
Artificial Intelligence Techniques Applied to On-
board Space Navigation, Surveillance and Tracking

Physics Department
PhD in Astronomy Astrophysics and Space Science (XXXVI cycle)

Marco Mastrofini
ID number 1486116

Advisor
Prof. Fabio Curti

Co-Advisor
Dr. Andrea D’Ambrosio

Academic Year 2020/2021

The present work has been reviewed by:

• Dr. Moulson Matthew, First Researcher at INFN-LNF, moulson@lnf.infn.it.

• Prof. Furfaro Roberto, Department of Systems & Industrial Engineering,
Space Systems Engineering Laboratory (SSEL), The University of Arizona,
robertof@arizona.edu.

Artificial Intelligence Techniques Applied to On-board Space Navigation, Surveil-
lance and Tracking
PhD thesis. Sapienza University of Rome

© 2023 Marco Mastrofini. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: mastrofini.1486116@studenti.uniroma1.it

mailto:mastrofini.1486116@studenti.uniroma1.it

Alle stelle! Compagne di questo lungo viaggio

iii

Abstract

Space debris constitute a huge threat for the actual and future space traffic. The
constant monitoring and Resident Space Objects (RSOs) catalogue maintenance are
essential to enhance the "space segment safety". Ground based networks of radar
and optical sensors are not enough to face the evolution of such a risky phenomenon.
By this, the idea of using already on-board star sensors for a fast, deployable and
cost-effective constellation of space sentries. What if all this would be integrated with
Artificial Intelligence (AI) techniques? This work presents an AI-based algorithm
development for RSOs detection & tracking within the Field Of View (FOV) of
electro-optical attitude sensors. This can also be used for navigation functionalities
such as High Angular Rate (HAR) determination in a quaternionless situation. The
main images processing functions needed for this tasks will be discussed and faced
through the AI and coupled with a developed tracking algorithm. Tests, comparison,
tasks achievability with real and simulated images will be shown together with
the used and trained Machine Learning (ML) models. In the end, foundations
developments and keypoints ideas to develop a dual-purpose AI assisted autonomous
Star Tracker (ST) for Space Surveillance and Tracking (SST)/ Attitude Navigation
(AN) will be highlighted and presented.

iv

Acknowledgments

Questo lavoro rappresenta il mio primo passo verso la Ricerca. E’ stato un capitolo
importante della mia vita perchè in tre anni succedono tante cose. E’ stato un
mettersi in gioco perché solo alla fine ti guardi indietro e tiri le somme: sei stato
bravo o no? Personalmente credo di si, e posso leggerlo anche negli occhi di chi è
entrato nella mia vita in questi anni e di chi già conoscevo. Il percorso mi ha messo
alla prova, fatto crescere ed è stato anche pieno di ripensamenti... un po’ come la
montagna in cui spesso vado e alla quale sono stato meravigliosamente accanto in
questi anni.

Un primo ringraziamento lo rivolgo a Melissa. Grazie per l’amore, la pazienza
che hai nei miei periodi più tosti e il coraggio che mi dai quando ci lanciamo in
mezzo a tante avventure. Grazie in particolar modo per la revisione a puntino
che hai fatto di questo lavoro. Ringrazio anche il mio amico Emanuele, punto di
riferimento, di sfogo e confronto che sei da molti anni. Grazie anche a te per tutto il
sostegno e le soddisfazioni che mi dai. Ringrazio la mia amica Manana, che mi metti
sempre il sorriso ogni volta che ci vediamo. Un ringraziamento speciale anche al mio
amico Pampa, è stato bello condividere gli anni di Università, dalla triennale fino
al dottorato al tuo fianco, sia sui banchi che sul posto di lavoro. Grazie per le belle
chiacchierate, spunti e condivisioni sia umane che tecniche (avrò sempre da imparare
da te non c’è verso!). Grazie alla mia famiglia che, in mezzo a tutte le difficoltà,
rappresenta sempre un punto di riferimento. Grazie Mamma, Papà, Valerio, Damia-
no ed Edoardo. Grazie anche a tutti gli zii, zie, cugini e cugine. Voglio ringraziare
anche tutti gli amici del gruppo di arrampicata e montagna con cui ho condiviso
molti km e guadagnato le mie prime vette sia in orizzontale che in verticale, con la
roccia o con la neve. La montagna ci aspetta e di sfide ce ne saranno altre! Grazie al
mio amico Giuliano, ancora dopo tre anni top-pizzettaro dei Castelli Romani e non
solo. Sono felice delle belle chiacchierate che facciamo in pizzeria sull’Astrofisica
ed il suo futuro. Voglio ringraziare il Prof Curti, i ragazzi dell’ ARCALab e della
Scuola di Ingegneria Aerospaziale. Questi quattro anni passati insieme a voi mi
hanno regalato tanto e fatto crescere: umanamente, professionalmente e tecnologi-
camente. Grazie in particolar modo a Ivan, Salim, Gilberto, Gabriele, Francesco,
Andrea, Simone, Federica, Daniele, Lucia, Flavia, David, Manuela e Fabrizio. Infine
voglio ringraziare anche gli amici del XXXV/XXXVI ciclo con i quali sono cresciuto
assieme e confrontato (più da remoto che dal vivo), in particolare ringrazio Piero e
Giulia da Padova, Feliciana, Giulia, Alessandro, Umberto, Matteo e Mirko (vi ho
promesso la fraschetta e l’avrete!).

v

Contents

1 Introduction 1

2 Space Navigation & SST 4
2.1 Space Navigation . 4

2.1.1 Space Attitude Navigation . 4
2.1.2 Star Sensors . 6

2.2 Space Surveillance and Tracking . 10
2.2.1 SST Panorama in USA and Europe 11
2.2.2 Space Based SST Systems . 13

2.3 On-Board Electro-Optical Sensors 17

3 AI: How It Has Changed the Space and How It Is Involved in This
Research 20
3.1 A Short Introduction of AI Techniques & Deep Learning 20

3.1.1 AI & Deep Learning . 21
3.1.2 Convolutional Neural Networks 22

3.2 AI and Space: Research and Existing Applications 24
3.2.1 RSOs Maneuver Detection and Estimate 25
3.2.2 RSOs Shape/Properties Estimate 28
3.2.3 AI Applied to SN . 30

3.3 Machine Learning Models for Images Segmentation and Objects De-
tection in this work . 33
3.3.1 U-Net . 33
3.3.2 YOLOv3: You Only Look Once, Version 3 34
3.3.3 YOLOv4, What’s New? . 37

4 AI Based On-Board Image Processing 41
4.1 Image Segmentation . 41

4.1.1 Dataset Creation and Description 45
4.1.2 Algorithm Design and Configuration 47
4.1.3 Results . 51
4.1.4 Summary of Findings for AI-based Night Sky Image Segmen-

tation . 67
4.2 Objects Detection & Tracking . 68

4.2.1 Dataset Creation and Description 69
4.2.2 Algorithm Design and Configuration 70

Contents vi

4.2.3 Tests and Results . 84
4.3 Summary of Findings for the AI-Based RSOs Detection and Tracking

Algorithm . 94

5 Dual-Purpose of the Segmentation Detection and Tracking Chain 96
5.1 Space Navigation Application . 97

5.1.1 HAR Estimation Module Description 97
5.2 Tests of the AI-Based HAR Estimation Algorithm 99

5.2.1 Test at |ω⃗ref | = 5, 7, 10, 13, 15 °/s with No Noise Sources . . 100
5.2.2 Test for HAR Estimation at |ω⃗ref | = 5, 7, 10, 13, 15 °/s with

Noise Sources . 104
5.3 Test with RSOs in HAR Conditions 116

5.3.1 RSOs-Star Resolving Method 120
5.3.2 RSOs-Star Resolving Work-Flow 122

5.4 Summary of Findings for the Dual-Purpose 122

6 Design and Development of a Dual-Purpose AI-based Autonomous
Star Sensor for Attitude Navigation and Space Surveillance: TRI-
DAENT 124
6.1 TRIDAENT Design . 125

6.1.1 Points/Streaks Detection & Tracking Module 126
6.1.2 Stars and RSOs Classifier . 126
6.1.3 LISA, Attitude and Angular Rate Determination 130

6.2 TRIDAENT Development Planning: From Preliminary Design to
IOV Mission Proposal . 130

7 SPOT: Star sensor image Processing for orbiting Objects deTection133
7.1 Mission Goals . 133

7.1.1 On-Board SPOT Unit . 134
7.1.2 Ground SPOT Unit . 139
7.1.3 On-Board SPOT Feasibility Tests 142
7.1.4 On-Board SPOT Hardware Implementation 149
7.1.5 FPGA . 152
7.1.6 Test and Results for Hardware/Software SPOT Integration . 167

7.2 Activity Status and Next Steps . 176

8 Conclusions 179

Bibliography 182

vii

List of Figures

1.1 Space Debris classes’ units time evolution (debris’ size ≥ 5 cm) [1, 2]. 2
1.2 LEO main constellations and debris clouds (credits to Euro-consult). 2

2.1 Spacecraft’s Euler angles Yaw, Pitch and Roll definition [3]. 5
2.2 Spacecraft’s system, Euler rotation elements and quaternion definition. 6
2.3 Star sensor’s main parts [4]. 6
2.4 ARCSEC SAGITTA Star sensor image. 7
2.5 Stars’centroids (detail of 2.4). 8
2.6 CRF and centroids associated unit vectors. 9
2.7 Star sensors’ algorithm chain scheme [5]. 9
2.8 US SSN worldwide distribution (credits to USSF). 11
2.9 GEO observation strategy [6], the observing platform is on the sun-

synchronous orbit. 14
2.10 LEO observation strategy [6], the observing platform is on the sun-

synchronous orbit. 15
2.11 SPOT high level architecture [7]. 15
2.12 SPOT feasibility campaign results [7]. 16
2.13 FOV computation scheme. 18

3.1 ReLU activation function mathematical expression and plot. 22
3.2 Convolution Operation [8]. 23
3.3 Padding Operation [9] . 23
3.4 Maxpooling Operation [10] . 24
3.5 GAN typical architecture [11]. 27
3.6 Four models of rocket bodies [12]. 28
3.7 CNN architecture used in [12] for light curve inversion problem. . . . 29
3.8 LCI problem applied to Centaur upper stage. 30
3.9 Fine tuning approach used in [13]. 31
3.10 Navigation algorithm scheme from [14]. 32
3.11 Navigation algorithm scheme from [15]. 32
3.12 Star Pattern encoding [16]. 33
3.13 U-Net model with input tensor sizes and number of filters [17]. . . . 34
3.14 YOLOv3 architecture [18]. 35
3.15 IOU graphical explanation [19]. 37
3.16 Object Detector models structure. 37
3.17 Object Detector models comparison over MS COCO Dataset. 38

List of Figures viii

4.1 Dataset samples: real and Stellarium images. 45
4.2 Dataset samples: original and binarized images. 46
4.3 BOSS algorithm scheme. 47
4.4 Performance curves vs. pmin and models. 52
4.5 Details of performance curves vs. pmin and models. 53
4.6 NSSF at ARCALab, School of Aerospace Engineering, Sapienza Uni-

versity of Rome. 54
4.7 Exposure Time Effects Test. 55
4.8 Ghost Noise Test. 56
4.9 BOSS Ursa Major constellation segmentation. 58
4.10 Ursa Major constellation stars localization. 59
4.11 Italian Space Agency Matera Telescope’s image segmentation. 63
4.12 E and B EXperiment mission star camera’s image detail segmentation. 64
4.13 Juno Star Reference Unit’s image segmentation. 65
4.14 Images frame sequence and acquisition philosophy (Section 4.2.2). . 69
4.15 Streaks’ angle distribution of the Dataset. 70
4.16 Streaks’ relative length distribution of the Dataset. 71
4.17 Streaks per image distribution of the Dataset. 71
4.18 RSOs Detection and Tracking module algorithm structure. 72
4.19 Absolute (red) and local (yellow) reference frame. 73
4.20 Extremal points (red) and cluster centroid (yellow). 74
4.21 RSOs Detection Module algorithm structure. 74
4.22 Missing object case with nskip = 1. 76
4.23 Case 2.a: detected boxes are a own subset of stored objects. 77
4.24 Case 2.b: detected boxes are not an own subset of stored objects. . . 78
4.25 A real passage of two objects in the night sky. 79
4.26 Sequence with six tracked objects. 80
4.27 Effects of the occurrences filter in the tracked objects list. 81
4.28 Effects of the anomaly filter in the tracked objects list. 82
4.29 Effects of the occurrences and anomaly filter in the tracked objects list. 83
4.30 Image plane with RSOs centroids evolution and nuclei’s straight lines. 84
4.31 ISS and Starlink Passage used for the test (superposed images). . . . 86
4.32 An example of double detection of the same RSO. 89
4.33 High Fidelity ST simulator images passage. 93
4.34 Frascati RSOs merged sequence (no filter). 94
4.35 Frascati RSOs merged sequence (filters). 95

5.1 HAR graphic results for the 5 °/s case. 101
5.2 HAR components errors trends (no noise sources). 102
5.3 HAR components angle and norm deviation trends (no noise sources).102
5.4 Number of stars history (no noise sources). 103
5.5 IP and OoP stars motion for the HAR case of 5 °/s. 106
5.6 HAR components errors trend, mixed OoP and IP motions. 107
5.7 HAR angle and norm deviations trend, mixed OoP and IP motions. 108
5.8 Number of stars history, mixed OoP and IP. 109
5.9 HAR bore-sight component errors trend and Number of tracked stars

trend correlation. 109

List of Figures ix

5.10 HAR components errors trend, IP motions. 112
5.11 HAR angle and norm deviations trend, IP motions. 112
5.12 Number of stars history, IP motions 113
5.13 HAR components errors trend, vertical streaks. 114
5.14 HAR angle and norm deviations trend, vertical streaks. 115
5.15 Number of stars history, vertical streaks. 115
5.16 HAR components errors trend, horizontal streaks. 117
5.17 HAR angle and norm deviations trend, horizontal streaks. 117
5.18 Number of stars history, horizontal streaks. 118
5.19 RSO’s passage with the rotating sensor. 119
5.20 Star unit vector time evolution in HAR presence. 119
5.21 f-indices trends over the 10 sec time interval. 121

6.1 TRIDAENT high level HW/SW architecture. 125
6.2 TRIDAENT Star and RSOs Classifier architecture. 128
6.3 TRIDAENT’s Objects only method work-flow. 129
6.4 Visibility conditions. 132

7.1 On-Board SPOT architecture. 135
7.2 Example of two primitive clusters and discarded single pixels. 136
7.3 Cluster Growth algorithm. 138
7.4 Ground SPOT architecture. 140
7.5 Image sample from ASI Matera Observatory. 143
7.6 Star Pattern Recognition performed on the Matera image. 145
7.7 MATLAB pre-processed Image with removed stars. 146
7.8 On-Board SPOT partial output format. 147
7.9 Time evolution of the detected objects inside the FOV. 148
7.10 Image acquisition timing philosophy. 149
7.11 General System with ZYBO . 151
7.12 Zync Hardware Architecture. 152
7.13 FPGA architecture description. 153
7.14 Design Strategy on ZYNQ. 153
7.15 SPOT Design Flow for Zynq SoC. 154
7.16 SPOT Architecture on Vivado. 155
7.17 Modules of SPOT Subsystem Vivado 155
7.18 Implementation Data Flow . 156
7.19 Pre-processing Scheme . 158
7.20 Triplet Pre-Processing Block RAMs 158
7.21 Clustering Scheme . 159
7.22 Clustering effect: before (left) and after (right) 159
7.23 Cluster Fusion Scheme . 160
7.24 The moving object is shown in two subsequent images 160
7.25 Antitracking Scheme . 161
7.26 Cluster Growth Scheme . 161
7.27 Xilinx blockset in simulink . 162
7.28 Fixed point arithmetic description. 163
7.29 Design with Pipelining approach. 163

List of Figures x

7.30 Non-Pipelining process (left) and Pipelining process (right) 164
7.31 Shared memory strategy. 165
7.32 Radiation effect over SRAM. 165
7.33 Triple Modular Redundancy with error detection and correction. . . 166
7.34 Software error mitigation IP. 166
7.35 HIL set-up. 167
7.36 Detail of Pre-Processing module input (top) and output (bottom). . 168
7.37 Cluster centroids’ columns estimate differences. 169
7.38 Cluster centroids’ rows estimate differences. 170
7.39 Improved Clustering effects on cluster identifier evolution. 171
7.40 ISS’ streak primitive clusters (Image Detail). 171
7.41 ISS’ fused streaks by Cluster fusion module. 172
7.42 ISS’ fused centroids by Cluster fusion module. 172
7.43 ISS (red circle) and stars (yellow circle) 173
7.44 Three consecutive and merged images of a real passage. 175
7.45 Power consumption . 176
7.46 PHOEBE board, (Credits to School of Aerospace Engineering). . . . 177
7.47 Sagitta ST, (Credits to ARCSEC SPACE). 178

xi

List of Tables

3.1 Some of AI application in the Space Communication frame [20]. . . . 26

4.1 U-Net configuration parameters. 51
4.2 Nikon D 3100 camera features. 57
4.3 IDs, names and visual magnitudes. 60
4.4 Niblack’s algorithm tuning. 60
4.5 LTA algorithm tuning. 61
4.6 WIT algorithm tuning. 61
4.7 LTS algorithm tuning. 61
4.8 Summary of algorithms’ best F1 scores. 61
4.9 2.a Case association Table . 76
4.10 2.b Case association Table . 77
4.11 U-Net Configuration Parameters . 84
4.12 YOLOv3 Performance report . 85
4.13 Tracking Table for the ISS and Starlink. 87
4.14 Camera parameters in Gran Sasso campaign. 87
4.15 Performance Indices . 88
4.16 YOLOv4 Performance report . 88
4.17 YOLOv3 and v4 overall Real RSOs passages performance 89
4.18 YOLOv3 and v4 Real RSOs passages comparison 89
4.19 ISS and Starlink Tracking Table with YOLO v4 90
4.20 Simulated ST parameters . 91
4.21 HFSTS tracking results with YOLOv4. 92
4.22 Camera parameters in Frascati Night Sky campaign. 93

5.1 Simulated ST parameters for HAR. 100
5.2 AI-based streaks detection and tracking configuration parameters. . 100
5.3 HAR components errors mean values and standard deviations, mixed

OoP and IP motions (no noise sources). 103
5.4 HAR deviation estimates, mixed OoP and IP motions (no noise sources).103
5.5 HAR components errors mean values and standard deviations, mixed

OoP and IP motions. 105
5.6 HAR deviation estimates, mixed OoP and IP motions. 107
5.7 HAR components errors mean values and standard deviations, IP

motions. 111
5.8 HAR deviation estimates, IP motions. 111

List of Tables xii

5.9 HAR components errors mean values and standard deviations, vertical
streaks. 113

5.10 HAR deviation estimates, vertical streaks. 114
5.11 HAR components errors mean values and standard deviations, hori-

zontal streaks. 116
5.12 HAR deviation estimates, horizontal streaks. 116
5.13 HAR components errors mean values and standard deviations for

RSO-Stars scenario. 118
5.14 RSO’s centroids evolution. 119

7.1 Detector Specification. 144
7.2 Image specification from .fit file. 144
7.3 On-Board SPOT File format (first part above and second part below).147
7.4 Simulated Images test results: Energies evolution. 149
7.5 Simulated Images test results: True (T) and Estimated (E) Centroids

comparison. 150
7.6 ZYBO’s FPGA specification. 151
7.7 ISS centroids in the image sequence 174
7.8 Resources Utilization . 175

1

Chapter 1

Introduction

Potential collisions between spacecrafts, spacecrafts and space debris are something
that can’t be neglected anymore. Space debris have been representing a huge concern
for every human and robotic mission since the 90’s when Space Shuttle program
was a reality and the first International Space Station (ISS) module was deployed.
Every year the space environment is becoming more and more crowded due to the
multitude of deployed spacecrafts both from space agencies/governments and private
companies (Figure 1.1). Together with the increasing presence of active platforms in
space there is an associated increase of artificial debris. These are largely composed
of:

• inactive satellites;

• space objects intentionally released as part of missions;

• rocket parts;

• frozen propellant from propulsion systems;

• fragments from space objects due to collisions and explosions.

As a result, there is a growing risk of collision for operational satellites and other
space objects which may either impair the functionality of the active spacecrafts or
result in catastrophic failure of the mission or in a catastrophic impact with the
Earth.

In 2019, Space Debris Office (SDO) of the European Space Agency (ESA)
estimated the number of RSOs larger than 10 cm at 34 000 units, with 128 million
objects under 1 cm. United States Space Surveillance Network (US SSN) tracks more
than 27,000 pieces of orbital debris[21]. According to it there are approximately
23,000 pieces of debris larger than 10 cm, half a million pieces of debris the size of 1
centimeter or larger and approximately 100 million pieces of debris of 1 millimeter
and larger. There is even smaller micrometer-sized debris.

The greatest part of debris is concentrated in Low Earth Orbit (LEO) region
(Figure 1.2). This portion of space offers many scientific and business opportunities
and nowadays is being interested by mega constellation projects such as SpaceX’s
Starlink system. Even in the Geostationary Earth Orbit (GEO) there is a non
negligible portion of debris. Reducing the risks of collisions is crucial to protect

2

Figure 1.1. Space Debris classes’ units time evolution (debris’ size ≥ 5 cm) [1, 2].

Figure 1.2. LEO main constellations and debris clouds (credits to Euro-consult).

3

the precious satellites which populate this region (telecommunication, meteorology,
military missions).

Nowadays the main techniques to monitor this risk are ground based: Radar and
Telescopes. The former can work 24/7 without any weather condition limitation but
with a high power consumption (the higher/smaller the debris is and greater will be
the power consumption needed for radar detection). The latter have a reduced power
consumption (just camera power supply and engines for telescopes maneuvers) but
their main limitation is due to the weather conditions, light pollution and night sky
operations. Moreover, both these ground based solutions suffer of lack for suitable
and easy accessible areas to build such these ground stations. By this, recent ideas
of building a constellation of satellites carrying on payloads for debris monitoring are
taking place. In particular, the idea of using already existing on-board electro-optical
payloads is thrilling because this would reduce the actual cost of such a mission. This
pushed the idea of using attitude electro-optical payloads known as "star sensors"
or "Star Trackers" for this kind of purpose. These sensors are used to retrieve the
satellite orientation w.r.t. a desired star-based reference frame. Anyway, they could
constitute a dual-purpose payload if a suitable algorithm for RSOs data extraction
from images were developed. This is the rationale behind this work, and it will be
implemented through the use of AI. After an introduction to Space Navigation (SN),
SST and ML, the main image processing challenges will be discussed and solved in
an AI fashion. An image processing based algorithm will be combined with an own
made tracking algorithm both for RSOs tracking and HAR determination purposes.
The work of a real payload for Space Based Space Surveillance (SBSS) mission based
on traditional algorithms will be presented in its advances during these three years.
In the end, future plans for the development of an AI-based autonomous ST will be
shown, highlighting the key areas and decisions of how developing each modules for
RSOs tracking and AN.

This work fits in the space debris field, because it describes the development
and design of an AI assisted space surveillance algorithms capable of tracking RSOs.
This algorithm aims to be incorporated within existing attitude navigation sensors
which are called star sensors. After an introduction about the space surveillance
(Chapter 2) panorama and AI techniques (Chapter 3) with particular concern to
the space applications, the operative problems are faced and solved. Starting with
the Image Processing problem (Chapter 4), the images segmentation (Section 4.1)
and consecutive streaks detection and tracking (Section 4.2) have been solved and
analyzed with an encouraging algorithm. Then this software has been applied to
the HARs estimation problem in Chapter 5, showing suitable performances for the
knowledge of the spacecraft spin motion without the use of on board gyroscopes. This
dual-purpose algorithm has been put within a preliminary design of an autonomous
AI based next generation ST for space surveillance and space navigation purposes
(Chapter 6). The last Chapter 7 is devoted to the illustration of my parallel and
close related activity as Co-PI of a space based space surveillance mission: Star
sensor image Processing for orbiting Objects deTection (SPOT) project. In the end,
Conclusions occur to summarize the main findings of this research activity together
with the description of possible further investigations.

4

Chapter 2

Space Navigation & SST

2.1 Space Navigation
Space Navigation refers to the whole bunch of engineering disciplines and activities
related to achieving the knowledge of the "state of a space system". In particular for
spacecrafts it can be differentiated in two parts:

• orbital navigation;

• AN.

The former aims to solve the problem of where the spacecraft is. By the knowledge
of the spacecraft center of mass position is possible to predict its future position
thanks to dynamics models. The need of spacecraft orbital navigation comes from
the need of planning future maneuvers, pointing at desired directions to chase a
target or to provide a service, avoiding collisions with other spacecrafts (both in a
Formation Flying (FF) mission or in a LEO context) etc. The latter concerns the
relative orientation between two reference frames: a desired reference frame and the
spacecraft reference frame. The need of a precise AN system comes from the need
of thruster orientation prior a spacecraft maneuver, the need of precisely pointing
of an instrument towards a target (antenna, Light Detection and Ranging o Laser
Imaging Detection and Ranging (LIDAR), optical payloads), the need of maximize
the on-board generated power by pointing the solar panels towards the Sun etc.

Within this work we will focus more attention on some subjects of AN rather
than orbital or trajectory navigation even if the use of images from on-board optical
payloads could be used beyond the attitude knowledge purposes.

2.1.1 Space Attitude Navigation
The state of the system in this engineering science is represented by a collection
of parameters which can let us retrieve the orientation of a body (spacecraft) with
respect to a desired reference frame. Generally for description and visualization
purposes a set of Spacecraft’s "Euler Angles" (ex. Roll, Pitch ,Yaw presented in
Figure 2.1) is used while in an operative scenario the set of four parameters named
"quaternions" is more used (Figure 2.2). The aim of space AN is to retrieve this

2.1 Space Navigation 5

information by measuring some quantities and developing methods to achieve the
attitude knowledge. In general a space AN system is made of

• sensors;

• processing units;

• algorithms.

Figure 2.1. Spacecraft’s Euler angles Yaw, Pitch and Roll definition [3].

Sensors are devices which can measure quantities after a proper calibration
procedure. The nature of the measured quantities varies according to the nature
and type of the sensor:

• Stars position in the FOV for ST;

• Angular velocities for gyroscopes;

• Angle above the horizon for Earth Sensors (ES);

• Sun’s direction w.r.t. image plane for Sun Sensors (SS).

In every sensor, then, there is a suitable algorithm which can transform the
collection of measured quantities in other more useful data to retrieve part or the total
attitude knowledge thanks to algorithms which implement noise signal filtering and
theoretical method for the measured quantities manipulation. All of these algorithms
need to be implemented on the embedded system, the so called "Processing Units"
(PUs). These last are often made of a micro-controller for low power operations
or by coupling a micro-controller and Field Programmable Gate Arrays (FPGAs)
in more powerful applications which need real time or quasi-real time operations
(example the image processing step in star sensors). During this work the space
AN will be partially faced, in particular the use of ST will be considered and the
following section will deeply describe the working of these electro-optical sensors.

2.1 Space Navigation 6

Figure 2.2. Spacecraft’s system, Euler rotation elements and quaternion definition.

2.1.2 Star Sensors
Star sensors or STs are electro-optical devices capable to retrieve the platform’s
quaternion through photos of the night sky (Figure 2.3). They are composed of:

• camera: sensor and Optical Head (OH);

• PU.

Figure 2.3. Star sensor’s main parts [4].

The sensor is hosted and protected within a structure which constitutes the
camera body. While the photo is being acquired, sensor collects photons through a
system of lenses. These are contained within an OH which is protected by a conical
structure named as "baffle". The baffle is used to reduce the straylight condition
to which the camera is subjected when pointing at the sky while having a strong
lightsource in proximity.

2.1 Space Navigation 7

Figure 2.4. ARCSEC SAGITTA Star sensor image with brightest objects’ centroids (green
spots). Each centroid has its identifier (ID) and associated magnitude value (M).

2.1 Space Navigation 8

Star sensor is used to measure the stars positions within the camera reference
frame (Figure 2.4).

For each group of pixel associated to the same star the magnitude of the star
and the center of light distribution (centroid) is computed.

Figure 2.5. Stars’centroids (detail of 2.4).

Through the "pin-hole" model the centroids coordinates in the image plane
reference frame are then converted into the Camera Reference Frame (CRF) star
unit vector 2.6. Actually, the pin-hole model is a set of mathematical relations which
takes into account the camera’s parameters (sensor size, pixel size, focal length) and
relates any point position on the image plane with its associated unit vector in the
CRF.

The stars’ unit vectors information is then used to retrieve the attitude of the
sensors. By the knowledge of how the sensor is mounted onto the platform is then
possible to know the platform quaternion (and thus the spacecraft orientation with
respect to a specific reference frame).

Quaternion Computation

Stars unit vectors information is the output of the star sensors after the image
processing module. This output is then given to the attitude processing chain .

This processing chain differs if an a priori quaternion estimate is available or not.

2.1 Space Navigation 9

Figure 2.6. CRF and centroids associated unit vectors.

Figure 2.7. Star sensors’ algorithm chain scheme [5].

2.2 Space Surveillance and Tracking 10

When the quaternion info is not available and the stars unit vectors in the CRF
are expressed, the Lost In Space Algorithm (LISA) is performed. By the unit vectors
distribution is indeed possible to perform a research in an on-board star catalogue in
the star sensors’ memory. Then a star’s features or patterns based research is started
and the process repeats until most of the detected stars in the FOV are identified
("Star ID" module in 2.7). Several traditional algorithms have been developed to
solve this problem like TRIAD [22], Planar Triangle algorithm [23], Multi-Poles
algorithm [24] etc... AI solutions have been developed and proposed for solving
this task [16] but some time is still needed to see these algorithms on a real space
mission due to a long validation process. After identification, a first solution for
the quaternion is found through the Attitude Determination (AD) routine. In case
of an a priori quaternion availability, the process of identifying visible stars is not
needed because with the a priori quaternion info they are known and tracked by the
tracking algorithm. In the ST "Tracking mode" the attitude is updated on varying of
the star field and the "Star ID" is bypassed. Moreover, under this tracking mode it is
even possible to retrieve an angular velocity estimate based on the finite differences
of the stars position in the images sequence.

2.2 Space Surveillance and Tracking
To monitor space debris phenomena, Near Earth Objects (NEOs) and prevent
potential collisions, space agencies/governments and privates from all over the world
have been increasing funds for the development of SST systems in the framework of
their Space Situational Awareness (SSA) programmes.

SST system is capable of tracking and performing orbit determination to catalogue
both RSOs and NEOs. It generates data that can be used to predict hazards to
operational spacecraft or to infrastructure on ground. Such as for example a potential
satellites-debris collision or a potential collision with a reentering object (inactive
spacecraft, rocket body or NEO).

ESA states [25] that:
"SST system can be considered as a ‘processing pipeline’ to process observation

data acquired by sensors – the telescopes, radars or laser-ranging stations – and
provide derived applications and services, typically comprising collision warnings."

The main core of a SST system is the object catalogue, which contains up-to-date
orbit information for all objects over a certain size threshold and info concerning their
physical properties. To reduce at minimum the size of this catalogue, a correlation
check is performed. Here the orbit of the detected object is determined and then it
is correlated with the orbits of the catalogued objects. In this way it is possible to
verify if a new object is detected or to update a catalogued object’s orbit with new
sensor’s data.

From the catalogue info, several services can be provided by the SST:

• Conjunction predictions;

• Fragmentation detection;

• Reentry prediction & Impact analysis.

2.2 Space Surveillance and Tracking 11

Conjunction predictions are related to conjunction events (close approaches
between two objects) that allow to issue warnings for potential collisions. The second
service is related to the fragment analysis to determine when, where and who did
collide or explode. The third and last service computes orbital lifetimes of reentering
objects and predicts the reentry trajectory to assess potential on ground collisions
with sensible targets.

2.2.1 SST Panorama in USA and Europe
Several SST systems have been built or are being built all around the world to
track space debris and NEOs. They create, maintain their own RSOs catalogues
and can cooperate, share data upon international agreements. Here, an overview
of the world SST panorama is provided by showing the USA and European SST
systems organizations, both for space debris and NEOs monitoring. In the USA,
space debris surveillance is performed through the US SSN which is operated by
the United States Space Force (USSF) under the responsibility of the United States
Space Command (US SPACECOM). The conjunction, fragmentation, objects reentry
analyses and predictions are performed by the 18th Space Control Squadron located at
the Vandenberg Space Force Base, California [21]. The sensors network is constituted
by more than 30 ground-based and worldwide distributed radars and telescopes.
Moreover, six dedicated satellites are part of this network too.

Figure 2.8. US SSN worldwide distribution (credits to USSF).

US SSN’s sensors are separated in three categories:

• Dedicated sensors;

2.2 Space Surveillance and Tracking 12

• Collateral sensors;

• Auxiliary sensors.

Both the dedicated and collateral sensors are operated by the US SPACECOM,
but while the former have a primary objective to acquire SSN data, the latter obtain
these data as a secondary objective. The auxiliary sensors are not operated by the
US SPACECOM.

NEOs are tracked by telescopes and radar systems worldwide. Each of these
ground centers submits observations to the Minor Planet Center (MPC) and risk of
impact analyses are performed with these data by the center for NEO studies of Jet
Propulsion Laboratories (JPL) and by ESA’s NEO Coordination Center (NEO CC).

In Europe, ESA is focusing research and developing technologies for SST systems.
In the 2013-16 period their ground prototypes were developed and deployed. Since
2017, ESA is continuing to develop SST systems, conducting additional qualifications
of national assets (radars, optical telescopes and laser-ranging systems, SST data
processing and application, SSA-NEO infrastructures [25]).

Another recent born European reality is the European Union SST. It was
established in 2014 by the European Parliament. France, Germany, Italy, Poland,
Portugal, Romania and Spain are the European Union (EU) state members of this
SST Consortium. Since 2016 the EU SST has been cooperating with the EU Satellite
Centre (SatCen) to develop a European SST capability.

