domain of definition, the reduced spaces constructed for those variables will already contain this
information, so that it allows us not to store the snapshots of the variables 𝜆1,ℎ and 𝜆2,ℎ, which
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are playing the role of the Lagrange multipliers relative to the divergence free-conditions, as they
do not contain any important information.

The next step is to define the inner-product matrices 𝑋𝑢𝑖 , 𝑋𝑝𝑖 , 𝑋𝜉𝑖 for 𝑖 = 1, 2 and 𝑋𝑔. These
matrices have the block diagonal structure as follows:

𝑋𝑢1 = diag
(
𝑥𝑢1 , 0𝑝1 , 0𝑢2 , 0𝑝2

)
,

𝑋𝑝1 = diag
(
0𝑢1 , 𝑥𝑝1 , 0𝑢2 , 0𝑝2

)
,

𝑋𝑢2 = diag
(
0𝑢1 , 0𝑝1 , 𝑥𝑢2 , 0𝑝2

)
,

𝑋𝑝2 = diag
(
0𝑢1 , 0𝑝1 , 0𝑢2 , 𝑥𝑝2

)
,

𝑋𝜉1 = diag
(
𝑥𝑢1 , 0𝜉2

)
,

𝑋𝜉2 = diag
(
0𝜉1 , 𝑥𝑢2

)
,

𝑋𝑔 = 𝑥𝑔 .

Above, we used the following notations: 0∗ ∈ RN
∗
ℎ
×N∗

ℎ is a zero square matrix of dimension
𝑁∗
ℎ
× N∗

ℎ
, where ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝑔} and

(𝑥𝑢𝑖 ) 𝑗𝑘 =

(
∇𝜙𝑢𝑖

𝑘
,∇𝜙𝑢𝑖

𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N𝑢𝑖
ℎ
, 𝑖 = 1, 2,

(𝑥𝑝𝑖 ) 𝑗𝑘 =

(
𝜙
𝑝𝑖
𝑘
, 𝜙

𝑝𝑖
𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N 𝑝𝑖
ℎ

, 𝑖 = 1, 2,

(𝑥𝑔) 𝑗𝑘 =

(
𝜙
𝑔

𝑘
, 𝜙

𝑔

𝑗

)
Γ0

, for 𝑗 , 𝑘 = 1, ...,N𝑔

ℎ
.

We are now ready to introduce the correlation matrices C𝑢𝑖 , C𝑠𝑖 , C𝑝𝑖 , C𝜉𝑖 for 𝑖 = 1, 2 and
C𝑔, all of dimension 𝑀 × 𝑀 , as:

C∗ := S𝑇
∗ 𝑋∗𝑆∗

for every ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝑔} and

C𝑠𝑖 := S𝑇
𝑠𝑖
𝑋𝑢𝑖 𝑆𝑠𝑖 , 𝑖 = 1, 2.

Once we have built the correlation matrices, we are able to carry out a POD compression on
the sets of snapshots. This can be achieved by solving the following eigenvalue problems:

C∗Q∗ = Q∗Λ∗ (22)

where ∗ ∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝜉1, 𝜉2, 𝑔}, Q∗ is the eigenvectors matrix and Λ∗ is the diagonal
eigenvalues matrix with eigenvalues ordered by decreasing order of their magnitude. The 𝑘-th
reduced basis function for the component ∗ is then obtained by applying the matrix S∗ to 𝑣∗

𝑘
–

the 𝑘-th column vector of the matrix Q∗:

Φ∗
𝑘

:=
1√︃
𝜆∗
𝑘

S∗𝑣∗𝑘 ,

where 𝜆∗
𝑘

is the 𝑘-th eigenvalue from (22). Therefore, we are able to form the set of reduced basis
as

A𝑠 :=
⋃

∗∈{𝑢1 ,𝑠1 , 𝑝1 ,𝑢2 ,𝑠2 , 𝑝2 }

{
Ψ∗

1 , ...,Ψ
∗
𝑁∗

}
,

A𝑎 :=
⋃

∗∈{ 𝜉1 , 𝜉2 }

{
Ψ∗

1 , ...,Ψ
∗
𝑁∗

}
,
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A𝑔 :=
{
Φ
𝑔

1 , ...,Φ
𝑔

𝑁𝑔

}
,

where the integer numbers 𝑁∗ indicate the number of the basis functions used for each component
and

Ψ
𝑢1
𝑘

=

©­­­«
Φ
𝑢1
𝑘
0
0
0

ª®®®¬ , Ψ
𝑠1
𝑘

=

©­­­«
Φ
𝑠1
𝑘

0
0
0

ª®®®¬ , Ψ
𝑝1
𝑘

=

©­­­«
0

Φ
𝑝1
𝑘
0
0

ª®®®¬ , Ψ
𝑢2
𝑘

=

©­­­«
0
0

Φ
𝑢2
𝑘
0

ª®®®¬ ,

Ψ
𝑠2
𝑘

=

©­­­«
0
0

Φ
𝑠2
𝑘

0

ª®®®¬ , Ψ
𝑝2
𝑘

=

©­­­«
0
0
0

Φ
𝑝2
𝑘

ª®®®¬ , Ψ
𝜉1
𝑘

=

(
Φ

𝜉1
𝑘
0

)
, Ψ

𝜉2
𝑘

=

(
0

Φ
𝜉2
𝑘

)
.

