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Abstract: Land surface temperature (LST) is a significant environmental factor in many studies.
LST estimation methods require various parameters, such as emissivity, temperature, atmospheric
transmittance and water vapor. Uncertainty in these parameters can cause error in LST estimation.
The present study shows how the moderate resolution imaging spectroradiometer (MODIS) water
vapor imagery can improve the accuracy of Landsat 8 LST in different land covers of arid regions
of Yazd province in Iran. For this purpose, water vapor variation is analyzed for different land
covers within different seasons. Validation is performed using T-based and cross-validation methods.
The image of atmospheric water vapor is estimated using the MODIS sensor, and its changes are
investigated in different land covers. The bare lands and sparse vegetation show the highest and
lowest accuracy levels for T-based validation, respectively. The root mean square error (RMSE) is
also calculated as 0.57 ◦C and 1.41 ◦C for the improved and general split-window (SW) algorithms,
respectively. The cross-validation results show that the use of the MODIS water vapor imagery in the
SW algorithm leads to a reduction of about 2.2% in the area where the RMSE group is above 5 ◦C.

Keywords: cross-validation; Landsat; Land surface temperature; MODIS; Sentinel-2; split-window
algorithm; water vapor retrieval; Yazd

1. Introduction

The land surface temperature (LST) affects the energy exchanges between the earth
and atmosphere, climatic, hydrological, and environmental processes [1,2]. LST is the most
important component in modeling and estimating of evapotranspiration, plants drought
stress, soil moisture, fire, and geothermal hazards [3,4]. Along with the high demand
for information on the spatiotemporal variations in LST, the accurate estimation of this
parameter has become crucial [5]. However, it is not possible to monitor temperature
on a large scale through ground-based measurements [6,7]. Therefore, remote sensing
techniques are the most efficient ways of estimating the LST on regional and global scales
in the lowest time and with the least cost [7]. Remote sensing-derived LST has been widely
utilized for environmental monitoring, vegetation, and climate change studies [8,9].

LST estimation using satellite imagery depends on the atmospheric effects, sensor pa-
rameters, spectral range, viewing angle, and land surface characteristics, such as emissivity
and geometry [10,11]. Thermal infrared radiation (TIR) is most affected by the atmospheric
effects and irregular land surface emissivity [12]. Therefore, satellite imagery-based LST
estimation methods require surface and atmospheric parameters, such as surface emis-
sivity, air temperature, atmospheric transmission coefficient, and water vapor as inputs.
Uncertainty in these parameters causes errors in the LST retrieval [13]. Atmospheric profile
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information at the satellite transition time can be measured using radiosonde. However,
radiosondes with sufficient spatial resolution and information measured at the satellite
transition time are not available [14]. In addition, due to the spatial-temporal variations in
the atmospheric parameters, such as water vapor and air temperature, the use of ground
radiosonde being distant from the study area or away from the satellite transition time may
lead to an error in estimating LST [15].

Knowing the atmospheric water vapor (AWV) improves the accuracy of estimating
land surface parameters in remote sensing [16,17]. Over the past two decades, various
methods have been developed for estimating AWV using remote sensing [18,19]. Depend-
ing on the used wavelength, these methods are divided into three categories, including the
near-infrared methods [20,21], inactive microwave [7,22], and thermal infrared [23,24]. The
near-infrared approach is more practical than other ones. This method relies on reducing
water vapor in near-infrared radiation. In this technique, the amount of AWV is estimated
using the ratio between the bands affected by the water vapor absorption and those of an
ineffective atmospheric window [25].

Many researchers have studied the importance of water vapor parameters in accu-
rately estimating LST using remote sensing [26,27]. Wang et al. reported that the error
in the amount of AWV has the most significant effect on reducing the accuracy of LST
estimation [28]. Cristobal et al. presented an improved method for estimating LST [29].
Their results showed that using the air temperature parameter and water vapor amount
increases the accuracy of LST estimation. During recent years, researchers have estimated
the amount of water vapor using the satellite images [30–32]. Albert et al. compared the
amount of AWV obtained via moderate resolution imaging spectroradiometer (MODIS)
images and radiosonde’s data and estimated the root mean square error (RMSE) to be
2 kg/m2 [33]. Moradizadeh et al. estimated the water vapor using the MODIS sensor’s
images and validated it with an atmospheric infrared sounder (AIRS) product [19]. The
results of MODIS water vapor validation indicated an error of at least 9%. Varamesh et al.
estimated MODIS water vapor images and illustrated that bare lands and rangelands have
the lowest water vapor levels [34]. Vaquero-Martínez et al. proved that the seasonal cycle
of the solar zenith angle has changed the AWV in different seasons [35].