The SST services range from in orbit fragmentation characterization, conjunc-
tion analysis and re-entry prediction and related risk assessment[26]. Research &
Development programs are being fulfilled to improve SST capabilities. The areas
concerned by these programs are: sensors, processing and service function activities.
Their main researched subareas are:

• Development of ground telescopes, radars, lasers to catalogue objects in all
the earth orbital regions and fuse their measurements;

• AI techniques application for improving detection and characterisation of
RSOs;

• Radio Frequency (RF) sensors to better characterize active objects’ maneuvers;

• Development of space-based surveillance systems to complement those on the
ground;

• Improvement of autonomy in sensor tasking;

• Improvement of autonomy for satellites to anticipate and act against a collision
risk;

• Development active debris removal techniques and in-orbit proximity operation
algorithms.

2.2 Space Surveillance and Tracking 13

2.2.2 Space Based SST Systems
Besides these SSA challenges, a recent one is related to the development of space
based SST systems. In particular with reference to [27], it can be seen that in
Period 3 (2017-2020) of the ESA’s SSA programme, the development of space based
sensors appears as one of the main research areas. This topic is one of the most
recent challenges in the SSA field and initil studies from ESA-Airbus have provided
a concept. This concept uses a platform in a sun-synchronous dusk/dawn LEO orbit
to scan the entire GEO daily. This will be achieved with an on-board telescope
with an aperture of about 20 cm that is sufficient for SST tasks. Airbus has been
in charge of the feasibility study, design and development of a SBSS mission [6].
In Figure 2.9 the analysed orbit can be seen in the bottom figures. It is the red
one shown in two orthogonal projections. This sun-synchronous dusk/dawn orbit
lets the observing satellite scan the whole GEO belt (green circle/line) periodically
with a low FOV and with a suitable low phase angle (achieved through an anti-sun
pointing strategy). The scanning strategy of the GEO belt is shown in the top part
of the figure where several fences appear. This step-and-stare strategy is achieved
by pointing the telescope through the platform attitude control actions.

The same SBSS demonstrator can contribute to improve the statistical knowledge
on the sub-catalogue small-size (down to 1 mm) space debris population in LEO
too. Having a look at Figure 2.10 it is possible to see the sensor pointing at a known
LEO object within a tracking region. In this way the capability of the sensor can be
assessed via the tracking of known objects by collecting measurements.

This SBSS design is the first step for the ESA’s Optical In-Situ Monitoring
project which aims to design and integrate a breadboard of a space-based space
debris camera and to develop and test its end-to-end processing chain. Other existing
or ended SBSS missions are the Canadian NEOS Sat and Sapphire ones. The former
is for NEOs space based surveillance while the latter is purely oriented to space
debris and satellites detection. Both of them use a suitable telescope to achieve this
scope. Other two missions were performed by US: the Mid-course Space eXperiment
(MSX), equipped with the Space Based Visible (SBV) sensor and the US SSN SBSS
mission.

A detailed study for the on-board detection of SOs is performed by D. Spiller
et al [7]. Here the idea is to take advantage of a star sensors equipped platform to
detect debris and spacecraft. The proposal of a suitable software architecture to
achieve this task and send to ground useful data for orbit determination purposes
is provided. Through the development of a High Fidelity ST Simulator (HFSTS),
the algorithms could be tested to analyse RSOs’ detection limits in terms of max
magnitude, relative distance and dimensions simulating a common ST.

Considering Figure 2.11, through the HFSTS it is possible to generate images
similar to ST. Real noise sources, rolling shutter effect and stars Point Spread
Functions (PSF) are simulated together with objects streaks and magnitude according
to the considered phase angle and object’s properties and relative distance. The
images are used as input for the processing chain:

• Pre-processing;

• Clustering;

2.2 Space Surveillance and Tracking 14

Figure 2.9. GEO observation strategy [6], the observing platform is on the sun-synchronous
orbit.

2.2 Space Surveillance and Tracking 15

Figure 2.10. LEO observation strategy [6], the observing platform is on the sun-synchronous
orbit.

Figure 2.11. SPOT high level architecture [7].

2.2 Space Surveillance and Tracking 16

• Cluster Fusion;

• Cluster Growth.

First module purpose is the image segmentation, identifying the over threshold
pixels and under threshold ones. Its output is the segmented image where every
pixel carries with it the associated energy value. Then the Clustering algorithm
groups the over threshold pixels through two steps: "Primitive Clustering" and
"Improved Clustering". This is achieved via several hard coded filters and in the end
the centroids, energies and dimensions of all the clusters are computed. "Cluster
Fusion" is needed to merge clusters related to a couple of consecutive images. It
performs cluster association just at an image couple level. The cluster growth instead
is capable of associating clusters to their respective objects in a continuous flow of
images from the objects appearance inside the FOV untill their disappearance.

This work is not just focused on the objects info extraction from images. It aims
also at carrying out a feasibility analysis in terms of objects detection capability is
performed. A simulation campaign has been performed: for every combination of
objects’ magnitude, relative distance and observation direction fifty scenarios were
analyzed. For each of them, different initial conditions were used for initializing
ten fictitious objects inside the FOV. In this way it was possible to evaluate several
performance indices among which the Percentage of Tracked Objects is shown in
Figure 2.12.

Figure 2.12. SPOT feasibility campaign results [7].

This index is defined as the number of tracked objects over the total initialized
one in a single test case. Considered magnitudes reach the maximum limit of 5 that
is a representative value for the common available ST. Relative distances reach the
maximum limit of 5000 km because only objects greater than 10 m can be tracked
at greater distances (we remember that the target is detecting smaller space debris).
Results show that all the objects are almost tracked ranging from 250 km to 5000
km for all the magnitude intervals. This simulation campaign was conducted not
considering all the possible delays and processing times for the image processing and
other algorithms and the results are related to the maximum performance indices
values.

2.3 On-Board Electro-Optical Sensors 17

This work is part of the development process of the SPOT project. This project
is funded by Italian Space Agency and developed by School of Aerospace Engineering,
Sapienza University of Rome. The SPOT mission, which will perform its In Orbit
Validation (IOV) mission within 2024, is different from other ones that have been
cited previously because it aims to use STs and not just telescopes. This can increase
the availability of suitable platforms to integrate this technology and could lead to
a cost effective LEO, MEO (Mean Earth Orbit) and GEO constellations for SST
purposes.

As stated previously the on-board segment aims to RSOs info extractions. This
project is being developed together with the design of a ground module which is
devoted to a first orbit determination step and the creation of a orbit catalogue.
Then this info can be used for conjunctions predictions and orbit to orbit correlations.

2.3 On-Board Electro-Optical Sensors
Electro-optical sensors are the main actors of this research together with the AI.
This section provides an overview on the practical use of electro-optical sensors.
Here the main features of these sensors will be shown and described.

For camera it is meant an electro-optical device made of:

• A camera body: it contains the full electronics: sensor, power supply system,
cooling system and processing units. It is sometimes covered by electronic
interfaces for connectivity, parameters controls and a structure to protect what
is inside it. The sensor is generally of two types: Charged Coupled Device
CCD or Complementary Metal-Oxide Semiconductor (CMOS).

• An Optical Head: it is the equipment containing the lenses system and all the
mechanical systems concerning lenses controlled motion and focus adjustment.
It generally has a cylindrical shape and can be fixed (for fixed focal length
systems) or with variable longitudinal length (zoom).

Camera Body

It is mainly devoted to the sensor protection: from air dusts, water, shocks. The
sensor is a rectangular grid of basic electronic units (CCD or CMOS). It has a Width
(W) and Height (H) and a size which is given by multiplying W with H. W and
H can be expressed in pixels or millimeters. The conversion factor is given by the
physical length of every single pixel which is called pixel size (1-22 µm of typical
range.). Another feature concerning the sensor array is the form factor: a ratio
which quantifies the exact proportions between H ad W.

The camera used in my objects detection works has the following values:

• W = 960 pixels

• H = 640 pixels

• pixel size = 24.06 µm

• Image size =960 × 640 = 0.6144 Mpixel

2.3 On-Board Electro-Optical Sensors 18

• Form factor = 3:2

From the previous features it can be retrieved that the physical sensor dimensions
are 23.1 mm large and 15.4 mm of height with a diagonal of 27.8 mm.

Optical Head (OH)

This device contains the whole optical system. OH features together with camera
body ones are responsible for the global camera features. Moreover, by changing the
OH while mantaining the same camera body, different global features can lead to a
different use of the same sensor (let’s think about a Reflex camera with a wide view
or zoom OH). On the external side of OHs, parameters control interfaces can be
found such as: focus, system aperture, focal length etc. OH main features are:

• focal length (f0): it is the focal length of the lens. It is measured in mm and
it can be fixed or variable (zoom);

• Aperture diameter (d): it is the diameter of the OH aperture;

• f number: ratio of focal length with the aperture diameter fnumber = f0
d .

Camera

Camera body and OH coupling is the camera. It has performances which are
function of camera body ad OH features. The most important camera performance
is the FOV. FOV (θF OV) is the angular portion of scene which is visible through
the camera. For circular sensors it is a unique value while for rectangular sensor
both Vertical (VFOV) and horizontal (HFOV) can be defined. When the shape is
rectangular and just a FOV value is provided, the diagonal FOV is given.

Figure 2.13. FOV computation scheme.

By Figure 2.13 it is possible to retrieve a trigonometric formula which links FOV,
f0 and sensor dimension (D).

θF OV = 2 arctan
(

D

2 f0

)
(2.1)

2.3 On-Board Electro-Optical Sensors 19

As a consequence of 2.1:

• If f0 increases, the FOV decreases. As a matter of fact, with a zoom objective
it can be noted the FOV restriction as the focal length is being increased. This
is the reason why zooms have a variable and low FOV if compared to wide
angle OHs;

• Considering the same OH, the use of a larger sensor makes the FOV increase.

Another important concept to measure the performance is the Istantaneous FOV
(IFOV). It is a crucial when the aim of an on-board camera is Earth Observation
(EO) or attidude determination.

The camera used for objects detection purposes along this paper uses an OH
with variable focal length. Its features are:

• f0 range: 18-105 mm;

• θF OV range: 77.3° - 15.6°;

• d, variable aperture: f/3.5-22.0.

20

Chapter 3

AI: How It Has Changed the
Space and How It Is Involved in
This Research

In this chapter a brief history and introduction of the AI techniques with particular
regard to Deep Learning (DL) is faced. Then, an overview of the DL impact in
the space field will be covered. In the end, a description section about the machine
learning models applied in this work follows.

3.1 A Short Introduction of AI Techniques & Deep
Learning

We are experiencing a flourishing period for the AI. This is proved by the large
number of publications and applications of this technology. Nothing so surprising if
we think that since the 50’s and 60’s a not negligible effort was made in the field
in terms of study and research. In particular the DL field of AI started in 50’s
but before being extensively applied many years had to be waited due both to the
lack of computational/hardware resources and a lack of huge training datasets for
the models. A first boost to DL was given in the 80’s when the rediscovery of the
"Back-propagation" algorithm for the training the modern Neural Networks (NNs)
was made. This brought, in 1989, to the first application for handwritten digits
classification performed by LeNet. This model was developed by Bell Labs and
largerly used by the United States Postal Service (USPS) [28]. Then NNs world had
to wait again for at least 20 years when the first DL competition started. As a matter
of fact, with the ImageNet challenge the rise and popularity of Convolutional Neural
Networks (CNNs) took place and by the 2015 the problem of multiclassification
on images was considered solved with an achieved accuracy of 94.5 % [29]. The
2010-2020 decade saw the rise of the CNNs which rapidly invaded every branch
of the scientific community where images were used, processed and information
extracted via classical algorithms. The CNNs have become so efficient, flexible and
important for computer vision applications that nowadays it is impossible to exclude
a CNNs approach for problems having images as input. This last decade was the

3.1 A Short Introduction of AI Techniques & Deep Learning 21

most suitable for this DL revolution because of the huge amount of materials for
dataset creation, the hardware and software advances. Actually the development of
fast, burly parallel chips called Graphical Processing Units (GPUs) occured with
the videogames industry growth. Here a more powerful hardware was needed to
handle high rendering scenarios. In particular, the development of powerful NVIDIA
GPUs together with the Compute Unified Device Architecture (CUDA) [30] software
made this hardware the most suitable for boosting the CNNs training and inference,
achieving the near real time or sometimes, real time capability.

3.1.1 AI & Deep Learning
AI is the scientific field where artificial intelligence agents interact with the surround-
ing environment, performing their tasks and learning from outside as human beings
do normally.

In particular, related to the learning process, the AI sub-field of ML focuses on
the possibility of making an artificial machine to learn tasks. Actually, from an
algorithm point of view, classical approach for solving problems is the implementation
of a program which receives input data and contains all the instructions to provide
desired outputs. This is not true anymore with ML algorithms where they receive
input and output data and learn the specific set of rules which link these two sets.
Learning process is achieved via training of the machine with a suitable couple of
input and output: the dataset. The more representative of the task the dataset is,
the more the machine will learn it well. Three sub-fields of ML can be mentioned:

• Supervised Learning;

• Unsupervised Learning;

• Reinforcement Learning.

The first sub-field is related to making a machine learn through the provision
of both input and related outputs untill the machine achieves sufficient accuracy
to perform its task. The second one is related to achieve learning of a task by a
machine via the only provision of input data. This is an interesting sub-field of ML
because it finds several applications as the case of clustering algorithms. In the last
case an intelligent agent, the machine, interacts with the surrounding environment
and at each step of the process a reward function is given to make it learn a specific
policy/task.

In the end, DL comes: It is ML with the use of NNs which are architectures
of interconnected layers which are composed of neurons. These are the basic units
of NN models and perform linear combination of their input parameters. By this
operation each layer performs operations and provides in output a representation
of its input parameters. A stack of interconnected layers performs several rep-
resentations untill arriving to NN’s output. Deep in DL stands for this idea of
successive levels of representation. The applications of NNs are a lot nowadays as
well as the variety of DL models. They are used for various tasks such as image
processing, classification and detection of objects, clustering algorithms, text and
speech recognition, regressions etc.

3.1 A Short Introduction of AI Techniques & Deep Learning 22

3.1.2 Convolutional Neural Networks
CNNs are a particular class of NNs which are heavily applied in computer visions
problems like image recognition and image processing. Their name is derived by the
convolution operation which is actuated by one or more layers inside the network
itself. In a rough approximation, they are stacks of convolution and maxpooling
layers. They are capable of learning high and low-level features of an image regardless
of their position and orientation. A great advantage of a CNN is that the weights to
be learned are shared between the layers, minimizing the needed memory storage
(interesting fact for on-board applications).

The convolutional layer works in the following way: a convolution operation is
performed by sliding a small window (typically 3 × 3 pixels) over height and width
of the image and over its color channels (Figure 3.2). The window creates a patch
feature map, which is multiplied with a learned weights matrix called convolution
kernel. This operation could cause image size reduction, which is handled by applying
padding, that is to say adding border pixels in order to make the output size the
same as the input (Figure 3.3). The neurons contained in the network layers are
activated through an activation function: ReLU (Rectified Linear Unit), softmax
and sigmoid are typically used. These activation functions introduce non linearities
in the NNs and make the models easy to handle non linear problems. ReLU provides
an output value equal to the input value if the input is positive, otherwise ReLU
provides 0 as output (Figure 3.1).

Figure 3.1. ReLU activation function mathematical expression and plot.

The pooling layer has the aim to down-sample the image in order to optimize
the learning of features. In particular, the max pooling layer takes a portion of the
image (typically a 2 × 2 window) and substitutes it with the maximum pixel value
(Figure 3.4).

The performance of a CNN is represented by values of loss and accuracy, which
are computed during training, validation and test processes. It is desirable to obtain
similar accuracies between the training and validation phase to avoid overfitting.
Avoiding the overfitting will mean to have generalized model performances against
never seen data. There are different ways to overcome this issue. These include
L2 weight regularization [31], batch normalization [32], data augmentation [33] and

3.1 A Short Introduction of AI Techniques & Deep Learning 23

Figure 3.2. Convolution Operation [8].

Figure 3.3. Padding Operation [9]

3.2 AI and Space: Research and Existing Applications 24

Figure 3.4. Maxpooling Operation [10]

dropout [34].

3.2 AI and Space: Research and Existing Applications
AI and in particular ML has achieved many successful tasks in the last decade.
This has brought a huge interest in it, especially in the space industry and research.
Anyway being ML capabilities discovered and tested recently, some time must be
waited before founding them massively used in real space missions (robotic and
human). This is both due to:

• The strong constraints on technology reliability to keep the risk of failure in a
space mission really low;

• models developed within the NN are not human readable and have been
impossible to replicate thus far [35].

Anyway, recently space companies and research teams have started to think
about AI possible uses in the next future space missions. Some areas of application
have been found:

• EO: AI and ML in particular are capable of analyzing autonomously a large
amount of data. For example images coming from satellites for meteorological
purposes, naval traffic, fires detection, agricultural monitoring etc. They need
to be preprocessed, classified and complex information need to be extracted
with repetitive processes that can be automated through AI. Even for non
image data AI can be applied for signal anomaly detections or noise smoothing;

• Space exploration: Deep Space Probes (DSPs) and Rovers. These application
can find help by AI in some cases as autonomous trajectory adjustment for
collision avoidance purposes (DSP with a plate or asteroid, rover with craters
or rock along the path). An examples of space missions involving AI are:

– the Hera mission [35] for autonomous navigation application;

3.2 AI and Space: Research and Existing Applications 25

– Mars latest rover for the intelligent data transmission where on-board
software removes human scheduling errors.

• SN in FF missions and large constellation. In this application there is often the
need of not having members of the group to collide each other and maintain
a specific relative geometry. AI can be used in this kind of process to take
decisions on how to maneuver spacecrafts in order to get the required group
configuration while optimizing the propellant consumption;

• Spacecraft health state monitoring: AI can be used for monitoring the correct
working of subsystems on-board and their performance degradation over time.
SatGuard system, actually, is designed to extend the life of satellites deployed in
orbit. Through the AI, "big data", DL, and ML technologies, the system is able
to carry out anomalies and performance degradation detection. SatGuard’s
development is lead by Israeli Aerospace Industries (IAI) [36]. The main
concern in space mission operation is to ensure the health and safety of the
spacecraft. In the worst case the interruption of spacecraft functionality can
lead to the loss of a mission but it often results in compromised mission
objectives. Methods of system health monitoring are challenging especially in
latest complex satellites and the available time to observe and interact with
any given spacecraft is limited if compared to ground-based systems. This
is due to the availability and bandwidth of their connection to ground, the
availability of staff, communication latencies, and power budgets . These are
the reason why every space-crafts need a minimum level of autonomy during
their missions [37];

• Space telecommunication: data handling and transferring, coverage problem
and its impact over the data transfer strategy suffer from several factors:
limited on-board resources, satellites high speed, high complexity of models
for terrestrial networks, the great heterogeneity between the satellite layers
(GEO, MEO, LEO), the aerial layers (unmanned aerial vehicles etc.). Space
Telecommunication offer a wide and challenging environment for AI research
and applications. Some of them are related to satellite communication like
beam hopping, telemetry mining, ionospheric scintillation detecting, and remote
sensing. Moreover the Space Air Ground Integrated Networks (SAGINs) are
an application where satellite and non satellite networks are integrated with
AI to increase service flexibility. Table 3.1 illustrates the application of AI
algorithms to solve different satellite communication problems.

3.2.1 RSOs Maneuver Detection and Estimate
Great concern exists for understanding and estimating performed maneuvers by
active RSOs. This is important because a maneuvering spacecraft changes its orbital
parameters and its future position. This could lead to include it as a new catalogue
object or to associate it with a different one because of unsuccessful correlation
procedure. This has to be avoided both to contain objects catalogue dimensions but
also to avoid false collision warnings due to propagation of obsolete objects.

3.2 AI and Space: Research and Existing Applications 26

AI algorithm Satellite communication application

SVM Network traffic forecasting,
channel modeling, telemetry mining,
ionospheric scintillation detecting,

managing interference, and remote sensing.

Decision Trees Channel modeling, ionospheric scintillation,
detecting, and remote sensing.

CNN Channel modeling, remote sensing,
space-air-ground integrating,

handoff optimization,
and carrier signal detection.

RNN Anti-jamming, telemetry mining
behavior modeling, and handoff optimization.

Auto Encoder Managing interference.
(AE)

Reinforcement Learning Beam hopping, anti-jamming,
(RL) managing interference, behavior modeling,

space-air-ground integrating, and energy managing.

Table 3.1. Some of AI application in the Space Communication frame [20].

3.2 AI and Space: Research and Existing Applications 27

In this framework, R. Linares and R. Furfaro’s [38] research aimed to use the
inverse Reinforcement Learning to understand RSOs’ behaviour in terms of maneuver
policy to track them and predict their future position in order to avoid possible
collisions. Another interesting work was done by R. Abay et al. to detect RSOs’
maneuvers as orbit evolution anomalies using a developed Generative Adversarial
Network (GAN) Figure 3.5. This method was then applied to a real existing GEO

Figure 3.5. GAN typical architecture [11].

satellite and the network was able to provide good results in detecting the part of
the station keeping maneuvers of the Optus 10 GEO satellite [11]. Previous works
investigated the problem via the application of AI techniques but it is also possible
to apply classical algebraic approaches and achieving good results as A. Pastor et
al. did in their work [39]. Here two novel and operationally feasible methods, based
on optimal control approach and weighted non least squares method were proposed.
They were used to solve both the track-to-orbit problem for detecting and estimating
a single burn maneuver and orbit-to-orbit problem to do the same with a multiple
burns maneuver.

Despite the same context where the papers were born, Linares and Furfaro’s
one points to achieve something more significant for SSA than simple maneuver
info because it aims to identify the maneuvering strategy which can lead to longer
term predictions of the spacecraft location. Actually, for an active object a useful
information to provide to the user through the catalogue could be the status of the
spacecraft: Station keeping, Loss control due to engine failure, Transfer orbit and so
on. It must be pointed out that the capability of estimating a performed maneuver
of a satellite is still a useful information for SST purposes because it can be used to
update RSO’s mass and thus its ballistic coefficient, improving in such a way the
characterization of the object itself. Moreover, the Abay and Pastor works make
(explicitly or not) the assumption of being capable in impulsive burns maneuvers
estimation, while Linares and Furfaro’s work does not show the need of making
hypotheses on the maneuver nature (low thrust or impulsive burn). This makes AI
approaches more flexible with respect to the maneuver nature.

3.2 AI and Space: Research and Existing Applications 28

3.2.2 RSOs Shape/Properties Estimate
Another recent challenge in the SSA field is increasing the quality of RSO’s infor-
mation in terms of shape, reflective properties and angular rate. This is needed to
improve the estimates of the acting forces like radiation pressure and aerodynamic
drag. Actually, from a better knowledge of the acting forces, a better RSO’s position
can be predicted and a more reliable conjunction analysis can be performed. To face
this problem, one possible approach is the use of RSO’s light curves. By collecting
RSO’s frames from the on ground telescopes, it is possible to extract the object
magnitude time evolution during the observation interval. From this input data,
several approaches can be applied to estimate the shape, optical properties and
angular rate of the RSO.

One recent work from R. Furfaro and R. Linares [12] shows that it is possible
to use a CNN to invert a light curve for RSO’s shape detection. In particular, four

Figure 3.6. Four models of rocket bodies [12].

models of rocket upper stages (Figure 3.6) are modeled in terms of geometrical,
dynamical and optical properties and then are used to generate 200000 light curves
for the CNN training and validation step. In this work a simple CNN architecture
made of three convolutional layers plus two fully connected was designed and used
for solving a classification problem. Then trained network (Figure 3.7) performs
well in recognizing RSO’s shapes from the photo metric input data, achieving a
validation accuracy of 92, 2%.

3.2 AI and Space: Research and Existing Applications 29

Figure 3.7. CNN architecture used in [12] for light curve inversion problem.

B. K. Bradley and P. Axelrad [40] tried to retrieve the shape of RSO’s in the GEO
belt using the Light Curve Inversion (LCI) technique developed by M. Kaasalainen
and J. Torppa[41] for solving the problem with asteroids. This technique, which is
different from the AI approach used in the previous work, seems to perform well for
several objects like upper stage rocket bodies (Figure 3.8), 1U and 3U Cubesats while
it under-performs with box-wing satellites and High Area to Mass Ratio (HAMR)
objects.

Comparing these shape estimation approaches, it must be pointed out that both
the CNN method and the classical LCI technique are tested against simulated data.
Moreover, the solution of the LCI problem performed via NN is not affected by the
ill-posed nature of the problem itself [12], if a well realized dataset is provided for
the CNN training.

Advances in R. Linares, R. Furfaro et al.[42] show that the CNN significantly
outperforms traditional ML techniques on a 3 class real data classification, achieving
an accuracy of 75.4%. The authors argued that the many layer configuration of the
CNN enables it to learn more complex decision boundaries, which suggests that the
simulated light curve data does not effectively encapsulate the complexities present
in the real light curve data. This represents a step forward compared to previous
works [12, 40] because of the use of real light curves and their consequences over
algorithms performances (improvement in accuracy).

A possible solution to this problem was proposed by J. Allworth, L. Windrim
et al. [13] where the same data-driven method for the classification of light curve
measurements of RSOs based on a DL approach was used. The original approach
followed here is the use of transfer learning to make an existing trained CNN model
achieve better performances when applied to real light curve for shape retrieval task.

Actually, authors use a pre-trained network over a huge simulated light curve
dataset and then its weights are used to initialise a separate NN where the last layers
are fine tuned with the training on smaller real light curve dataset (Figure 3.9). In
this work both the models are tested against the same real light curve test set and
the fine-tuned network shows an improvement in accuracy equal to 5%.

3.2 AI and Space: Research and Existing Applications 30

Figure 3.8. LCI problem applied to Centaur upper stage in [40]. Below the real and
reconstructed shapes’ Light Curves are compared for two different rotation axes.

3.2.3 AI Applied to SN
In the SN field, the main AI algorithms used are:

1. Fuzzy Control (FC);

2. NNs;

3. Evolutionary (Heuristic) optimization algorithms (such as Genetic Algorithms
(GA));

4. Adaptive Neuro-fuzzy Inference Systems (ANFIS).

These different methods require different approaches. Actually, NNs need a
training phase before being used for inference. The great concern is not just
selecting or designing the proper model architecture for the desired purpose but,
providing good and large-enough datasets. The problem of providing large and well
calibrated datasets can be easily faced through the usage of simulations and computer
implemented models to generate the suitable amount of input and output training
samples. With a suitable training strategy and achieved generalized performances,
NNs based algorithms could efficiently replace Guidance Navigation and Controls
(GNC) algorithms if the inputs and outputs of GNC algorithms are used to train
the AI algorithm. Their use would bring two main advantages:

1. The NNs faster (or input size independent [43]) execution time in-orbit when
compared to non-AI GNC algorithms;

3.2 AI and Space: Research and Existing Applications 31

Figure 3.9. Fine tuning approach used in [13] to increase the CNN classification accuracy
including real data in the learning process.

3.2 AI and Space: Research and Existing Applications 32

2. NNs based algorithms could maintain the same accuracy levels of current GNC
traditional algorithms [44].

In [14] an Extended Kalman Filter (EKF) coupled with NN (RBFNN) is utilized.
The additive disturbance and nonlinearities are modelled through a Radial Basis
Function NN (RBFNN). As the knowledge of additive disturbances improves, the
EKF process noise covariance matrix is adaptively adjusted (Figure 3.10).

Figure 3.10. Navigation algorithm scheme from [14].

In [15] a novel AI-based algorithm solves the monocular pose estimation for
close-proximity operations around an uncooperative spacecraft. It combines a Single
HourGlass NN (SHGNN) for feature detection with a Covariant Efficient Procrustes
Perspective-n-Points (CEPPnP) solver and a Multiplicative Extended Kalman Filter
(MEKF) (Figure 3.11).

Figure 3.11. Navigation algorithm scheme from [15].

In [45] GA are used to optimize the learning function of a NN through the
GA-NN merging. This led to a solution very close to the global optimum solution.
Moreover, GA could be used to optimize the parameters of NN to achieve certain
goals.

In the AN branch, the Lost In Space (LIS) is a heavy AI faced problem. Actually,
from [46] a survey of LISAs is shown and described. The problem of LIS is often

3.3 Machine Learning Models for Images Segmentation and Objects Detection
in this work 33

faced through ML by formulating the star identification process as a classification
problem. For each star an encoded string representing one class is generated. When
a star field image is provided, then a star is selected and the encoded string is
generated. In the end a NN is used as classifier to identify the star [16].

Figure 3.12. Star Pattern is being encoded in a numeric string by dividing the radial
distance in intervals [16].

3.3 Machine Learning Models for Images Segmentation
and Objects Detection in this work

This section is devoted to give an overview and to describe the three NNs which
are used in this research activity: U-Net, YOLOv3 and YOLOv4. The U-Net is
applied to solve the problem of night sky images segmentation for brightest objects
information extraction. The YOLOs are used to localize and recognize the brighter
streaks on the dark background. Effects and results of these models are shown in
the following chapters.

3.3.1 U-Net
The U-Net is a fully convolutional neural network (FCN) which was first used for
segmentation of biomedical images and was later adapted to space-based applications
such as crater detection [47]. The network architecture in this paper is chosen to
be a slightly modified version of the original one as shown in Figure 3.13. In this
Figure the numbers on the left of each block represent the input tensor sizes (512,
256, 128 etc...) while the numbers below each block represent the number of filters
in that block (1, 64, 64 for the three starting blocks). Arrows colours vary with
the blocks’ tasks: blue for convolution operation, red for MaxPooling, green for
the UpConvolution operation, grey for the copy operation and brown for the layers
concatenation.

The U-Net has a symmetric encoder-decoder structure: the encoding, down-
sampling path is a stacked sequence of two ReLU 3 × 3 convolutional layers followed
by a 2 × 2 max pooling layer. At each level, the number of filters doubles, reaching
its maximum value at the bottom.

3.3 Machine Learning Models for Images Segmentation and Objects Detection
in this work 34

The decoding up-sampling path contains 2 × 2 up-convolutional layers concatenated
with layers coming from the corresponding down-sampling level in order to preserve
already learned features. The concatenated layers are followed by dropout and a
sequence of two 3 × 3 convolutional layers up to the output layer in which a final
sigmoid-activated 1×1 convolution produces data ready to be binarized. The present
U-Net will be fed with 512 × 512 images and their corresponding masks.

1

5122

64 64

64

2562

128 128

128

1282

256 256

256
642

256 256

||

256 - 256 128 128

||

128-128 64 64

||

64- 64 64 64

Conv 3×3
MaxPool 2×2
UpConv 2×2
Copy
Conv 1×1
Concat

Convolution + Relu Act. Fun.

Binary
mask

Figure 3.13. U-Net model with input tensor sizes and number of filters [17].

Configuration parameters used for this network to prevent overfitting are:

• Learning Rate: It is an optimizer’s parameter that fixes the step size at each
iteration during minimization of the loss function;

• Regularization Factor: It is a parameter needed for the l2 regularization based
on penalization of the cost function;

• Dropout Rate: It regulates the percentage of inactive network elements in the
dropout layers during training and validation process;

• Kernel initializer: It sets the weight initialization method; in this case, it is set
on he_normal [48].

In this work, Adam [49] was chosen as the optimizer and Binary Crossentropy
[50] was chosen as the loss function.

3.3.2 YOLOv3: You Only Look Once, Version 3
The You Only Look Once, Version 3 (YOLOv3) is a real-time object detection
algorithm that detects objects in images and videos. The YOLOv1 was created in
2015, YOLOv2 in 2016 while YOLOv3 in 2018 [51]. YOLOv3 is an improved version
of YOLOv1 and YOLOv2 and is implemented using the Keras or OpenCV deep

3.3 Machine Learning Models for Images Segmentation and Objects Detection
in this work 35

learning libraries. YOLOv3 performs Objects Detection (OD) which is composed of
two steps: Objects Localization (OL) and Objects Classification (OC). The former
aims to localize and thus estimate the position and extension of the object within
an image while the latter aims to specify the class (or kind) of localized objects. In
this way, OD means knowledge of position and type of objects at the same time.

YOLOv3 is a CNN capable of performing real-time OD using a structure which
is shown in Figure 3.14.

Figure 3.14. YOLOv3 architecture [18].

The first part of YOLOv3 is composed of a Darknet 53 network who was
previously trained on the ImageNet dataset [52]. Darknet 53 is represented in the
picture (magenta) in the left side of Figure 3.14 and is composed of 53 convolution
layers. For the task of detection, 53 more layers are stacked onto it, giving a total
amount of 106 fully convolutional layers, underlying architecture for YOLOv3 . The
detection layers are the 82nd, 94th and 106th ones (right part of Figure 3.14, vertical
structures) and they are given the same input image but with different sizes due to
different spatial scale for OD to be performed.

The input image size for the 82nd layer is scaled w.r.t. the network input by a
factor of 32. The 94th input is scaled by a factor of 16 and the 106th input image has
a scale factor of 8. In this way the detection is performed at three different scales into
the same image: the 82nd layer is responsible for wide objects detections while the
106th is responsible for small objects detections. At each of the 3 prediction layers,
the network performs detection using 1 × 1 convolution. This has as consequence
that features maps and prediction maps have the same size and for this reason the
algorithm was called YOLO: You Only Look Once.

3.3 Machine Learning Models for Images Segmentation and Objects Detection
in this work 36

How Does OD Work?

If we consider a network input image of 416 × 416, the 82nd layer input will have a
size of 13 × 13. On every single pixel (or cell) of this input a detection kernel will be
applied. Its effect will be the production of a feature map whose size is 13 × 13 × D,
where the Depth "D" is given by the formula:

D = b × (5 + c) (3.1)

which contains the number of classes "c" and the number of predicted bounding
boxes "b" which is equal to 3 for the considered network. The fixed number 5
stands for the five values associated to the box: two coordinates, two box sizes
and an Objectiveness score which represents presence/absence of any object. The
cell containing the center of the object that cell belongs to is thus responsible for
detecting the object. In the framework of this thesis activity the detection problem
will require just a single class and thus the Depth will be equal to 18.