We note that the first and the third blocks include both the 𝑢1, 𝑠1 and the 𝑢2, 𝑠2 basis functions
- it is here that we use the pressure supremiser enrichment of the velocities spaces discussed at
the beginning of this section. We provide the following renumbering of the functions for further
simplicity:

Φ
𝑢𝑖
𝑁𝑢𝑖

+𝑘 := Φ
𝑠𝑖
𝑘
, Ψ

𝑢𝑖
𝑁𝑢𝑖

+𝑘 := Ψ
𝑠𝑖
𝑘
, for 𝑘 = 1, ..., 𝑁𝑠𝑖 , 𝑖 = 1, 2,

and we redefine 𝑁𝑢𝑖 := 𝑁𝑢𝑖 + 𝑁𝑠𝑖 , 𝑖 = 1, 2.
Finally, we introduce three separate reduced basis spaces - for the state, the adjoint and the

control variables, respectively:

𝑉 𝑠
𝑁 = spanA𝑠 , dim𝑉 𝑠

𝑁 = 𝑁𝑢1 + 𝑁𝑝1 + 𝑁𝑢2 + 𝑁𝑝2 ,

𝑉𝑎
𝑁 = spanA𝑎 , dim𝑉 𝑠

𝑁 = 𝑁𝜉1 + 𝑁𝜉2 ,

𝑉
𝑔

𝑁
= spanA𝑔, dim𝑉 𝑠

𝑁 = 𝑁𝑔 .

5.3 Online Phase
Once we have introduced the reduced basis spaces we can define the reduced function expansions

𝑈𝑁 = (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 , 𝑝2,𝑁 ) ∈ 𝑉 𝑠
𝑁 ,Ξ𝑁 = (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈ 𝑉𝑎

𝑁 , 𝑔𝑁 ∈ 𝑉
𝑔

𝑁

as

𝑢𝑖,0,𝑁 :=
𝑁𝑢𝑖∑︁
𝑘=1

𝑢𝑖,0,𝑘Φ
𝑢𝑖
𝑘
, 𝑖 = 1, 2, 𝜉𝑖,𝑁 :=

𝑁𝜉𝑖∑︁
𝑘=1

𝜉
𝑖,𝑘

Φ
𝜉𝑖
𝑘
, 𝑖 = 1, 2,

𝑝𝑖,𝑁 :=
𝑁𝑝𝑖∑︁
𝑘=1

𝑝
𝑖,𝑘

Φ
𝑝𝑖
𝑘
, 𝑖 = 1, 2, 𝑔𝑁 :=

𝑁𝑔∑︁
𝑘=1

𝑔
𝑘
Φ
𝑔

𝑘
.

In the previous equations, the underscore indicates the coefficients of the basis expansion of
the reduced solution. Then the online reduced problem reads as follows: minimise over 𝑔𝑁 ∈ 𝑉

𝑔

𝑁
the functional

J𝛾,𝑁 (𝑢1,𝑁 , 𝑢2,𝑁 ; 𝑔𝑁 ) :=
1
2

∫
Γ0

��𝑢1,𝑁 − 𝑢2,𝑁
��2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔𝑁 |2 𝑑Γ (23)

where 𝑢1,𝑁 = 𝑢1,0,𝑁 + 𝑙1,𝑁 , 𝑢2,𝑁 = 𝑢2,0,𝑁 + 𝑙2,𝑁 for (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 , 𝑝2,𝑁 ) ∈ 𝑉 𝑠
𝑁

satisfy the following reduced equations ∀𝑣𝑁 = (𝑣1,𝑁 , 𝑞1,𝑁 , 𝑣2,𝑁 , 𝑞2,𝑁 ) ∈ 𝑉 𝑠
𝑁

:
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𝑎𝑖 (𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑢𝑖,0,𝑁 , 𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑢𝑖,0,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 )
+ 𝑐𝑖 (𝑙𝑖,𝑁 , 𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑏𝑖 (𝑣𝑖,𝑁 , 𝑝𝑖,𝑁 )
= ( 𝑓𝑖 , 𝑣𝑖,𝑁 )Ω𝑖

+ ((−1)𝑖+1𝑔𝑁 , 𝑣𝑖,𝑁 )Γ0 (24a)
−𝑎𝑖 (𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 ) − 𝑐𝑖 (𝑙𝑖,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 )

𝑏𝑖 (𝑢𝑖,0,𝑁 , 𝑞𝑖,𝑁 ) = −𝑏𝑖 (𝑙𝑖,𝑁 , 𝑞𝑖,𝑁 ), (24b)

where 𝑙𝑖,𝑁 is the Galerkin projection of the lifting function 𝑙𝑖,ℎ to the finite dimensional vector
space spanned by the 𝑖-th velocity basis functions and 𝑖 = 1, 2.

Similarly to the offline phase, we notice that the structure of the equations (24) and the
functional (23) are the same as the ones of the continuous case, so this enables us to provide the
following expression of the gradient of the reduced functional (23):

𝑑J𝛾,𝑁

𝑑𝑔𝑁
(𝑢1,𝑁 , 𝑢2,𝑁 ; 𝑔𝑁 ) = 𝛾𝑔𝑁 + (𝜉1,𝑁 − 𝜉2,𝑁 ) |Γ0 , (25)

where (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈ 𝑉𝑎
𝑁

are the solutions to the reduced adjoint problem: find (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈
𝑉𝑎
𝑁

such that it satisfies, for each pair of test functions (𝜂1,𝑁 , 𝜂2,𝑁 ) ∈ 𝑉𝑎
𝑁

and 𝑖 = 1, 2,

𝑎𝑖 (𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑐𝑖
(
𝜂𝑖,𝑁 , 𝑢𝑖,𝑁 , 𝜉𝑖,𝑁

)
+ 𝑐𝑖

(
𝑢𝑖,𝑁 , 𝜂𝑖,𝑁 , 𝜉𝑖,𝑁

)
= ((−1)𝑖+1𝜂𝑖,𝑁 , 𝑢1,𝑁 − 𝑢2,𝑁 )Γ0 .