The current study aims to evaluate the effect of MODIS water vapor on improving
the accuracy of Landsat 8 LST images for arid regions. In addition, the changing rate of
water vapor in different land covers is examined. The results of this research can be useful
for obtaining information on the LST with higher accuracy because the accuracy of LST
estimation has a fundamental role in many studies, such as determining the water stress of
plants using evaporation and transpiration, energy balance modeling, and estimating soil
depth temperature.

2. Materials and Methods
2.1. Study Area

The present research was conducted in the Yazd Ardakan plain and a desert region
with a hot and dry climate. In this area, in addition to very little precipitation (60 mm
per year), the air temperature is very high, so that the absolute maximum temperature is
47 ◦C, and the temperature fluctuations are very large during the night and day, winter
and summer. Therefore, this region was chosen for research due to its special climatic
conditions and high temperature. Its geographical location is 53◦23′48′′ to 54◦50′11′′ east
longitude and 31◦18′50′′ to 32◦20′00′′ north latitude. This region is mostly covered by flat
and plain lands, but it also includes mountain (Figure 1).
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Figure 1. (a) The location of Yazd province in Iran, (b) the location of the study area in Yazd province,
and (c) the false color composition image of the study area using Landsat 8.

2.2. Datasets and preprocessings
2.2.1. Satellite Data

In the present study, 50 images of Landsat 8 in the period 2018–2020 were used to
estimate LST. The Landsat 8 satellite carries an operational land imager (OLI) and thermal
infrared sensor (TIRS). Landsat 8 includes nine spectral bands with a spatial resolution of
30 m for bands 1 to 7 and 9, two thermal bands (for 10 and 11) with a spatial resolution of
100 m and eight panchromatic bands with a resolution of 15 m [36]. The main difference
between the new TIRS sensor on the Landsat 8 satellite and the previous TM and ETM ones
is the presence of two TIR bands in the 10.8–12 µm atmospheric window. This has led to
the use of the split-window (SW) algorithm for calculating LST [37].

To estimate AWV, bands 2, 17, 18, and 19 of the MODIS radiance image, called
MOD021, were used with a spatial resolution of 1 km. The MODIS is a key instrument
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aboard both the NASA’s Terra and Aqua satellites, viewing the regions poleward of 60◦ as
many as 10–14 times a day and acquiring data in 36 spectral channels in the visible, near
infrared (NIR), and thermal infrared bands [38]. In this study, the MODIS-LST product,
called MOD11A1, was employed for cross-validation. The MODIS sensor has created the
ability to obtain LST images with a resolution of 1 km with a sequence of four times a
day and night [39]. The MODIS-LST, which exists under the names MOD11 and MYD11,
is estimated using the split window algorithm. This algorithm is highly accurate and
uses two thermal bands 31 (10.78–11.28 µm) and 32 (11.77–12.27 µm). The accuracy of
MODIS-LST has been checked using validation stations in many studies, and the results
have shown that for temperatures between 10 ◦C and 50 ◦C and AWV between 0.4 and
4 cm/km, this product can measure the temperature of the Earth’s surface with an error of
less than 1 ◦C [40–43].

The Sentinel-2 satellite images were employed to prepare the land cover map. Hav-
ing high spectral and spatial resolutions, this satellite has a high potential for preparing
land cover maps [44]. Sentinel-2 was designed by the European Space Agency (ESA)
and launched in 2015. This satellite carries the multi-spectral instrument (MSI) sensor,
which covers the entire earth every 5 days within 13 spectral bands of 10–60 m spatial
resolution [45]. The general specifications of the images used in this research are listed in
Table 1.

Table 1. Specifications of satellite images used in the present study.