To predict Bounding Boxes (BBs), "anchor boxes" are used. YOLOv3 uses
predefined BBs called anchors or priors which are used to calculate real width and
real height for predicted BBs. An amount of 9 anchor boxes are used, 3 anchor
boxes for each input scale. This means that at each detection layer every grid
scale of feature map can predict 3 bounding boxes using 3 anchor boxes (this is the
reason why b is equal to 3 in the Equation 3.1). To calculate these anchors K-Means
Clustering is applied in YOLOv3 and after this computation the real BBs prediction
comes using a log-space transform:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pw etw

bh = ph eth

(3.2)

where (cx, cy) are the cell’s top left corner of the anchor box, (tx, ty) are the NN
predicted box center, (tw, th) are the NN predicted box dimensions and (pw, ph) are
the anchor box dimensions (width and height). With these value and equations is
possible to compute the BB’s center coordinates (bx, by) and dimensions (bw, bh).
After this operation, the total amount of predicted BBs for the three detection layers
(considering a 416 × 416) is: (13 × 13 ×3)+(26 × 26 ×3)+(52 × 52 ×3) = 10647.
All these redundant bounding boxes from 10,647 boxes are then suppressed using
Non-Max Suppression (NMS) algorithm. NMS filters the redundant boxes, leaving
just the desired and final ones. The algorithm can be summarized in this way briefly:

1. The proposal with highest confidence score is removed from list of predicted
BBs and is added to the final list;

2. The final candidate list is compared with all the proposals in the predicted
BBs list. If the comparison index is greater than a threshold, then proposal is
removed from predicted BBs list;

3. Again the predicted BBs proposal with the highest confidence from the re-
maining proposals is removed and added in the final list;

3.3 Machine Learning Models for Images Segmentation and Objects Detection
in this work 37

4. With this new final list proposal, once again the comparison index is computed
with all the predicted BBs proposals. All the predicted BBs proposals with a
comparison index higher than the treshold are removed;

5. This process is repeated until there are no more predicted BBs proposals.

As comparison index, the Intersection Over Union (IOU) is used. It is defined as
the ratio between the intersection area and total area between two areas.

IOU = Intersection Area

Total Area
(3.3)

Figure 3.15. IOU graphical explanation [19].

3.3.3 YOLOv4, What’s New?
The YOLOv4 is a one-stage detector (Figure 3.16) with several added components
developed by Alexey Bochkovskiy et al. [53]. Both YOLOv3 and v4 are object
detection models, and in the v4 there is a significant increase in the Average Precision
(AP), at the same frame rate, w.r.t its predecessor (Figure 3.17).

Figure 3.16. Object Detector models structure [53]. YOLOv4 is one stage detector
w.r.t. the classical two stage detectors like Faster-RCNNs (Region based CNNs)[54],
Mask-RCNNs [55] etc..

As every objects detector model, the YOLOv4 is made of these blocks too:

• Input: Image, patches, Pyramid;

• Backbone: It is a deep learning model that constitutes the feature extractor
and which is trained on ImageNet. Generally, the backbone is a classification

3.3 Machine Learning Models for Images Segmentation and Objects Detection
in this work 38

Figure 3.17. Object Detector models comparison over Microsoft Common Objects in
Context (MS COCO) Dataset [56]: AP vs Frame Per Second (FPS) [53]. YOLOv4
significantly outperforms the v3 in terms of AP.

3.3 Machine Learning Models for Images Segmentation and Objects Detection
in this work 39

models like the VGG16 (Visual Geometry Group 16)[57], ResNet [58], or
DenseNet [59];

• Neck: It is made of methods which collect feature maps from different stages
of the backbone. Basically, it is a feature aggregator. Its existence is common
but not mandatory. Usually, a neck is composed of several bottom-up paths
and several topdown paths [53];

• Head: It is the real object detector. It localizes and classifies the object.
Several models can be used as head and they are divided according to the
usage or not of the anchors:

– Anchor Based: RPN (Region Proposal Networks) [54], SSD (Single Shot
multibox Detector) [60], YOLO [18], RetinaNet [61];

– Anchor Free: CornerNet [62], CenterNet [63], MatrixNet [64], FCOS
(Fully Convolutional One-Stage object detection) [65].

This is the general structure of a DL object detector, moreover YOLOv4 does
contain a set of methods which can enhance the network performance. They are
divided into two sets:

• Bag of specials (BoS): They are just a group of "plugin modules" and post-
processing methods that increase the inference cost by a small amount but can
significantly improve the accuracy. The plugin modules are used for enhancing
certain attributes in a model, such as enlarging receptive field, introducing
attention mechanism, or strengthening feature integration capability, etc.,
and post-processing is a method for screening model prediction results [53].
Common modules that can be used to enhance receptive field are SPP (Spatial
Pyramid Pooling) [66], ASPP [67], and RFB (Receptive Field Block) [68].

• Bag of Freebies (BoF): They are a set of methods that only change the train-
ing strategy or only increase the training cost (nothing to do with inference).
For example the data augmentation, regularization, class label smoothing are
some of them.

YOLOv4 Architecture

Previously the standard structure of one stage or two stages objects detectors have
been described and shown underlining the various possibilities in the models choices
for every part of it: BackBone, Neck and Head. The original configuration of
YOLOv4 is:

• Backbone: CSPDarkNet53;

• Neck: SSP [66] + PANet [69];

• Head: YOLOv3 (YOLO layers are the 139th, 150th and the 161st).

As BoS and BoF used for this architector, they are:

• Backbone:

3.3 Machine Learning Models for Images Segmentation and Objects Detection
in this work 40

– BoS: Mish activation, Cross-stage partial connections (CSP), Multi- input
weighted residual connections (MiWRC);

– BoF: CutMix and Mosaic data augmentation, DropBlock regularization,
Class label smoothing.

• Head:

– BoS: Mish activation, SPP-block, SAM-block, PAN path-aggregation
block, DIoU-NMS;

– BoF: CIoU-loss, CmBN, DropBlock regularization, Mosaic data augmenta-
tion, Self-Adversarial Training, Eliminate grid sensitivity, Using multiple
anchors for a single ground truth, Cosine annealing scheduler, Optimal
hyper-parameters, Random training shapes.

This is the architecture that has been used in my PhD research activity and the
benefits this network has brought will be shown in the next chapters.

41

Chapter 4

AI Based On-Board Image
Processing

This chapter is devoted to investigate and face the main core of my PhD thesis: the
problem of Image processing through the use of AI. Image processing is a mandatory
step to achieve tasks as complex information extraction from images, the RSOs
position over the time in my case. Because of this, it is needed to design and to
develop an algorithm capable of tracking RSOs over the time. To reach this scope
through the use of AI, I faced the problem of night sky objects segmentation (Section
4.1). This was done with the use of the U-Net CNN to get a segmented (binarized)
image. With a binarized image the RSOs appear as clear streaks on dark background.
Thus, it is possible to train a YOLOv3 model to detect streaks on the night sky
to achieve the objects detection capabilities (Sections 4.2 and 4.2.2). At this point
streaks’ positions (centroids) can be computed.

If the image segmentation and streaks detection process is applied for each frame
of an images sequence, it is possible to know the streaks centroids history at each
frame. The history (or the whole collection of centroids) knowledge is used by a
developed Tracking algorithm (Section 4.2.2) to gather centroids which belong to
the same object. In this way, the RSOs tracking or clear streaks tracking on the
dark sky background is possible.

4.1 Image Segmentation
In the framework of on-board autonomous star sensors algorithms, star segmentation
and accurate centroid estimation are critical problems to face. The number of actual
detected stars and the relative centroids’ estimation accuracy have a huge impact
on the success of star-identification-based attitude determination routines [70, 71].
Taking into account that star sensor images generally contain several noise sources
(stray light noise, single point noise, single events upsets (SEUs) and so on), good
initial processing of image data is mandatory. In this way, it is possible to improve
the percentage of success in the star identification process [16, 72] and the possibility
of retrieving accurate attitude information from images. A good image segmentation
process is also needed for RSOs detection. In this case the image noise and the weak
nature of an RSO’s streak can often lead to an incorrect detection of the object and

4.1 Image Segmentation 42

loss of precious information for the orbit determination modules.
The process of image segmentation is needed to highlight the useful image

information which is geometrically encoded in the image pixels. Normally, not
all the pixels in an image are needed, and a process of selection and exclusion is
mandatory to focus attention on just a part of the image. Image segmentation faces
and solves this problem bringing as a result a binarized image which is often called
Mask. Through the convolution of this Mask with the original image, it is possible
to extract photometric and geometrical information about the target pixels. First of
all we focus on the geometrical information, the photometric information instead
will be discussed in the next sections/paragraphs.

Regarding image segmentation, in the last decades several traditional approaches
have been proposed. They are classified according to the element they take into
account to discern foreground and background pixels: image histograms, detection
of image gradients, detection of object edges and complexity analysis techniques
[70].

Among them, commonly used methods are the following:

• Iterative threshold method [73]: It performs an iterative optimization. An
initial threshold is set, and then the algorithm improves the estimation at
every step with a suitable improvement strategy. The strategy should be fast
enough in convergence and should improve the quality of the segmented image
at each step.

• Local threshold methods: They are based on the selection of an initial threshold
value plus a margin. For a generic examined pixel, its value is compared with
a reference one. This reference value is updated continuously and takes into
account the local energy value of the surrounding pixels. The local energy
value is computed through a criterion which characterizes the segmentation
method. A local threshold method is described in [74], and it is based on a
moving streak average, while in [75], the approach uses rectangular areas and
the local contrast level.

• Otsu’s algorithm [76]: It performs a more refined approach where the intraclass
variance of the foreground and background pixels is considered as a cost index
and where the selected threshold comes from its maximization.

• Niblack’s method [77]: It is a localized thresholding algorithm in which the
threshold is varied across the image as a function of the local intensity average
and standard deviation.

Each reported traditional method presents limitations. Iterative threshold meth-
ods rely on all the energy levels in the global image, and these constitute their limit:
a simple strong stray-light scenario can badly affect the predictions of these methods.
Moreover, when the histogram of a star image is unimodal, the traditional iterative
threshold method is time-consuming and cannot reach a suitable segmentation. A
local threshold method would fail in the same way if the difference between the star
signal and the local noise intensity is lower than the margin. The Otsu method,
instead, can only provide satisfactory results for thresholding if the histogram is not
unimodal or close to unimodal [78]. AI could be an appealing and useful tool to

4.1 Image Segmentation 43

face this challenging problem due to the recent development and application of AI
in image processing.

Star segmentation is a task that has many aspects in common with the segmen-
tation of dim small targets, whose primary goal is to enhance the contrast between
the target itself and the background, regardless of its nature; segmentation must be
performed in every possible situation (noise, blurring, angular motion of the camera
and/or motion of the target).

All these issues also occur in ST images. Dim small target segmentation has been
studied for both synthetic aperture radar (SAR) and optical images. Jin et al. [79]
proposed the application of a lightweight patch-to-pixel (P2P) CNN for ship detection
in PolSAR (Polarimetric Synthetic Aperture Radar) images. Their approach prefers
the use of dilated convolutional layers rather than conventional ones in order to
expand the receptive field without adding any model parameter. Zhao and Jia [80]
employed a more general-purpose target segmentation using a CNN on infrared
images, testing it on both real and synthetic images; however, their study suffers
from the necessity for a large amount of training data to be fed to the network. Fan
et al. [81] overcame the issue of large training data by using the Modified National
Institute of Standards and Technology (MNIST) [82] database and simulating images
which have similar properties to the long-range infrared images. Nasrabadi [83]
proposed an autonomous target recognition in Forward Looking InfraRed (FLIR)
images based on different deep CNN architectures and thresholding. However, this
approach suffers from a lack of reliability in a real-world scenario. Shi and Wang
[84] based their studies on the use of a CNN and a denoising autoencoder network
by treating the small targets as background noise and therefore transforming the
segmentation task into a denoising task.

The use of the famous biomedical-based U-Net for small target segmentation
tasks has not been broadly investigated as of this work. Tong et al. [85] proposed
an enhanced symmetric attention U-Net, which employs information extracted in
the same layer to focus on the target and cross-layer information to learn higher
level features. Xue et al. [86, 87] investigated a more specialized version of the small
target segmentation problem by going deeper into the problem of segmenting star
images by proposing StarNet. This network is particularly complex due to the fact
that its training is carried out in a multistage approach, an aspect that affects the
training time in a negative way. In addition to this issue, StarNet is pre-trained
on weights taken from the first three stages of VGG16 [57], whose initial input size
must be a three-channel image. This forced choice translates into a computationally
heavy process that affects the prediction time and could require top choice GPUs.
All these aspects seem to make real-time image processing unfeasible. The U-Net
proposed in this work tries to overcome this problem by working with mono-channel
images by exploiting a simpler network architecture and training strategy.

What I did facing the night sky image segmentation algorithm was the develop-
ment of an AI-based image segmentation module of a proposed ST-based payload
for attitude determination (and lately this was used by me in the RSOs detection
framework). This algorithm was then proposed as software to be integrated with
a hardware to create a payload for on-board optical sensor AI-based applications
for small satellite missions. The choice of proposing an AI-based segmentation
algorithm guarantees a high segmentation quality of ST images against a variety

4.1 Image Segmentation 44

of noise scenarios without the need for intensive calibration activity. Actually, it
represents a robust processing solution for commercial and cheap STs which can be
used in small platform missions.

In the next sections the design of an AI-based star and RSO segmentation
algorithm will be shown. It is capable of filtering the faintest objects from background
in several Signal-to-Noise-Ratio (SNR) level scenarios (stray light noise, ghost noise,
SEUs). In particular this algorithm aims to provide information about the brightest
objects within the FOV in order to facilitate star identification and object detection
and reduce the memory storage burden of a ST for successive operations. By brightest
objects, I mean the ones that stand out most inside an image. Here, the formulation
of the segmentation problem is similar to the creation of a saliency map. In the
predicted mask, just the most salient objects will appear. This philosophy seems to
be suitable to detect stars and objects in low SNR environments as strong stray light
noise that could affect the star sensor image. The algorithm design aims to have
few modules to reduce the algorithm size, complexity and hardware implementation
difficulties in order to provide a reliable star detection product. In the IOV proposal
section I will describe an integrated hardware and software payload (design, optical
head specifications, component choice and validation mission) for a small satellite
application.

The ML world was investigated to take advantage of the NNs capability of
learning specific tasks, performing well against unpredictable situations and reducing
algorithm complexity for segmentation purposes; this could avoid the problem of
algorithm re-calibration to successfully process images in different noise conditions.
Moreover, the CNNs are considered for this kind of task. They have the advantage
of processing the image directly without iterative steps and without a local approach
that would be power and time-consuming. All of these features are designed along
with the capability of resolving objects in strong stray-light environments if a suitable
dataset for training is available.

In the process of designing and validating such an algorithm several steps have
been completed:

• Creation of a balanced dataset of real and simulated star images for training,
validation and testing of the CNN block.

• Design of an AI-based brightest objects detection algorithm capable of providing
the most significant information for star identification and objects tracking
algorithms.

• Comparison of our proposed AI-based algorithms with traditional segmentation
algorithms.

• Validation of the AI algorithm both with ST simulated images and real images.

• Proposal of a an electro-optical payload for brightest objects segmentation in
the onboard night sky images and a validation mission on a small platform.

Next sections are organized as follows: firstly, I show the creation and description
of the proposed dataset (Section 4.1.1). Secondly, the segmentation-clustering
algorithm scheme is presented (Section 4.1.2). Then, a description of the traditional

4.1 Image Segmentation 45

algorithms used for comparison follows, along with a description of the considered
performance indices (Section 4.1.2). Results of U-Net’s training, validation and
testing are then reported and compared with traditional algorithms (Section 4.1.3).
They are followed by a discussion part about the obtained results. In the end, a
summary of the achievements is presented (Section 4.1.4).

4.1.1 Dataset Creation and Description
The dataset created and used for the U-Net training phase is publicly provided
at [88]. It is composed of 5600 squared monochromatic jpeg images and 5600
associated jpeg masks. All of them have a size of 512 × 512 px and a bit depth of
8. Masks’ pixels can have one of two possible values: 0 for background and 255 for
foreground pixels. The samples for the training and validation phases are the first
5300 ones. They are generated from a batch of 600 images to which 180°clockwise
rotation, 90° clockwise rotation, added noise, increased stray light, blur effects,
increased luminosity, contrast and further modifications have been applied. This
original batch is made of 300 samples coming from several night sky acquisition
campaigns I personally led on the field and 300 samples which I randomly acquired
using Stellarium [89] software in night sky conditions considering different FOV and
attitudes (Figure 4.1). In the acquisition campaign I led, several kinds of cameras
and objectives were used: ZWO ASI 120MM-S camera with default optics, reflex
Nikon D3100 equipped with a Nikkor 18-105 mm and a ProLine PL16803 camera
coupled with an Officina Stellare RiFast 400 telescope.

Figure 4.1. Dataset samples: real night sky image (on the left) and Stellarium-generated
night sky (on the right).

Last 300 dataset images were obtained with a HFSTS. It is used to simulate
realistic night sky images, simulating all the physical, functional and geometrical
characteristics of the star sensor, along with all the instrumental and environmental
noises [90, 91, 92, 93, 24]. Simulator images were used only in the test phase to
provide independent samples the network has never been trained on to monitor the
generalization capability of the trained network.

4.1 Image Segmentation 46

The dataset contains images of night sky where stars are the main actors but
where planets, light pollution caused stray light noise, SEUs, clouds, airplanes’
streaks, satellites, comets, nebulae and galaxies appear as well. Masks were obtained
using specific thresholds for different groups of images from different campaigns,
sensors and software. In particular, mask creation was carried out using Adobe
Photoshop CC 2019 with the scope of obtaining just the most salient objects in the
FOV and filtering all the noise and undesired objects cited above. An example of a
dataset image and mask is provided in Figure 4.2, where it is clearly visible that just
the brightest points appear inside the mask. Input images and mask preprocessing is
performed in order to organize these data in two float 4D tensors for NN training and
testing. Every image is converted into floating point arrays and normalized using its
maximum value to carry out an image adaptive normalization process; every most
significant image pixel will have an associated value close to 1. This will help the
network detect the most significant pixels and make the learning process easier for
the net by constraining the interval of signal values between 0 and 1. Moreover,
this normalization process improves the algorithm capability of working with images
that have different range of energy levels. The same process applies for mask data
vectorization and normalization, with the only difference being that the normalizing
factor is constant and equal to 255 for every mask.

Figure 4.2. Dataset samples: real night sky image (on the left) and relative mask (on the
right).

It must be pointed out that the dataset does not contain only point-like stars
but also images in which appear as streaks due to the angular speed of the sensor.
Considered angular speeds are within the [0◦/s, 1◦/s]. This allows the proposed
AI-based algorithm to work properly even when the star sensor is rotating with
respect to the fixed stars or when a sidereal pointing of the camera occurs together
with RSOs passages.

Concerning the noise, 5300 images for training and validation are generated from
a batch of 300 images. This batch is composed of several acquisitions performed
with different sensors and so, different noise conditions. In less-noise-corrupted
images, an added source of uniform noise was added using Adobe Photoshop 2019

4.1 Image Segmentation 47

(Filter->Noise->Add Noise->Uniform 6.3%). For different stray light conditions,
+0.5, +1 and +1.5 stop in image exposure were added randomly. The used sensors’
noise level characterization can’t be provided due to the different kind of sensors,
calibration level used and the unavailability of them in my department laboratory.
For the last 300 test images, it is possible to characterize the noise:

• Shot Noise: Poisson probability model and proportional to square root of the
detected signal;

• ReadOut Noise (RON): Normal distribution with mean 0 e− and standard
deviation of 82 e−;

• Dark Current (DC): Constant value of 550 e−
px×sec ;

• Dark Signal Non-Uniformity (DSNU): Normal distribution with 1 mean value
and a standard deviation of 0.065;

• Photo Response Non-Uniformity (PRNU): Normal distribution with 1 mean
value and a standard deviation of 0.01;

• Stray Light: 30000 e−
sec .

4.1.2 Algorithm Design and Configuration
In this section, the proposed AI-based algorithm’s scheme called Brightest Objects
Sky Segmentation (BOSS) is described and shown (Figure 4.3).

Figure 4.3. BOSS algorithm scheme: data are in orange, and modules are in light blue.

The monochromatic raw image from the camera arrives at the preprocessing
module in which it will be resized, normalized and vectorized into a floating point
array. This module will be tailored according to specific sensors’ bit depth, while
the size must be the one the NN is trained on. Then, the array is processed by the
trained U-Net which gives its output prediction. This is a 2D array in which every
pixel has an associated value of probability p of being foreground. If p ≥ pmin, the
value is rounded up to 1. After the thresholding filter, a binary image is obtained,
and its element product with the original image will provide an array with just
active pixels’ energy values. This output will be used by the clustering algorithm
to detect clusters and compute their centroids and total energies. The clustering
module developed within this work takes all the active pixels in the segmented image
and organizes them in a list. Then, it associates the first pixel in the list to the
first cluster and starts to verify if the next pixels are part of the same cluster or not
through a distance-based criterion. Whenever the next active pixel does not belong
to the already identified clusters, then a new cluster is identified.

4.1 Image Segmentation 48

The distance criterion uses the Euclidean norm and the condition to assess the
membership of two active pixels (pi and pj) to the same cluster as expressed by
Equation (4.1).

∥pi − pj∥ ≤
√

2 (4.1)

Then, the clustering algorithm then first performs a filtering action with a
minimum and maximum dimension and then a sorting of all the clusters. A minimum
dimension filter is needed to avoid a possible noise signal in the clustering outputs (ex.
hot pixels), while the maximum dimension filter is needed to avoid great detected
clusters due to non-stars objects.

The sorting operation is then performed in descending order and considers
the first N clusters in output from the previous filtering actions. It is based on a
combination (Equation (4.2)) of the clusters’ dimension (dimcluster), energy (Ecluster)
and maximum energy value (max(E(pi))) over the cluster because this sorting index
proved to be suitable to select the best clusters for star pattern recognition purposes
with the conducted tests.

Sorting Index = Ecluster

dimcluster
× max(E(pi)) with i over cluster (4.2)

N is computed by applying a 1.25 factor to the average number of stars which
depends on the FOV and cut-off magnitude of the selected sensor [71]. The maximum
number of clusters in output is fixed a priori to process just the most significant ones,
and the 25% margin factor is selected to take into account possible uncertainties of
the average number of stars formula.

The U-Net is capable of resolving background and foreground pixels after training,
validation and test phases, but it still gives continuous values that have to be
discretized. This is the reason why the thresholding filter and the selection of a
reasonable value for pmin will be described in the next sections in order to obtain
the best correspondence between algorithm prediction and targeted masks. Once
the U-Net is trained and pmin selected, the BOSS algorithm will be compared with
traditional image segmentation ones, both described in the next section in terms of
segmentation performance.

Traditional Image Processing Algorithms Description

Several traditional algorithms for image segmentation were selected for comparison
with the AI-based proposed algorithm. In the following, five algorithms are considered.
They are based on Niblack’s method, Otsu’s method, the weighted iterative threshold
approach (WIT) [70] and two local threshold (LT) approaches.

Niblack’s Algorithm
Niblack’s method is based on the computation of a threshold value T which

is a function of the energy mean value and standard deviation computed over a
rectangular window. Through its sliding over the whole image, it is then possible to
identify which are the foreground and background pixels by comparing the window’s
pixels energy values with the local threshold.

4.1 Image Segmentation 49

T (x, y) = m(x, y) + k × σ(x, y) (4.3)

where k is a parameter which varies between -0.2 and -0.1, while the other parameter
is the dimension of the window (supposed squared in this test with side dNb).

Otsu’s Method
It is based on the gray level image’s histogram. It aims to find the threshold

value which minimizes the intraclass variance [94] of the thresholded black and white
pixels. The main advantage of this method is its unparametric nature which avoids
the need for configuring it according to the image noise level.

Weighted Iterative Threshold Approach
This method is an iterative way to compute the optimal threshold for a given

image. At each step, the threshold is computed using the following formula:

T = (1 + δ) × µ1 + (1 − δ) × µ0
2 (4.4)

where µ1 and µ0 are, respectively, the average gray level values of foreground and
background pixels. With this new threshold, new sets of foreground and background
pixels can be computed with the following mean values, and the process repeats with
the computation of a new threshold. When the difference between two successive
thresholds is lower than a certain tolerance ∆, the process stops. This algorithm is
dependent on a scalar parameter δ which can vary in the range [−1.0, +1.0].

Local Threshold Approach Based on Rectangular Areas (LTA)
The algorithm used is from MATLAB. It scans the whole image and computes a

local threshold. The used size of the window is given by the following formula:

Size = 2 × floor

(
Image size

16

)
+ 1 (4.5)

Over this window, a Bradley’s mean [95] is computed. By comparison between
a pixel’s energy value and this local mean, the classification of the pixel as back-
ground or foreground occurs. This process is carried out using a scalar parameter
called sensitivity (S). It varies in the range [0,1] and indicates sensitivity towards
thresholding more pixels as foreground.

Local Threshold Approach Based on a Moving Streak Average (LTS)
The last one, the segmentation algorithm [7], can be configured using a static or

a dynamic approach [96] for the background noise estimation [94]. In this work, a
dynamic approach based on a zigzag local thresholding with moving average is used
[97]. In particular, a pixel is saved if its energy value is greater than the background
noise, evaluated through a moving average line-by-line, plus a threshold τpre.

4.1 Image Segmentation 50

Comparison Indices

The performance comparison between the BOSS algorithm and other algorithms
will be detailed in the results section. The compared algorithms will be tested with
a set of gray scale images and relative masks. In order to assess the accuracy of the
algorithm’s predictions against test masks, the use of suitable indices is necessary.
These indices are heavily used in the segmentation field to compare two image masks
as the U-Net output and ground truth from the dataset actually are. These indices
can also be used to compare predictions of any couple of segmentation algorithms.
Before introducing them, the notion of true positive (TP), false positive (FP) and
false negative (FN) must be given:

• TP: A counter that increases by one unit every time both the predicted pixel
and the reference pixel belong to the foreground set;

• FP: A counter that increases by one unit every time the predicted pixel belongs
to the foreground set while the corresponding mask pixel is a background pixel;

• FN: A counter that increases by one unit every time the predicted pixel belongs
to the background set while the corresponding mask pixel is a foreground pixel.

A good prediction has background pixels and foreground ones almost in the same
position inside an array as the associated ground truth mask. The goodness of the
prediction can be assessed through the evaluation of Precision, Recall and F1 index.

Precision = TP

TP + FP
× 100 (4.6)

Precision represents the percentage of the TP with respect to the sum of TP and
FP . The lower the FP is, the higher the Precision is (with maximum value equal to
100% under ideal conditions).

Recall = TP

TP + FN
× 100 (4.7)

Recall represents the percentage of the TP with respect to the sum of TP and
FN . The lower FN is, the higher the Recall is (with maximum value equal to 100%
under ideal conditions). Recall and Precision are similar but with a slight difference.
This is due to the distinction of FP and FN. Every time an FP or FN occurs, there
is a discrepancy between the prediction and the reference mask, but the difference
between FP and FN helps us better understand the behaviour of the trained network.

Another index to be defined is F1:

F1 = 2 × Precision × Recall

Precision + Recall
(4.8)

F1 index combines the Precision and Recall and lets us understand when the
best compromise between FP and FN occurs. It reaches its maximum value when
the discrepancy between the prediction and the mask is minimized. Ideally, the
maximum value of F1 is 100%, but the best prediction will be the one with the
highest value of the F1 index.

4.1 Image Segmentation 51

4.1.3 Results
In this section, results of U-Net’s training, validation and testing are shown, together
with a reasonable choice for pmin and number of initial filters. Then, a comparison
test of the BOSS algorithm with traditional ones is conducted against the same set
of images.

U-Net Training and Test

The U-Net tested here is configured with the values shown in Table 4.1.

Table 4.1. U-Net configuration parameters.

Parameter Value

Image size 512
Learning Rate 10−4

Regularization Factor 10−5

Dropout Rate 0.25
Kernel Size 3

Kernel initializer ′he_normal′

Training and validation were performed in Tensorflow Keras [28] considering
three epochs and a dimension of the training batch equal to three. This has been
conducted for four different numbers of initial filters: 16, 32, 64 and 128. This choice
was made to see how performance varies in terms of accuracy and loss as the network
complexity increases, in order to select the minimum required number of filters while
achieving satisfactory performance. Every trained network reached accuracies higher
than 99.80% after the first epoch and remained constant for training, validation and
testing. The same behavior applies for the final losses which are not higher than
0.016. Moreover, no overfitting phenomenon occurred.

The training, validation and tests were performed on the following workstation:

• CPU: AMD Ryzen Threadripper PRO 3975WX 32 Cores 3.50 GHz

• RAM: 128 GB

• GPU: Nvidia Quadro RTX 5000.

Tuning of Thresholding Filter

From the previous phase, it seems that every model has learned its task, but their
output is not yet a binary mask. To achieve this, a thresholding operation has to be
performed to select a suitable value of pmin. Its tuning is conducted in a range of
values from 0.01 to 0.9 and different models over the 300 images test set.

For every pmin and model, the values (over the whole test set) of Precision, Recall
and F1 are computed and reported in Figure 4.4. It can be seen (Figure 4.5) that
the network with 128 filters performs better in terms of output mask. The value

4.1 Image Segmentation 52

around 69% for the F1 index means a minimized number of discrepancies between
the BOSS algorithm’s prediction and the mask. This value is the highest one if the
best achieved F1 values are considered among all the networks. Because of this, a
model with 128 filters and pmin = 0.04 was chosen for the BOSS algorithm design.
A test with a 256 initial filters model was conducted, but performances did not
show relevant improvements with respect to the 128 initial filters model, while the
required storage memory and computational time increment was not negligible (and
it is also undesired).

Figure 4.4. Performance curves vs. pmin and models.

Precision behaviour for low pmin values is due to an increasing number of FPs
because as the pmin decreases, the number of FPs becomes greater if compared to
TPs. For higher pmin, the number of FPs tends to 0, while TPs tend to a finite
value, and the 100% Precision is achieved. This maximum value of Precision still
does not mean that the prediction is good.

A similar discussion can be conducted for the Recall: as the pmin decreases, the
risk of predicting FNs decreases with respect to TPs. This is the reason why Recall
grows. For higher pmin, the increasing number of FNs causes the Recall value to fall
towards 0%.

BOSS Algorithm Tests

In this section, examples of BOSS algorithm applications for stray light removal and
ghost noise removal in night sky images are shown. The aim of a good segmentation

4.1 Image Segmentation 53

Figure 4.5. Details of performance curves vs. pmin and models.

in this case is to retrieve the point-like stars and streaks (RSOs) while removing
background pixels that are often badly affected by several noise sources. By noise,
we mean that part of the image signal that does not represent the target scene and
must be filtered in a certain way. It corrupts the image actors, and if the SNR is
higher than but close enough to 1, the useful signal could be filtered out as noise
with the results of a loss of useful reference for further processing. The image noise
is due to several causes briefly divided into two classes:

• Inner noise: It is due to the sensor components, electronics and realization
technique.

• External noise: It is due to planets, the Sun, the Moon, the Earth, host-
ing platform structures and camera baffle together with lenses non-uniform
reflection.

Sidereal Pointing Camera and Different Exposure Times
This test aims to investigate the BOSS algorithm behaviour against an increasing

stray light noise source. Stray light noise is due to external light sources which cause
a flare all over the image. It can be experienced when an optical-space-based sensor
has a bore-sight direction close to the Sun, the Moon, or another high luminosity
source. This stray light can have a uniform intensity or uniform gradient. If it is
too strong, it can hide the useful signal associated to stars and RSOs and make
them difficult or even impossible to be segmented and detected. A change in the
stray light intensity during the mission may cause the need for continuous sensor

4.1 Image Segmentation 54

calibration. This could be avoided with a calibration-less algorithm such as the
U-Net-based proposal in this work. This noise can increase with the increase of the
sensor exposure time as the amount of collected photons proportionally increases
with time interval. In this test, images acquired with a Night Sky Simulator Facility
(NSSF) (Figure 4.6) were used. This facility is made of a darkroom where a ZWO
ASI 120MM-S camera points towards a screen. Here, Stellarium software is used to
simulate the sky as seen by a specific camera with a selected FOV and optics (2.8
mm of focal length, f/1.4). All the simulated stars have a magnitude lower than 6.5
as shown in Figures 4.7 and 4.8. Using this software and a real camera, it is possible
to simulate the working of a camera pointing at the night sky both for stars and
RSO segmentation and detection for preliminary results. Images’ noise sources are
the real camera noises plus a further stray light source due to the screen technology
(backlit screen).

Figure 4.6. NSSF at ARCALab, School of Aerospace Engineering, Sapienza University of
Rome.

A sidereal pointing was considered in this test just to see the effect of the image
stray light noise increasing with the increase of the camera exposure time. Here
100, 200, 500 and 1000 ms of exposure were considered. The original images and
segmented images are reported below (Figure 4.7). From this figure, it is possible
to assess that the segmentation algorithm removes the stray light and correctly
segments the stars. As the noise increases, the foreground pixels increase because of
the increasing magnitude of the targets.

Ghost Noise Removal
This test aims to investigate the BOSS algorithm behaviour against a nonuniform

gradient noise: ghost noise. This undesired noise source is due to camera lens
reflections, spacecraft structure reflection and dust all over the camera lenses. The
ghost noise is named in such a way due to its appearance: it is a vague and partially

4.1 Image Segmentation 55

Figure 4.7. Exposure Time Effects Test: Images from NSSF (left), segmented images by
the BOSS algorithm (right).

4.1 Image Segmentation 56

Figure 4.8. Ghost Noise Test: images from NSSF with ghost noise (left), segmented images
by the BOSS algorithm (right); Three different ghost noise scenarios (a–c).

4.1 Image Segmentation 57

transparent shape superposed on: background, image’s objects and a nonuniform
gradient signal. This superposition may interest the whole image or part of it. If
ghost noise is too strong, it can hide the useful signal associated with stars and
RSOs and make them difficult or even impossible to be segmented and detected like
a stray light. A change in the ghost noise intensity during the mission may cause
the loss of information if no calibration is performed. This could be avoided with
a calibration-less algorithm such as the U-Net-based proposal in this work. The
results are shown with simulated images in Figure 4.8 and with real images in the
next sections. This noise does not increase with the increase of the sensor exposure
time, while the gradient level tends to be more uniform. Here, the NSSF has been
used but with an added external flashlight source. The stray light and ghost noise
were produced with three different positions of an external flashlight source which
was moved at different heights on the left side of the camera and target screen inside
the darkroom. Even in this case, it is possible to see a good segmentation quality
provided by BOSS (Figure 4.8). A particular thing that can be noted is the white
edges at the images’ corners. They are not an algorithm error but a NSSF artifact
due to a displayed undesired box in the Stellarium night sky images.