(26)

Notice that the reduced adjoint equations no longer contain any terms corresponding to the
bilinear forms 𝑏𝑖 (·, ·), 𝑖 = 1, 2. Indeed, as was previously mentioned, all the functions belonging
to the reduced space𝑉𝑎

𝑁
are already divergence-free by construction, so the aforementioned terms

are automatically satisfied.
We would also like to stress that from the numerical implementation point of view the reduced

minimisation problem can be recast in the setting of the finite-dimensional space R𝑝 , where 𝑝 is
the number of reduced basis function used for the control variable 𝑔𝑁 in the online phase, that is
𝑝 = 𝑁𝑔.

6 Numerical Results
We now present some numerical results obtained by applying the two-domain decomposition
optimisation algorithm to the backward–facing step and the lid-driven cavity flow benchmarks.

All the numerical simulations for the offline phase were obtained using the software multi-
phenics [1], whereas the online phase simulations were carried out using RBniCS [2].

6.1 Backward-facing step test case
We start with introducing the backward–facing step flow test case. Figure 3 represents the physical
domain of interest. The upper part of the channel has a length of 18 cm, the lower part 14 cm;
the height of the left chamber is 3 cm, and the height of the right one is 5 cm. The splitting into
two domains is performed by dissecting the domain by a vertical segment at the distance 26

3 cm
from the beginning of the channel as shown in Figure 4.

We impose homogeneous Dirichlet boundary conditions on the top and the bottom walls of
the boundary Γ𝑤𝑎𝑙𝑙 for the fluid velocity, and homogeneous Neumann conditions on the outlet
Γ𝑜𝑢𝑡 , meaning that we assume free outflow on this portion of the boundary.
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Γ𝑖𝑛

Γ𝑤𝑎𝑙𝑙

Γ𝑜𝑢𝑡

Γ𝑤𝑎𝑙𝑙

Ω

Figure 3: Physical domain for the backward-facing step problem

Ω1 Ω2

Figure 4: Domain decomposition for the backward-facing step problem domain

We impose a parabolic profile 𝑢𝑖𝑛 on the inlet boundary Γ𝑖𝑛, where

𝑢𝑖𝑛 (𝑥, 𝑦) =
(
𝑤(𝑦)

0

)
(27)

with 𝑤(𝑦) = 𝑈̄ × 4
9 (𝑦 − 2) (5 − 𝑦), 𝑦 ∈ [2, 5]; values of 𝑈̄ are reported in Table 1. Two

physical parameters are considered: the viscosity 𝜈 and the maximal magnitude 𝑈̄ of the inlet
velocity profile 𝑢𝑖𝑛. Both parameters concur to the definition of the only physically relevant
parameter, the Reynolds number 𝑅𝑒 = 𝐿 𝑈̄

𝜈 , where 𝐿 is the characteristic length. Hence, we
indicate for all tests also the corresponding 𝑅𝑒. Details of the offline stage and the finite-element
discretisation are summarised in Table 1. High-fidelity solutions are obtained by carrying out
the minimisation in the space of dimension equal to the number of degrees of freedom at the
interface, which is 130 in our test case. The best performance has been achieved by using the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) optimisation algorithm, and
two stopping criteria were applied: either the maximal number of iteration 𝐼𝑡𝑚𝑎𝑥 is reached or
the gradient norm of the target functional is less than the given tolerance 𝑇𝑜𝑙𝑜𝑝𝑡 .

Snapshots are sampled from a training set of 𝑀 parameters uniformly distributed in the
2-dimensional parameter space, and the first 𝑁𝑚𝑎𝑥 POD modes have been retained. Figure 5a
shows the POD singular values for all the state, the adjoint and the control variables. As it can be
seen, the POD singular values corresponding to the adjoint velocities 𝜉1 and 𝜉2 feature a slower
decay compared to the one for the other variables. In Figure 5b, we can see the behaviour of
the energy 𝐸𝑛 retained by the first 𝑁 modes for different components of the solution. Here, the
retained energy for the component ∗ ∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝜉1, 𝜉2, 𝑔} is defined as

𝐸∗
𝑛 :=

∑𝑛
𝑘=1 |𝜆

∗
𝑘
|∑𝑁∗

𝑘=1 |𝜆
∗
𝑘
|
.

The retained energy gives us an idea on the number of modes we would need to choose to
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Physical parameters 2 : 𝜈, 𝑈̄
Range 𝜈 [0.5, 2]
Range 𝑈̄ [0.5, 6.5]

Resulting 𝑅𝑒 number [0.75, 40]

FE velocity order 2
FE pressure order 1

Total number of FE dofs 27,890
Number of FE dofs at the interface 130

Optimisation algorithm L-BFGS-B
𝐼𝑡𝑚𝑎𝑥 40
𝑇𝑜𝑙𝑜𝑝𝑡 10−5

𝑀 900
𝑁𝑚𝑎𝑥 50

Table 1: Computational details of the offline stage.

preserve all the necessary physical information in the reduced model. In particular, we can see
that a higher number of modes is needed to correctly represent the adjoint variables 𝜉1 and 𝜉2.

Figures 6–9 represent the first four POD modes for each of the variables 𝑢1, 𝑢2, 𝑠1, 𝑠2,
𝑝1, 𝑝2, 𝜉1 and 𝜉2. We stress that the POD modes were obtained separately for each component
and the resulting figures are obtained by gluing the subdomain function just for the sake of
visualisation.