Satellite Bands Wavelength (µm) Resolution (m)

Landsat 8 Band 4—Red 0.64–0.67 30
Landsat 8 Band 5—Near Infrared (NIR) 0.85–0.88 30
Landsat 8 Band 10—Thermal Infrared 10.60–11.19 100
Landsat 8 Band 11—Thermal Infrared (TIRS) 2 11.50–12.51 100
Sentinel-2A Band 2—Blue 0.458–0.523 10
Sentinel-2A Band 3—Green 0.543–0.578 10
Sentinel-2A Band 4—Red 0.650–0.680 10
Sentinel-2A Band 8—Near Infrared (NIR) 0.785–0.899 10
MOD021 Band 2—Land/Cloud/Aerosols 0.876–0.841 250
MOD021 Band 17—Water Vapor 0.920–0.890 1000
MOD021 Band 18—Water Vapor 0.941–0.931 1000
MOD021 Band 19—Water Vapor 0.965–0.915 1000
MOD11 Land Surface Temperature (LST) 1000

2.2.2. In Situ Data

To perform the LST ground validation, the temperature was measured using ther-
mometers during the satellite transition times on 16 May 2020 and 14 April 2020. Due to
the vastness of the study area, including different land covers, it has been attempted to
conduct sampling for all land covers. Conducting the uncontrolled classification on the
Sentinel satellite’s images, the maximum land cover separation was performed. Then, the
homogeneous areas were separated, and areas with net pixels were selected for validation.
A total of 30 validation points were chosen to conduct the ground measurement of LST.

In the present study, AWV was evaluated using MODIS imagery, and its effect was
investigated using the SW algorithm on the accuracy of LST obtained via this satellite.
The LST accuracy was assessed using the ground and cross-validation methods. For the
cross-validation method, MODIS-LST images were used, and ground temperature (GT)
manually measured at the validation points was used to conduct the ground validation. The
land cover map was prepared using the Sentinel-2 images, and the maximum probability
method was employed to examine the variation rate of AWV and LST estimation error at
different land covers. The schematic of the research steps is shown in Figure 2.
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Figure 2. Flowchart of this research.

2.3. Methodology

The difference between the previous LST estimation method using the split window
algorithm and the proposed method herein is that the component of the atmospheric water
vapor column is considered a constant number in the previous method, but the atmospheric
water vapor image of the MODIS sensor is used in the proposed method. The following
parts describe these techniques in more detail.

2.3.1. Land Surface Temperature Estimation

There are many methods to retrieve LST by satellite images, such as via SW [46], mono-
window [47], and single-channel algorithms [48]. The SW algorithm is a multi-channel one
which, in addition to being widely applicable, is more accurate than other methods [49].
The advantage of the SW method is the use of the absorption difference between two
thermal bands in estimating the temperature and automatic correction of the atmospheric
effects [50,51]. The SW methods are generally divided into two groups of linear [47,52] and
nonlinear [53,54]. The linear (nonlinear) SW method expresses LST as a linear (nonlinear)
combination of the brightness temperature (BT) for two TIR bands (Ti and Tj). The general
equation for the linear SW algorithm is given as

LST = A0 + A1Ti + A2(Ti − Tj), (1)

while that of the nonlinear one is in the form

LST = A0 + A1Ti + A2(Ti − Tj) + A2(Ti − Tj)
2, (2)

where Ak (k = 0, 1, 2, 3) are the SW coefficients and are mainly dependent on the land
surface emissivity (LSE), AWV, and viewing zenith angle (VZA) [5]. During recent decades,
various SW algorithms have been proposed, which differ in determining the parameters. In
the present study, the SW method presented by Jimenez-Muñoz et al. [55] was employed,
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which has been more accurate than other ones according to the results of the conducted
studies [56].

To estimate LST using Landsat 8 images, it is necessary to first convert digital values
into spectral energy in the sensor, and in this way, the spectral energy in the sensor is
estimated for two thermal bands. In addition to this component, two constant parameters K1
and K2 are needed to calculate the BT in Landsat 8 thermal bands. These two coefficients are
calculated by the effective wavelength received from the sensor. The K1 coefficient values in
bands 10 and 11 are 774.89 and 480.89 (W/ (m2 sr µm)), respectively, and the K2 coefficient
values are 1321.08 and 1201.14, respectively (in Kelvin). Emissivity estimation is needed to
estimate LST. Emissivity is the measure of an object’s ability to emit infrared energy [57]. In
general, there are two methods for extracting LSE: first calculating emissivity through the
normalized difference vegetation index (NDVI), and second calculating emissivity using
the land cover map [58]. In the current study, the first approach was employed for the
LSE estimation.