Real Image Test on BOSS Algorithm Output
In this section, a real night sky image is considered to test the BOSS algorithm

against it. The aim of the test was the demonstration of the BOSS capability of
providing a suitable segmentation and stars localization with a real image and real
noise sources. The real image is shown in Figure 4.9 together with the segmented
image. The camera used is a Nikon D3100 whose image has been cropped and resized
to the U-Net input size of 512 pixels. The image contains, besides real sensor noises
due to the electronics, a strong stray light source coming from the bottom and due
to nearby city light pollution (Acquisition site: Tusculum/Frascati, Rome, Italy).
Parameters of the camera are listed in Table 4.2. Clustering algorithms extracted
the centroids of the eight brightest stars in the FOV and correctly localized them.
They are shown in Figure 4.10 with stars names and visual magnitudes that have
been reported in Table 4.3.

Table 4.2. Nikon D 3100 camera features. The image has been resized and binned to 512
px and 1:1 aspect ratio.

Feature Value

Size 512 px
Aspect Ratio 1:1
focal length 30 mm

FOV 28.79°
pixel size 30.07 µm

Cut Off Magnitude 4.0
f-number f/2.0

4.1 Image Segmentation 58

Figure 4.9. BOSS Ursa Major constellation segmentation: real Ursa Major image (left);
BOSS binarized output image (right).

BOSS Algorithm Comparison

Here, a comparison between BOSS and traditional algorithms is conducted. The
F1 index (Equation (4.8)) is chosen to compare the performance of the algorithms.
Every algorithm was tested against the same test set of 300 simulated images [88].
Otsu’s algorithm did not need to be configured, while LTA, WIT and LTS algorithms
did. For these configurable algorithms, a tuning of their parameters was performed,
and the F1 index was computed for every combination of their internal parameters.

Algorithms Comparison Procedure
The rationale behind the algorithm comparison is described in this section. The

comparison dataset was composed of 300 images and 300 reference masks. Each refer-
ence mask represented the desired result of the segmentation process. Every reference
mask was manually obtained using Adobe Photoshop 2019 (Image->Adjustments-
>Threshold), selecting a suitable threshold level because of the varying noise condi-
tions over the 300-image test set.

Now, the purpose is to compare the output of the generic segmentation algorithm
with the corresponding reference mask. The procedure was as follows:

• The output mask was compared with the reference mask pixel by pixel;

• The number of FP, FN and TP were updated during the mask comparison;

• FP, FN and TP values were used to compute the Precision, Recall and F1
values (these indices were described in the previous Section 4.1.2 Comparison
Indices).

This process was repeated for all the 300 images, and a final averaged value for
the F1 index was obtained for the considered algorithm.

This procedure was directly applied for the BOSS and Otsu algorithms because
they do not need to be configured: Otsu does not need any configuration parameter,

4.1 Image Segmentation 59

Figure 4.10. Ursa Major constellation stars localization performed by the BOSS algorithm.

and the BOSS algorithm has its fixed value of pmin which was frozen during its
design in Section 4.1.3.

Niblack, LTA, WIT and LTS require an additional step before computing the
final F1 value: the configuration parameters’ optimization. Actually, all of them
have at least one configuration parameter to be selected with a suitable criterion:

• Niblack’s configuration parameters are k and dNb;

• LTA’s configuration parameter is the Sensitivity;

• WIT’s configuration parameter is δ;

• LTS’s configuration parameters are τpre and BKG0.

By considering the generic configurable algorithm, the averaged F1 index was
computed for every combination of the configuration parameters varying in their

4.1 Image Segmentation 60

Table 4.3. IDs, names and visual magnitudes of the segmented objects in Figure 4.10.

ID Name Magnitude
1 Dubhe 1.95

2 Phecda 2.42

3 Merak 2.34

4 Mizar 2.25

5 Alioth 1.75

6 Psi Ursae Majoris 3.16

7 Megrez 3.33

8 Alkaid 1.80

specific ranges. Actually, every selected value for the configuration parameter makes
the algorithm to be more or less severe in terms of segmentation performance and
changes the final F1 index value. Results of this process, using commonly used
values for the parameters, have been collected for each configurable algorithm in
Tables 4.4–4.7. In the end, the six averaged F1 values for Otsu, BOSS and the
optimized algorithms can be obtained and were reported in Table 4.8.

Table 4.4. Niblack’s algorithm tuning. F1 index vs. k and dNb . The first parameter varies
along the rows from −0.2 to −0.1, while the second varies one along the columns from 1
to 10.

F1 (%) dNb=1 dNb=3 dNb=5 dNb=7 dNb=10

k = −0.2 0.041 0.061 0.064 0.065 0.065

k = −0.15 0.041 0.062 0.065 0.066 0.067

k = −0.1 0.041 0.061 0.066 0.067 0.068

In these tables, the configuration parameters which maximize the F1 index were
considered, and the maximum value of F1 is then reported in Table 4.8 for the final
comparison. In this way, every configurable algorithm was optimized against the
300-image test set in order to make the comparison more challenging for the BOSS
algorithm.

Comparison Results
Otsu’s algorithms is the only traditional one which does not need any configuration

of parameters. Its F1 score is 0.07 %.
The best achieved F1 values for every algorithm are summarized in Table 4.8 for

a fast comparison.

4.1 Image Segmentation 61

Table 4.5. LTA algorithm tuning. F1 index vs. S . The Sensitivity varies along the
columns from 0.1 to 1.0.

S 0.1 0.3 0.5 0.7 1.0

F1 (%) 79.63 68.97 3.62 0.04 0.04

Table 4.6. WIT algorithm tuning. F1 index vs. δ . Here, δ varies along the columns from
−1.0 to +1.0.

δ −1.0 −0.7 −0.5 −0.3 −0.1 0 +0.1 +0.3 +0.5 +0.7 +1.0

F1 (%) 0.07 1.19 3.35 19.35 37.43 50.86 27.17 16.96 12.08 7.58 3.92

Table 4.7. LTS algorithm tuning. F1 index vs. τpre and BKG0 . The first threshold varies
along the rows from 5 to 55, while the second one varies along the columns from 1000 to
2000.

F1 (%) BKG0 = 1000 BKG0 = 1500 BKG0 = 2000

τpre=5 13.39 13.39 13.39

τpre=15 72.75 72.75 72.75

τpre=25 60.85 60.85 60.85

τpre=35 46.55 46.55 46.55

τpre=45 35.15 35.15 35.15

τpre=55 26.92 26.92 26.92

Table 4.8. Summary of algorithms’ best F1 scores.

Algorithm Niblack LTA WIT LTS Otsu BOSS

F1 (%) 0.068 79.63 50.86 72.75 0.07 69.05

4.1 Image Segmentation 62

From previous tables, we can see that the best F1 score was achieved by the
LTA algorithm followed by the LTS one and the BOSS algorithm. Niblack and Otsu
behaved worse than the others, while the WIT achieved high but not satisfying
performances.

Both LTA and LTS behave better on the test set if compared to the BOSS
algorithm. As a first impression, it would seem that the use of BOSS algorithm does
not bring any advantage. However, the performances achieved by LTA and LTS
were obtained via a tuning of their parameters, while the BOSS algorithm was not
tuned after its design. LTA and LTS have to be calibrated every time the noise level
changes inside the selected scenario to achieve the best segmentation quality output,
while the BOSS algorithm does not need this calibration because it has been trained
to segment well with several SNR levels. This consideration means that the 69% of
F1 index is a generalized performance value, while the 79% and 72% values for the
traditional algorithms are optimized and not generalized.

This would mean that a ST based on the BOSS algorithm would not require
any calibration or segmentation performance degradation during its lifetime in orbit.
Even if the sensor’s noise increases with the increasing of the lifetime, the U-Net
would be able to adapt itself to several levels of SNR. A stray light or a higher
radiative region would not affect the quality of the segmentation product very much.
With this consideration, the strength and meaning of the BOSS performance can be
more appreciated and understood.

In Figures 4.11–4.13, it is possible to visually compare the segmentation algo-
rithms output quality of these LT approaches and the BOSS algorithm to understand
the limit of a traditional parameterized segmentation algorithm. Three real images
of the night sky both from Earth and space were considered with different kinds and
levels of noises. A discussion follows for each of them.

Considering the processing of these three figures:

• Figure 4.11: In the real image, two geostationary satellites (green boxes) on
the bottom part of the image are clearly visible with the surrounding star field.
This image was obtained by the telescope of the Italian Space Agency Matera
Observatory. The noise that mostly appears in this image is a nonuniform flare
all over the image stronger in the bottom part and weaker in the top. It is
due both to telescope lenses and nearby city light pollution. It is an example
of ghost noise. The noise sources associated with the sensor electronics are
negligible due to the sensor cooling system which was keeping the camera at
−20 °C. There are foreground horizontal and short streaks on the top left
and top right edges of the image produced by the LTA algorithm. Moreover,
there is some noise that has not been filtered in the whole image, together
with the brightest and weakest objects. The same problem is present in LTS’
prediction with a greater percentage of noise. Here, the best output quality
is provided by the BOSS algorithm which correctly returns the most salient
star-like objects, together with precious RSOs information. All the algorithms
return the two small streaks of the geostationary. The stars in the background
have a magnitude lower than 12. The used optics is an Officina Stellare RiFast
400 Telescope with a focal length of 1520 mm and an f-number of f/3.8.

• Figure 4.12: The real image is a detail of a frame from the EBEX mission star

4.1 Image Segmentation 63

Figure 4.11. Italian Space Agency Matera Telescope’s image segmentation: (a) real image;
(b) LTA’s prediction; (c) LTS’ prediction; (d) the BOSS algorithm’s prediction.

4.1 Image Segmentation 64

Figure 4.12. E and B EXperiment mission [98] star camera’s image detail segmentation:
(a) real image; (b) LTA’s prediction; (c) LTS’ prediction; (d) the BOSS algorithm’s
prediction.

4.1 Image Segmentation 65

Figure 4.13. Juno Star Reference Unit’s [99] image segmentation (Credits to NASA):
(a) real image, (b) LTA’s prediction; (c) LTS’ prediction; (d) the BOSS algorithm’s
prediction.

4.1 Image Segmentation 66

camera [98]. The camera is mounted onto a stratospheric balloon carrying
a telescope. It is pointed towards the above sky and contains a lot of noise.
The dust over the sensor’s lenses, mesosphere wind turbulence and stray light
from the Antarctic continent’s albedo are clearly visible and cause a strong
ghost noise which covers the few stars in the background. Recognizing stars
in this condition is important because star sensors are not used just in space
where the absence of atmosphere avoids many noise sources, but also on ships
or cruise missiles for navigation purposes. In this case being able to remove
ghost noise due to clouds and other atmospheric effects is mandatory. The
LTA (b) algorithm’s prediction shows that few of the brightest stars have been
correctly segmented with a not complete filtering action of the noise in the top
right part of the image noise. The LTS behaves worst because the strong noise
scenario does not allow it to correctly segment the image. In its predictions
a lot of noise is still visible, with horizontal foreground streaks in addition
to the correct segmented stars. This bad behavior is due to the algorithm’s
inability to adapt itself to different SNR conditions. Here, a re-calibration
of the algorithm threshold would provide a better segmentation quality for
the mask. In the last image (d), the BOSS algorithm prediction shows the
segmentation of all the brightest stars (red boxes) with just a little portion of
noise in the most corrupted region. Both the LTA and the BOSS algorithm
show some problems with the strong ghost noise conditions but in different
regions of the image and in different ways:

– BOSS algorithm seems to detect as stars the strong nonuniform brightest
corrupted region due to the mesosphere winds in the image. The explana-
tion for the BOSS algorithm is that the whitest spots in the ghost noise
are recognized as possible embedded foreground objects;

– LTA seems to have an opposite problem with the darker region in the top
right part: the gray level gradients in the darker localized region mislead
the LTA algorithm during segmentation.

Among the two false positives cases, LTA behaviour could greatly affect the
output mask quality because the gradient in the darker region of the image
(generally the 99 % of these samples) increases the percentage of noise in the
output mask (with possible negative effects both for attitude determination
routines and RSO detection).

• Figure 4.13: This is a frame from a video [99] from Juno’s Star Reference
Unit (SRU) camera. The image contains stars and a huge number of SEU’s
crossing the sensor with different impact angles as the Juno spacecraft crosses
Jupiter’s high radiation polar regions. SEUs over images are caused by ionizing
radiation which hits the sensor pixels. The more perpendicular to the sensor
plane the ionizing radiation is, the more point-like the footprint of the high
energy particle on the sensor is. This noise source can be reduced by shielding
the electronics properly, but it cannot be removed. In the analysed image,
many SEUs cross the sensor due to the high energetic region where the Juno
spacecraft is. It is quite difficult to distinguish the white spots nature, but
the purpose of this image processing is to show how the weakest elements on

4.1 Image Segmentation 67

the detector (certainly SEUs under spacecraft inertial pointing condition) are
removed. By a rapid inspection of the figures, it is possible to assess that
LTA and LTS show similar segmentation outputs, and the SEUs which cross
the detector almost tangentially are segmented as streaks. BOSS algorithm
on the contrary, removes them. This is due to the dataset used to train the
U-Net algorithm. The NN learned to detect just the brightest star-like objects,
filtering less salient other ones. Here, the weak streaks of the SEU are removed,
but this does not mean that all the star-like objects which appear in the BOSS
prediction of Figure 4.13 are stars; they can be SEUs with a high impact angle.

These examples show that the BOSS algorithm has performances that are slightly
lower but acceptable and generalized if compared to the calibrated traditional
algorithms. Moreover, it has an intrinsic robustness to SEUs which a traditional
algorithm does not normally have.

4.1.4 Summary of Findings for AI-based Night Sky Image Segmen-
tation

In conclusion, this work has shown several aspects:

• The increment of initial filters in the U-Net increases the accuracy of the
model predictions in terms of image segmentation quality and brightest objects
detection;

• The BOSS algorithm is capable of achieving satisfying segmentation perfor-
mance against different signal-to-noise scenarios. It does not need any re-
calibration activity after its design in contrast to traditional LT segmentation
algorithms;

• The comparison shows that the BOSS algorithm has segmentation performances
which are comparable with respect to the optimized LT algorithms;

• The BOSS algorithm is able to properly remove the uniform stray light noise,
most of the SEUs, weakest objects in an image and ghost noise. It is moreover
able to provide a good product for star identification routines;

• A balanced CNN dataset for night sky images segmentation has been realized
and publicly shared;

• The algorithm works fine, both with a simulated ST and with real images of
the night sky (both from ground and in orbit platforms);

• Once trained with images from specific star sensors, the algorithm does not
need to be calibrated again;

• The simple structure in the algorithm makes it simple to analyze, to implement
and to validate;

• Early versions of this algorithm with a different training process proved to be
suitable for RSOs detection when working with real images [100] (Section 4.2).

4.2 Objects Detection & Tracking 68

4.2 Objects Detection & Tracking
In the framework of SSA and Space Traffic Management (STM), the problems of
RSOs detection and tracking to maintain and update ground catalogues, are of great
interest. The planning of mega-constellations for space-based internet connectivity
(SpaceX, OneWeb, Telesat and other companies) implicates the consequent significant
increasing number of on-orbit active satellites and potential collisions with fragments
across different space regions. This brings the big sky assumption[101] (i.e., collision
risk is acceptably small with relatively few orbiting objects) to vanish because of
the higher probability of close approaches and collisions. For these reasons, the
importance of detection and tracking of RSOs has become a crucial aspect in the
recent years. Nowadays the development and design of SBSS missions to increase
RSOs monitoring coverage has led to the use of on-board optical sensors. Traditional
filtering and image processing techniques are still being used[7] for RSOs detection.
These techniques have the advantage of a long heritage due to their extensive
application. On the contrary, their limitation is the need of complex filtering
routines to perform easily human understandable tasks such as objects position
extraction from images. For this reason the use of AI appears to be promising for
space image data processing and space debris mitigation applications. In particular,
the state-of-the-art shows great interest in AI applications to face space problems,
to improve flexibility, autonomy and capability to handle failures and performance
degradation while satisfying the reliability standards of a safety space system.

Recent works investigate the application of CNNs for RSOs detection: in [102]
event based ground optical sensors are considered while in[103] point-like stars and
streak-like stars scenarios are analysed with the consequent training of two different
CNNs for object detection. A different approach based on semantic segmentation for
dim small targets detection is exploited in [87], achieving satisfying performances at
the price of a complex network’s training and architecture. The advantages shown by
CNNs in previous works could be combined with traditional hardcoded modules into
a simple architecture for on-board RSOs detection applications through star sensors,
adding also tracking capabilities to the detection task when RSOs position evolution
occurs in a sequence of frames (Figure 4.14). Because of this, the development of a
dedicated and reliable AI-based software to perform on-board RSOs detection and
tracking is crucial for space based SSA activities because the collection of RSOs
time evolution in a sequence of frames is essential for orbit determination (and
thus SSA) purposes. A preliminary step in this direction has been taken in the
present PhD activity. Actually, the previous image segmentation algorithm has
been coupled with a further CNN to extract the RSOs position evolution within the
on-board sensor FOV during a sequence of frames. The developed software aims
to have as few modules as possible to reduce the algorithm size, complexity and
hardware implementation difficulties in order to provide a reliable product. The
RSOs Detection and Tracking module realization has been possible through several
steps:

• Creation of a dataset of simulated ST images;

• Training, Validation and Test of the YOLO network based RSOs detection
module;

4.2 Objects Detection & Tracking 69

• Design of the Tracking module to collect the history of each RSOs during their
motion in the FOV in terms of centroids coordinates.

In the end, performed tests and obtained results from the developed algorithm
are presented within this section. Real and simulated images have been selected
and processed for validation and the performance in RSOs detection and tracking
over multiple passages have been evaluated in terms of Precision, Recall and F1. To
conclude, results discussion and a summary of findings for Detection and Tracking
is reported.

Figure 4.14. Images frame sequence and acquisition philosophy (Section 4.2.2).

4.2.1 Dataset Creation and Description
In the framework of designing and realizing an AI based segmentation, detection
and tracking algorithm, a choice on the image size is made to work with a fixed
sensor size. This is needed because the used U-Net works with fixed size inputs.
Thus, the image size is chosen during the dataset creation phase. The new selected
images size is 960 px × 640 px, to simulate an adequate ST sensor size. To train
and to validate another 128 filters U-Net architecture, a set of 100 real images I
took in a night sky acquisition campaign at Campo Imperatore, Gran Sasso, Italy
has been used. They are not the same of the dataset in Section 4.1.1. These 100
images have been resized with the above mentioned size and then the U-Net training
and validation process has been carried out. Then, each of the 100 images has
been processed with the U-Net, and the corresponding output mask has been saved.
This set of 100 output masks has been adopted as the baseline backgrounds for the
creation of 5000 segmented images datasets, using a MATLAB streaks simulator
which I contributed to develop. This 5000 images dataset has been used for the
training and validation of the YOLOv3 NN in the Detection Module. This 5000
images dataset will be referred to as the original dataset. Each image consists of
stars and streaks on a night sky segmented background and it is associated to a
text file containing the information about the streaks’ boxes in the YOLOv3 format.
To guarantee a proper training of the YOLOv3, the dataset has to be as uniform
and complete as possible in terms of streak length, orientation, position and number
of streaks per image. The data-augmentation process involved the creation of 100

4.2 Objects Detection & Tracking 70

background images removing the objects from the original set. Then, one of these
backgrounds is randomly chosen and a random number of streaks is printed on
the image, with length, orientation and position randomly chosen from uniform
distributions (between 0.1% and 10% of the image diagonal length and between -90°
and 90° for length and orientation, respectively). The printing process starts by
selecting a top-left coordinate and a length for the object from which a rectangular
box is created. The top-left and bottom-right points of the box are then united with
a one pixel-thick or two pixels-thick white line according to the following probability
split:

• 60% two pixels / 40% one pixel if the streak length is inferior to the 1% of the
image diagonal length;

• 20% two pixels / 80% one pixel if the streak length is between 1% and 3% of
the image diagonal length;

• 5% two pixels / 95% one pixel if the streak length is greater than the 3% of
the image diagonal length;

for a better modeling of the real case. Finally, the text file containing the information
on the totality of objects in the image is compiled in YOLOv3 format. The box from
which the information is collected is 0.9 times the size of the box used to draw the
streak. The effects of the data-augmentation on the orientation, length and number
per image of the streaks are shown in Figures 4.15, 4.16 and 4.17.

Figure 4.15. Streaks’ angle distribution of the Dataset.

4.2.2 Algorithm Design and Configuration
The present RSOs Detection & Tracking is a combination of ML and classical
programming techniques:

4.2 Objects Detection & Tracking 71

Figure 4.16. Streaks’ relative length distribution of the Dataset.

Figure 4.17. Streaks per image distribution of the Dataset.

4.2 Objects Detection & Tracking 72

• The Detection function is achieved by stacking U-Net[104] and YOLOv3[105,
51]. In this way the detection operation is helped by the image segmentation
process performed by U-Net[106].

• The Tracking function is faced through a traditional hardcoded algorithm
based on the minimization of a cost function.

The reason why object detection is performed on a mask rather than on the
original raw image is due, now, to the possibility of training the U-Net in segmenting
accurately the streaks (the new training strategy described in Section 4.2.1). Actually,
the segmented streaks result bright enough inside the Mask to be easily detected by
the YOLOv3. For the tracking task, a classical coding approach has been used in
order to reduce the computational burden of the whole algorithm while achieving
the desired RSOs tracking inside the FOV.

Figure 4.18. RSOs Detection and Tracking module algorithm structure.

The algorithm structure is shown in Figure 4.18 with the main blocks. The
incoming raw image from the ST arrives to the Image Segmentation Module where
it is binarized. The output of this module (mask) is a map of foreground and
background pixels. The mask is used by the RSOs Detection Module to recognize
the streaks in the night sky image and localize them into rectangular boxes. The
convolution between the box-delimited regions in the mask and the same sky portions
in the raw image provides rectangular areas in which every foreground pixels shows
its original energy value. In this way, the computation of the streaks centroids and
extremal points (see next subsections) is possible and, knowing the exposure time,
the horizontal and vertical components of the streak, velocity can be derived. At
this point, the computed information relative to the detected objects is used by the
Tracking Module to distinguish the objects inside the FOV and provide their time
evolution in terms of image coordinates as the output of the algorithm.

RSOs Detection Module

In the framework of this algorithm, RSOs are considered as streaks over a background
made of point-like stars under the implicit assumption of low angular velocity of
the orbiting platform. This assumption is reasonable since most of the missions
involving STs require a sidereal pointing for other payloads constraints. In Figure
4.21 the RSOs Detection module is shown. The mask is processed by a YOLOv3
model. This classifies the streaks and localize them through rectangular boxes. For
every detected streak, the box top left pixel coordinates (Pbox), width and height
and class probability are known. This group of info is then used to extract the
relative rectangular area both on the mask and on the raw image. Through the
convolution of these two arrays, the Clustering Module computes the streak centroid
with a weighted energy based average (Equation 4.9).

4.2 Objects Detection & Tracking 73

Pcluster,i = Pbox +
∑

j

(
Epx,j · ppx,j

Ecluster,i

)
(4.9)

with

Ecluster,i =
∑

j

Epx,j (4.10)

Where Pcluster,i are the absolute coordinates of the ith cluster, ppx,j are the local
coordinates of the jth pixel in the box and Ecluster,i is the sum of the energies Epx,j

of the ith cluster’s pixels.

Figure 4.19. Absolute (red) and local (yellow) reference frame.

Absolute coordinates are relative to the image reference frame and local coordi-
nates to the box reference frame (Figure 4.19). The Clustering Module computes
also the Extremal Points of the streaks, namely the coordinates of the upper and
lower tips of the objects, as the points in which the horizontal coordinate takes its
minimum and maximum value. If the streak goes from the lower-left corner of the
box to the upper-right corner the minimum value corresponds to the lower tip and
the maximum to the upper tip, vice versa if the streak goes from the upper-left
corner of the box to the lower-right one.

Since more than one foreground pixel may have the same value of horizontal
coordinate (x), the vertical coordinate (y) of the extremal points is computed as the
mean of the y values of all the points sharing the same horizontal coordinate (Figure
4.20). Considering the absolute value of the extremal points coordinate differences,
it is possible to divide them by the image Exposure Time and to obtain an estimate

4.2 Objects Detection & Tracking 74

Figure 4.20. Extremal points (red) and cluster centroid (yellow).

of the RSO velocity in the image plane (both in terms of vertical and horizontal
components). Then this velocity is used to predict the position of the centroid in the
next image taking into account both the exposure time (Texp) and the time between
two subsequent camera acquisitions, hereafter referred to as pause time (Tp), see
Figure 4.14.

Figure 4.21. RSOs Detection Module algorithm structure.

RSOs Tracking Module

The Tracking Module algorithm is in charge of the association between detected
objects in a sequence of images. The task is to interpret correctly the incoming
information from the detection module by grouping the detected centroids under
different indices which identify each RSOs crossing the FOV. With this operation
it is possible to understand which RSOs every centroid belongs to. Before starting
the module description a note on the nomenclature used is needed: the number of
objects stored in the algorithm memory will be referred to as nobj while the number
of detected objects (boxes) in the current image will be indicated with nbox.

Generally, the algorithm will have nobj stored in its memory and its task is to
understand if the nbox information in each new image are associated to the stored
objects or belong to a new one. The tracking module is based on the minimization
of a Cost Function J which is computed for each box-object pair. From the RSOs
detection module the generic box’s centroid information has the following format:

boxi = [xi yi mi ∆xi ∆yi nframe] (4.11)

where:

4.2 Objects Detection & Tracking 75

• xi and yi are the horizontal and vertical box’s centroid coordinates in the
image plane;

• mi is the detected box’s diagonal orientation (rough approximation of the
streak’s angle) w.r.t. the horizontal direction;

• ∆xi and ∆yi are the horizontal and vertical lengths of the box’s streak which
are computed through the streak’s extremal points positions. Their ratio would
be numerically equal to mi if the streak’s extremal points would occupy the
opposite bounding box’s corners (that is not generally true);

• nframe is the number of frame where the box has been detected.

At each image the Cost Function takes into account the position and orientation
of the box and compares them to the corresponding expected values determined
from the previous image objects. The Cost Function for the i-th box with respect
to the j-th stored object is given by:

Jij = w1
∣∣∣|(xi

new − xj
latest)| − vxj

latest · ∆T · (nskip + 1)
∣∣∣+

+ w2
∣∣∣|(yi

new − yj
latest)| − vyj

latest · ∆T · (nskip + 1)
∣∣∣+

+ w3
∣∣∣(mi

new − mj
latest)

∣∣∣
(4.12)

where:

• vxj and vyj are the horizontal and vertical components of the velocity of the
j-th object, respectively. They are obtained by dividing the ∆xj and ∆yj with
the exposure time Texp for the stored j-th object;

• ∆T is the time interval between two consecutive images, namely the sum of
Texp and the pause time Tp (Figure 4.14);

• nskip is the number of frames where the object is not actually detected by the
algorithm (miss or too weak object). It takes into account the fact that an
object can be missed by the detection module for one or more images Figure
4.22;

• w1, w2 and w3 are the weights of the three different contributions to the total
Cost Function.

The superscript new refers to the information contained in the new incoming
image, while the superscript latest contains the latest available information related
to the j-th object.

Cases
The algorithm is divided according to four possible cases or scenarios.

1. nbox = 0 No box is detected, the algorithm will not update anything (even if
at least one object is stored in memory);

4.2 Objects Detection & Tracking 76

Figure 4.22. Missing object case with nskip = 1. Centroids are the orange circles while the
grey objects are the streaks.

2. nbox > 0 and nbox < nobj This case can be divided into two subcases:

(a) The detected information nbox are all related to stored objects. The new
information nbox is a own subset of nobj . This case is faced through a
simple minimization process;

(b) Among the detected nbox there is at least a n∗ which is not related to
stored objects. This case is faced through the minimization of the Cost
Function J but a Threshold JT HR and a condition are introduced.

To better understand the solution processes of simple minimization and mini-
mization plus the condition involving JT HR, two examples are provided. In
case 2.a all the detected boxes were previously stored in memory (Figure 4.23).
The association Table 4.9 in this case will be like this (hypothetical values
have been used for sake of illustration):

Table 4.9. 2.a Case association Table

J Obj1 Obj2 Obj3 Obj4
Box1 4.5 2 1 3
Box2 1.5 1 2 4
Box3 4 3 2 1

Table 4.9 shows that Box1 will be associated to Obj3, Box2 to Obj2 and Box3
to Obj4. In this process the Obj1 will not be associated with the detected
boxes (correct behaviour of the algorithm).
In case 2.b among the boxes there is at least one that is not related with the
algorithm knowledge (Figure 4.24).

4.2 Objects Detection & Tracking 77

Figure 4.23. Case 2.a: detected boxes are a own subset of stored objects.

The association Table 4.10 in 2.b will be like this (hypothetical values have
been used for sake of illustration):

Table 4.10. 2.b Case association Table

J Obj1 Obj2 Obj3
Box1 3 1 3
Box2 4.5 4 3

According to Table 4.10 the Box1 would be correctly associated to Obj2 while
the Box2 would be associated to Obj3. Anyway, the association between Box2
and Obj3 is not correct because Box2 has a different inclination and position
if compared with the time evolution of Obj3. This brought me to introduce a
further step where each minimum Box − Object value of J is then compared
with a Threshold JT HR. This threshold can be defined as follows:

JT HR = w1∆X̃ + w2∆Ỹ + w3∆M̃ (4.13)
This is a static value of JT HR because through an a priori definition of ∆X̃,
∆Ỹ and ∆M̃ values this threshold does not change. ∆X̃, ∆Ỹ and ∆M̃ are
user defined threshold that can be empirically defined.
Another different and dynamic approach to define JT HR is the following:

JT HR = k · min(Jij) (4.14)

This approach is dynamic because the minimum value of J varies in every
situation. The k safety-factor can be put equal to 2 to lower the risk of wrong
associations.

4.2 Objects Detection & Tracking 78

Figure 4.24. Case 2.b: detected boxes are not an own subset of stored objects.

Coming back to the 2.b case and Table 4.10 the min(Jij) = 1. This causes a
JT HR = 2 and the following comparison is done:

JBox2−Obj3 = 3 ≥ JT HR = 2 (4.15)

Because of 4.15, the Box2 will not be associated to Obj3 but an Obj4 will be
initialized in the algorithm memory with information coming from Box2. This
comparison check is done both in 2.a and 2.b case despite the threshold has
been introduced in 2.b case description.
In the following shown tests a static approach for JT HR definition is adopted
and the Cost Function-Threshold comparison does not differ from what has
been described now.

3. nbox > 0 and nbox = nobj

Case 3 is divided into two subcases:

(a) The detected boxes are all the objects stored in memory;
(b) The detected boxes contain a never seen before object.

Case 3.a is solved in the same manner of 2.a and 3.b is solved like the 2.b

4. nbox > 0 and nbox > nobj There is at least a detected box which belongs to a
new object. Also this case presents the same solution approach of 2 and 3.

Figure 4.25 shows an example of a real passage of two objects in the night sky in
which each image represents a different classification scenario.

4.2 Objects Detection & Tracking 79

Figure 4.25. A real passage of two objects in the night sky. Cases evolution is (assuming
initial absence of objects in memory): a) case 4; b) case 4; c) case 3; d) case 2.

Filters
After a sequence of three images without a detection of new boxes, the sequence

is considered completed and several checks on the stored objects are performed.
Objects (of the completed sequence) which have been detected in few frames (if
compared to the number of images in the sequence) are removed from stored objects
and considered again as potential candidates (possible noise, not correct association
performed through the association table etc...). Objects with an anomaly degree
higher than a certain threshold are removed from the stored objects and considered
again as potential candidates (unreliable objects). Potential candidates will be
further used by the aggregation filter to try a last possible association based on a
least square method process. To understand the filters actions let’s consider the
scenario in Figure 4.26. Here, the blue rectangles represent the detection history
while the orange ones represents anomalies presence. Anomalies do not affect all the
objects in general and the tracked objects can be detected just in few frames.

These actions/filters are:

• Occurrences filter: It checks the number of objects in memory. For every object
a check on the Occurrence Percentage (OP) is performed:

OPObjk
= nObjk

ntotal
· 100 (4.16)

where nObjk
is the number of frames in which the object has been detected

while the ntotal is the total number of frames of the completed sequence. If

4.2 Objects Detection & Tracking 80

Figure 4.26. Sequence with six tracked objects.

the OPObjk
is lower than a user defined threshold OPT HR then the object is

removed from the tracked objects list and collected in the potential candidates
list. Otherwise the object remains in the tracked objects list. Actually, in
Figure 4.27, just objects 3 and 4 are removed from tracked objects list because
a OPT HR = 50 % is used.

• Anomaly filter: It checks the amount of anomalies in every object. Anomalies
are caused by a combination of position and angle orientation and the JT HR

value. This combination of values leads sometimes to a wrong association of
the incoming boxes with the stored objects. Actually, it can happen that two
boxes, related to the same frame, are associated to the same tracked objects by
the algorithm. If this happens, an anomaly occurs (this definition of anomaly
is adopted since now within this work). For every object an anomaly check is
performed and whenever an anomaly detection occurs, the anomaly counter
AnCObjk

is increased for the k-th object. Then a anomaly degree AnDObjk
is

computed this way:

AnDObjk
= AnCObjk

· 2
nObjk

· 100 (4.17)

The 2 factor means that the counter AnCObjk
needs to be considered twice

because for every detected anomaly there are two information strings involved
(two boxes associated to the same object). In the end if AnDObjk

> AnT HR

(defined threshold value) then the object is removed by tracked objects list
and put inside the potential candidates list. In Figure 4.28 this operation is
shown using a AnT HR = 30 %: just object 5 is removed from tracked objects
list. Then the anomalies inside object 6 are removed (while the object 6 is
kept in the tracked list).

4.2 Objects Detection & Tracking 81

Figure 4.27. Effects of the occurrences filter in the tracked objects list.