(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 6: The first POD modes for the velocities 𝑢1 and 𝑢2 (subdomain functions are
glued together for visualisation purposes).
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(a) POD singular values as a function of number
𝑛 of POD modes (log scaling in 𝑦-direction)

(b) Energy retained by the first 𝑁𝑚𝑎𝑥 POD
modes (log scaling in 𝑥-direction)

Figure 5: Results of the offline stage: POD singular eigenvalue decay (a) and retained
energy (b) of the first 𝑁𝑚𝑎𝑥 POD modes

(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 7: The first POD modes for the pressure supremisers 𝑠1 and 𝑠2 (subdomain
functions are glued together for visualisation purposes).

Figure 6 shows the first modes for the fluid velocities 𝑢1 and 𝑢2: in particular, notice that the
modes corresponding to 𝑢1 (on the left section of the domain) are zero at the inlet boundary due
to the use of lifting function.

In Figure 7, we can see the first four modes for 𝑠1 and 𝑠2: here, the corresponding functions
are mostly localised inside the domains Ω1 and Ω2 thanks to the homogeneous conditions at the
boundaries and the non-zero forcing term coming from the pressure.
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(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 8: The first POD modes for the pressures 𝑝1 and 𝑝2 (subdomain functions are
glued together for visualisation purposes).

(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 9: The first POD modes for the adjoint velocities 𝜉1 and 𝜉2 (subdomain functions
are glued together for visualisation purposes).

Figure 8 represents the first modes for the pressures 𝑝1 and 𝑝2: we point out the signs of the
oscillation behaviour, which suggests that the supremiser enrichment might be needed to assure
stability of the reduced–order solution. Finally, Figure 9 shows the first four modes for the adjoint
variables 𝜉1 and 𝜉2: note that they are concentrated only around the interface Γ0 because the only
nonzero contribution in the adjoint equations is coming from the source terms, which are defined
solely on the interface Γ0.
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 40

Figure 10: High–fidelity solution for the velocities 𝑢1 and 𝑢2. Values of the parameters
𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 40

Figure 11: High–fidelity solution for the pressures 𝑝1 and 𝑝2. Values of the parameters
𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3

Figures 10-13 represent the high–fidelity solutions for two different values of the parameters
(𝑈̄, 𝜈) = (1, 1), resulting in 𝑅𝑒 = 3, and (𝑈̄, 𝜈) = (4.5, 0.7) with 𝑅𝑒 ≈ 19. The solutions were
obtained by carrying out 40 optimisation iterations via L–BFGS–B algorithm. Figures 10 and
12 show the intermediate solutions at iteration 0, 5, 10 and 40 for the fluid velocities 𝑢1 and
𝑢2, whereas Figures 11 and 13 show the corresponding pressures 𝑝1 and 𝑝2. The final solution
is taken to be the 40th iteration optimisation solution in which we can observe a continuity
between subdomain solutions at the interface Γ0. Moreover, it can be noticed that the solution
for parameters (𝑈̄, 𝜈) = (1, 1) looks continuous already at iteration 10, which suggests that the
convergence of the optimisation algorithm might depend on the Reynolds number.
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Iteration Functional Value Gradient norm
0 4.8 · 10−1 4.1 · 10−1

5 6.0 · 10−2 2.2 · 10−1

10 5.0 · 10−3 3.3 · 10−2

40 1.7 · 10−4 2.4 · 10−3

Table 2: Functional values and the gradient norm for the FOM optimisation solution at
the parameter values 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3

Iteration Abs. error 𝑢ℎ Rel. error 𝑢ℎ Abs. error 𝑝ℎ Rel. error 𝑝ℎ
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0302 2.9935 0.0088 1.0000 10.6515 7.0679 0.5056 1.0000
5 0.1020 0.6279 0.0297 0.2098 2.4520 1.5317 0.1164 0.2167

10 0.0384 0.1355 0.0112 0.0453 0.5807 0.3793 0.0276 0.0537
40 0.0184 0.0583 0.0053 0.0195 0.2670 0.1827 0.0127 0.0259

Table 3: Absolute and relative errors of the FOM optimisation solution with respect to
the monolithic solution at the parameter values 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 40

Figure 12: High–fidelity solution for the velocities 𝑢1 and 𝑢2. Values of the parameters
𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19

We present additional details in Tables 2 - 5. In particular, in Tables 2 and 4, we list the
values for the functional J𝛾 and the 𝐿2 (Γ0)-norm of the gradient 𝑑J𝛾

𝑑𝑔
at the different iteration of

the optimisation procedure, while Table 3 contains the absolute and relative errors with respect
to the monolithic (entire–domain) solutions 𝑢ℎ, 𝑝ℎ, i.e.,

Abs. error 𝑢ℎ := | |𝑢𝑖,ℎ − 𝑢ℎ | |𝐿2 (Ω𝑖 ) on domain Ω𝑖 ,

Rel. error 𝑢ℎ :=
| |𝑢𝑖,ℎ − 𝑢ℎ | |𝐿2 (Ω𝑖 )

| |𝑢ℎ | |𝐿2 (Ω𝑖 )
on domain Ω𝑖 ,
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Abs. error 𝑝ℎ := | |𝑝𝑖,ℎ − 𝑝ℎ | |𝐿2 (Ω𝑖 ) on domain Ω𝑖 ,

Rel. error 𝑝ℎ :=
| |𝑝𝑖,ℎ − 𝑝ℎ | |𝐿2 (Ω𝑖 )

| |𝑝ℎ | |𝐿2 (Ω𝑖 )
on domain Ω𝑖 ,

for 𝑖 = 1, 2.