To estimate emissivity using the vegetation index, it is necessary to separate the
soil and plant’s NDVI indices. These indices have been evaluated through thresholding.
Therefore, in areas where NDVI is more than 0.2, it indicates the presence of vegetation,
so it was considered as NDVIv and lower values were placed in NDVIs category. The
fractional vegetation cover (FVC) index was estimated, and then LSE was computed to
estimate LST, see [59–61] for the mathematical formulas of spectral radiation, BT, NDVI,
FVC, LSE, and LST, e.g., see Equations (1)–(6) in [61]. In this research, the amount of water
vapor has been estimated using the MODIS images.

2.3.2. Estimation of Water Vapor

The amount of AWV refers to the compression of total water vapor of the atmospheric
column and measurement of its height per unit area, expressed in g/cm2 or kg/m2 [62,63].
The AWV can be estimated using the near-infrared bands within the range of 0.88–0.97 µm,
which are the main absorbers of AWV, and their comparison with non-sensitive water vapor
bands from 0.865± 0.04 µm [20]. The water vapor estimation algorithm using MODIS
images was first proposed by Sobrino et al. [64]. The MODIS bands 17–19 are located in
the water vapor-sensitive area, while band 2 is located at insensitive wavelengths. Band 2
was used to eliminate the reflectance of the land surface cover. The ratio between water
vapor-sensitive area bands (bands 17–19), and band 2 is estimated by

Gk =
Lk
L2

, (3)

where k = 17, 18, 19 and Lk is the radiance of bands 2, 17, 18, 19 of the MODIS sensor.
Then, the water vapor associated with each of these bands was estimated using simulated
coefficients by MODTRAN 3.5 and six standard atmospheric columns and also for ten
types of land covers including fresh snow, forest, farm, desert, ocean, cloud, old grassland,
rotten grassland, maple leaves, and burnt grass [64]. Suppose that W17, W18, and W19 are
the water vapor values associated with MODIS bands 17, 18, and 19, respectively. Then

W17 = 26.314− 54.434G17 + 28.449G2
17,

W18 = 5.012− 23.017G18 + 27.884G2
18, (4)

W19 = 9.446− 26.887G19 + 19.914G2
19.

The AWV has different absorption coefficients in bands 17, 18, and 19 of the MODIS sensor.
Under certain weather conditions, the amount of water vapor obtained via the three bands
varies. The average amount of water vapor can be obtained by

W = f17W17 + f18W18 + f19W19, (5)
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where coefficients f17, f18, and f19 are calculated by

fk = ηk

/
∑ ηk, (6)

where ηk = |∆τk|/|∆W|, ∆W is the maximum value minus minimum value of the water
vapor content from the six standard atmospheres, and ∆τk is the difference between the
maximum and the minimum transmissivities for the water vapor amount calculated in
channel k, for k in {17, 18, 19} [21]. The correlation among water vapor content and
transmissivity explains this relation. The estimated values for η17, η18, η19, f17, f18, and
f19 are 0.062, 0.147, 0.115, 0.191, 0.454, and 0.355, respectively [64]. This is a simple
model for calculating the total water vapor from MODIS imagery directly from radiance
measurements.

2.3.3. Land Cover Classification

To investigate the variation rate of AWV and estimation error of LST in different land
covers, a land cover map of the study area was prepared. For this purpose, the Sentinel-2
images with a 10 m resolution were used along with the maximum likelihood method. The
maximum likelihood algorithm is one of the most well-known and widely used information
classification methods among the controlled classification ones [65]. In this method, the
pixel is placed in the class that has the highest probability [66].

2.3.4. Validation of Land Surface Temperature

Assessing the LST retrieval accuracy is one of the most important challenges in re-
mote sensing [7,67]. This is mainly since LST is a complex variable that is influenced by
many factors and changes rapidly over time and space [68,69]. There are three methods
for validating LST obtained via satellite data, including validation using the GT data
(T-based), radiance-based (R-based), and cross-validation methods [15]. The ground val-
idation method directly compares the satellite-based LST with the one measured at the
time when the satellite passes over the study area [70,71]. The R-based technique is a
method of simulating and comparing the estimated temperature achieved via satellite
data with the results of the radiation transmission model that requires accurate knowledge
of LSE, surface conditions and atmospheric profiles at the sensor transition time [72,73].
Also, the cross-validation method considers a highly validated LST product as a reference
and compares the estimated LST with it [74,75]. In the present study, the two methods
of ground and cross-validation are applied. In the cross-validation method, MODIS-LST
images are used as a basis, while the ground validation approach uses the ground data
extracted from 22 ground points.