In this way, corrupted information is removed but anomalies are still present
in the tracked objects list. As a matter of fact, last operation performed
by the anomaly filter is removing just the few anomalies contained inside
the remaining objects. The removed information is stored in the potential
candidates list (Figure 4.29);

• Aggregation filter: This filter acts in a scenario like the one depicted in Figure
4.29. The tracked objects position in the FOV draw straight lines with good
approximation. Each line is the trajectory of a different potential RSO. The
objects that remain in the tracked objects list after occurrences and anomalies
filters are called nuclei and represent trustworthy information for the RSOs
tracking problem. In the potential candidates list, missing pieces of these
tracked objects could still be present. The aggregation filter uses a least
square approach to associate potential candidates list information to the nuclei.
This further association process differs from the threshold based association
(JT HR) because now, a priori information (nuclei) is available. In this way, the
output will be thrustworthy tracked objects while the remaining not associated
candidates will be deleted from the algorithm memory. Nuclei’s ideal straight
trajectories will be computed using a least square process. These lines will
have the number of frames as independent variables and the object centroids
coordinates as dependent variables:

{
xobj = a · nframe + q

yobj = b · nframe + k
(4.18)

The coefficients a, b, q and k will be computed through the least square method
applied on the system in Equation 4.19).

4.2 Objects Detection & Tracking 82

Figure 4.28. Effects of the anomaly filter in the tracked objects list.

nframe1 1
nframe2 1
nframe3 1

... 1
nframem 1

[
a

q

]
=

xobj1

xobj2

xobj3
...

xobjm

nframe1 1
nframe2 1
nframe3 1

... 1
nframem 1

[

b

k

]
=

yobj1

yobj2

yobj3
...

yobjm

(4.19)

By minimizing the differences between the right hand side and left hand side
of 4.19 with the least squares approach, it is then possible to know the best
fitting straight line for each nucleus. Then, for each detected centroids from
the potential candidates list (rem), the distance between it and each nucleus
(j) straight lines is computed through:

diffx = (aj · nframerem + qj) − xrem

diffy = (bj · nframerem + kj) − yrem

d =
√

diffx
2 + diffy

2
(4.20)

If this distance d is lower than a threshold aggT HR then the association is
performed. If the distance check is satisfied for more than one nucleus straight

4.2 Objects Detection & Tracking 83

Figure 4.29. Effects of the occurrences and anomaly filter in the tracked objects list.

line, the potential candidate centroid isn’t associated to any nucleus in order
to remove any possible ambiguity (Figure 4.30).

4.2 Objects Detection & Tracking 84

Figure 4.30. Image plane with RSOs centroids evolution and nuclei’s straight lines.

4.2.3 Tests and Results
U-Net and YOLOv3 Training

This section describes the U-Net and YOLOv3 training steps. In particular, the
U-Net is configured with the values shown in Table 4.11.

Table 4.11. U-Net Configuration Parameters

Parameter Value
Image size 960 × 640

Initial filters 128
Learning Rate 10−4

Regularization Factor 10−5

Dropout Rate 0.25
Kernel Size 3

Kernel initializer ′he_normal′

U-Net training and validation were performed in Tensorflow Keras[28] considering
3 epochs and a dimension of the training batch equal to 3. This has been done for
128 filters. The trained network shows reached accuracy higher than 99% and a loss
lower than 0.01. Moreover, no overfitting phenomenon occurred.

YOLOv3 training and validation were performed in darknet framework consid-
ering the previous dataset. The trained network shows a mean Average Precision
(mAP) equal to 78.41% considering a IOU of 50%.

The training, validation and test were performed on a workstation with the
following specifications:

• CPU: AMD Ryzen Threadripper PRO 3975WX 32 Cores 3.50 GHz

• RAM: 128 GB

4.2 Objects Detection & Tracking 85

• GPU: Nvidia Quadro RTX 5000.

Further and several approaches for YOLO training have been used to increase
the robustness to FNs and FPs. The strategy foresees a training on the first dataset
(original dataset), then a Transfer Learning (TL) process over the second dataset and
finally a second TL over the third dataset. TL process is the training of a previously
trained Network: a Network has been trained on a specific dataset, the last saved
weights are then loaded and the same network is trained again on a different dataset.
This technique is used to increase performances of the network against FPs and FNs.
The first TL is performed with another training on a further 5000 images dataset.
The second TL with a 30000 images dataset. A second training from scratch has
been performed on the third dataset to verify the effectiveness of the double TL
strategy. mAP is computed with an IOU equal to 50% and TPs, FPs, FNs values are
reported in Table 4.12 for the tested configurations. mAP is calculated by computing
AP for each objects class and then average over a number of classes (N):

mAP = 1
N

·
N∑

k=1
APk (4.21)

The steps to compute the APk values (k is the class index):

1. Generate the prediction scores using the model on the Dataset;

2. Convert the prediction scores to class labels;

3. Calculate the confusion matrix—TP, FP, TN, FN;

4. Calculate the precision and recall metrics for each class;

5. Compute the APk as the Area Under the precision-recall Curve for each class;

6. Compute the mAP.

The mAP performance evaluation is carried out on the test subset of the original
dataset.

Table 4.12. YOLOv3 Performance report

YOLOv3
Strategy mAP [%] TP [%] FP [%] FN [%]

Original DS 78.4 72.4 8.5 19.1
First TL 79.8 74.4 8.5 17.1

Second TL 82.7 77.3 7.7 15.0
Scratch 30k 78.0 71.9 8.3 19.8

As can be seen, the most promising training strategy for YOLOv3 model is a
double TL on different datasets. The percentage of TP increases together with a
decrease of FN.

4.2 Objects Detection & Tracking 86

Figure 4.31. ISS and Starlink Passage used for the test (superposed images).

Test on a Real Passage

A sequence of real images is considered to test the Detection and Tracking modules.
The whole passage is shown in Figure 4.31, where two objects are moving inside the
FOV from top left region towards the bottom-center of the image: the ISS (brightest)
and a Starlink (weakest). The sequence was acquired with a reflex camera with the
same philosophy described in Figure 4.14 with Texp = 5sec and a Tp = 2sec and
then processed. The Objects Detection and Tracking module was able to detect
both the objects but not in every image as can be seen in Table 4.13. Here the
detected objects’ centroids and streaks orientation are shown for every frame. For
this test the weights of the Cost Function where set to 1 and a static approach for
JT HR was used considering ∆X̃ = 10 px, ∆Ỹ = 10 px and ∆M̃ = 15 °.

Just the ISS was clearly detected in almost every frame with the exception of the
first frame due to the sun-off/ sun-on transition and the last two frames when the
streak is too small and close to the image edge. The proximity to image border causes
the YOLOv3 not to detect the objects. This problem is related to the YOLOv3
training where the streaks were more concentrated far away from borders (it is not
useful to collect information of streaks close to the borders due to the possibility
of out-FOV portion of the streak). The Starlink, instead, appears too weak to be
detected in almost every frame and this is due to the brightest ISS which obscures it.

Table 4.13 is a table representation of the tracked objects list with OPT HR = 0%
and AnT HR = 20%.The ISS orientation varies due to the rough streaks’ orientation
estimation approach that confuses the streak’s orientation with the YOLO provided
bounding box’s diagonal orientation (angle differences are due to statistical fluctua-
tions). The sequence was acquired in the Campo Imperatore acquisition campaign,
Gran Sasso, L’Aquila, Italy (5-7/07/21). Camera parameters during the acquisition

4.2 Objects Detection & Tracking 87

Table 4.13. Tracking Table for the ISS and Starlink.

Frame xObj1 [px] yObj1 [px] αObj1 [deg] xObj2 [px] yObj2 [px] αObj2 [deg]
1 − − − − − −
2 291.26 187.60 67.38 − − −
3 − − − − − −
4 316.04 281.70 68.20 − − −
5 327.25 324.71 66.57 85.60 256.46 57.99
6 337.46 363.92 69.23 − − −
7 346.57 399.18 66.50 − − −
8 354.44 429.78 68.63 − − −
9 362.37 461.05 66.80 − − −
10 369.05 487.48 67.17 − − −
11 375.27 512.51 67.62 − − −
12 381.61 537.91 70.02 − − −
13 386.78 559.23 67.62 − − −
14 392.18 581.07 66.37 − − −
15 397.00 601.01 66.80 − − −
16 401.53 620.09 72.47 − − −
17 − − − − − −
18 − − − − − −

are reported in Table 4.14.

Table 4.14. Camera parameters in Gran Sasso campaign.

Features Values
Location Campo Imperatore, Gran Sasso, Italy

GPS Latitude 42°26’ 11.088" N
GPS Longitude 13°36’ 30.018" E
GPS Elevation 1710 m

Camera Nikon D3100
Optical System Nikkor 18 -105 mm

Platform Tripod
focal length 24 mm

Size 960 x 640 px (Resized)
Exposure Time 5 sec

Pause 2 sec
Vertical FOV 35.57°

Horizontal FOV 51.40°

Performance Indices Evaluation over Real Passages

A total of 31 real passages were collected in the Campo Imperatore acquisition
campaign. The algorithm was tested on each image of every passage and an
evaluation of Precision, Recall and F1 index is provided over the whole real scenarios
set. Following numbers were obtained:

Table 4.15 shows good performance with real images. It suffers more of FNs
rather than FPs (this confirms the results in Table 4.12). This means that it is
harder for the algorithm to detect a streak when there is no real streak in the image.
From the other side the weak eye-detectable objects still represent an issue for the

4.2 Objects Detection & Tracking 88

Table 4.15. Performance Indices

TP FP FN Precision [%] Recall [%] F1 [%]
201 13 37 93.93 84.45 88.94

algorithm especially because they are segmented as fragmented streaks. Processing
times were measured during every passage and an average time lower than 3 seconds
was shown for every image processing. This processing time may be accelerated with
a dedicated System on Chip (SoC) implementation that is under investigation. As
dynamic memory point of view, less than 60 MB of RAM are used in every image
processing.

YOLOv4 Upgrade

After YOLOv3 tests and the problem of FNs, I tried to replace a YOLOv3 with a
YOLOv4 and compare their performances. The v4 model was trained at the same way
of YOLOv3 and with the same environment and available datasets. Performances of
v4 trained models are reported in Table 4.16.

Table 4.16. YOLOv4 Performance report

YOLOv4
Strategy mAP [%] TP [%] FP [%] FN [%]

Original DS 82.82 74.7 9.5 15.8
First TL 84.50 75.8 10.1 14.1

Second TL 85.95 77.1 10.3 12.6
Scratch 30k 82.12 74.2 10.0 15.8

Interestingly, with the YOLOv4 network double TL, the percentage of FPs is
increased if compared with YOLOv3 (see Table 4.12) while the percentage of FNs is
decreased (achieving the double TL goal). The FPs percentage increment is due to a
multiple and undesired detection of the same streak as shown in the following Figure
4.32. However, this does not constitute a big deal because through a double detection
removal filter (applied after the YOLOv4), it is possible to merge the redundant
information associated to double detection. The highlighted values in Table 4.16 is
referred to the best YOLOv4 trained model which is used in the reported tests (the
same applies for YOLOv3 and Table 4.12).

Comparison of YOLOv3 and YOLOv4 Based RSOs Detection Modules

Real RSOs Passages Test

In this section, the computation of TPs, FPs and FNs for the best YOLOv4 model
has been performed and shown. It is made on a test set of 31 real RSOs passages
which were acquired during a real images acquisition campaign in Campo Imperatore.
Moreover a comparison with the best YOLOv3 model performances from my previous
investigation is presented [100] in Tables 4.17 and 4.18.

Table 4.17 represents a pseudo confusion matrix due to the impossibility of True
Negatives (TNs) computation. If no streak are present in the image, the network is

4.2 Objects Detection & Tracking 89

Table 4.17. YOLOv3 and v4 overall Real RSOs passages performance

YOLOv3 YOLOv4
FP FN TP FP FN TP
13 37 201 18 26 208

not able to detect the absence of streaks and thus the info of TNs is impossible to
be provided.

Table 4.18. YOLOv3 and v4 Real RSOs passages comparison

YOLOv3 YOLOv4
Precision [%] Recall [%] F1 [%] Precision [%] Recall [%] F1 [%]

93.93 84.45 88.94 92.04 88.89 90.44

Figure 4.32. An example of double detection of the same RSO. The segmented streak
(left). The double detection (right).

Looking at the comparison tables, it is possible to assess that in YOLOv4
predictions there is a perceptible decrement of FN and an increment of FP with
respect to YOLOv3 model. In particular, the increased robustness to FNs brings
YOLOv4 model to detect correctly heavily fragmented streaks, resulting in an
increasing probability of dim target detection. Sometimes the model detects twice
clear streaks in the night sky. This was noticed while testing the v4 model on the
31 passages. A case where this occurs is shown in Figure 4.32. The same streak is
contained in both the boxes and this does not represent a problem for the centroid,
extremal points and velocity components computation. A double detections removal
filter has been implemented and performed before RSOs tracking module (Section
4.2.2).

Test on a Real RSO Passage

In this subsection the ISS and Starlink sequence of 18 images is condensed into a
single image (Figure 4.31). This passage was already tested with YOLOv3 model
and here the test is repeated with YOLOv4 for comparison purposes. Data of the
detected RSOs are collected in Table 4.19. The main differences with respect to the
YOLOv3 results (Table 4.13) are:

4.2 Objects Detection & Tracking 90

• Correctly detection of ISS in frame 3 and Starlink in frame 4 thanks to YOLOv4
upgrade and thus to the improved capability in fragmented streaks detection.

• Slight differences in streak orientation values due to an improved way in
extremal point computation.

• Differences between computed objects coordinates are generally smaller than 1
px. This is not due to a different U-Net segmentation action but to a better
way of detecting the area around the box (less stars’ foreground pixels in the
box which affect the centroids and extremal points computation).

Table 4.19. ISS and Starlink Tracking Table with YOLO v4

Frame xObj1 [px] yObj1 [px] αObj1 [deg] xObj2 [px] yObj2 [px] αObj2 [deg]
1 − − − − − −
2 291.27 187.61 67.75 − − −
3 303.95 235.67 66.97 − − −
4 316.04 281.70 65.43 61.23 213.97 53.97
5 327.34 325.06 66.37 83.71 253.10 55.89
6 337.46 363.92 65.10 − − −
7 346.44 398.65 63.43 − − −
8 354.76 431.05 65.38 − − −
9 362.32 460.86 64.54 − − −
10 369.05 487.48 67.17 − − −
11 375.55 512.53 64.65 − − −
12 381.51 537.50 64.80 − − −
13 387.08 560.15 64.80 − − −
14 392.10 580.76 68.20 − − −
15 397.09 601.41 68.20 − − −
16 401.54 620.10 66.37 − − −
17 − − − − − −
18 − − − − − −

Test with High Fidelity ST Simulator Images

In this test, 20 HFSTS images have been tested with the present algorithm [107] The
aim was comparing the developed and latest version of the RSOs detection algorithm
against simulated ST images. This because the availability of real on-board images
sequence from STs is something very hard to achieve due to the limited downlink
band of the existing on-board platforms sensors and telecommunication equipments
and the huge weight of each ST image file to be stored on-board (there should be
dedicated data collection missions to have more ST’s real images data). Thus, the
only way to test the algorithm for on-board applications was using a ST simulator.
In the test scenario five objects were generated into the FOV while the camera
performances are listed in Table 4.20. The simulator is part of the Automation
Robotics & Control for Aerospace Laboratory (ARCALab) at School of Aerospace
Engineering, Sapienza University of Rome. The simulator is a heritage of ARCALab
cooperation in several projects on STs and on-board debris surveillance mission
cooperation. For this set the exposure time has been set to 0.2 seconds with a
negligible time interval between the end of one acquisition and the starting of the
successive one, in order to simulate the behaviour of a possible ST. The algorithm

4.2 Objects Detection & Tracking 91

application with simulated ST images provides 5 detected objects where for each
frame the computed centroids coordinates are shown (Table 4.21). When coordinates
are not reported a blank box or a "-" can be found. The blank box means that the
detected object is not in the camera FOV anymore while the sign "-" means the
presence of the object within the image without a successful detection (FN).

Table 4.20. Simulated ST parameters

Features Values
Camera HFSTS Cam
Platform On-board

focal length 51 mm
Size 960 x 640 px

Pixel size 18.0 µm/px
Exposure Time 0.2 sec

Pause 0 sec
Vertical FOV 13.6°

Horizontal FOV 19.2°

By inspection of Table 4.21 object 1 disappears after frame 8 when it is not
correctly detected. Object 2 is always detected while object 3 disappears after frame
17 whith a missed detection at the second frame. Object 4 is correctly detected
untill frame 8 when it disappears. Object 5 is detected just in frame 4 because it
is heavily fragmented. The last row of Table 4.21 shows the Percentage of Correct
Detection (PoCD) which is the ratio between the correct detections and the number
of frames in which the object is actually within the FOV. In this test both OPT HR

and AnT HR were put equal to 0%. This is the reason why low occurrences objects
like the first and fourth are present in the tracking table as the apparent noise too
(object 5).

The whole passage composed of 20 images with detected objects is shown in
Figure 4.33.

The YOLOv4 network together with the double detection removal filter is able
to detect correctly all the 4 out of 5 objects avoiding the undesired FP which occurs
in this test.

Effects of the Filters Action on a Real and Noisy Sequence

To prove the correct working and utility of Occurrences, Anomalies and Aggregation
filter strategy, their effects in a noisy situation will be shown. It must be remembered
that filters are needed to refine the tracking algorithm outputs to provide reliable
information for ground OD modules. A sequence of 40 real images acquired in Frascati
in winter 2022 is shown. The sequence lasts 280 seconds and sensor specifications
are listed in Table 4.22.

Noise conditions were characterized by a strong stray-light due to the town light
pollution causing a more challenging situation both for image segmentation and
detection module. Several objects appeared crossing the sky but only the most
suitable three ones were in the algorithm outputs’ list in the end. Used thresholds

4.2 Objects Detection & Tracking 92

T
ab

le
4.

21
.

H
FS

T
S

tr
ac

ki
ng

re
su

lts
w

ith
Y

O
LO

v4
.

O
bj

1
O

bj
2

O
bj

3
O

bj
4

O
bj

5
Fr

am
e

x
y

x
y

x
y

x
y

x
y

[p
x

]
[p

x
]

[p
x

]
[p

x
]

[p
x

]
[p

x
]

[p
x

]
[p

x
]

[p
x

]
[p

x
]

1
29

5.
5

43
3.

2
36

6.
8

49
7.

6
45

2.
5

20
0.

0
61

9.
6

48
7.

5
−

−
2

27
3.

2
37

9.
9

38
8.

2
48

4.
8

−
−

66
0.

4
46

2.
3

−
−

3
24

7.
0

31
9.

2
40

7.
9

47
2.

1
42

6.
9

18
2.

3
70

9.
8

43
3.

7
−

−
4

22
1.

0
25

8.
9

42
6.

8
46

0.
4

41
2.

3
17

2.
1

75
5.

4
40

6.
1

10
8.

1
50

6.
6

5
19

3.
4

19
5.

2
44

6.
9

44
8.

0
39

8.
2

16
2.

4
80

1.
5

37
8.

8
−

−
6

17
0.

0
14

0.
7

46
8.

5
43

4.
7

38
3.

3
15

2.
1

84
5.

9
35

2.
3

−
−

7
14

3.
6

81
.1

48
7.

9
42

2.
9

36
7.

4
14

1.
1

89
2.

4
32

4.
5

8
−

−
50

4.
1

41
2.

6
35

1.
7

13
0.

0
93

4.
4

29
9.

8
9

52
4.

3
40

0.
2

33
4.

7
11

8.
5

10
54

4.
6

38
7.

3
31

8.
6

10
7.

0
11

56
4.

1
37

5.
5

30
0.

9
94

.8
12

58
5.

2
36

2.
2

28
1.

7
81

.5
13

60
6.

6
34

9.
2

26
2.

2
68

.1
14

62
4.

2
33

8.
3

24
1.

6
53

.8
15

64
2.

5
32

7.
0

22
2.

0
40

.2
16

66
3.

9
31

3.
8

20
0.

8
25

.5
17

68
4.

5
30

1.
0

17
7.

2
9.

0
18

70
3.

4
28

9.
3

19
72

3.
7

27
6.

8
20

73
9.

6
26

6.
8

P
oC

D
87

.5
0

10
0

94
.1

1
10

0
16

.6
7

[%
]

4.2 Objects Detection & Tracking 93

Figure 4.33. High Fidelity ST simulator images passage. The 5 objects are correctly
detected.

Table 4.22. Camera parameters in Frascati Night Sky campaign.

Features Values
Location Frascati, Italy

GPS Latitude 41°48’ 32.6" N
GPS Longitude 12°40’ 16.9" E
GPS Elevation 269 m

Camera Nikon D3100
Optical System Nikkor 18-105 mm

Platform Tripod
focal length 24 mm

Size 960 x 640 px (Resized)
Exposure Time 5 sec

Pause 2 sec
Vertical FOV 35.57°

Horizontal FOV 51.40°

4.3 Summary of Findings for the AI-Based RSOs Detection and Tracking
Algorithm 94

for this test are: OPT HR = 5 %, AnT HR = 20 % and aggT HR = 50 px. Results are
visually reported in Figures 4.34 and 4.35.

Figure 4.34. Frascati RSOs merged sequence. Tracking outputs’ centroids are shown on
the merged masks sequence. Each color is a different tracked object. No filter action.

Filters action removed a lot of information which for sparse nature or low numbers
could not have any concrete utility to be stored and processed for OD purposes.
Another reason to filter the tracking outputs is to reduce the payload used storage
memory (thinking about an on-board application). In this way, the limited storage
memory will be used for significant and valuable information.

4.3 Summary of Findings for the AI-Based RSOs De-
tection and Tracking Algorithm

To conclude, this section provides a description, design, development and test of
a Convolutional Neural Network based algorithm for Image Processing, Object
Detection and Tracking oriented to space optical sensors applications. Details and
characteristics of every sub module are presented together with the optimization
problem for the Tracking module. An ad hoc dataset for objects detection sub-module
was created and presented with characterising histograms through a streaks simulator
in night sky images. Details of U-Net and YOLOv3 training have been provided
in terms of accuracy. Module tests over multiple real passages have been carried
out showing encouraging preliminary performances of the algorithm in terms of
Precision, Recall and F1 indices. The YOLOv3 has shown the correct road for objects
detection because of its high accuracy. Then the double TL strategy together with

4.3 Summary of Findings for the AI-Based RSOs Detection and Tracking
Algorithm 95

Figure 4.35. Frascati RSOs merged sequence. Tracking outputs’ centroids are shown
on the merged masks sequence. Each color is a different tracked object. Occurrences,
Anomalies and Aggregation filters actions are evident.

the YOLOv4 model increased the network robustness against the most interesting
RSOs: dim targets. I chose to adopt the RSOs detection CNN applications to these
models and these versions because they are capable of real time working (mandatory
for on-board application especially in SSA & SST purposes).

An improvement before RSOs tracking module to couple with multiple detections
in the first frame together with the merging of redundant information have been
implemented: FPs are not a problem anymore for the global algorithm performances.

The implemented and added filters after the RSOs tracking module show a
refinement of the Tracking outputs list which now contains more reliable information
for OD modules. Moreover, an AI-based module will be studied and developed for
the extremal points computation of the detected streaks. The following areas need
further research:

• Improvement of the dataset to be used for the detection task with a data
augmentation technique to reduce the percentage of FN;

• Heuristic optimization of Cost Function weights through extensive tests (Monte
Carlo simulations);

• Analysis of a possible integration of the developed architecture on SoC for a
potential on-board application.

96

Chapter 5

Dual-Purpose of the
Segmentation Detection and
Tracking Chain

This chapter is devoted to the extension of the U-Net/YOLOv4 based night sky
streaks detection algorithm which has been described in the previous sections. The
discussed algorithm was designed to detect RSOs under sidereal or near sidereal
pointing conditions of the optical payload (or platform). What if there were a
not negligible stars motion? In this condition the optical payload has an attitude
evolution and thus an angular rate. The streaks are not RSOs anymore but represent
stars. Generally, the angular rate (vector quantity) can be derived after a proper
star identification and attitude quaternion estimation process. This is possible by
the knowledge of the quaternion evolution after a classical finite differences based
approach. It guarantees good estimation of the angular rate for low values (≤ 1°/s).
Moreover, it is limited to the attitude quaternion knowledge and this is used during
normal operations. Sometimes it happens that for some reasons the satellite goes into
a SAFE mode after an unexpected event. In this mode the on-board computer put
the satellite in a protected condition and it can be recovered by ground telecommands.
Often the first step to recover the spacecraft is understanding its motion (orbital
and attitude). If the attitude evolution is considerable, then it is really difficult to
detect the stars positions and to perform a LISA with the on-board STs. Actually,
the number of detectable stars is lower (ST cut-off magnitude decreases with the
angular motion increase) and the stars are streaks-like objects therefore classical
image processing methods fail (they are designed to better deal with point like
objects). By this consideration it seems really hard for modern STs to work under
such conditions. This brought me to the idea of using the developed AI-based streaks
detection algorithm in such HAR scenarios to know part of the spacecraft attitude
motion:

• the streaks can have a considerable length in the FOV and be easily detected
by the algorithm;

• streaks can be few in the FOV in HAR conditions and be correctly localized;

5.1 Space Navigation Application 97

• a priori attitude knowledge is not needed if the stars centroids evolution are
enough to directly compute the spacecraft angular rate.

The need to retrieve the HAR of the platform without the knowledge of a priori
attitude is needed to control and slow down the spinning motion of the platform
bringing the classical attitude routines to work in a more favourite condition. The
knowledge of the attitude means controlling it and thus, stabilizing it (normal
operations retrieval).

This application represents a dual-purpose of the developed AI-based streaks
detection algorithm if an angular rate estimation routine with stars centroids as
input is developed. During my research I found an algorithm based on least squares
which shows considerable performances in angular rate estimation. This independent
research brought me to sadly discover that it was already developed and tested for
low angular rates scenarios about ten years ago [108]. However, what I did was
coupling this method with the previous streaks detection algorithm and pushing
the capabilities of this angular rate method in very HAR scenarios. Results are
promising for several angular rate vector orientations and noise presence in a wide
range of angular speed intensities.

5.1 Space Navigation Application
5.1.1 HAR Estimation Module Description
This algorithm routine is in charge of estimating the spacecraft angular rate through
the knowledge of the tracked stars’ positions in the FOV. This application is targeted
for STs but can be extended to every stars position detection capable sensor. The
main assumption in this section is that just stars will be present in the FOV and no
real RSOs. Moreover, the spacecraft pointing will not be sidereal anymore but a non
negligible and constant angular rate will produce a spacecraft attitude evolution.
Stars move in the FOV under HAR conditions leaving tracks which are pieces of
ellipse [109]. The AI-based streaks detection algorithm at each frame updates its
tracked objects list which will be used to estimate the HAR. The HAR estimation
module is based on least square approach starting from a simple kinematics formula:

d

dt
b̂(t) = ω⃗ × b̂(t) (5.1)

Where ω⃗ is the spacecraft angular rate while b̂(t) is the generic stars unit vector.
The algorithm at each frame knows the stars centroids and thus the stars unit
vectors (b̂(t)). By a finite differences approach it is possible to know even the time
derivatives of such unit vectors (d

dt b̂(t)). In this way, at each frame there is a growing
number of linked information that can be processed in a least square fashion to know
the constant parameter of the problem (ω⃗). This is the rationale behind the HAR
estimation module and the steps performed by the algorithm follows:

1. Stars centroids to camera Unit Vectors (UVs) conversion;

2. Camera UVs to Platform UVs conversion;

3. Finite differences of Platform UVs and Mean UVs Value computation;

5.1 Space Navigation Application 98

4. Differential Model to Algebraic Model transition;

5. Least Square solution (LS): the Platform angular rate estimation.

Considering a sequence of N frames under angular motion of the ST, generally
stars will be in the FOV. The centroid of the i-th star at the j-th frame is indicated
as ci(tj) = [xi,j , yi,j]. Through the camera pin-hole model, and the knowledge of
image size, pixel size and camera focal length (f0) it is possible to compute the
corresponding i-th star unit vector at (tj):

b̂i(tj) =

b1i,j

b2i,j

b3i,j

 (5.2)

This vector is expressed into the CRF and needs to be rotated into the Platform
Reference Frame (PRF) through a Mounting Matrix (MM) which can be assumed
constant and is well known since the mission design. MM indicates how the ST
is mounted into the satellite (platform). After the rotation, the same stars UV is
expressed in platform coordinates:

X̂i(tj) =

X1i,j

X2i,j

X3i,j

 (5.3)

Everything described untill here is related to a single frame. When the next (j+1)-th
frame arrives, for the same i-th star two UVs information is available:

X̂i(tj) =

X1i,j

X2i,j

X3i,j

 and X̂i(t(j+1)) =

X1i,(j+1)
X2i,(j+1)
X3i,(j+1)

 (5.4)

With this information a mean vector can be computed:

X̄i =
[

X̂i(tj) + X̂i(t(j+1))
2

]
(5.5)

Which after normalization respresents the PRF i-th star UV (X̃i) at the time instant
(tj+t(j+1)

2). With the vectors of 5.4 it is possible to estimate the i-th star UV time
derivative at the same mean instant:

˙̃Xi =
[

X̂i(t(j+1)) − X̂i(tj)
(Texp + Tp)

]
(5.6)

In this way with a sequence of N frames there are N-1 (˙̃Xi, X̃i) couples for each
star. Assuming that there are Ns stars which are being tracked, the total amount of
(˙̃Xi, X̃i) "points" to be processed after N frames is equal to (N − 1) · Ns. By this a
pair of considerations can be done:

• the number of inputs increases linearly with time if the amount of tracked
objects remains constant;

5.2 Tests of the AI-Based HAR Estimation Algorithm 99

• as the tracking evolves, more information is available and a better angular rate
estimate is produced by the algorithm. Actually, if some tracking anomalies
occur, their effect on the final HAR estimate is "covered" by the huge and
increasing number of information from the correct tracked stars.

The Equation 5.1 is a system of three scalar equations:
ẋ = z · ωy − y · ωz

ẏ = x · ωz − z · ωx

ż = y · ωx − x · ωy

(5.7)

which can be written in a matrix form: 0 z −y
−z 0 x
y −x 0

ωx

ωy

ωz

 =

ẋ
ẏ
ż

 (5.8)

Last equation highlights the unknown quantity to be computed. The quantities
x, y, z represent the components of X̃i while ẋ, ẏ, ż represent the components of ˙̃Xi.
After N frames and Ns tracked stars it is possible to write (N − 1) · Ns systems
like 5.8 which can be put together obtaining a final over-determined system with
just three unknown scalars (the angular rate components ωx, ωy, ωz). This system
is then solved with a LS approach giving the platform angular rate components in
output. Last step is to invert the solution changing the sign to each component.
This because the stars centroids motion w.r.t. camera is in the opposite direction of
the spinning camera. This algorithm is runned at each frame after the second frame.
At each frame the information is processed in a batch fashion, using all the available
centroid information from frame 1 to the last.

5.2 Tests of the AI-Based HAR Estimation Algorithm
Tests on the AI-based HAR estimation algorithm have been carried out for five
different angular velocity moduli while maintaining the same direction. The camera
used in these tests is the same shown in Table 5.1. As initial test the considered
PRF direction is:

ω̂ = 1√
3

·

1
1
1

 (5.9)

This direction gives the same angular rate component for each reference axis. The
five selected values for the moduli are: 5°/s, 7°/s, 10°/s, 13°/s and 15°/s. The camera
and the scenarios were simulated with the HFSTS. At each angular rate module,
the sequence of 100 images are generated and prepared to be fed to the algorithm.
The exposure time is set to 0.1 sec to simulate the 10 Hz working frequency of most
of the commercial STs and the pause time is set to 0 s (because this time interval is
generally negligible at these working frequencies). The other parameters (Table 5.1)
are similar to commercial STs.

Tested angular rate moduli are really high if compared to the normal angular
rates during spacecraft maneuvers (≤ 1.5°/s). Each scenarios is simulated for a total

5.2 Tests of the AI-Based HAR Estimation Algorithm 100

Table 5.1. Simulated ST parameters for HAR.

Features Values
Camera HFSTS Cam
Platform On-board

focal length 16 mm
Size 960 x 640 px

Pixel size 6.6 µm/px
Exposure Time 0.1 sec

Pause 0 sec
Vertical FOV 15.0°

Horizontal FOV 22.4°

of 10 seconds per each simulation. This is enough to test the algorithm capabilities.
Results show the trend of the angular rate components errors over this period, the
trend of the deviation angle and angular rate norm error. This first test is done just
for a HAR direction with no added sensor and camera noise sources. Further test
will cover the added noise sources and more tested HAR directions. The AI-based
configuration parameters used in these tests are listed in Table 5.2. For each of the
reported tests the target machine used is:

• CPU: AMD Ryzen Threadripper PRO 3975WX 32 Cores 3.50 GHz

• RAM: 128 GB

• GPU: Nvidia Quadro RTX 5000.

The above mentioned machine shows an average processing time with this preliminary
unoptimized code of 6.4 sec with a 134.22 MB of RAM used for each processed
frame.

Table 5.2. AI-based streaks detection and tracking configuration parameters.

Parameter Values
pmin 15 %

IOUT HR 35 %
w1 1.0
w2 1.0
w3 1.0

∆X̃ 10 px

∆Ỹ 10 px

∆M̃ 15 °
OPT HR 5 %
AnT HR 10 %

5.2.1 Test at |ω⃗ref | = 5, 7, 10, 13, 15 °/s with No Noise Sources
This is the unique angular rate direction to be tested in no noise conditions just
to show preliminary algorithm capabilities. The sequence is launched and at each

5.2 Tests of the AI-Based HAR Estimation Algorithm 101

frame the collected data from the moving stars are processed in a batch fashion.
At each frame the angular rate estimate is provided and several quantities can be
computed:

• Angular rate components errors:

∆ωi = ωi − ωrefi (5.10)

This is the error on the i-th component;

• Deviation angle: Angle between the estimated angular rate direction and the
reference one;

• Angular rate norm error:

∆norm% = ||ω⃗est| − |ω⃗ref ||
|ω⃗ref |

· 100 (5.11)

Figure 5.1. Graphic results for the 5 °/s case. The sensor and stars UVs are shown together
with the reference and estimated direction for the angular rate. The estimate (red) is
close to the reference (blue).