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 40

Figure 13: High–fidelity solution for the pressures 𝑝1 and 𝑝2. Values of the parameters
𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19

Iteration Functional Value Gradient norm
0 7.902 2.213
5 1.956 1.210

10 0.403 2.132
40 0.007 0.069

Table 4: Functional values and the gradient norm for the FOM optimisation solution at
parameter values 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19

Iteration Abs. error 𝑢ℎ Rel. error 𝑢ℎ Abs. error 𝑝ℎ Rel. error 𝑝ℎ
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.2520 11.9830 0.0181 1.0000 31.6121 21.1630 0.5859 1.0000
5 0.6639 5.0075 0.0478 0.4179 20.7060 10.2359 0.3838 0.4837

10 0.2704 1.3722 0.0195 0.1145 6.7317 2.8262 0.1248 0.1335
40 0.0865 0.2566 0.0062 0.0214 1.4498 0.6443 0.0269 0.0304

Table 5: Absolute and relative errors of the FOM optimisation solution with respect to
the monolithic solution at the parameter values 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19
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Iteration Functional Value Gradient norm
0 4.8 · 10−1 0.391
5 5.4 · 10−3 0.047

10 3.6 · 10−4 0.015

Table 6: Functional values and the gradient norm for the ROM optimisation solution at
parameter values 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2
0 0.0284 2.9935 0.0083 1.0000 10.9522 7.0679 0.5198 1.0000
5 0.0746 0.1956 0.0217 0.0653 0.8548 0.5672 0.0406 0.0803

10 0.0135 0.0357 0.0039 0.0119 0.1714 0.1186 0.0081 0.0168

Table 7: Absolute and relative errors of the ROM optimisation solution with respect to
the monolithic solution at the parameter values 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3

Figures 14 – 17 represent the reduced–order solutions for two different values of the param-
eters (𝑈̄, 𝜈) = (1, 1) and 𝑅𝑒 = 3 and (𝑈̄, 𝜈) = (4, 0.75) and 𝑅𝑒 ≈ 19. In each of the cases, we
choose the following number of the reduced basis functions: 𝑁𝑢1 = 𝑁𝑠1 = 𝑁𝑝1 = 𝑁𝑢2 = 𝑁𝑠2 =

𝑁𝑝2 = 𝑁𝑔 = 10 and 𝑁𝜉1 = 𝑁𝜉2 = 30. As was previously anticipated, we use a higher number
for the adjoint variables 𝜉1 and 𝜉2 since they show much slower decay of the singular values (see
Figure 5a). The solutions were obtained by carrying out 10 optimisation iterations of L–BFGS–B
algorithm. Figures 14 and 16 show the intermediate solutions at iteration 0, 5 and 10 for the
fluid velocities 𝑢1 and 𝑢2, whereas Figures 15 and 17 show the corresponding pressures 𝑝1 and
𝑝2. The final solution, at the 10th iteration, shows continuity between subdomain solutions at
the interface Γ0.

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10

Figure 14: Reduced order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters
𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3. Number of POD modes: 10 - for each state variable, each
supremiser and the control, 30 – for both adjoint velocities
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10

Figure 15: Reduced order solution for the pressures 𝑝1 and 𝑝2. Values of the parameters
𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3. Number of POD modes: 10 - for each state variable, each
supremiser and the control, 39 – for both adjoint velocities

Iteration Functional Value Gradient norm
0 7.869 2.120
5 0.107 0.401

10 0.060 0.555

Table 8: Functional values and the gradient norm for the ROM optimisation solution at
parameter values 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10

Figure 16: Reduced order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters
𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19. Number of POD modes: 10 - for each state variable,
each supremiser and the control, 39 – for both adjoint velocities
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10

Figure 17: Reduced order solution for the pressures 𝑝1 and 𝑝2. Values of the parameters
𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19. Number of POD modes: 10 - for each state variable,
each supremiser and the control, 39 – for both adjoint velocities

We present additional details in Tables 6 - 9. In particular, in Tables 6 and 8, we list the
values for the functional J𝛾 and the 𝐿2 (Γ0)-norm of the gradient 𝑑J𝛾

𝑑𝑔
at the different iteration

of the optimisation procedure, while Table 7 and Table 9 contain the absolute and relative errors
with respect to the monolithic (entire–domain) solutions 𝑢ℎ, 𝑝ℎ, i.e.

Abs. error 𝑢𝑁 := | |𝑢𝑖,𝑁 − 𝑢ℎ | |𝐿2 (Ω𝑖 ) on domain Ω𝑖 ,

Rel. error 𝑢𝑁 :=
| |𝑢𝑖,𝑁 − 𝑢ℎ | |𝐿2 (Ω𝑖 )

| |𝑢ℎ | |𝐿2 (Ω𝑖 )
on domain Ω𝑖 ,

Abs. error 𝑝𝑁 := | |𝑝𝑖,𝑁 − 𝑝ℎ | |𝐿2 (Ω𝑖 ) on domain Ω𝑖 ,

Rel. error 𝑝𝑁 :=
| |𝑝𝑖,𝑁 − 𝑝ℎ | |𝐿2 (Ω𝑖 )

| |𝑝ℎ | |𝐿2 (Ω𝑖 )
on domain Ω𝑖 ,

for 𝑖 = 1, 2.