To evaluate the accuracy of the improved LST using the water vapor image and
compare it with the MODIS-LST products and ground data, the mean absolute differences
(MAD), RMSE, and the standard deviation (SD) of differences were used according to the
following equations [76]:

MAD =
N

∑
k=1
|LSTAk − LSTFk |

/
N (7)

RMSE =

√√√√ N

∑
k=1

(LSTAk − LSTFk )
2
/

N (8)

SDLST =

√√√√ N

∑
k=1

[
(LSTAk − LSTFk )−MDLST

]2/
(N − 1) (9)

In these equations, LSTAk and LSTFk are LST obtained via MODIS or ground validation
points and Landsat 8, respectively, and N stands for the number of selected validation
pixels or points. In addition, MDLST is the mean of differences.
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3. Results
3.1. Investigating Atmospheric Water Vapor Changes in Different Land Covers and in Time Series

To prepare the land cover map, six classes were identified in the study area, namely
agricultural, residential areas, mountain and rocky lands, rangelands, bare lands, and sand
dunes. Inheritance and field data were collected. The training samples were then collected
from the area using aerial photographs, Google Earth images, and field observations. Using
the image characteristics, land covers were determined within the study area. After separat-
ing the classes, the controlled classification of the maximum likelihood was performed. The
kappa and overall accuracy coefficients were estimated at 0.86 and 0.98, respectively, indi-
cating the acceptable accuracy of this classification method. According to the results, 2.61,
3.53, 30.32, 51.54, 2.78, and 9.19% of the study area in 2019 was composed of agricultural
lands, urban areas, mountain, rangelands, bare lands, and sand dunes, respectively.

To investigate the amount of AWV in different land covers, the corresponding values
were estimated using MODIS images during the timeframe of 2018-2019. Then, the values
of mean maximum, mean minimum, mean, variation range, and standard deviation were
examined for each land cover in one year (Table 2). Moreover, the mean AWV values
corresponding to the bare lands, rangelands, sand dunes, residential areas, agricultural
and mountainous lands were reported to be 0.18, 0.18, 0.19, 0.20, 0.20, and 0.21 g/cm2,
respectively. The maximum and minimum AWV values are dedicated to the mountain and
bare lands, respectively. The range of changes in the water vapor column in dry areas is
small, but this small amount is effective in the accuracy of LST estimation.

Table 2. Comparison of minimum (Min), maximum (Max), range, mean, and standard deviation (SD)
of AWV in different land covers. The unit of all the values is g/cm2.

Land Cover Min Max Range Mean SD

Agriculture 0.063 0.393 0.330 0.196 0.061
Residential 0.106 0.397 0.291 0.201 0.047
Mountain 0.106 0.351 0.245 0.211 0.031

Rangelands 0.106 0.398 0.292 0.182 0.046
Bare lands 0.095 0.398 0.303 0.179 0.059

Sand dunes 0.106 0.395 0.289 0.188 0.045

To examine the water vapor changes for different land covers, three transects were
drawn on the water vapor and land cover images (Figure 3). A comparison of these values
indicates the difference between the water vapor amounts associated with different land
covers and indicates the importance of estimating this component and using its image
instead of a fixed value.

3.2. Validation of the Improved LST Method and Its Comparison with the Split Window Method

The difference between the improved LST index using MODIS water vapor images
and the temperature resulting from the general SW algorithm was investigated within one
year. Also, the mean value of this difference for various land covers was estimated as well.
The results indicated that in all seasons of the year, the highest to the lowest LST differences
between these two indicators are associated with mountain, residential, agricultural, sand
dunes, rangelands, and bare lands, respectively (Figure 4). Hence, a greater difference is
observable between the improved LST and general indicators in land cover having the
highest amount of water vapor.
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Figure 3. (a) Land cover map by maximum likelihood method; (b) atmospheric water vapor image
estimated with MODIS; (c–e) transects 1, 2, and 3, respectively. The colors in panels (c–e) are the
same as the colors explained in panel (a).
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In the present study, GT measured by the thermometer during the Landsat 8 satel-
lite passing times were used for the ground validation. Considering that each pixel in
the MODIS-LST image has a spatial resolution of one kilometer, ground validation and
temperature measurements with a thermometer are challenging; LST is very variable and
areas that consist of one type of land cover and have completely homogeneous coverage
should be used for validation. Since the study has an arid and desert climate, clay soils with
no vegetation, desert pavements with uniform gravel cover, and sand dunes are suitable
places for ground validation by creating net pixels. In this study, it has been attempted to
use points for ground validation with homogeneous cover and has created net pixels. For
this reason, Sentinel-2A images were first classified in an uncontrolled manner in 10 classes
to maximize the land cover segregation. Due to the vastness of the study area, the lack
of quick access to points with net pixels, land cover diversity, and time limitation due to
rapid temperature changes per unit time, it was impossible to measure temperature in great
point numbers. The GT was measured at 30 points in areas with homogeneous cover, and
attempts have been made to collect samples in different land covers, such as bare lands,
sand dunes, rangelands, desert pavements, and rocky lands (Figure 5).