Trends of the errors and deviation follow: Figures 5.2, 5.3 and Tables 5.3, 5.4.
Mean values are computed in the last 3 seconds of simulation when the HAR
predictions stabilized.

5.2 Tests of the AI-Based HAR Estimation Algorithm 102

2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.5

0

x
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

y
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

z
 [
°/

s
]

Figure 5.2. HAR components errors trends for the 5 °/s (blue), 7 °/s (orange), 10 °/s
(yellow), 13 °/s (purple) and 15 °/s (green) cases and no added noise sources.

2 3 4 5 6 7 8 9 10

Time [s]

0

1

2

3

 [
°]

2 3 4 5 6 7 8 9 10

Time [s]

2

4

6

8

10

n
o

rm
%

 [
%

]

Figure 5.3. HAR components angle and norm deviation trends for the 5 °/s (blue), 7 °/s
(orange), 10 °/s (yellow), 13 °/s (purple) and 15 °/s (green) cases and no added noise
sources.

5.2 Tests of the AI-Based HAR Estimation Algorithm 103

Table 5.3. HAR components errors mean values and standard deviations for the 5, 7, 10, 13
and 15 °/s cases with mixed Out of Plane, In Plane motions and no added noise source.

|ω⃗ref | ∆ωx ∆ωy ∆ωz σ∆ωx σ∆ωy σ∆ωz

5 °/s −0.16°/s −0.045°/s −0.042°/s 0.0088°/s 0.00093°/s 0.00077°/s
7 °/s −0.28°/s −0.091°/s −0.075°/s 0.0092°/s 0.0011°/s 0.00058°/s
10 °/s −0.23°/s −0.17°/s −0.20°/s 0.027°/s 0.0031°/s 0.0036°/s
13 °/s −0.90°/s −0.44°/s −0.46°/s 0.013°/s 0.0091°/s 0.013°/s
15 °/s −1.10°/s −0.52°/s −0.43°/s 0.16°/s 0.025°/s 0.029°/s

Table 5.4. HAR deviation estimates at 10 seconds for the 5, 7, 10, 13 and 15 °/s cases
with mixed Out of Plane, In Plane motions and no added noise source.

|ω⃗ref | [°/s] ∆α [°] ∆norm% [%]
5 0.98 2.69
7 1.26 3.54
10 0.18 3.39
13 1.71 7.77
15 3.01 9.37

2 3 4 5 6 7 8 9 10

Time [s]

0

5

10

15

20

25

30

35

40

45

50

N
O

B
J

Figure 5.4. Number of stars history for the 5 °/s (blue), 7 °/s (orange), 10 °/s (yellow), 13
°/s (purple) and 15 °/s (green) cases and no added noise sources.

5.2 Tests of the AI-Based HAR Estimation Algorithm 104

Results show good values for error components, angle deviations and norm
deviations for relatively low angular rates, where the measurements are more accurate
and improve with observation time. For higher rates, the measurements are less
accurate and quickly degrade, mainly because of the decrease in the number of tracked
stars. Table 5.3 confirms this trend because it shows the increase of the mean error
components and their standard deviations with the angular speed increase (mean
values and standard deviation measured on HAR estimates in the last 3 seconds of
observation interval). This behaviour is the same for norm deviation and is due to
the decrease in number of stars too. Actually, stars’ apparent magnitude decreases
with the angular rate increase (less stars photons reach the sensor’s detector). Thus,
the weaker star signal intensity causes both less detected stars and a higher degree
of fragmentation for the star streaks in the image masks with a worse centroids
estimation process (decrease of the SNR, worse BBs positioning by YOLO).

The error components trends, generally show small values if compared to the
reference angular rate (both at low and high rates). They start with sensible
fluctuation in values, during first seconds of simulation, and then they stabilize
around steady values with reduced fluctuation entities. This fluctuation decrease is
due to the growth of available information to be processed with the increasing of
time which stabilize the estimate value. The steady state values are affected by all
the uncertain information the algorithm collects since the beginning. This uncertain
information can come from: close stars (a couple detected as one star), missing
stars for several consecutive frames and background noise (the above mentioned
apparent magnitude decrease effects). Angle deviation instead, is affected not only by
centroids estimates errors but even by the stars distribution in the FOV and thus it
depends by the initial attitude and its particular evolution (stars history). This leads
to a non linear behaviour of the deviation angle with the angular speed value trend.
It can be seen by Figure 5.4 that worst HAR predictions are associated to the lower
number of stars. This is a behaviour that is confirmed by further tests. However,
the angular rate estimation goodness is confirmed and can be more appreciated by
having a look to the angle deviation and norm deviation trends. These always show
an angle deviation below 4-5 °, while the norm deviation is always smaller than
10 %. These values are acceptable enough for the recovery of a spacecraft which
experienced an anomaly and entered in SAFE mode.

5.2.2 Test for HAR Estimation at |ω⃗ref | = 5, 7, 10, 13, 15 °/s with
Noise Sources

The only difference in this case is the presence of noise which confuses more the
algorithm in detecting and tracking the streaks. Stray-light obscures the weak signal
of moving stars while hot pixels have a high value of "virtual" energy and could
obscure the streaks for the U-Net based segmentation algorithm (worse mask quality
for streaks detection). This is a more challenging scenario whose noise sources and
entities are:

• Shot Noise: Poisson probability model and proportional to square root of the
detected signal;

• RON: Normal distribution with mean 0 e− and standard deviation of 82 e−;

5.2 Tests of the AI-Based HAR Estimation Algorithm 105

• DC: Constant value of 550 e−
px×sec ;

• DSNU: Normal distribution with 1 mean value and a standard deviation of
0.065;

• PRNU: Normal distribution with 1 mean value and a standard deviation of
0.01;

• Stray-light: 30000 e−
sec .

These levels are comparable to the commercial STs even if the stray-light level
used is too aggressive. The aim of these tests is to verify the robustness of the
AI-based algorithm for different HAR directions in a wide angular speed range. In
the following pages I first analyze the case with mixed In Plane (IP) and Out of
Plane (OoP) rotation components, then a full IP rotation and in the end purely
OoP rotations cases.

Test with Mixed Out of Plane and In Plane Motions

In this test the HAR’s PRF direction is still:

ω̂ = 1√
3

·

1
1
1

 (5.12)

Thus, the star rotations have both IP and OoP components. They appear as
diagonal streaks which cross the FOV 5.5. Now the noise confuses more the image
segmentation algorithm by obscuring the streaks (less detected and tracked streaks).
Results are summarized in Figures 5.6, 5.7 and Tables 5.5, 5.6.

Table 5.5. HAR components errors mean values and standard deviations for the 5, 7, 10,
13 and 15 °/s cases with mixed Out of Plane and In Plane motions and added sensor
noise sources.

|ω⃗ref | ∆ωx ∆ωy ∆ωz σ∆ωx σ∆ωy σ∆ωz

5 °/s −0.12°/s −0.061°/s −0.085°/s 0.013°/s 0.0011°/s 0.0020°/s
7 °/s −0.21°/s −0.13°/s −0.13°/s 0.068°/s 0.0083°/s 0.0068°/s
10 °/s −0.24°/s −0.30°/s −0.30°/s 0.051°/s 0.028°/s 0.026°/s
13 °/s 0.53°/s −0.43°/s −0.46°/s 0.30°/s 0.017°/s 0.027°/s
15 °/s −0.35°/s −0.76°/s −0.74°/s 0.19°/s 0.032°/s 0.030°/s

Looking at Figures 5.6, 5.7 the off-bore-sight errors have a less fluctuating
behaviour with respect to the first one (bore-sight), which is generally the most
critical component to evaluate by using STs. The error components mean value
increases with the angular speed increase which is due to the more fragmented
nature of streaks (bad centroids accuracy). In Table 5.5 it is possible to verify the
increase of error components with the reference angular speed increases and the
bigger oscillation in the bore-sight component for the last two cases (higher values of
σ∆ωx w.r.t. σ∆ωy and σ∆ωz). In Table 5.6 the angle deviations are really contained as
for the norm deviations. The only ambiguous value interests the 13 °/s case: a high

5.2 Tests of the AI-Based HAR Estimation Algorithm 106

Figure 5.5. IP and OoP stars motion for the HAR case of 5 °/s: Segmented Mask (Top).
Detection algorithm outputs (Bottom).

5.2 Tests of the AI-Based HAR Estimation Algorithm 107

Table 5.6. HAR deviation estimates at 10 seconds for the 5, 7, 10, 13 and 15 °/s cases
with mixed Out of Plane and In Plane motions and added sensor noise sources.

|ω⃗ref | [°/s] ∆α [°] ∆norm% [%]
5 0.58 3.14
7 0.24 3.03
10 0.70 4.84
13 2.00 3.41
15 0.93 7.13

2 3 4 5 6 7 8 9 10

Time [s]

-1

0

1

x
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.5

0

y
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.5

0

z
 [
°/

s
]

Figure 5.6. HAR components errors trend for the 5 °/s (blue) , 7°/s (orange), 10 °/s
(yellow), 13 °/s (purple), 15 °/s (green) cases and angular rate direction parallel to [1,1,1]
with added sensor noise sources.

5.2 Tests of the AI-Based HAR Estimation Algorithm 108

2 3 4 5 6 7 8 9 10

Time [s]

0

2

4

6

 [
°]

2 3 4 5 6 7 8 9 10

Time [s]

0

5

10

n
o

rm
%

 [
%

]

Figure 5.7. HAR angle and norm deviations trend for the 5 °/s (blue) , 7°/s (orange), 10
°/s (yellow), 13 °/s (purple), 15 °/s (green) cases and angular rate direction parallel to
[1,1,1] added sensor noise sources.

angle deviation if compared to the other angular speed levels. This is associated with
the not negligible fluctuating behaviour shown by the error components discussed
before.

Investigations for the 13 °/s case occurred and trends of the number of tracked
stars are closely correlated with the error components evolution. Actually, frames
where the number of stars is higher and almost constant show lower errors and better
final predictions. While in 13 °/s case the higher value of the speed and the random
initial attitude brings to a bad number of star history which is characterized by an
initial number of few stars (nOBJ ≤ 3/4). Then a 1 second time interval with no
tracked stars, 1 second with a single tracked star followed by another 1 second with
no stars. This initial bad star history makes the error estimate to be high and to
grow during the time. The prediction improves in the last seconds (nOBJ ≃ 8 − 9):
however, the final results is affected by the whole "bad history" in terms of tracked
stars because information are processed in a batch fashion. Trend of first error
component for 5 °/s and 13 °/s cases are compared with the respective number
tracked objects histories to prove what has been just discussed (Figure 5.9).

The random initial attitude is something that, combined with the angular
speed and direction, influences the number of star history (and thus the final HAR
prediction). This is something on which there is no control. However, this algorithm
can be run several times in real missions to mitigate the initial attitude effect and
overcoming this issue (every time the ST sees a different portion of sky, a different
number of tracked objects histories occur).

5.2 Tests of the AI-Based HAR Estimation Algorithm 109

2 3 4 5 6 7 8 9 10

Time [s]

0

1

2

3

4

5

6

7

8

9

N
O

B
J

Figure 5.8. Number of stars history for the 5 °/s (blue), 7 °/s (orange), 10 °/s (yellow),
13 °/s (purple) and 15 °/s (green) cases. Direction parallel to [1,1,1] and added noise
sources.

2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

x
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

0

5

10

N
O

B
J

Figure 5.9. HAR bore-sight component errors trend for the 5 °/s (blue) and 13 °/s (orange)
cases (top). Number of tracked stars trend (bottom). Results are related to angular rate
direction parallel to [1,1,1] with added sensor noise sources.

5.2 Tests of the AI-Based HAR Estimation Algorithm 110

Another aspect to consider with this particular angular rate direction is the effect
of the noise. Results in Figures 5.6, 5.7, 5.8 and Tables 5.5, 5.6 can be compared
with the noise-less test (Figures 5.2, 5.3, 5.4 and Tables 5.3, 5.4). This comparison
shows:

1. The number of tracked stars has decreased a lot if compared with the noise-less
case;

2. Greater error component values and variances for the noise sources test w.r.t.
the noise-less case;

3. A norm error which is comparable at lower angular rates.

The second statement is not true for the bore-sight error component of the
angular rate estimate. This is due to the really high number of tracked stars in
the noise-less scenarios which introduces too much centroids errors at high speeds
causing a reduction of the angular rate bore-sight component prediction. Actually,
in the cases with a huge number of star density, the YOLO can detect close stars
within the same box. This leads to a centroid estimation error. These wrong cases
are frequently in noise-less scenarios and causes a reduction in angular rate estimate
accuracy if compared with a noisy images sequence (further improvements in YOLO
predictions will occur but here the algorithm design is at a preliminary level). The
third is not true at the 13 °/s and 15 °/s because of the bore-sight component
behaviour.

In the end, noise and high speeds cause less tracked stars and worse centroids
estimation errors which affect the angular rate prediction in different ways:

• When the tracked stars decrease or are very low (≤ 5), the angular rate
estimate gets worse;

• When the number of stars is really high, the introduced centroids errors can
cause a worse estimate of the angular rate direction and intensity.

High angular speed effect cannot be eliminated, initial attitude is something on
which no control is possible, number of star history depends from the previous effects.
The only way to push the HAR prediction beyond these errors is improving the
centroids estimates and using a more sensible sensor to detect objects in very HAR
scenarios.

The angular rate prediction is affected by the these effects. Some mitigation
actions can be actuated:

• Sensor resolution can be increased while maintaining the same optics;

• Fragmented streak shape reconstruction module may be applied to retrieve a
close-original shape (not investigated yet);

• Improving the U-Net capabilities in streaks segmentation could avoid the need
of a streak shape reconstruction module after segmentation (not investigated
yet).

These actions would increase the angular rate estimates accuracy even in presence
of a high and low number of stars (better input data quality).

5.2 Tests of the AI-Based HAR Estimation Algorithm 111

Test with Full In Plane Stars Motions

In this test the HAR’s PRF direction is:

ω̂ =

1
0
0

 (5.13)

Thus, the star rotations will have just IP components. All of the stars will rotate
around the image plane center describing concentric circles with uniform speed.
Stars close to the image center will have a tangential velocity of low intensity while
the outer stars will have a higher velocity. Because of fixed exposure time working,
the inner stars will result as point like objects while the outer will show up as streaks.
This will be more evident as the angular speed increases.

Table 5.7. HAR components errors mean values and standard deviations for the 5, 7, 10,
13 and 15 °/s cases with full IP stars motion with added noise sources.

|ω⃗ref | ∆ωx ∆ωy ∆ωz σ∆ωx σ∆ωy σ∆ωz

5 °/s −°/s −°/s −°/s −°/s −°/s −°/s
7 °/s −°/s −°/s −°/s −°/s −°/s −°/s
10 °/s −0.71°/s 0.064°/s 0.085°/s 0.098°/s 0.027°/s 0.0076°/s
13 °/s −0.22°/s 0.025°/s 0.016°/s 0.031°/s 0.0042°/s 0.0037°/s
15 °/s −0.15°/s 0.0025°/s 0.011°/s 0.013°/s 0.0035°/s 0.0017°/s

Table 5.8. HAR deviation estimates at 10 seconds for the 5, 7, 10, 13 and 15 °/s cases
with full IP motions and added sensor noise sources.

|ω⃗ref | [°/s] ∆α [°] ∆norm% [%]
5 − −
7 − −
10 0.67 7.66
13 0.15 1.56
15 0.049 1.14

By Figures 5.10, 5.11, 5.12 and Tables 5.7, 5.8 it can be noticed that no results
for the first two angular speeds are obtained. This is due to the detection module
characteristic of detecting just streaks and not point-like objects. The combination
of exposure times and angular speed under 10 °/s does not let the network to detect
streaks. Stars are point-like and the YOLOv4 model is not trained to detect points.
This issue can be easily overcome by coupling this AI-based streaks detection module
with a classical point-like detection algorithm(not investigated yet). For higher
angular speed values the algorithm behaves well, giving good predictions both in
direction and norm. Even here, the low number of detected stars and long intervals
with no tracked stars brings error components to start with high values which
decrease in the end due to a greater amount of collected centroids. In particular in
Figure 5.10 the highest error components occur for the 10 °/s case where the number
of tracker stars is really few due to the lower angular speed (few stars detected in

5.2 Tests of the AI-Based HAR Estimation Algorithm 112

2 3 4 5 6 7 8 9 10

Time [s]

-1

0

1

x
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-0.2

0

0.2

y
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-0.2

0

0.2

z
 [
°/

s
]

Figure 5.10. HAR components errors trend for the 5 °/s (absent) , 7°/s (absent), 10 °/s
(blue), 13 °/s (orange), 15 °/s (yellow) cases and angular rate direction parallel to [1,0,0]
with noise sources.

2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

1.5

2

 [
°]

2 3 4 5 6 7 8 9 10

Time [s]

0

2

4

6

8

n
o

rm
%

 [
%

]

Figure 5.11. HAR angle and norm deviations trend for the 5 °/s (absent) , 7°/s (absent),
10 °/s (blue), 13 °/s (orange), 15 °/s (yellow) cases and angular rate direction parallel to
[1,0,0] with noise sources.

5.2 Tests of the AI-Based HAR Estimation Algorithm 113

2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

N
O

B
J

Figure 5.12. Number of stars history for the 5 °/s (absent) , 7°/s (absent), 10 °/s (blue),
13 °/s (orange), 15 °/s (yellow) cases with noise and angular rate direction parallel to
[1,0,0].

the outer FOV region). As the speed increase, the streak-like objects increase, the
tracked stars increase and the prediction error rapidly improves.

Test with Full Out of Plane Motions (Vertical Streaks)

In this test the HAR’s PRF direction is:

ω̂ =

0
1
0

 (5.14)

Thus, the star rotations will have just OoP component. All of the stars will appear
as vertical streaks while moving in the FOV.

Table 5.9. HAR components errors mean values and standard deviations for the 5, 7, 10,
13 and 15 °/s cases with full OoP stars motion and stars as vertical streaks.

|ω⃗ref | ∆ωx ∆ωy ∆ωz σ∆ωx σ∆ωy σ∆ωz

5 °/s 0.057°/s −0.11°/s −0.012°/s 0.041°/s 0.0092°/s 0.0040°/s
7 °/s 0.095°/s −0.39°/s 0.0015°/s 0.22°/s 0.035°/s 0.0040°/s
10 °/s −0.41°/s −0.44°/s −0.031°/s 0.57°/s 0.11°/s 0.042°/s
13 °/s −1.31°/s −0.92°/s −0.054°/s 0.89°/s 0.082°/s 0.052°/s
15 °/s 0.38°/s −4.42°/s −0.018°/s 0.67°/s 5.81°/s 0.055°/s

5.2 Tests of the AI-Based HAR Estimation Algorithm 114

Table 5.10. HAR deviation estimates at 10 seconds for the 5, 7, 10, 13 and 15 °/s cases
with full OoP stars motion and stars as vertical streaks.

|ω⃗ref | [°/s] ∆α [°] ∆norm% [%]
5 0.30 2.48
7 1.12 6.08
10 0.41 3.77
13 5.71 6.79
15 0.69 8.40

2 3 4 5 6 7 8 9 10

Time [s]

-1

0

1

x
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-2

-1

0

y
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-0.1

0

0.1

z
 [
°/

s
]

Figure 5.13. HAR components errors trend for the 5 °/s (blue) , 7°/s (orange), 10 °/s
(yellow), 13 °/s (purple), 15 °/s (green) cases and angular rate direction parallel to [0,1,0]
with added noise sources.

5.2 Tests of the AI-Based HAR Estimation Algorithm 115

2 3 4 5 6 7 8 9 10

Time [s]

0

5

10

 [
°]

2 3 4 5 6 7 8 9 10

Time [s]

0

5

10

n
o

rm
%

 [
%

]

Figure 5.14. HAR angle and norm deviations trend for the 5 °/s (blue) , 7°/s (orange), 10
°/s (yellow), 13 °/s (purple), 15 °/s (green) cases and angular rate direction parallel to
[0,1,0] with added noise sources.

2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

N
O

B
J

Figure 5.15. Number of stars history for the 5 °/s (blue), 7 °/s (orange), 10 °/s (yellow),
13 °/s (purple) and 15 °/s (green) cases and added noise sources ([0,1,0] angular rate
direction).

5.3 Test with RSOs in HAR Conditions 116

From Figures 5.13, 5.14, 5.15 and Tables 5.9, 5.10 it is possible to see the HAR
prediction degradation with the increase of the angular speed. In particular in
the latest case the deeply bad star history cause a huge error in the HAR norm
prediction.

Test with Full Out of Plane Motions (Horizontal Streaks)

In this test the HAR’s PRF direction is:

ω̂ =

0
0
1

 (5.15)

Thus, the star rotations will have just OoP component. All of the stars will appear
as horizontal streaks while moving in the FOV.

Table 5.11. HAR components errors mean values and standard deviations for the 5, 7, 10,
13 and 15 °/s cases with full OoP stars motion and stars as horizontal streaks.

|ω⃗ref | ∆ωx ∆ωy ∆ωz σ∆ωx σ∆ωy σ∆ωz

5 °/s 0.37°/s −0.012°/s −0.051°/s 0.031°/s 0.0023°/s 0.0074°/s
7 °/s −0.079°/s 0.0082°/s −0.22°/s 0.098°/s 0.0045°/s 0.011°/s
10 °/s −0.19°/s −0.017°/s −0.25°/s 0.19°/s 0.013°/s 0.045°/s
13 °/s −0.60°/s 0.0055°/s −0.32°/s 0.076°/s 0.0041°/s 0.027°/s
15 °/s −0.28°/s 0.019°/s −0.53°/s 0.14°/s 0.0032°/s 0.023°/s

Table 5.12. HAR deviation estimates at 10 seconds for the 5, 7, 10, 13 and 15 °/s cases
with full full OoP stars motion and stars as horizontal streaks.

|ω⃗ref | [°/s] ∆α [°] ∆norm% [%]
5 3.81 0.96
7 0.85 3.14
10 0.84 2.61
13 2.57 2.51
15 1.20 3.34

From Figures 5.16, 5.17, 5.18 and Tables 5.11, 5.12 it is possible to see the HAR
prediction degradation with the increase of the angular speed. Now, predictions are
better than the vertical streaks tests. Having a look to the number of stars history
(Figure 5.18) it is possible to understand that this is due to a higher number of
tracked stars. The improvement in the prediction is possible thanks to the particular
sensor (rectangular with a wider HFOF than VFOV) which leads to the higher
residence time of the streaks in the FOV.

5.3 Test with RSOs in HAR Conditions
What if now there is a rotating sensor which experience a RSO’s passage? How can
it resolve the RSOs from the coherent rotational star motion? As a professor of

5.3 Test with RSOs in HAR Conditions 117

2 3 4 5 6 7 8 9 10

Time [s]

-2

0

2

x
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-0.1

0

0.1

y
 [
°/

s
]

2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.5

0

z
 [
°/

s
]

Figure 5.16. HAR components errors trend for the 5 °/s (blue) , 7°/s (orange), 10 °/s
(yellow), 13 °/s (purple), 15 °/s (green) cases and angular rate direction parallel to [0,0,1]
with added noise sources.

2 3 4 5 6 7 8 9 10

Time [s]

0

2

4

6

8

 [
°]

2 3 4 5 6 7 8 9 10

Time [s]

0

2

4

6

n
o

rm
%

 [
%

]

Figure 5.17. HAR angle and norm deviations trend for the 5 °/s (blue) , 7°/s (orange), 10
°/s (yellow), 13 °/s (purple), 15 °/s (green) cases and angular rate direction parallel to
[0,0,1] with added noise sources.

5.3 Test with RSOs in HAR Conditions 118

2 3 4 5 6 7 8 9 10

Time [s]

0

1

2

3

4

5

6

7

8

N
O

B
J

Figure 5.18. Number of stars history for the 5 °/s (blue), 7 °/s (orange), 10 °/s (yellow),
13 °/s (purple) and 15 °/s (green) cases and added noise sources ([0,0,1] angular rate
direction).

mine said, everything is contained in the phenomenon equations and through them
I achieved the goal. The simulated scenario sees the sensor of Table 5.1 and the
algorithm configuration of Table 5.2 working in a 10 second sequence with 100 ms of
exposure time. The angular rate module is 5 °/s with a direction parallel to [1,1,1].
The pause time between an image acquisition and the following one is kept equal
to 0 ms without any distancing from reality. For this tests no noise was applied to
focus on the RSOs resolving criterion feasibility analysis and validation.

Figure 5.19 shows a merging of first 6 images of the sequence. The simulated
RSO is clearly visible and is in the FOV since the first frame untill frame 6.

The algorithm is capable of both tracking the star motions and the RSO. Once the
implemented resolving strategy is applied, the HAR estimates and RSOs centroids
evolution can be retrieved. They are reported in Tables 5.13 and 5.14. The estimate
final angle and norm deviations are: ∆α = 0.72 ° and ∆norm% = 4.22 %.

Table 5.13. HAR components errors mean values and standard deviations for RSO-Stars
scenario.

|ω⃗ref | ∆ωx ∆ωy ∆ωz σ∆ωx σ∆ωy σ∆ωz

5 °/s 0.075 °/s 0.14 °/s 0.16 °/s 0.0041 °/s 0.00048 °/s 0.00075 °/s

5.3 Test with RSOs in HAR Conditions 119

Figure 5.19. RSO’s passage with the rotating sensor. Partial merging of the 10 seconds
sequence.

Table 5.14. RSO’s centroids evolution.

Frame 1 2 3 4 5 6
XRSO [px] 491.72 510.42 530.15 548.94 568.71 591.05
YRSO [px] 385.88 432.02 479.07 523.12 568.33 616.74

Figure 5.20. Star unit vector time evolution in HAR presence.

5.3 Test with RSOs in HAR Conditions 120

5.3.1 RSOs-Star Resolving Method
As said before, the solution is contained in the phenomenon equations. For a star in
the rotating sensor’s FOV, the star unit vector will obey to the kinematics constraint
Equation 5.1. Thus, under the knowledge of the HAR estimate and unit vector
evolution is then possible to evaluate the module of the Left Hand Side (LHS) and
Right Hand Side (RHS). The sinus computation of the costant angle between the
star unit vector and the angular velocity is then straightforward (Figure 5.20):∣∣∣ d

dt
b̂i

∣∣∣ = ω · |sin(θi)| (5.16)

From the star unit vector and angular velocity scalar product is then possible to
retrieve the cosinus of the θi angle:

|ω⃗ · b̂i| = ω · |cos(θi)| (5.17)

In the end, the following equation needs to be satisfied for each star object:

|sin(θi)|2 + |cos(θi)|2 = 1 (5.18)

If now a RSO is considered, its centroids evolution will not satisfy the Equation
5.16 because the RSO motion is not compatible with a rigid rotational motion having
that sensor ω⃗. Thus, by evaluating sinus and cosinus with equations 5.16 and 5.17
for a RSO, the goniometry identity (Equation 5.18) will not be satisfied anymore.

These considerations have lead me to define the following "RSO" metric:

fi = ||sin(θi)|2 + |cos(θi)|2 − 1| (5.19)

Where: {
fi = 0 for moving stars

fi ̸= 0 for RSOs
(5.20)

This way it is possible to resolve RSOs from stars. At each time, with the HAR
estimate, the f-index for each object can be evaluated. Due to centroids estimate
errors the f-index will be really close to 0 for star-like tracked objects while it will
be high enough for RSOs. By evaluating the mean f-index value for each object over
the 10 seconds period, a distribution of f-indices is obtained. This distribution will
have a mean value Mf and a standard deviation σf :

Mf =

N∑
i=1

fi

N

σf =

√√√√ N∑
i=1

(fi−Mf)2

N−1

(5.21)

If fi ≥ Mf + 3 · σf , then the i-th object will be classified as RSO. Otherwise it
will be considered as a star.

In Figure 5.21, the f-indices trend is shown together with the threshold and the
resolved RSO for the described test. Two star-like objects have a slightly higher f

5.3 Test with RSOs in HAR Conditions 121

Figure 5.21. f-indices trends over the 10 sec time interval with the threshold. The unique
RSO is far away from 0 and easily resolved.

5.4 Summary of Findings for the Dual-Purpose 122

value because of tracking errors which are related to the used cost function thresholds.
Anyway, the 95 % of the star-like objects is confined below the dashed red line. Thus
the probability for a star-like object to overcome the threshold is low and acceptable
for this preliminary study.

5.3.2 RSOs-Star Resolving Work-Flow
Test and results have been shown for this mixed RSO-HAR scenario and the method
to resolve RSOs from stars has been described. Here, the work-flow strategy for this
dual-purpose streaks detection and tracking algorithm is provided for HAR rotating
sensors and RSOs presence in the FOV:

1. Image is received in input;

2. Segmentation, Detection and Tracking are performed;

3. Tracking list is refined with filters;

4. HAR module is applied both using stars’ and RSOs’ information;

5. RSOs are resolved with the f-index strategy;

6. HAR estimate is produced again with only stars information.

Then the HAR info is sent to the on-board Navigation computer while the RSO
information needs for further corrections before being sent to storage memory for
being downlinked. Actually, the RSOs centroids estimates need to be corrected for
the platform HAR motion. This is something that has not been investigated in this
work yet, but it will be done in the future.

5.4 Summary of Findings for the Dual-Purpose
The dual-purpose of the AI-based streaks segmentation, detection and tracking
algorithm has been investigated. Contribution of this chapter are:

1. Extension of the AI-based chain for HAR estimate purposes;

2. Extension of an angular rate estimator based on least square approach to HAR
scenarios;

3. Extensive tests based on HFSTS images which prove satisfying HAR estimates
both in noisy conditions and with RSOs;

4. Analysis of the initial attitude and angular rate effects on the number of
tracked stars;

5. Analysis of performances degradation and correlation with the preliminary
AI-based algorithm limits;

6. Provision of a Kinematics-based strategy for resolving RSOs and stars;

7. Realization of a starting point algorithm for AI-based Star Sensors.

5.4 Summary of Findings for the Dual-Purpose 123

About performances degradation, the random initial attitude and actual angular
speed effects can’t be controlled. From an algorithm limits point of view there are
some roads to explore in order to overcome these limits:

• Streaks’ centroids estimates errors: A streak shape reconstruction module
could be investigated to improve the accuracy in centroids estimate;

• Streaks Tracking errors: These are related to the used threshold for the tracking
cost function, which can lead to the uncorrect tracking of clear and close streaks
having similar orientation and motion. Different tracking strategies could be
investigated;

• Undetected Point-like moving stars: A point detection and tracking module
can be implemented to track stars when the camera integration time is not
high enough to appreciate the stars’ streaks. YOLO-v4 could be trained in a
two class problem (points and streaks) or a classical point-detection algorithm
can be used in parallel with the YOLO to get point-like stars information
and fuse the outputs together. This way the ideal range of operations of
the angular rate estimator could be extended in the [0°/s ; 15°/s] range due
to the capability in point-like objects tracking and the following amount of
information for angular rate estimations.

About RSOs’ centroids estimates correction for HAR effects, this is something
that it will be investigated in my future research activity.

In the end, tests have shown that this preliminary concept of the dual purpose
algorithm, is capable of providing an estimate with a deviation angle and norm less
than 10° and 10 % respectively. Despite they do not come from a Monte Carlo
simulation (this work is being investigated at the moment), these errors are suitable
for a first rough estimation of the HAR in case of spacecraft in SAFE mode. They
can be used to consecutively slow down the spacecraft at acceptable rates through
a succession of finite maneuvers. Then, at a lower angular rates, it is possible to
retrieve more accurate estimates to perform ordinary maneuvers and the complete
recovery of the spacecraft by the mission control center operators.

124

Chapter 6

Design and Development of a
Dual-Purpose AI-based
Autonomous Star Sensor for
Attitude Navigation and Space
Surveillance: TRIDAENT

The idea of a dual-purpose on-board payload for attitude and SST purposes is not
something so far anymore. Trend in the next future of space missions is not just
having platforms that achieve the mission goals but using them as space debris
sentries too. This is needed both for the platform own safety and for the safety
of all the other active missions in the near Earth space segment. STs have proven
to be the suitable candidates for such tasks. Several studies and applications were
performed and my PhD activity shows that this is possible even with the latest
software technologies such the AI. What I achieved is a starting point to develop
and design the next generation of dual-purpose STs. Actually, through an efficient
extraction of complex information from the ST’s image I proved that it is possible
to track both RSOs and stars, it is possible to resolve them and use this information
for SST and SN tasks. This brought me to the idea of designing a dual-purpose ST
which implements the presented AI-based algorithm: TRacking IDentification and
Angular rate Estimation NeTwork star tracker (TRIDAENT).

TRIDAENT couples the developed algorithms with classical routines for what
concerns LISA and attitude estimation processes, combining the AI capabilities in
image filtering with long heritage flight proven routines.

Results of the above mentioned design will be a ST which provides real time
information of platform attitude, angular rate and RSOs with the orbit navigation
information because it will be integrated with a Global Positioning System (GPS)
sensor. This way, RSOs time evolution data will be coupled with platform navigation
data to perform RSOs catalogue update through ground based orbit determination
nowadays (on-board based in the next future who knows?).

6.1 TRIDAENT Design 125

6.1 TRIDAENT Design
The basic hypothesis to build this product is having a module capable of providing
in real time:

• Stars’ centroids evolution;

• RSOs’ centroids evoultion.

With stars information, the LISA and attitude determination routines can be
performed while the RSOs will be stored to be down-linked to the Earth. Thus,
the goal is to filter and track stars and RSOs in an image while removing the
noise. A top-down approach will be followed to identify requirements and low level
architecture for dual-purpose product. This is required to achieve the TRIDAENTs’
capability in identifying and tracking both points and streaks. In the end, a suitable
method to classify RSOs and stars will be required. Thus, the work-flow is:

1. Developing a points and streaks detector and tracker module;

2. Developing a method to classify stars and RSOs from initial points/streaks
data;

3. Including the LISA and attitude determination algorithms in the process chain.

After having achieved these steps, the Software (SW) core of TRIDAENT is
completed. Its high level HardWare (HW)/SW architecture is presented in Figure
6.1:

Figure 6.1. TRIDAENT high level HW/SW architecture.