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2
0 0.1782 11.9830 0.0128 1.0000 32.5149 21.1630 0.6026 1.0000
5 0.2826 0.8724 0.0204 0.0728 4.1633 1.9392 0.0772 0.0916

10 0.1910 0.3826 0.0138 0.0319 0.6725 0.7453 0.0125 0.0352

Table 9: Absolute and relative errors of the ROM optimisation solution with respect to
the monolithic solution at the parameter values 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19
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Parameter value Velocity relative error Pressure relative error
𝑈̄ 𝜈 Ω1 Ω2 Ω1 Ω2
1 1 0.024 0.032 0.005 0.012
4 0.75 0.019 0.059 0.021 0.046

Table 10: Relative errors between FOM and ROM solutions (in terms of 𝐻1–norm for
the velocity fields and 𝐿2–norm for the pressure fields)

Analysing the results, we are able to see that the reduced basis method gives us a solution as
accurate as the high–fidelity one. The reduced–order approximation of the optimisation problem
at hand allowed us to reduce the dimension of the high-fidelity optimisation functional by more
than 10 times and enabled us to use 4 times fewer iterations in the optimisation algorithm (each
optimisation step requires at least one solve of the state and the adjoint equations). We also note
that the fact that we chose a bigger number of the reduced basis functions for the adjoint variables
𝜉1 and 𝜉2 is not supposed to affect the computational costs much since the adjoint problem is linear
and does not require multiple Newton iteration to be solved so that the biggest computational
effort still lies in the nonlinear Navier–Stokes equations and the optimisation process.

Additionally, in Table 10 we provide a comparison between full–order and reduced–order
models in terms of the relative errors between ROM solutions with respect to the corresponding
FOM solutions. Comparing the convergence results for different models – monolithic vs. DD–
FOM, monolithic vs. DD–ROM, and DD–FOM vs. DD–ROM – it can be seen that the DD–ROM
method gives a more accurate solution with respect to DD-FOM. We believe that this is due to the
optimisation process: the DD-ROM is much less sensitive to the initial guess in the optimisation
procedure and much fewer iterations are needed for the optimisation algorithm to converge.
Nevertheless, errors between DD–FOM and DD–ROM are comparable to the ones with respect
to the monolithic solution.
Remark (High Reynolds and uniqueness of the solution). As it is evident from Table 1, the
Reynolds number reported for this test case is quite small. This is due to the fact that the
optimisation solver diverges for higher Reynolds numbers. The authors suspect that this issue is
mostly due to the bifurcation effect (known as the “Coanda effect” or “wall hugging effect” of these
types of simulations). One of the reasons to support this argument is that the range of Reynolds
numbers for which the optimisation solver converges changes (though not very significantly)
when the interface is moved closer to the beginning or the end of the channel. This problem is
very complicated in itself and is addressed, for instance, in [45, 31, 9, 24, 37, 38, 39, 40, 36]. In
particular, in [38], it is shown that for a similar test already for 𝑅𝑒 ≈ 78 there is non–uniqueness
of the solution.

6.2 Lid-driven cavity flow test case
In this section, we provide the numerical simulation for the lid-driven cavity flow test case. Figure
18a represents the physical domain of interest - the unit square. The split into two domains is
performed by dissecting the domain by a median horizontal line as shown in Figure 18b.

We impose homogeneous Dirichlet boundary conditions on the part of the boundary Γ𝑤𝑎𝑙𝑙

for the fluid velocity and the nonzero horizontal constant velocity on the lid boundary Γ𝑙𝑖𝑑 :
𝑢𝑙𝑖𝑑 =

(
𝑈̄, 0

)
; the values of 𝑈̄ are reported in Table 11.

Two physical parameters are considered: viscosity 𝜈 and the magnitude 𝑈̄ of the lid velocity
profile 𝑢𝑖𝑛. Details of the offline stage and the finite-element discretisation are summarised in
Table 11. High-fidelity solutions are obtained by carrying out the minimisation in the space
of dimension equal to the number of degrees of freedom at the interface, which is 138 in
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Figure 18: Lid-driven cavity flow geometry

our test case. The best performance has been achieved by using the limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS-B) optimisation algorithm, and two stopping criteria
are applied: either the maximal number of iteration 𝐼𝑡𝑚𝑎𝑥 is reached or the gradient norm of
the target functional is less than the given tolerance 𝑇𝑜𝑙𝑜𝑝𝑡 .

Physical parameters 2 : 𝜈, 𝑈̄
Range 𝜈 [0.05, 2]
Range 𝑈̄ [0.5, 10]

Resulting 𝑅𝑒 number [0.25, 200]

FE velocity order 2
FE pressure order 1

Total number of FE dofs 14,867
Number of FE dofs at the interface 138

Optimisation algorithm L-BFGS-B
𝐼𝑡𝑚𝑎𝑥 100
𝑇𝑜𝑙𝑜𝑝𝑡 10−6

𝑀 300
𝑁𝑚𝑎𝑥 100

Table 11: Computational details of the offline stage.

Snapshots are sampled from a training set of 𝑀 parameters uniformly distributed in the
2-dimensional parameter space, and the first 𝑁𝑚𝑎𝑥 POD modes have been retained. Figure 19a
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Figure 19: Results of the offline stage: POD singular eigenvalue decay (a) and retained
energy (b) of the first 𝑁𝑚𝑎𝑥 POD modes

shows POD singular values for all the state, the adjoint and the control variables. As it can be
seen, the POD singular values corresponding to the adjoint velocities 𝜉1 and 𝜉2 feature a slower
decay compared to the one for the other variables. In Figure 19b, we can see the behaviour of the
energy 𝐸𝑛 retained by the first 𝑁 modes for different components of the solution. Note that, as
it was in the previous numerical case, a higher number of modes is needed to correctly represent
the adjoint variables 𝜉1 and 𝜉2.

Figures 20–23 represent first three POD modes for the variables 𝑢1, 𝑢2, 𝑠1, 𝑠2, 𝑝1, 𝑝2 and
𝜉1, 𝜉2. We stress that the POD modes were obtained separately for each component and the
resulting figures are obtained by gluing the subdomain functions just for the sake of visualisation.