Figure 4. Changes in the differences between the improved LST and the general LST index in a year.

Note that homogeneous coverage means areas that have uniform land coverage at
least in the pixel dimensions of MODIS-LST imagery. In dry areas, lands with homogeneous
coverage are more accessible than other areas. Bare lands and sand dunes/Hamada that
had completely uniform coverage and no plants were selected as the most reliable covers
for ground validation. The GT measured at eight points in sparse vegetation areas and
pistachio trees showed the highest error for validation. This was mainly due to the coarse
spatial resolution of MODIS data and significant variation in temperature around those
points (on the vegetation vs. nearby soil). Therefore, those eight points were excluded
from the ground validation analysis. In Figure 5, two photos of LST measurements in
vegetation are shown to demonstrate the extreme temperature difference in different land
covers. The satellite-based LST were directly compared with the ground measurements at
the same time as the satellite passed. Due to the problem of matching ground-based LST
measurements with satellite-based LST pixel values, the T-based method is limited to flat
and homogeneous surfaces including water, ice, snow, sand, fields, and agricultural lands.
In should be noted that acquiring land-based LST measurements is a complex and difficult
task due to the difference in survey scales by satellite pixels (several square kilometers) and
ground sensors (several square meters).
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Figure 5. (a) The location of the ground sampling points on the map classified by unsupervised
method, and temperature measurement on (b) trees, (c) bare lands, (d) clay lands, (e) desert pave-
ments, (f) sand dunes, (g) pasture. The eight points highlighted by red cross on the top left map were
located in sparse vegetation areas and were excluded from further analysis.

The GT measured by the thermometer was compared with the temperature of the
corresponding points in the LST images obtained from the general SW method and the
improved one using the MODIS water vapor image. The land covers and sampling time of
the points are shown in Table 3. The highest temperature estimation accuracy was observed
in the areas with completely homogeneous cover, such as bare lands, while areas with
sparse tree or plant vegetation showed the most differences between the measured GT and
the one acquired from satellites, excluded herein as shown in Figure 5.
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Table 3. Land surface temperature in the improved split-window method (Improved LST), general
split-window method (LST), and ground temperature (GT) at ground validation points.

Number Land Cover Time Improved LST (◦C) LST (◦C) GT (◦C)

1 Bare lands 9:27 42.71 44.27 42.50
2 Bare lands 9:30 43.16 41.90 43.07
3 Bare lands 9:35 42.54 41.03 42.71
4 Bare lands 9:38 41.73 43.10 42.12
5 Bare lands 9:40 43.17 41.88 42.92
6 Bare lands 9:42 42.65 41.29 42.34
7 Bare lands 9:45 40.69 41.63 39.50
8 Bare lands 9:50 42.57 43.43 42.22
9 Bare lands 9:55 42.88 41.67 42.39
10 Bare lands 9:57 41.96 40.04 42.11
11 Bare lands 10:00 42.37 41.70 42.00
12 Poor rangelands 10:08 39.78 40.25 39.56
13 Poor rangelands 10:10 39.66 40.12 39.33
14 Poor rangelands 10:12 40.90 42.14 41.21
15 Hamada 10:15 43.32 41.60 43.02
16 Hamada 10:18 43.68 42.34 43.48
17 Hamada 10:20 42.98 41.74 42.53
18 Hamada 10:22 41.50 40.78 40.65
20 Poor rangelands with Hamada 10:25 39.34 38.44 40.09
21 Poor rangelands with Hamada 10:28 38.52 37.40 40.1
22 Poor rangelands with Hamada 10:30 38.77 37.00 39.21