6.1 TRIDAENT Design 126

The Input image data is provided from the optical camera which is synchronized
with GPS through time information provision. The camera works at fixed exposure
time and cycle (typically at 1 Hz, 2 Hz, 5 Hz up to 10 Hz). The Input image is
segmented and objects (point/streaks) are detected. Then each object is tracked
(Points/Streaks Detector and Tracker) and their time evolution is used by the Stars
and RSOs classifier to solve stars and RSOs. This module can work both if a priori
attitude information (quaternion q⃗(t) , ω⃗(t)) is available or not. The classifier sends
RSOs information to the TRIDAENT memory storage while the stars time evolution
is sent to the attitude determination module (or to LISA if no attitude information
is a priori available). This high level architecture system can receive commands
from the platform and it is capable of retrieving the desired attitude and RSOs
information. Figure 6.1 shows the TRIDAENT Processing Unit (TPU) which hosts
SW and is in charge to handle data flows and to check the respect of processes
sequence.

6.1.1 Points/Streaks Detection & Tracking Module
This module is in charge of distinguishing and tracking points and streaks. A two
classes detection and tracking action can be performed by using one of the two
proposed solutions:

• a U-Net for the image segmentation process with a two classes trained YOLOv4
detector and the minimization-based tracking function;

• a two classes trained recent YOLO v7 coupled with BlendMask.

The former has been developed and analyzed for single class detection in this research
activity while the latter is based on YOLO v7 [110] and it will be investigated in
the next future due to the network’s recent publication. YOLO v7 is capable
of performing both objects detection and tracking. Moreover, if compared with
YOLOv4, the v7 reduces the number of parameters by 75%, requires 36% less
computation, and achieves 1.5% higher AP (average precision) [111]. Finally, it can
be coupled with BlendMask [112] obtaining the YOLO v7-mask [111] which could
segment the night sky images, detect and track points and streaks. The YOLO
v7-mask seems to be the next evolution of my actual research activity, by creating
ad-hoc datasets to training the BlendMask and the YOLO v7 and performing on
the field Verification & Validation tests.

6.1.2 Stars and RSOs Classifier
For mapping points and streaks into stars and RSOs, we need to take into account not
only their shape but their evolution too. Shape recognition and evolution tracking is
possible through the proposed solutions (previous section). This approach combines
the use of shapes and evolution bringing to an algorithm which retrieves stars and
RSOs.

As can be seen in Figure 6.1, this algorithm receives:

• points’ centroids evolutions (np(t));

6.1 TRIDAENT Design 127

• streaks’ centroids evolutions (ns(t));

• platform’s quaternion (q⃗(t));

• platform’s angular rate (ω⃗(t)).

The Star and RSOs Classifier needs the np(t) and ns(t) as mandatory input
data to produce some outputs. Besides the mandatory data, the auxiliary data q⃗(t)
and ω⃗(t) can simplify the RSOs and stars classification. I identified five different
input data scenarios for this module (time information t is omitted because it is
considered always available):

1. np(t), ns(t), q⃗(t) and ω⃗(t) availability;

2. np(t), ns(t) and q⃗(t) availability;

3. np(t), ns(t) and ω⃗(t) availability;

4. No data availability;

5. np(t) and ns(t) availability;

In the first scenario, both q⃗(t) and ω⃗(t) will be used to resolve stars from RSOs.
Actually, if the quaternion q⃗(t) is available then the tracked stars are known and
can be removed from the tracked objects. This quaternion filter is then followed by
the angular rate filter which uses the ω⃗(t) information to filter again the objects
whose evolution obeys to Equation 5.1. The angular rate filters takes the unit vector
evolution db̂(t)

dt , b̂(t), computes the f-metric and applies the condition 5.20. So, with
the sequential application of both quaternion and angular rate filters is then possible
to resolve stars and RSOs.

In the second scenario the quaternion filter is performed only and every object
that is not filtered out is considered a RSO. The same situation happens in the third
scenario with the angular rate filter that replace the quaternion filter, but the same
logic applies. The fourth scenario is straightforward and the algorithm will wait for
the next input data. All these cases are summarized in Figure 6.2.

The most interesting scenario is the last: no attitude information is available
and some assumptions need to be done in order to develop a classification method.
It must be pointed out that: point does not inevitably mean star and streak does
not inevitably mean RSO because stars shape varies according to the sensor attitude
evolution:

• Low angular rates: points could be stars and noise while streaks could be
RSOs and noise;

• Medium-high angular rates: points could be stars and noise while streaks could
be stars, RSOs and noise;

Noise is something which can be detected by following its irregular evolution
(single frame noise) and does not constitute a problem since it can be easily filtered
out (section 4.2.2). Below, the assumptions I did to proceed in developing the Objects
only method are described:

6.1 TRIDAENT Design 128

Figure 6.2. TRIDAENT Star and RSOs Classifier architecture.

• Low angular rates: points are stars and streaks are RSOs;

• Medium-High angular rates: "points" are stars and streaks could be both stars
and RSOs.

In order to better understand why the existence of "points" in medium-high rates
(ω ≥ 1.5 °/s), the ST exposure time must be taken into account. The exposure time
could be not enough for stars resulting in long streaks and to be classified as streaks.
Thus as "points" in this sections I mean both proper points and very short streaks
(thickness comparable to the streak length).

With these premises, at every frame several points np and streaks ns will be
available for the RSOs and stars classification through the Objects only method.

This module work-flow is shown in Figure 6.3 and aims to solve the fifth scenario.
Its input information is the time evolution of points (np(t)) and streaks(ns(t)).

If points’ centroids evolution is available, then they are assumed to be stars and a
LISA is performed to retrieve the platform attitude. In case of success, a quaternion
filter is applied and stars can be separated by RSOs among the points and streaks.
They will be provided in output together with the quaternion auxiliary information.
If LISA fails, then a check on the amount of points w.r.t. the streaks is done. If the
number of points is greater than the number of streaks (one order of magnitude)
the algorithm checks for points and streaks information in the next frame. If the
numbers of points and streaks are comparable, then streaks are assumed to be
stars and with the streaks information the HAR (section 5.1.1) is computed. With
the angular rate, the objects can be separated in stars and RSOs and the HAR
computation is performed again with only stars information untill the number of
stars and resolved RSOs does not change over the time. From here, a cycle exit
is performed and the RSOs and stars are resolved with a further computation of

6.1 TRIDAENT Design 129

Figure 6.3. TRIDAENT’s Objects only method work-flow.

HAR to produce the latest estimate of angular rate (auxiliary information). Starting
again from the beginning, if no point evolution is available, then a check on streaks
availability is performed. In case of no input data available the algorithm checks
again the incoming input information. If streaks are the only tracked objects, then
the process foresees the HAR estimation, RSOs and stars separation and HAR
estimate refinement.

To summarize this process:

• If points are available, they are assumed to be stars;

• An attitude computation is performed to solve stars and RSOs;

• If this is not successful, then streaks are considered stars, HAR computation
is performed to solve stars and RSOs;

• In case of only input streaks the direct angular rate computation is performed
to solve stars and streaks.

With this process the Object only method can provide stars’ and RSOs’ time
evolutions. Auxiliary information of quaternion and angular rate may appear among
the outputs. All this information is then separated:

• RSOs are sent to the on-board storage memory;

• Stars, a priori attitude and angular rate are sent to the LISA and Attitude
Determination, Angular rate estimation routines to perform the ordinary ST
operations (Figure 2.7).

6.2 TRIDAENT Development Planning: From Preliminary Design to IOV
Mission Proposal 130

6.1.3 LISA, Attitude and Angular Rate Determination
LISA and attitude determination routines purposes is described in Section 2.1.2
while the angular rate determination module is presented in 5.1.1. Classical LISA
and attitude determination algorithms are many and flight proven. For TRIDAENT
project it will be necessary to select one of the available methods. For LISA, famous
algorithms are: TRIAD [22], Planar Triangle algorithm [23], Multi-Poles algorithm
[24] etc... For attitude determination the QUEST [113] algorithm works fine, but
also the Singular Value Decomposition (SVD) [114] method may be applied. The
design of this module is not a critical aspect for TRIDAENT development because
the collected heritage is relevant and offers a wide panorama of tested routines.

6.2 TRIDAENT Development Planning: From Prelimi-
nary Design to IOV Mission Proposal

A preliminary idea and design for the TRIDAENT star sensor has been presented in
the previous sections. High level architecture and a deeper look to the work-flow
show the areas and actions to be performed to realize the final space product. From
my experience as Co-PI and Documentation Manager of a small satellite payload
project concerning SSA (Section 7), I can identify and write down a hypothetical
development steps list to achieve a more concrete design for TRIDAENT. Summary
of the main steps to carry on is:

• YOLOv4 Training and Test for points and streaks detection;

• YOLO v7 and Blend Mask solution development, Training and Test.

• Comparison of these solutions and Selection of the best architecture and
performance;

• Verification and Validation (V&V) for the Points/Streaks Detection & Tracking
module;

• SW implementation of the Objects only method work-flow;

• SW implementation of the full Stars and RSOs classifier;

• V&V of the Stars and RSOs Classifier

• V&V of the Points/Streaks Detection & Tracking integration with Stars and
RSOs Classifier;

• Selection of the LISA, Attitude Determination routines;

• V&V of the entire TRIDAENT SW chain;

• Optical sensors selection;

• In-the-Loop communication protocol implementation and Interfaces develop-
ment;

6.2 TRIDAENT Development Planning: From Preliminary Design to IOV
Mission Proposal 131

• V&V of the camera and implemented SW integration;

• Integration of the GPS sensor for the closed-loop final system;

• V&V of the entire HW/SW Proof of Concept: the Engineering Model (EM);

• Spatialization of the HW/SW systems;

• Thermo Vacuum, Vibration and Radiation Tests to meet European Cooperation
for Space Standardization (ECSS) expectations;

• In the loop Documentation maintenance and completion and Flight Model
(FM) realization;

• IOV mission proposal design and Call for Interest for space companies/agencies
to have the TRIDAENT product integrated on their platforms.

These steps mark the road to transform this research activity into a real space
product and space mission in the next few years. I precise that it is a hypothetical
list, because it does not take into account of the real problems that in general occur in
the development of a space project. Often these issues require some review processes,
request for changes and deviations, bringing the original linear development path to
several reiterations or evolution in something different.

IOV mission proposal
Previous results have proved that it is possible to detect, track, resolve RSOs and

stars streaks in an efficient way for RSOs and AN purposes. Moreover, the steps to
achieve a final real product have been identified.

In this section the preliminary hypothetical design of a SBSS mission orbit to
validate the TRIDAENT concept is presented.

• The purpose: Detection of RSOs populations in the LEO region through a
dual-purpose ST which offers a reliable AN support to the hosting platform.

• The orbit: RSOs spatial and mass distribution are strictly related to the
former space activities and the collisions and fragmentation of orbiting objects.
Several studies have described and modeled the debris evolution during the
years, showing that LEO is the most densely populated region around the
Earth, especially in 600-800 km altitudes with high inclinations [115]. For this
reason, the onboard SST mission would be focused on LEO debris detection
at a 600-800 km altitude range, and the orbit selection would be constrained
by the sun illumination. To guarantee the correct detection functioning, the
optical sensor (on-board camera or star sensor) cannot be oriented against the
Sun. Figure 6.4 shows possible sun-illumination conditions. In particular, d̂siti

represents the target directions, with si denoting the observer satellite and
ti one of the debris elements. Satellite s2 cannot detect target t2 because it
is backlit, while the sun illumination allows for a correct detection of target
t1 by satellite s1. Another limiting factor to be considered is the presence of
the Earth in the FOV, because of the consequent reduced FOV of the optical
sensor. To guarantee the visibility of the target by the observer, the vector

6.2 TRIDAENT Development Planning: From Preliminary Design to IOV
Mission Proposal 132

d̂siti cannot cross the Earth. Finally, to ensure the same sun-illumination
condition during the mission, the best candidate orbits for object detection
are the Sun-Synchronous Orbits (SSOs). In particular, the dawn-dusk orbits
can ensure a continuous and constant utilization of the optical sensors, while
the noon/midnight orbits are not recommended for this kind of application
due to the possibility of having eclipses. Due to all these considerations, the
preliminary selected orbit for the mission would be a circular dawn-dusk SSO
with a height of 700 km.

• The Validation Process: The satellite would be equipped with an attitude
control system (ACS) capable of orienting TRIDAENT ST’s bore-sight di-
rection in the along-track direction and anti-Sun direction to maximize the
time the RSOs spend inside the FOV. Ground commands would be sent to
the platform to schedule the pointing operation to switch between these two
targeted directions. Several input images would be stored together with the
corresponding masks and outputs for validation purposes during a test phase.
Once on the ground, the raw images would be processed and compared with
the onboard produced masks and outputs. The platform would be equipped
with an independent attitude determination module to compare the payload
outputs in terms of quaternions and angular rate estimates (from gyroscopes)
to complete the TRIDAENT validation process. Moreover, slew and high rate
maneuvers would be performed to test TRIDAENT’s angular rate estimation
capability.

Figure 6.4. Visibility conditions.

The mission concept that has been described is hypothetical and comes from my
matured experience in the above mentioned project. It may seem too much detailed
for a preliminary IOV mission concept but not so far from real missions [6] in terms
of sun-synchronous orbit selection.

133

Chapter 7

SPOT: Star sensor image
Processing for orbiting Objects
deTection

7.1 Mission Goals
This part of my final work is devoted to a parallel project I carried out during my PhD
activity. It is named SPOT and is a School of Aerospace Engineering/Italian Space
Agency project which is related to the SSA application involving STs. It is funded by
Italian Space Agency and I am the Co-PI of the on-board part of the project under
the supervision of the PI Prof. Fabio Curti at School of Aerospace Engineering
untill the end of my PhD activity. I worked in this project both as System Engineer
and Documentation Manager, leading the project through the System Requirements
Review, Preliminary Design Review and Critical Design Review. The matured
experience in this context gave me the idea to push this application towards the
AI world creating an improved version of it. Results and experiences I gained with
it were essential to search the right way to use the AI for streaks detection and
tracking in my research activity. Moreover, the achieved experience was crucial for
the preliminary idea and design of my TRIDAENT project.

The SPOT project involves me and other two young researchers of my department,
in addition to my supervisor and Italian Space Agency personnel. This project
provides an innovative space-based autonomous and versatile solution for RSOs’
optical detection via star sensors and for different Earth orbits scenarios. This system
is being designed and it is part of the IOV activity in 2024. The SPOT algorithms
involve many complex arithmetic operations, which are relatively expensive in
terms of computational latency, limiting their applicability to real-time image
processing applications. Actually, I am the Co-PI of this project: I started both as
Documentation Manager and Algorithm Designer for the on-board payload. I gained
enough knowledge with ESA’s standards to develop the project and face project
reviews as the System Requirements Review (SRR), Preliminary Design Review
(PDR) and Critical Design Review (CDR) with our customer Italian Space Agency.
My Algorithm Designer activity was about the designing choices of the algorithm
work-flow, payload budgets (storage memory, power, mass, volume), and mission

7.1 Mission Goals 134

constrains (exposure time, orbit, duty-cycle etc..). I was in charge of monitoring
the SPOT SW/HW implementation process to materialize the developed MATLAB
routines into an End-to-End system. I was in charge also of leading the night sky
acquisition campaigns to acquire enough materials for SPOT payload Verification &
Validation with real images data.

The SPOT system is essentially divided into two main units. The On-Board
SPOT and Ground SPOT.

7.1.1 On-Board SPOT Unit
Figure 7.1 shows the On-Board SPOT unit architecture. The required inputs are the
image (expressed as an M × N matrix) and the epoch (expressed, for instance, as
an integer for the J2000 date and a double for the fractional part). On-board SPOT
input are STs images, and it can work with single images or with a continuous flow.
For every single image, the Pre-processing module oversees the image segmentation
task. If the image is already segmented by ST processor this step will be avoided.
The Pre-processing module returns as output the foreground segments in the image.
These segments are then processed by Clustering module. This module takes the
foreground pixel segments belonging to the mask as input and returns the clusters.
Each cluster is characterized with its own centroid information and estimated energy
data together with extremal points information. Once that at least two consecutive
images are processed, clusters belonging to the first and second image must be
associated to track the movement of every detected signal at the image couple level.
This task is delegated to Cluster Fusion module. Its output are the fused data, i.e.,
the centroids, extremal points, and the estimated magnitudes in both images of
the tracked clusters. Then the information from the Cluster Fusion are filtered by
the Antitracking module which is in charge of removing the stars if the platform
quaternion information is known. In the end the remaining non star objects will
be tracked by the Cluster Growth module and organized for the downlink to the
ground stations.

A deeper description of each module is presented below.

Pre-Processing

The raw image from the ST is processed by the Pre-processing module. The high-
energy pixels belonging to stars’ or RSOs’ signals must be distinguished from the
low-energy pixels relative to noise. Hence, the Pre-processing module selects the
pixels whose signal-to-noise ratio is greater than a user-defined threshold and discards
the useless information. In particular, this pre-processing is called Segmentation
and it is based on a dynamic approach (in particular LTS) for the background
noise estimation consisting in the comparison of the signal of each pixel with the
average signal of its local neighborhood. Pixels are considered for further processing
when their values are greater than the background noise (BKG0) plus a threshold
(τpre). Therefore, only segment information is considered for further analysis relative
to objects’ detection. In particular, the Pre-processing outputs are the pixels’
coordinates of each detected foreground segment p = [py, pz]T and their energy
E(p), obtained subtracting the background noise to the signal intensity of the pixel.

7.1 Mission Goals 135

Figure 7.1. On-Board SPOT architecture.

Clustering

The Clustering module has to recognize all the neighboring pixels belonging to
individual objects. Usually, star sensors carry out a simple clustering algorithm
(called here as Primitive Clustering) but it is not enough when dealing with fast
objects. A "primitive cluster" is defined as groups of pixels which share at least one
corner, as shown in Figure 7.2, while single pixels are mostly related to noise or
too faint objects and they are automatically discarded and not considered for the
following analyses.

The green pixels in the figure share an edge or a corner and are associated to
the same cluster (named "Cluster1"). The same can be said for the orange pixels
("Cluster2"), while the red ones are discarded representing noise or too faint objects.

Under dynamic conditions, objects in the FOV can generate broken streaks. It
means that pixels associated to the same object can be spreaded into several small
and distinct clusters. For this reason, a suitable technique has been developed in
order to relate to the same object (star or RSO) the different primitive clusters of the

7.1 Mission Goals 136

Figure 7.2. Example of two primitive clusters and discarded single pixels.

broken streak. It is important during this operation to avoid wrong primitive clusters
agglomeration coming from noise or wrong matching between different objects. This
technique is called Improved Clustering and it is based on three filters ([116]):

• Minimum distance filter : The distance between clusters δmin is evaluated
as minimum pixel-by-pixel distance using the uniform norm and must be
lower than a user-defined threshold εdist (Figure 7.2). The minimum distance
condition is defined as:

δmin ≤ εdist (7.1)

• Increasing length filter : li = [ly,i, lz,i] is the length vector of the ith Cluster
(Ci), collecting the horizontal and vertical projections of the cluster. To merge
the clusters Ci and Cj , the merged cluster Cij must satisfy precise conditions
related to li, lj and lij ;

• Density filter : Clusters Ci and Cj can be merged only if some necessary
conditions related to their densities are satisfied. In particular, the density of
the ith cluster is defined as:

di = Ni

λi
(7.2)

where, Ni is the number of pixels of Ci and λi represents a virtual length of the
cluster. Clusters with low density values are likely to be broken into different
pieces.

At this point, some primitive clusters have been merged and the cluster centroids
are computed using the pixel coordinates p = [py, pz]T ∈ Ci throughout an energy-
weighted average:

ci =
∑

j|pj∈Ci
E(pj) · pj∑

j|pj∈Ci
E(pj) (7.3)

where E(pj) is the signal intensity of the pixel pj .

7.1 Mission Goals 137

Cluster Fusion

To compare two successive images and merge the objects which are supposed to be
the same in the two frames, the Cluster Fusion module was developed. This module
is designed to work only if two consecutive images are available, otherwise it is
skipped (Figure 7.1). It cannot be applied if a non-negligible time interval separates
the first and second image. The required operations are very similar to the ones
described for the Improved Clustering. The main difference is that the clusters Ci

and Cj which are compared belong to two different images. The minimum distance
filter and the density filter are applied. The output of the Cluster Fusion does not
contain not-merged clusters, i.e. clusters that do not appear in both the successive
images. In this way, it is possible to recognize the persistence of an object in the
frames and to allow the software to understand the direction of the moving object
in the FOV.

Antitracking

The Antitracking module is required in order to remove stars from the set of detected
objects. This module requires the current attitude quaternion, a Hipparcos Catalogue
(max magnitude 5.5) and the sensor’s characteristics to be set as input. It is an
operation very similar to the usual star tracking operation with the difference that all
the objects recognized as stars are filtered out. Antitracking removes stars according
to the following steps:

1. Evaluate image plane centroids in 3D camera frame (CRF UVs). This operation
requires sensors’ characteristics.

2. Evaluate the centroids PRF UVs in the inertial frame using the current
quaternion and MM.

3. Compare the PRF UVs in the inertial frame with catalogue stars UVs.

4. Remove centroids which report angular distances from catalogued stars smaller
than an user defined threshold. The adopted threshold depends on quaternion
accuracy.

Cluster Growth

The Cluster Growth algorithm is used to identify and track objects in the star
sensor’s FOV. This module is applied to build an on-board database of tracked
objects (stars or RSOs). Cluster Growth has to compare and analyse successive
couples of images. The goal is to track RSOs from their appearance in the FOV
until they leave it and save their positions and time instants of each couple of images.
The output of this module represents the final output of On-Board SPOT unit. The
on-board data structure is transmitted on ground for post-processing operations and
orbit determination from too short arcs.

In this framework short RSOs observations are called “Too Short Arcs” (TSAs)
observations, and they do not allow for a converge of classical Initial Orbit Determi-
nation (IOD) algorithms (Gauss, Laplace, etc.). The definition of TSAs, within this

7.1 Mission Goals 138

work, refers to those observations with a total acquisition time interval lower than:
30 seconds (Very Short Arcs), 3 minutes (Short Arcs).

At the initialization of the Cluster Growth, the merged clusters returned by the
Cluster Fusion are saved as independent objects. When a new couple of images
is analysed and the fusion operation is performed, the new merged clusters are
compared with the previous objects and if a cluster is recognized as belonging to an
already detected object, it is updated with the upcoming couples. When there is
no correspondence, after a maximum number of couples defined by the user-defined
parameter Njump, no update occurs. On the contrary, merged clusters not recognized
as belonging to previous objects lead to the creation of a new object in the on-board
database.

Figure 7.3. Cluster Growth algorithm.

The filtering operation is based on three separate steps:

• Position filter : The core of the algorithm is based on the estimation of the
centroids’ positions in the new couple of images for each tracked objects. The
distance-based criterion of the Cluster Fusion must be extended to associate
the merged clusters of the first and second couples. Indeed, the merged
clusters are not as close as in the case of the Cluster Fusion and an estimate
of the cluster position in the successive couple of images is required. Using
velocity estimations computed as a first order finite difference during the
fusion operation up to the (i − 1)th couple of images, the average velocity
v̄(i−1) is computed considering the number of available images Na. With this
information and the last saved position of the centroid, the estimation of the
centroid position c̃

(i)
1 in the first image of the ith couple is evaluated when

c
(i−1)
2 and the displacement v̄(i−1) ∆Ti−1,i are considered. The centroid search

is performed if and only if c̃ ∈ D, where D is a circular neighboring area of
the centroid estimation, called Searching Area (Figure 7.3). If one or more

7.1 Mission Goals 139

detected centroids fall inside D, they are selected as candidates for the tracked
object.

• Velocity filter : The position filter represents a first preliminary selection of
feasible candidate centroids, but more than one centroid is likely to fall inside
the searching area. The velocity filter refines the previous results by comparing
the velocity of candidate centroids with the velocity of the tracked object.
The filter considers both the direction and the magnitude of the velocities.
By defining ϕ as the angle between the two directions of motion, the objects
characterized by angles greater than a user-defined threshold ϕ∗ are discarded.

• Confirmation phase: If more than one centroid has been detected by the
previous filters, a criterion to choose the best candidate must be accounted
for. To assess which is the most reliable centroid, the estimates of the cluster
density and centroid displacements are included in a last filter based on a
minimization criterion. Actually, a function F is introduced:

F = Fdist + Fdens (7.4)

where, Fdist is related to the difference between the estimated displacement of
the centroid and the calculated displacement and Fdens is based on the object
density and it is evaluated as a normalized difference. The candidate with the
lowest value of F is chosen.

At this point, the centroids are associated to the considered object and the
on-board database is updated [7].

The On-Board system can operate in two modes:

1. Active Mode: if the quaternion information associated to the generic image is
available;

2. Passive Mode: if the quaternion information associated to the generic image is
not available.

If SPOT is operating in Active Mode, the Antitracking module is activated to
remove stars from the set of detected objects. This module requires the current
image quaternion as input.

Then, regardless of the mode, Cluster Growth module is the last module of the
chain. It takes the fused data from cluster fusion module (eventually filtered by
Antitracking), the epochs and data from the RSOs and the previously stored RSO
as inputs. In this manner it is possible to associate the detected RSOs to already
existing ones inside the FOV and keep on tracking the moving objects.

7.1.2 Ground SPOT Unit
The architecture of Ground SPOT is reported in 7.4. Several modules are linked
and cooperate:

• Ground Database Software (GDS)

7.1 Mission Goals 140

• ORbit Determination Software (ORDS)

• Objects Tracking Software (OTS)

• Conjunction Analysis Software (CAS)

The main purposes of these modules are the collection and organization of data
from On-Board SPOT into a ground database, the successive orbit determination
for the detected RSOs, the propagation and tracking of the objects’ trajectories and,
finally, the computation of the collision probability for each couple of objects in the
SPOT catalogue.

Figure 7.4. Ground SPOT architecture.

GDS

GDS is the first ground module. It has to organize the information coming from the
ground station (On-Board SPOT data and telemetry) into a database called Object
Detection Database (ODD). The input data are processed by the Data Synchronizer
sub-module. It evaluates all the available telemetry data by using spline interpolation

7.1 Mission Goals 141

at the epoch of detected RSOs. Then, the ground Antitracking module removes
stars leaving only RSOs by means of a star catalogue reduced to magnitude 6.5. The
synchronized data are then used as input by the database creator module. It collects
the data related to the same object and the corresponding values for the interpolated
telemetry data. For each detected object, RSO’s position in Earth Centered Inertial
reference frame (ECI), RSO’s magnitude, observer’s position, velocity, quaternion
and angular velocity are collected along with the corresponding epoch expressed
in Universal Time Coordinated (UTC). As explained before, the observer data are
synchronized by interpolation from the available data from the satellite operator.

ORDS

ORDS module performs the IOD for each RSO provided in the ODD. The module
is also designed to evaluate the dimension of the object. The module takes data
information from ODD as input. The output returned by this module is collected
in an internal catalogue called RIC (RSOs Identification Catalogue) needed by
OTS and CAS modules. RIC contains information relative to the Classical Orbital
Elements (COE) of the estimated orbit, along with dimension estimate for the
corresponding RSO. Since the orbiting platform and the RSO are in relative motion
between each other, the observation time may be limited (TSAs). This is a typical
case in LEO missions where the relative dynamics may be fast. Thus, to solve IOD
problem from TSAs, AI techniques are being investigated. ML (supervised learning)
and Metaheuristics algorithms are considered for their possible application to the
problem.

OTS

OTS should perform two main tasks. The first one is responsible for the SPOT
catalogue generation, in which the observed objects’ orbit estimates are correlated
and collected. Orbit-to-Catalogue (O2C) and Orbit-to-Orbit (O2O) correlations are
performed:

• O2C compares obtained COEs from ORDS with the catalogue COEs (e.g.,
NORAD);

• O2O compares and correlates orbits (COEs) from different catalogues.

The module should also provide an uncertainty estimation associated to the orbit
estimate coming from ORDS. Actually, the ORDS provides a first guess for the orbit,
then the OTS is in charge of the correlation of observations related to the same RSO
which is detected multiple times in different time intervals. The obtained longer
observation permit to improve the orbit estimate and to compute the associated
(reduced) uncertainty. This is the reason why the OTS provides the definitive orbit
estimation uncertainty. To do this, OTS uses filters (e.g., batch filter) to statistically
characterize the prediction reliability. The output structure is called SPOT catalogue
and it will contain all the elements of the Two Line Elements (TLEs) adding to
them magnitude, dimension, spinning rate (Tumbling), and the observer’s position
and velocity. The second task that needs to be accomplished by OTS is relative to
the propagation of the RSO to estimate the next useful observation, for the same

7.1 Mission Goals 142

observer or a different one, orbiting or Earth based. This sub-module is called Object
Pointing Module (OPM). This function will require the observer position and the
type (i.e., Orbiting or Earth based) as inputs. The output will be provided as the
temporal evolution of Azimuth, Elevation (or Right Ascension and Declination), and
range depending on the epoch. The output data structure is called Object Pointing
Elements (OPE).

CAS

CAS module evaluates the collision risk between a target selected by the user and an
object collected in the SPOT Catalogue. The Collision Probability (CP) estimation is
used to decide an orbital correction maneuver for the target. This module estimates
the Time of Closest Approach (TCA), the Distance of Closest Approach (DCA) and
the CP considering couples of detected objects collected in the SPOT Catalogue.
CAS is divided into two main submodules:

1. No-collision Prediction Algorithm (NPA): it is used to determine which RSOs
surely do not collide with the selected target.

2. Probability of Collision Algorithm (PCA): it permits to estimate the CP Pc of
the objects that will have a close approach with the target.

The module will perform the operations mentioned above for all the objects in
the catalogue provided by the OTS module, calculating the CP for each objects
couple. The output of this module will be the Collision Probability Table (CPT).

7.1.3 On-Board SPOT Feasibility Tests
The conducted tests are based both on the images from an observation campaign
of Italian Space Agency Matera Observatory and simulated images for testing the
On-Board SPOT system with fictitious small objects using a HFSTS.

On-Board SPOT Unit Test with Real Images

The goal was testing On-Board SPOT software using real images of the night sky
with satellites in the FOV. GEO satellites have been observed using inertial pointing
of the telescope, providing a realistic scenario in order to simulate an on-board
application of SPOT. The GEO satellites in the FOV appear as moving streaks
in consecutive images. On-Board SPOT can process the received images to detect
objects (both RSOs and stars). Only foreground pixels are considered as useful
information and merged in clusters according to some specific filters (length, distance
and density filters). Clusters of consecutive images are compared to assess which
of them belong to the same object. In this way, useless information is filtered to
reduce the amount of data that will be sent on ground.

Input Image Data Description
The analyzed images were provided to Sapienza School of Aerospace Engineering

by Italian Space Agency Matera Observatory. They have been taken with an OS
RiFast 400 telescope and processed via TheSkyX Version 10.5.0 Build 11086. The

7.1 Mission Goals 143

detector was a ProLine PL16803. Their characteristics are showed in Tables 7.1
and 7.2. Despite the moving satellites, the fixed stars pattern on the background is
showed in Figure 7.5:

Figure 7.5. Image sample from ASI Matera Observatory containing two GEO satellites.

The satellites are the two streaks moving from top to bottom in the upper part
of the image. It must be noticed that there is a sensible straylight coming from the
lower part that affects the whole image.

From the stars pattern on the background, stars identification and attitude
determination were possible. The only modification applied to the algorithm was
updating the Star catalogue up to max magnitude 11 to adapt the code to the ground
telescope observer performances. Thus, the attitude information was available for
the On-Board SPOT unit. Just five stars of the Hipparcos catalogue are within the
FOV and are showed in the following image Figure 7.6.

Identified Hipparcos Catalogue stars were the following:

1. HIP 13231 Mg 7.4;

2. HIP 13309 Mg 9.7;

3. HIP 13334 Mg 9.1;

7.1 Mission Goals 144

Table 7.1. Detector Specification.

Parameter Value
Image Size 4096 × 4096
Pixel Size 9 µm
Binning 2 × 2

Horizontal FOV 1.39°
Diagonal FOV 1.96°
Focal length 1520mm

Pointing Sidereal

Table 7.2. Image specification from .fit file.

Parameter Value
Acquisition Epoch 20 : 17 : 16.071 UTC
Acquisition Date 23/10/2020

Latitude (Acquisition Site) 40°38’ 58.04” N
Longitude (Acquisition Site) 16°42’ 12.10” E

Exposure Time 3 s
bore-sight Direction Pointing (RA) +123.921°

bore-sight Direction Pointing (DEC) +23.996°

4. HIP 13616 Mg 9.9;

5. HIP 13476 Mg 7.2.

They were used for quaternion computation via Singular Value Decomposition
(SVD) method. With this quaternion information it was possible to perform the
Antitracking module. Each centroid (x,y) that reaches this module is used to compute
the associate UV in the ECI or PRF frame v̂ECI . From this information, the scalar
product with every UVs of the Hipparcos catalogue stars v̂HIP is computed. By
knowing of this scalar product, it is possible to compare this value with a certain
tolerance.

For every Hipparcos star catalogue element a check is performed:

v̂ECI · v̂HIP > cos(tol) (7.5)

where the tolerance that is chosen is equal to tol = 1
100 θF OV (diagonal FOV).

This angle is equal to 15 pixels of the 1024 × 1024 image. Condition 7.5 is the
rationale behind the Antitracking module of SPOT to filter clusters associated to
Hipparcos stars. This operation is made for every cluster, a circle of radius equal to
to is built around each of them and if a star from the Hipparcos star catalogue is in
this searching area, it is removed.

The image coordinates (px) of the previous and removed stars were (data from
On-Board SPOT MATLAB implementation):

1. [793.3; 47.3];

2. [842.2; 398.9];

3. [525.1; 83.1];

4. [56.0; 612.4];

7.1 Mission Goals 145

Figure 7.6. Star Pattern Recognition performed on the Matera image.

5. [731.8; 955.6].

These stars were successfully removed by On-Board SPOT Antitracking module
because they are part of the Hipparcos Catalogue.

After the whole system run, On-Board SPOT MATLAB implementation was able
to track satellites and not removed stars. They are shown in the .txt file screenshot
in Figure 7.8.