Figure 20 shows the first modes for the fluid velocities 𝑢1 and 𝑢2. In particular, we notice that
the modes corresponding to 𝑢2 (on the upper section of the domain) are zero at the lid boundary
due to the use of lifting function. Figure 23 shows the first three modes for the adjoint variables
𝜉1 and 𝜉2: note that they are concentrated only around the interface Γ0 because the only nonzero
contribution in the adjoint equations is coming from the source terms, which are defined solely
on the interface Γ0.

Figure 20: The first POD modes for the velocities 𝑢1 and 𝑢2 (subdomain functions are
glued together for visualisation purposes).
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Figure 21: The first POD modes for the supremiser variables 𝑠1 and 𝑠2 (subdomain
functions are glued together for visualisation purposes).

Figure 22: The first POD modes for the pressures 𝑝1 and 𝑝2 (subdomain functions are
glued together for visualisation purposes).

Figure 23: The first POD modes for the adjoint velocities 𝜉1 and 𝜉2 (subdomain functions
are glued together for visualisation purposes).
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(a) Iteration 0 (b) Iteration 5 (c) Iteration 25

Figure 24: High–fidelity solution for the velocities 𝑢1 and 𝑢2. Values of the parameters
𝑈̄ = 5 and 𝜈 = 0.05

Figures 24 and 25 represent the high–fidelity solutions for two different values of the param-
eters (𝑈̄, 𝜈) = (5, 0.05), with 𝑅𝑒 = 100, and (𝑈̄, 𝜈) = (1, 0.1), with 𝑅𝑒 = 10. The solutions were
obtained by carrying out 25 optimisation iterations via L–BFGS–B algorithm. Figures 24 and
25 show the intermediate solutions at iteration 0, 5 and 25 for the fluid velocities 𝑢1 and 𝑢2. The
final solution is taken to be the 25-iteration optimisation solution as we can observe a continuity
between subdomain solutions at the interface Γ0. We present additional details in Tables 12 - 15.
In particular, in Tables 12 and 14, we list the values for the functional J𝛾 and the 𝐿2 (Γ0)-norm
of the gradient 𝑑J𝛾

𝑑𝑔
at the different iteration of the optimisation procedure, while Table 13 and

Table 15 contain the absolute and relative errors with respect to the monolithic(entire–domain)
solutions 𝑢ℎ, 𝑝ℎ.

Iteration Functional Value Gradient norm
0 4.4 · 10−1 3.398
5 3.0 · 10−2 1.001

10 3.5 · 10−3 0.171
25 8.7 · 10−5 0.016

Table 12: Functional values and the gradient norm for the FOM optimisation solution
at parameter values 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2
0 0.3411 0.1949 1.0000 0.1653 0.2689 0.3149 1.0000 0.2330
5 0.0623 0.0613 0.1826 0.0520 0.0531 0.0575 0.3633 0.0426

10 0.0114 0.0136 0.0334 0.0116 0.0184 0.0206 0.1256 0.0153
25 0.0051 0.0062 0.0151 0.0053 0.0143 0.0147 0.0980 0.0109

Table 13: Absolute and relative errors of the FOM optimisation solution with respect
to the monolithic solution at the parameter value 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100
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(a) Iteration 0 (b) Iteration 5 (c) Iteration 25

Figure 25: High–fidelity FOM solution for the velocities 𝑢1 and 𝑢2. Values of the
parameters 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10

Iteration Functional Value Gradient norm
0 2.5 · 10−2 4.1 · 10−1

5 7.4 · 10−5 1.4 · 10−2

10 3.3 · 10−6 9.1 · 10−4

25 7.0 · 10−7 3.9 · 10−4

Table 14: Functional values and the gradient norm for the FOM optimisation solution
at the parameter values 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2
0 0.0668 0.0589 1.0000 0.2416 0.0349 0.0411 1.0000 0.0956
5 0.0032 0.0028 0.0483 0.0114 0.0036 0.0036 0.1100 0.0084

10 0.0006 0.0006 0.0095 0.0027 0.0024 0.0023 0.0733 0.0054
25 0.0005 0.0005 0.0069 0.0019 0.0021 0.0021 0.0663 0.0048

Table 15: Absolute and relative errors of the optimisation FOM solution with respect
to the monolithic solution at the parameter value 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10

Figures 26 – 27 represent the reduced–order solutions for two different values of the param-
eters (𝑈̄, 𝜈) = (5, 0.05) and (𝑈̄, 𝜈) = (1, 0.1). For both cases, we choose the following number
of the reduced basis functions: 𝑁𝑢1 = 𝑁𝑠1 = 𝑁𝑝1 = 𝑁𝑢2 = 𝑁𝑠2 = 𝑁𝑝2 = 𝑁𝑔 = 10, whereas for
the adjoint velocities we choose 𝑁𝜉1 = 𝑁𝜉2 = 15. As it was mentioned before we use a higher
number for the adjoint variables 𝜉1 and 𝜉2 since they show much slower decay of the singular
values (see Figure 19a). Figure 26 shows the intermediate solutions at iteration 0, 3 and 15 for
the fluid velocities 𝑢1 and 𝑢2 corresponding to the parameter value (𝑈̄, 𝜈) = (5, 0.05), and Figure
27 shows the velocities 𝑢1 and 𝑢2 for the parameter value (𝑈̄, 𝜈) = (1, 0.1). The final solutions
are taken to be the 10-iteration optimisation solution.
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(a) Iteration 0 (b) Iteration 3 (c) Iteration 10

Figure 26: Reduced-order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters
𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100. Number of POD modes: 10 - for each state variable,
each supremiser and the control, 15 – for both adjoint velocities