Furthermore, the statistical parameters of the mean absolute differences, the standard
deviation of the differences, and RMSE values between the measured ground temperature
and the estimated temperature using the general SW algorithm and the improved one by
the MODIS sensor’s water vapor image have been evaluated. According to the values
listed in Table 3, the RMSE values associated with the improved method and general SW
algorithm have been estimated as 1.41 ◦C and 0.57 ◦C, respectively (Table 4). It is clear that
the RMSE index is a better audit than the correlation coefficient and has a higher sensitivity
compared to the other statistical coefficients. Therefore, when the correlation coefficient
in the method is the same, RMSE can be used to choose the better method. Therefore, the
use of the MODIS sensor’s water vapor image has slightly improved the accuracy of the
LST estimation.

Table 4. Comparison of statistical coefficients obtained from T-based validation (◦C).

Index MAD (◦C) RMSE (◦C) SD (◦C)

LST 1.26 1.41 1.81
LST Improved 0.44 0.57 1.61

For cross-validation, 50 LST images estimated using Landsat 8 were compared with
the MODIS-LST product. But a problem that always exists in satellite images, especially
LST images, is the presence of missing data due to clouds, dust storms (which are very
common in dry areas), sensor defects, and others [7]. Missing data and outliers were
removed from both MODIS and Landsat images. By comparing the temperature values in
the Landsat images with the MODIS product, the RMSE image was estimated. Figure 6
shows the error rate for each point of the study area. A comparison of the percentage area
associated with the general and improved SW algorithms indicates a good improvement in
LST estimation. Particularly, Table 5 shows the use of the MODIS water vapor image in the
improved SW algorithm has reduced the area associated with the RMSE group of above
5 ◦C and has led to a reduction in its area by 2.2%.
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Table 5. Percentage areas associated with the general and improved SW algorithms for the RMSE
groups shown in Figure 6.

Index 2> 2–3 3–4 4–5 5<

LST 21.93 17.40 33.91 17.68 9.09
LST Improved 21.55 17.26 33.70 20.60 6.89

Figure 6. RMSE obtained from the cross-validation method: (a) general spilt-window method, and
(b) improved split-window method by MODIS water vapor image.

4. Discussion

MODIS-LST has been evaluated in different climates and validation institutes, and
many studies have found the accuracy of this product to be better than 1 K [77,78]. Thus,
the MODIS-LST product was employed as a valid database for cross-validation of Landsat
8 LST [75]. For LST validation, using cross-validation has advantages compared to T-based
measurements because this method can be used in all land covers and there is no need to
find pure pixels and completely homogeneous cover areas. Therefore, the cross-validation
method is applicable in areas, such as the arid region studied herein, where LST is not
measured in meteorological stations and there is no database of temperature.

In the present research, the Sentinel-2A imagery were utilized only to prepare land
cover maps and identify lands with homogeneous coverage because these images with
a resolution of 10 m had fewer mixed-pixel issues. Sentinel-2A images were also used to
select ground sampling points, and these images were classified as unsupervised. In these
images, the areas that showed homogeneous coverage with the area of several Landsat 8
pixels were selected for measuring LST. The Landsat 8 image was not used for classification
as it was intended to separate pure pixels as much as possible and to not use mixed
pixels for temperature-based validation. Therefore, there was no need to unify the spatial
resolutions of Landsat 8 and Sentinel-2 imagery.

There are some limitations in temperature-based validation. The LST changes dras-
tically per unit of time and space. For ground validation, it is necessary to measure LST
using a thermometer in areas that have homogeneous coverage and are far from the road
due to the creation of mixed pixels during the passage of the satellite, so these limitations
reduce the number of points. However, to improve the accuracy of validation, points with
homogeneous coverage were chosen for cross-validation because measuring LST using a
thermometer is performed at one point, but LST estimated by the Landsat 8 satellite shows
the temperature at 100 m. Therefore, points should be selected for land validation that
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have a completely uniform land cover up to a radius of at least 100 m. In addition, at each
ground sampling point, the temperature was measured several times at close distances and
the average was used for validation.