Iteration Functional Value Gradient norm
0 4.8 · 10−1 3.153
3 2.4 · 10−2 1.634

10 7.2 · 10−5 0.023

Table 16: Functional values and the gradient norm for the ROM optimisation solution
at parameter values 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2
0 0.3411 0.1796 1.0000 0.1523 0.2431 0.2519 1.0000 0.1864
3 0.0512 0.0552 0.1501 0.0468 0.0531 0.0646 0.3634 0.0478

10 0.0050 0.0056 0.0147 0.0047 0.0139 0.0139 0.0956 0.0103

Table 17: Absolute and relative errors of the ROM optimisation solution with respect
to the monolithic solution at the parameter values 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100

We present additional details in Tables 16 - 19. In particular, in Tables 16 and 18 we list the
values for the functional J𝛾 and the 𝐿2 (Γ0)-norm of the gradient 𝑑J𝛾

𝑑𝑔
at the different iteration

of the optimisation procedure, while Table 17 and Table 19 contain the 𝐿2-relative errors with
respect to the monolithic (the entire–domain) solutions 𝑢ℎ, 𝑝ℎ.

Analyzing the results, we are able to see that the reduced basis method gives us a solution
as accurate as the high–fidelity model. The reduced–order approximation of the optimisation
problem at hand allowed us to reduce the dimension of the high-fidelity optimisation functional
by more than 10-20 times and enabled us to use half optimisation algorithm iterations (each
optimisation step requires at least one solve of the state and the adjoint equations).
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(a) Iteration 0 (b) Iteration 3 (c) Iteration 10

Figure 27: Reduced-order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters
𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10. Number of POD modes: 10 - for each state variable,
each supremiser and the control, 15 – for both adjoint velocities

Iteration Functional Value Gradient norm
0 2.6 · 10−2 2.6 · 10−1

3 1.5 · 10−5 1.0 · 10−2

10 7.1 · 10−7 1.2 · 10−3

Table 18: Functional values and the gradient norm for the ROM optimisation solution
at the parameter values 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2
0 0.0668 0.0591 1.0000 0.2424 0.0349 0.0403 1.0000 0.0936
3 0.0010 0.0019 0.0155 0.0076 0.0024 0.0020 0.0752 0.0047

10 0.0004 0.0004 0.0066 0.0017 0.0020 0.0019 0.0621 0.0045

Table 19: Absolute and relative errors of the ROM optimisation solution with respect
to the monolithic solution at the parameter values 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10

In order to provide more visually representable results (the scale of the solution on the
subdomains Ω1 and Ω2 has a few orders of the difference in the magnitude), we provide the
graphs of the velocities 𝑢1 and 𝑢2 separately in Figures 28 and 29. Additionally, in Table 20 we
provide a comparison between full–order and reduced–order models in terms of the relative errors
between ROM solutions with respect to the corresponding FOM solutions. The considerations
drawn in the previous section are valid also for this test case.

Remark. In both numerical cases presented above, it might seem that due to the fact that the
non–homogeneous Dirichlet boundary condition is present only on the boundary of one of the
subdomains only a few corrections are needed on this subdomain. On the other hand, this is true
only for the velocity field, as it can be seen in the tables listing the errors (for instance in Table
3). Indeed, the errors for the pressure on those subdomains are higher than on the other one.
Regarding the cavity flow, our original idea was to split the domain vertically, but in that case, the
convergence even at full–order level was much slower, hence, we opted for the horizontal split.
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 25

Figure 28: Reduced–order solution for the velocity 𝑢1. Values of the parameters 𝑈̄ = 5,
𝜈 = 0.05 and with 𝑅𝑒 = 100

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 25

Figure 29: Reduced–order solution for the velocity 𝑢2. Values of the parameters 𝑈̄ = 5,
𝜈 = 0.05 and with 𝑅𝑒 = 100
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Parameter value Velocity relative error Pressure relative error
𝑈̄ 𝜈 Ω1 Ω2 Ω1 Ω2
1 0.1 0.020 0.003 0.014 0.0007
5 0.05 0.040 0.005 0.013 0.002

Table 20: Relative errors between FOM and ROM solutions (in terms of 𝐻1–norm for
the velocity fields and 𝐿2–norm for the pressure fields)

Remark (High Reynolds simulations). Also for this test case, the range of Reynolds number for
which the DD solver converges is stricter than the one where the monolithic solver provides a
solution. The reason is that the optimisation algorithms are very sensitive to the initial guess,
and the authors suspect that some further stabilisation techniques should be used.
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7 Conclusions
In this work, we proposed a reduced–order model for the optimisation–based domain decomposi-
tion formulation of the parameter-dependent stationary incompressible Navier–Stokes equations.

The original problem cast into the optimisation–based domain–decomposition framework
leads to the optimal control problem aimed at minimising the coupling error at the interface; the
problem, then, has been tackled using an iterative gradient–based optimisation algorithm, which
allowed us to obtain a complete separation of the solvers on different subdomains.

On the reduced–order level, we have managed to build a model for which the generation of
the reduced basis spaces is carried out separately in each subdomain and for each component of
the problem solution. Furthermore, as the numerical results show, the reduction of the optimal–
control problem can be observed not only in the dimensions of the different components of the
problem, i.e., of the functional, the state and the adjoint equations but also in the number of the
iterations of the optimisation algorithm.

As it has been mentioned in the paper, the aforementioned techniques could be promising
in the context of more complex time–dependent problems and, more importantly, multi–physics
problems, where either pre-existing solvers can be used on each subcomponent or we do not have
direct access to the codes. In particular, in future, we are planning to extend the methodology
presented in this paper to problems with several sub-domains, to nonstationary fluid–dynamics
problems and, eventually, to Fluid–Structure interaction problems. Moreover, this approach can
be applied also to more complicated problems, where different types of numerical models are
used in different subdomains.
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