Utilizing the MODIS water vapor imagery with resolution of 1 km in estimating LST
using Landsat 8 imagery, the final water vapor imagery reached a resolution of 100 m. In
the usual method of estimating LST using Landsat 8 imagery, a constant number is used for
the amount of atmospheric water vapor column, which is 0.013. However, in the proposed
method, an image of the atmospheric water vapor column was estimated via MODIS sensor
imagery and replaced with a fixed number. This is because it is generally inappropriate
to use a fixed number for the atmospheric water vapor column component that changes
throughout the year and for different land covers.

In cross-validation—an optimal method in hot and dry conditions like this study
area—many areas are not accessible for ground validation. In the cross-validation, the
MODIS-LST results were used. The MODIS images have been validated in many studies
and their accuracy has been proven. For validation purposes, LST images estimated
using the Landsat 8 satellite were converted to the resolution of MODIS images to enable
comparison. Though the spatial resolution of MODIS imagery is lower than Landsat 8
imagery, it is the only available and reliable data for cross-validation, especially for arid
regions where there is no meteorological station to measure temperature. Therefore, the
use of the cross-validation method with MODIS images is considered an effective way to
evaluate different methods of temperature estimation. It is also worthwhile to mention that
the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)
acquire LST data with a high temporal resolution (15 min); however, their spatial resolution
is much lower (3 km nadir resolution) than Landsat, and so they were not employed in this
study [79,80].

Improving the accuracy of LST even to a small amount has a great impact on the
accuracy of estimating components, such as evapotranspiration and determination of plant
stress. Therefore, investigating different methods for improving the accuracy of LST is
very important. In several studies performed by other researchers, the LST accuracy has
changed to the same extent as presented in this research [13,81,82].

Like the present study, the study conducted by Varesh et al. on the water vapor
changes in different land covers showed that bare lands and rangelands have the least
water vapor amounts [34]. The RMSE and land cover map showed that the largest error is
for the valleys and wetlands which agrees with the results of Rajeshwari and Mani who
demonstrated that the largest error in LST estimation is for vegetation and very humid
areas [83].

5. Conclusions

Estimating LST and obtaining temperature information in desert areas is of particular
importance, and the use of satellite images and their global coverage has made it possible
to measure the temperature of the Earth’s surface in desert areas. Summer is very hard and
can even be life-threatening. Knowing the temperature situation and its changes in these
desert areas can be useful because deserts are still largely unknown. Furthermore, finding
a method that improves the accuracy of the first estimate is important in most thermal
remote sensing applications. Perhaps the accuracy of even one degree is unimportant for
some applications, but it is very important in some cases, such as calculating transpiration
evaporation, plant water stress, estimating depth temperature, and determining the location
of energy transmission lines. One of the factors affecting the LST estimation accuracy is the
amount of AWV.

In this study, LST was estimated using the water vapor image of the MODIS vapor,
and its effect on the temperature accuracy was evaluated as well. In addition, the AWV
variation rate was examined in different land covers, and the results indicated that the
highest to the lowest AWV levels are associated with the mountainous lands, urban areas,
agricultural, sand dunes, rangelands, and bare lands, respectively. An examination of
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the AWV variations over one year illustrated no significant change within this period.
The LST validation was performed by both ground and cross-validation approaches. The
results of ground validation showed that bare lands have the lowest error by forming
pixels with homogeneous cover, while the highest error in estimating LST is dedicated to
regions with sparse vegetation. The results of this validation method estimated the RMSE
values corresponding to the improved and general SW algorithms as 1.41 ◦C and 0.57 ◦C,
respectively, excluding the sparse vegetation regions.

In addition, the cross-validation was performed using the LST images of MODIS
satellite, the RMSE statistical index image was evaluated and classified into five groups of
less than 2, 2–3, 3–4, 4–5, and greater than 5 ◦C. The results indicated that the use of the
MODIS sensor’s water vapor image in the SW algorithm leads to a reduction of about 2.2%
in the area of the RMSE group of above 5 ◦C. Comparing the current results with those of
the conducted studies highlights their accuracy. The proposed method in this research is
appropriate and easy to use, i.e., there is no need for auxiliary data to determine LST from
Landsat 8 satellite images. Hence, the present achievements are helpful for planners and
experts at the regional level to acquire knowledge about the AWV and LST status and their
relationship with land covers. It can pave the way for managerial decisions to protect the
natural and agricultural resources. Future studies shall examine the impact of using MODIS
water vapor image on improving the LST accuracy in humid and vegetated regions.
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