The previous stars image coordinates are referred to the real objects inside
the FOV and to a star of another catalogue (GAIA, not used by STs generally).
Observer’s position, observer’s velocity, and angular velocity in the ECI and relative
epochs have not been included to provide a reduced and clearer presentation of the
outputs. The complete structure of these outputs is shown in Table 7.3.

Their content is composed of RSOs main data:

1. ST ID: Star Tracker ID;

2. RSO Number: Number of the Resident Space Object;

3. Image Number: Number of the Image;

7.1 Mission Goals 146

Figure 7.7. MATLAB pre-processed Image with removed stars (red) and the object
(yellow).

4. Two Extremal Points’ (EPs): EPs’ coordinates;

5. Two EPs’ Epochs expressed in Modified Julian Date (MJD): MJD format for
the epochs associated to the EPs;

6. Centroid: centroid coordinates;

7. RSO energy: Energy associated to the RSO.

Ancillary Data:

1. Observer’s quaternion: Platform quaternion;

2. Observer’s quaternion epoch expressed in MJD: Platform quaternion epoch;

3. Observer’s Position: ECI position of the platform;

4. Observer’s Position Epoch expressed in MJD: Platform’s position epoch;

5. Observer’s Velocity: ECI velocity of the platform;

7.1 Mission Goals 147

Figure 7.8. On-Board SPOT partial output format: Satellites (orange and pale blue boxes)
and star (red box).

6. Observer’s Velocity Epoch expressed in MJD: Platform’s velocity epoch;

7. Observer’s Angular Rate: Angular velocity of the platform in ECI;

8. Observer’s Angular Rate Epoch expressed in MJD: Epoch of the Angular
velocity of the platform.

What is shown in Figure 7.8 is the format of the On-Board SPOT outputs related
to the two GEO satellites (NRSO= 115 and 121) and a fixed cluster inside the FOV
(NRSO= 130). It can be seen from centroids pixel coordinates that for the object
130 the coordinates are stationary due to the sidereal tracking (at least the unit
digit varies due to noise). This means that object 130 has not been filtered by the
antitracking because it is not comprised in the Hipparcos catalogue. For the objects
115 and 121, image coordinates are not stationary with the image number and this
indicates their RSO nature.

Table 7.3. On-Board SPOT File format (first part above and second part below).

ST_ID_NRSO_Nimg EP1 EP2 Epochstart Epochend Centroid Energy q⃗
q⃗epoch x⃗ x⃗epoch v⃗ v⃗epoch ω⃗ ω⃗epoch

On-Board SPOT Unit Test with Simulated Images

In this test the capability of SPOT system in detecting objects of 5 cm in radius is
tested. The observer platform is a LEO circular orbit with h=400 km. The ST is
oriented towards the radial direction. Different contiguity times intervals and pause
analysis are investigated in terms of On-Board SPOT working. At initial simulation
time, 4 spherical objects of 5 cm in radius at 20 km of bore-sight distance are
initialized inside the FOV. Their orbits are chosen with respect to several constraints
among which:

• Semimajor axis ≤ 42164 km;

• Perigee height ≥ not lower than 200 km.

Two couple of images have been taken into account. They are enough to prove the
working or not of On-Board SPOT modules. Actually, because of their proximity

7.1 Mission Goals 148

with respect to the observer after few seconds of simulation every object disappears
in FOV so, the simulation of an entire orbit is unnecessary. For every object the
following data have been reported:

• True centroid position of detected clusters on the image;

• Estimated centroid position of detected clusters on the image;

• Energy of detected clusters.
In this way the correct working of Pre-processing, Clustering, Cluster Fusion and

Cluster Growth can be proved.

Figure 7.9. Time evolution of the detected objects inside the FOV.

In Figure 7.9 the time evolution of the objects within the FOV for all the
consecutive 4 images is shown. Of the initialized 4 objects just two of them are
detected. This is due to the different orbit initial conditions and not due to a
different phase angle (light illumination is the same for each of them) or particular
attitude of the object itself (they are spherical). By looking at the image, it is
possible to appreciate the nonexistent pause between consecutive images (δt = 0 ms)
within every couple and the pause between a couple of them and the following couple
(∆t = 600 ms) while the exposure time is Texp = 200 ms. The acquisition philosophy
with the roles of δt and ∆t are better explained by Figure 7.10.

7.1 Mission Goals 149

Figure 7.10. Image acquisition timing philosophy.

Table 7.4. Simulated Images test results: Energies evolution.

Image1 Image2 Image3 Image4
Energy Obj1 [e−] 1303 1418 1402 1410
Energy Obj2 [e−] 1243 1394 1410 1320

7.1.4 On-Board SPOT Hardware Implementation
This section shows the software/hardware implementation of SPOT modules on a
Zynq-7000 SoC that integrates a dual-core ARM Cortex-A9 processor associated
with an FPGA (Table 7.6). This represents a further step for this ambitious project
because a hardware implementation is needed for on-board application and for
proving real time working of the algorithm. The complexity of the SPOT algorithm
is due to a combination of ordinary image processing and unusual data elaboration
with extensive use of mathematics. This requires the selection of a space-qualified
board capable of speeding up calculations with affordable power consumption and
real-time requirements. Therefore, the Z7000-P3 Onboard Computer (OBC) was
selected based on its ability to perform heavy calculations in real-time. This OBC is
based on Zynq SoC technology and for development purposes, it was better to use a
cheaper computer with the same technology level. Actually, a development board
from the same family called ZYBO (ZYnq BOard) was selected. It is a digital circuit
development platform built around Zynq-7000 SoC that can host a whole system
design. The on-board memories, USB, SD slot, and six Pmod ports, make designing
of the final flight software SPOT up-and-ready, putting it on an easy growth path.
Figure 7.11 shows the general system configuration where ZYBO is connected both
to the camera to get the image stream and to the computer for commands and data
transmission.

The co-design approach was used for SPOT software/hardware integration: it
makes software routines and hardware work together to share the processing load.
It enables, moreover, high-speed image flow processing by increasing the execution
speed of SPOT algorithms approximately by 70 times with respect to the MATLAB
implemented solution (results are shown below).

In co-design methodology the design flow was divided across the two implemen-
tation platforms, FPGA and microprocessor with the intention of benefiting from
each of their strengths to share the processing load:

7.1 Mission Goals 150

T
ab

le
7.

5.
Si

m
ul

at
ed

Im
ag

es
te

st
re

su
lts

:
Tr

ue
(T

)
an

d
Es

tim
at

ed
(E

)
C

en
tr

oi
ds

co
m

pa
ris

on
.

I
m

a
g
e

1
I
m

a
g
e

2
I
m

a
g
e

3
I
m

a
g
e

4
C

ol
[p

x
]

R
ow

[p
x

]
C

ol
[p

x
]

R
ow

[p
x

]
C

ol
[p

x
]

R
ow

[p
x

]
C

ol
[p

x
]

R
ow

[p
x

]
T

O
bj

1
32

4.
1

58
1.

1
32

1.
1

56
3.

4
30

9.
1

49
2.

6
30

6.
1

47
4.

9
E

O
bj

1
32

4.
1

58
1.

2
32

1.
2

56
3.

6
30

9.
3

49
2.

5
30

6.
2

47
5.

0
T

O
bj

2
30

0.
7

36
1.

2
29

4.
2

36
4.

4
26

8.
2

37
7.

2
26

1.
7

38
0.

4
E

O
bj

2
30

0.
8

36
1.

2
29

4.
1

36
4.

5
26

8.
3

37
7.

3
26

1.
6

38
0.

3

7.1 Mission Goals 151

Table 7.6. ZYBO’s FPGA specification.

Features Values
Look-Up-Tables 53200

Flip-Flops 106400
Block RAM 630 kB

Figure 7.11. General System with ZYBO

• The parallelism nature of the FPGAs enables the capability to run several
processing elements in parallel. This makes possible to process the data during
few clock periods. This feature makes FPGAs suitable for numerous high-
performance applications that require intensive and high-speed computations
like image processing;

• Microprocessors perform well with managing and controlling data as well as
decision making.

In this case, the microprocessor is used as a "master" configuration unit to direct the
flow of data to the "slave" FPGA device. The "master" is called Processing System
(PS) and besides the microprocessor, it contains multiple controllers including an off-
chip memory controller to store the images and data into DDR SDRAM (Dual Data
Rate Synchronous Dynamic Random Access). The "slave" or Programmable Logic
(PL) contains not only the FPGA but also a wide range of resources: Block Random
Access Memory (BRAM) and Digital Signal Processing (DSP) blocks which are
mainly used for SPOT design. PL and PS are connected by several interfaces. The
interface that plays a key role in accelerating image and data transfer to avoid SPOT
processing overhead is named AXI (Advanced eXtensible Interface) and is shown
in Figure 7.12. AXI can work as memory-mapped or stream. AXI-Stream is used
for high data transfer to send images from PS to PL, while Memory-mapped AXI
(AXI-Lite) is used to set/read-back the configuration parameters and to send/receive
commands and flags to or from PL by reading and writing operations on the
associated memory address.

In next lines the FPGA implementation of SPOT routines will be highlighted
hiding the micro-controller programming which goes beyond the scopes of this
research activity.

7.1 Mission Goals 152

Figure 7.12. Zync Hardware Architecture.

7.1.5 FPGA
The FPGA must contain enough programmable logic blocks (Figure 7.13) for pro-
cessing and enough memory for data holding to be able to support the processing
of all SPOT units. These algorithms involve multiple layers of filters that are
relatively expensive in terms of computing latency, limiting their applicability to
real-time processing on serial processors such as Central Processing Units (CPUs).
SPOT filters are well suited for a hardware implementation on FPGAs which can
dramatically increase performance per watt in comparison to the equivalent soft-
ware implementation (e.g. MATLAB) taking the advantage of their parallelism in
application execution. This is of primary importance in order to meet the real-time
requirements needed where high-speed parallel data processing is requested. With
parallel computing, multiple processing can be executed at the same time, allowing
to run many functions at once. FPGAs contain an array of programmable logic
blocks, let their interconnection and possibility to be reprogrammed. This is needed
to implement different logic functions at any stage during and after the design
process. What has been done here is customizing FPGA resources to serve different
purposes. This involves modeling the program instructions using configurable logic
blocks to perform complex functions, or basic logics like "OR", "AND" and dedicated
multiplexers.

Implementation Approach

As shown in Figure 7.14 and Figure 7.15, the algorithms are developed and imple-
mented following the co-design methodology where the design flow is divided across
the two implementation platforms: FPGA (PL) and Microprocessor (PS).

Figure 7.15 shows the design flow of SPOT system using different software
tools. Implementing SPOT algorithms using Hardware Description Language (HDL)
requires thousands of coding lines which is impractical and time-consuming. An
alternate solution is using Xilinx System Generator coupled with MATLAB-Simulink
graphical interface. Also Vivado Design Suite software was used to synthesize,

7.1 Mission Goals 153

Figure 7.13. FPGA architecture description.

Figure 7.14. Design Strategy on ZYNQ.

7.1 Mission Goals 154

Figure 7.15. SPOT Design Flow for Zynq SoC.

implement and analyze the hardware designs. Figure 7.16 shows the SPOT design
in Vivado:

• The PL section (Figure 7.16) hosts SPOT overlay, which contains all the
modules (Figure 7.17) described previously and includes an AXI DMA (Direct
Memory Access) to provide high-bandwidth direct memory access between
PL-section and AXI-Stream off-chip memory (DDR).

• The PS section (Figure 7.16) contains a representative block to configure via a
user interface the clock frequency, the interfaces and interrupts between FPGA
and microprocessor.

Xilinx Software Development Kit (SDK) was used to develop an embedded
application on microprocessor that handles data flow within the SoC and external
devices. The SDK is the first application IDE (Integrated Development Environment)
to deliver homogenous and heterogeneous multi-processor design, debugging and
performance analysis. Additionally, the SDK contains multiple drivers (PS) to
facilitate interactions with the hardware SPOT overlay (PL) implemented in the
Vivado Design Suite environment.

SPOT Algorithms Implementation

All the SPOT modules were developed separately under the System Generator
software tool and exported as IP (Intellectual Property) cores to Vivado software. The
modules are linked together using a modular approach, which facilitates debugging

7.1 Mission Goals 155

Figure 7.16. SPOT Architecture on Vivado.

Figure 7.17. Modules of SPOT Subsystem Vivado

7.1 Mission Goals 156

and allows any modifications in the future. Programming an FPGA is a process of
customizing its resources to serve different purposes which involves modeling the
program instructions using basic configurable logic blocks, RAM blocks, DSPs, and
IP cores to perform complex functions.

To increase the efficiency and productivity of sequential codes, several ideas have
been used to take advantage of the parallel processing capabilities of the FPGA. For
instance, a parallel "for loop" has been implemented where the statements in the
loop to run in parallel on separate processors.

End-to-End Data Flow
The diagram in Figure 7.18 shows the end-to-end data flow. The image stream is

stored in the local memory of the camera to ensure a short time interval between
successive images. Immediately, as a certain number of images are received, the
memory controller inside the PS is triggered to move them from the camera to the
DDR through the Controller Area Network (CAN) bus with a data rate of 1MB/s.

Shortly afterward, the memory controller moves the images from DDR to PL
using the AXI-Stream interface that guarantees a high data transmission rate because
it does not rely on memory addressable data transfer, allowing for an unlimited data
burst size. Unlike AXI-Stream, AXI-Lite is used to grant the configurations and
remotely check the on-board system status. Due to the limited on-chip memory,
there is a constraint to work with triplets only. Hence the modules’ local memories
are updated after processing the entire triplet.

Figure 7.18. Implementation Data Flow

The raw image is transmitted in zigzag to the Pre-processing module. Within
Pre-processing there is a receiver module that acquires pixels in which the counter is
incremented by one step for each pixel received. In addition, the module contains
a processing unit to retrieve and store, in local memory, all the data necessary
for future processing. The Clustering module starts immediately, while the Pre-
processing continues to process the other two subsequent images. After processing
data from three images, they are sent in pairs to the Cluster Fusion module. For
example, the previous module sends the pair 1-2 (image-1 and image-2), followed by
pair 2-3 (image-2 and image-3). This module takes the consistent objects in the three

7.1 Mission Goals 157

images to calculate and store their centroids. Then, the object centroids values are
moved to the Antitracking module to filter out the stars and keep only the detected
RSOs. Finally, the outputs are processed through the Cluster Growth module to
keep tracking moving objects in subsequent triplets. The triplets based acquisition
philosophy differs from Figure 7.10. This is due to mission’s constraints related to
the selected ST which is developed with this acquisition philosophy. Contiguity time
and pause analysis maintain the same role but now the contiguity images in the
triplet are separated of δt while the triplets are separated of ∆t. Initially, the SPOT
implementation receives three images and process them, then it starts receiving
couples of images. Each couple is separated of ∆t and within a couple the time
interval is δt. Moreover, the time constraints for these two values are: δt ≤ 200 ms
and ∆t ≤ 2.9 s.

The final data are stored in non-volatile memory (SD card) and retained until
they are requested by the ground station. Note that the design of SPOT overlay
presented in the Figure 7.17 is based on the description discussed above.

Implemented Modules

Pre-Processing
The raw image from the ST gets into the Pre-processing module (Figure 7.19).

The "APSover Unit" distinguishes the high-energy pixels belonging to stars’ or RSOs’
signals from the low-energy pixels (noise). The selected groups of foreground pixels
are called segments. Each segment may contain one or more pixels. The threshold
is a configurable parameter set by the CPU (in PS) through the AXI-lite interface.
The function of the Coordinate Generator Unit is to assign the pixel coordinates
of the received image. The information generated by the two units is enough to
extract all the data related to the segments by using the Processor Engine Unit. The
extracted outputs are the pixels’ coordinates, energy, weighted energy, and length of
each detected segment. The Data Controller Unit takes the processed data from the
Processor Engine and saves them on the RAM blocks (Figure 7.20), which results in
significant off-chip memory access reduction leading to low latency caused by the
bandwidth limitation of external memory. The RAM block is replicated to store the
up-coming processed data of the images, as shown in the figure 7.20. Each module
contains its own local memory.

Clustering
The Neighborhood Segments Check Unit (Figure 7.21) has to detect all the neigh-

boring pixels belonging to individual objects and to produce the primitive clusters.
After this step, all the primitive clusters composed of one pixel are discarded.

Under dynamic conditions, objects in the FOV can generate dashed streaks. This
means that pixels associated with the same object can be spread out into several
small, distinct groups. For this reason, the Filters Unit (Figure 7.21) was developed
in order to connect the same object (star or RSO) to different primitive clusters
of the broken streak. The Filters Unit is based on the previous described filters:
Minimum distance filter, Increasing length filter and Density filter.

IDs Assigning Unit (Figure 7.21) is used to allocate an identifier number to every
segment. It re-allocates a new identifier for the segments associated with the same

7.1 Mission Goals 158

Figure 7.19. Pre-processing Scheme

Figure 7.20. Triplet Pre-Processing Block RAMs

7.1 Mission Goals 159

Figure 7.21. Clustering Scheme

object. Referring to Figure 7.22, the segments with identifiers equal to 17 and 18
(left part of Figure 7.22) are grouped together with segment identifiers equal to 15
and then they are re-assigned with the lowest identifier value. Consequently, a large
cluster with an identifier equal to 15 is formed, as shown in the right part of Figure
7.22. The other clusters which are not merged still preserve their original IDs.

Figure 7.22. Clustering effect: before (left) and after (right)

Cluster Fusion
Neighborhood Segments Check Unit (Figure 7.23) takes two consecutive data of

Pre-processing module and IDs of the Clustering module as inputs to compare the
clusters. Comparison means a check on the neighboring pixels in two successive
images. If neighboring pixels are present and close enough between them, then
the two clusters are merged and belongs to the same objects. For the Filters Unit
(Figure 7.23) and IDs Merging Unit, the operations are very similar to the one
described for the Clustering module. The main difference is that the Clustering acts
with clusters coming from the same image while Cluster Fusion acts with clusters
coming from two consecutive images (δt separation).

The Centroids Calculation Unit processes the IDs of the merged clusters along
with the Pre-processing outputs to calculate the cluster’s centroids.

7.1 Mission Goals 160

Figure 7.23. Cluster Fusion Scheme

It is useful to remember that the Cluster Fusion output contains only the centroids
of the merged clusters, which are the clusters that appear in both consecutive images
(Figure 7.24). As a result, it is possible to identify the persistence of objects in the
FOV of the sensor.

Figure 7.24. The moving object is shown in two subsequent images

Antitracking Module
The Antitracking module (Figure 7.25) is required to remove stars from the set of

detected objects using the Star Filtering Unit. This unit requires the Rotation Matrix
(RM) converted from the current attitude quaternion, a star catalogue (Hipparcos
Catalogue) and the sensor’s characteristics as inputs. All the objects recognized as
stars are filtered out.

Cluster Growth Module
The Cluster Growth module (Figure 7.26) is used to deduce the direction of the

7.1 Mission Goals 161

Figure 7.25. Antitracking Scheme

moving objects in the star sensor’s FOV. This module is applied to build an on-board
database of tracked objects. It processes successive couples of images. The goal is
to track RSOs during their time spent in the FOV and to record the positions and
time instants of each couple of images. The output of this module represents the
final output of the on-board SPOT unit. Figure 7.44 shows the tracked object that
appears in the three merged images.

The on-board data must be sent to the PS side and stored in the external
memory (SD card). When the data is requested, it is transmitted to ground station
for post-processing and orbit determination.

Figure 7.26. Cluster Growth Scheme

Implementation Techniques

System Generator
Generally, FPGAs are programmed with a HDL: Verilog, SystemVerilog, or Very

High Speed Integrated Circuits HDL (VHDL). To implement SPOT algorithms using
HDLs requires thousands of coding lines, which is impractical and time-consuming.
An alternate solution is using Xilinx System Generator, coupled with a graphical
interface under the MATLAB-Simulink that enables the use of the MathWorks model-
based Simulink design environment for FPGA design. It makes the implementation

7.1 Mission Goals 162

very easy to work with in comparison to the other software for hardware description.
The library of Xilinx System Generator includes many building blocks, allowing
faster prototyping and design from a high-level programming standpoint. As a
result, designers can define an abstract representation of a system-level design and
easily transform the algorithms into a gate-level representation. Another benefit of
using the Xilinx System Generator for the hardware implementation is that it allows
the FPGA module to be co-simulated with the test vectors provided by MATLAB
Simulink blocks. In software co-simulation, all Xilinx blocks are connected between
Gateway In and Gateway Out blocks, which respectively behave as input and output
for the hardware design.

Figure 7.27. Xilinx blockset in simulink

Fixed Point Arithmetic
Normally, floating-point implementations require larger amounts of FPGA re-

sources. This increased use of resources results in higher energy consumption and,
ultimately, in an increase of the overall cost of implementing a design. Therefore, the
reduction in the use of FPGA resources inherently leads to lower power consumption
and enables massively increased computing capabilities within the FPGA. Again,
converting from a floating-point design to a fixed-point design can significantly save
power and area efficiency while maintaining the same level of precision and compa-
rable performance. In some cases, the results can even be improved. To meet these
challenges, it is necessary to thoroughly evaluate the lower precision (fixed point)
implementations of MATLAB codes before targeting the FPGA implementation.

Pipelining
An important objective to be taken into account during the design is to increase

the clock rate and throughput of an FPGA. This is achieved by pipelining design
mechanism. Pipelined designs take advantage of the parallel processing capabilities
of the FPGA to increase the efficiency of sequential code. Pipelined implementation
foresees that the code is divided into several small parts, which are separated with
the use of registers. With Pipelining, the processor can start executing a new input
without waiting for the previous one to complete.

7.1 Mission Goals 163

Figure 7.28. Fixed point arithmetic description.

Figure 7.29. Design with Pipelining approach.

7.1 Mission Goals 164

The different processors are separated by buffer registers, which are all linked
to the clock signal. At each clock cycle, the registers become accessible for writing,
which causes the data to pass to the next step.

Figure 7.30. Non-Pipelining process (left) and Pipelining process (right)

In the non-pipelined design (Figure 7.30), all four inputs will take twenty clock
cycles to be fully processed. This happens both because each input occupies all four
processors untill the output is produced and each processor takes one clock cycle.
In the pipeline design (Figure 7.30), the input accesses the processor row as soon
as it is free. Therefore, the output is produced for each clock pulse starting from
the fourth clock cycle. Actually, each input must pass through four registers during
its processing before reaching the output. All four entries will take six clock cycles
to be processed. The example in Figure 7.30 indicates that the pipelined design
significantly increases the frequency and throughput compared to the non-pipelined
design.

Shared Memory and Resources
Since the SPOT design contains units that have a similar architecture, it is useful

to share the same architecture, possibly adding a few adjustments, rather than
duplicating them for each unit. These adjustments greatly optimize the use of area
resources on the FPGA. In addition, shared resources can reduce complexity, increase
productivity, reduce maintenance costs, and use the additional resources available
for additional functionality. An additional step used to reduce area usage is memory
sharing. In FPGA, shared memory refers to block and distributed RAMs accessible,
in a clock cycle, by several different processing units within a parallel computation,
which allows a very fast and efficient implementation.

Reliability
Reliability is an important theme in space applications. It regards both SW and

HW and every space system needs to prove high levels of it (according to the mission

7.1 Mission Goals 165

Figure 7.31. Shared memory strategy.

context). In particular, Soc/FPGA based HW’s reliability is threatened by many
actors like the ionizing radiation. Static Random Access Memory (SRAM)-based
FPGAs like the Xilinx are highly susceptible to the ionizing radiation environment
in space, typically in the event of a nuclear explosion. They generate photocurrents
through the semiconductor material, causing memory cells to switch and transistors
to change the logical state randomly. A SEU typically occurs by the change of
logical state of a memory cell under the effect of a charged particle. It is a transient
effect that will be erased by rewriting the affected memory cell. Any electronic
circuit which has memory cells is likely to experience SEUs. This erroneous signal
may remain in the digital system and can even propagate to other digital modules
resulting in a failure. To mitigate space radiation effects in both their configuration
and user memory, Triple Modular Redundancy (TMR) and algorithms for error
detection and correction are applied to reduce the susceptibility of the implemented
SPOT algorithms to space radiations, increasing the system’s reliability.

Figure 7.32. Radiation effect over SRAM.

For best results a manually design for TMR was done. It involves the implemen-
tation of three instantiations of the Processor Element (PE) with the majority voting
upon the outputs. Typically, a TMR implementation requires spatial separation of
the logic within the FPGA to ensure that a SEU does not corrupt more than one of
the three instantiations. Another way to mitigate the effect of SEUs is to exploit the
Soft Error Mitigation (SEM) Intellectual Property (IP) cores provided by Xilinx to
perform SEU detection, correction and classification for configuration memory. The

7.1 Mission Goals 166

Figure 7.33. Triple Modular Redundancy with error detection and correction.

cores utilize device primitives such as Internal Configuration Access Port (ICAP)
and FRAME_ECC (Error Correction Code) to the clock and observe the Readback
CRC (Cyclic Redundancy Check) feature to continuously scan the configuration
cells. For SEUs correction, the IP cores perform the necessary operations to locate
and correct errors.

Figure 7.34. Software error mitigation IP.

The SEM IP cores also perform emulation of SEUs by injecting errors into
configuration memory. The error injection feature provides a means to evaluate and
test the SEU mitigation capabilities of the IP cores without the need for expensive
test time at a radiation effects facility.

7.1 Mission Goals 167

7.1.6 Test and Results for Hardware/Software SPOT Integration
The Hardware In the Loop (HIL) set-up which is used for the whole SPOT integrated
system is shown in Figure 7.35.

Figure 7.35. HIL set-up.

It uses System Generator to verify the performance and robustness of the control
algorithms and to simulate critical scenarios. System Generator includes a HIL-
simulation tool that can be used for simulating together with FPGAs. The FPGA
is connected to a computer by JTAG cable and inputs-vectors are simulated on the
computer(Simulink) and sent to the FPGA. The FPGA performes the calculation
then it produces the outputs to be sent back to the computer (Simulink). The
personal computer is also in charge of storing the real and simulated images which
constitute the inputs for the ZYBo implemented SPOT solution. The images do not
come from a camera because there is no interest here in verifying the camera-board
communication protocols.

Preliminary test campaign is organized in a stack of tests where on-board modules
are implemented and tested alone. Each module received as inputs the produced
outputs from the previous module:

1. Pre-Processing Unit Test;

2. Clustering Unit Test;

3. Cluster Fusion Unit Test;

4. Antitracking Unit Test;

5. Cluster Growth Unit Test.

To assess the goodness of results, the SPOT integrated solution outputs will be
compared with the results from a MATLAB copy of the SPOT code to validate the
successful implementation of the integrated SPOT. The work-flow used for every
target code is described into steps:

• Inputs are taken from their specific folder;

• Run the MATLAB copy of the code;

7.1 Mission Goals 168

• Collect and store the outputs;

• Run the Implemented code using the same Inputs;

• Collect and store the outputs;

• Board and MATLAB outputs are compared and discussed.

Results

Pre-Processing Unit Test
In this test, six real images were considered and Pre-Processing module was

applied for each of them. This was carried out both with FPGA and MATLAB
codes and then results were compared. Results of Pre-Processing unit are segments
and energies related to the over thresholds pixels of the image. An example of input
and related reconstructed output is shown in Figure 7.36 just for the most relevant
part of the image.

Figure 7.36. Detail of Pre-Processing module input (top) and output (bottom).

To compare results of both MATLAB and FPGA module we used performance
indices described in [106]. These indices are defined to assess the similarity between
two masks produced by different segmentation algorithms. These masks are matrices
of binary numbers. When they are summed element by element, they give a two
dimensional array of 0, 1 and 2 values. By recording the number of 0 elements
(cntr0), 1 elements (cntr1) and 2 elements (cntr2) it is possible to compute two
indices: G and G0. The third index is defined as the ratio between the number of
active pixel in mask 1 (cntrm1) and mask 2 (cntrm2). By evaluating each index for
each tested image, the following values were obtained by comparing MATLAB and
ZYBo SPOT versions:

• G = cntr0+cntr2
cntr0+cntr1+cntr2

× 100 = 100 %

• G0 = cntr2
cntr1+cntr2

× 100 = 100 %

• M = cntrm1
cntrm2

= 1

7.1 Mission Goals 169

These values mean that there is a perfect superposition between MATLAB and
ZYBo codes’ output masks for what concerns the localization of over threshold
and under threshold pixels (cntr1 = 0). Moreover, another comparison has been
done also with segments’ energies which shows a complete success of the FPGA
Pre-Processing Unit implementation.

Clustering Unit Test
In the implementation of the Clustering unit, the same pre-processing test of the

image was considered and its outputs were injected to the Clustering unit.
Segments’ positions, energies, weighted energies, and lengths for the Clustering

unit were provided to both MATLAB and FPGA. The output data are the coordi-
nates, energies, and dimensions of the Clustering. To compare the output data, the
difference (ϵ) between the output data from different sources (yF P GA and yMAT LAB)
was evaluated:

ϵ = yF P GA − yMAT LAB (7.6)

In Figures 7.37-7.38 these differences are related to the Primitive Clustering Part.
Here the blue color is related to the difference distribution while the red color is
the mean value, and the black color is used for the ± σ curves. "Col" and "Row"
represent the x and y centroids’ coordinates in the image plane reference frame,
respectively.

Figure 7.37. Cluster centroids’ columns estimate differences over the whole samples set.

The centroids column and row plots show a predicted trend with an average
value of zero, considering the interval ± 3σ the differences are still very far from
the maximum tolerance of 10−1. When comparing clusters’ dimension and energies,

7.1 Mission Goals 170

Figure 7.38. Cluster centroids’ rows estimate differences over the whole samples set.

the output data from FPGA and MATLAB are matched. This happens because
truncation and rounding are not applied and they have an integer type nature.

To see the effects of the Improved Clustering module, Figure 7.39 is considered.

In Figure 7.39, the first two columns from left are the coordinates of the segments
that compose primitive clusters. As can be seen on the last two columns on the
right, a change in the segments corresponding clusters identifier (ID) appears.

Before Improved Clustering , each segment has an associated cluster identifier.
As a result of applying several filters and identifier re-assigning, the primitive

clusters ID= 17 and ID= 18 are grouped with clusters ID=15. Hence, a large
cluster of ID= 15 was formed (red boxes). The other clusters which are not merged
still preserve their original index as can be seen for cluster ID= 19 (brown box).
The three primitive clusters 15, 17, 18 which are merged in the end are the streak
fragments associated with the ISS cluster Figure 7.40 (Cluster 19 is not present in
the image detail).

Cluster Fusion Unit Test
In the Cluster Fusion module test, two consecutive images input were provided

to the target unit. Clusters of the first and second images are compared using the
previously described filters in the architecture section and the considered images
are merged and displayed (Figure 7.41). The results provided by ZYBo have been
compared with MATLAB and they both show the same results: five clusters have
been correctly merged. Four of them are related to stars while the remaining one is
the ISS. In particular, Figure 7.42 shows centroids relative to the ISS in the first
and second images of the considered couple, along with the final structure resulting

7.1 Mission Goals 171

Figure 7.39. Improved Clustering effects on cluster identifier evolution.

Figure 7.40. ISS’ streak primitive clusters (Image Detail).

7.1 Mission Goals 172

from the fusion operation.

Figure 7.41. ISS’ fused streaks by Cluster fusion module.

Figure 7.42. ISS’ fused centroids by Cluster fusion module.

Antitracking Unit Test
For the Antitracking test, a single image with its associated sensor position was

considered (Figure 7.43).

In particular five clusters were detected, of which four stars and one object (ISS).
The huge FOV and low resolution made all the other stars being segmented as single
pixels which were correctly filtered by the Clustering module. Just the brightest stars
resulted big enough not to be considered as noise. After applying the Antitracking,
all the objects recognized as stars (yellow circles in the figure) are filtered out using
the Hipparcos catalog, while the ISS is not deleted (red circle in the figure) and is
included in the Antitracking outputs to be processed by the Cluster Growth unit.

The used quaternion in this test was:

q = [−0.526829; 0.222090; −0.342451; −0.745556] (7.7)

Objects centroids before antitracking are:

7.1 Mission Goals 173

Figure 7.43. ISS (red circle) and stars (yellow circle)

centroids =

178.2 116.4
445.5 215.3
637.4 315.5
837.5 494.6
345.5 399.0

 (7.8)

where, the first column represents the detected centroids’ x-coordinate in the
image plane and the second column represents the detected centroids’ y-coordinate
in the image plane, after the Antitracking module, clusters relative to stars are
recognized as stars and deleted only the cluster relative to the ISS remains:

centroids =
[
345.5 399.0

]
(7.9)

Here again, MATLAB and FPGA results perfectly match.

Cluster Growth Unit Test
For the last test, all the six consecutive images processed in three couples are used.

The entire sequence is shown in Figure 4.31. By Cluster Growth results, the unique
object in the FOV was tracked (the ISS). Its centroid coordinates evolution is shown
in Table 7.7. MATLAB and FPGA outputs are numerically the same, considering
the first digit of the decimal part. This is because, by project analysis, the Cluster
Growth centroids are rounded to the first digit.

In the end, this ISS sequence was the same used both for testing YOLOv3,
YOLOv4 detection algorithms with the RSOs tracking module. Results for YOLOv4

7.1 Mission Goals 174

Table 7.7. ISS centroids in the image sequence

Image Column (px) Row (px)
1 291.9 194.2
2 303.0 235.9
3 315.1 281.9
4 326.3 324.9
5 336.4 363.6
6 345.5 399.0

were shown in Table 4.19. Here the Object 1 x and y coordinates correspond to
ISS. By comparing Table 4.19 frames 2-7 coordinates with Table 7.7 values it is
possible to compare the AI-based approach and traditional/hardware integrated
system outputs. Rounding to the first decimal digit the AI-based algorithm outputs,
differences between centroids coordinates are below 1.1 px and this is a good result.
This small difference is due to the different image segmentation and centroids
computation process. Results are anyway encouraging if we consider that this was
just a preliminary comparison

HW Implementation Technical Results
A performance value for real time application is the Processing time. It includes

the entire path from the PS-side in which three consecutive images are streamed
into PL-side, the processing of images inside the PL-side and then the returning of
the outputs to PS-side. The average time achieved of processing three successive
images with size 1024 × 1024 was around 143 ms with clock frequency of the PL-side
equal 40 Mhz compared to the software solution on the computer (based on Intel
CPU) that takes 10 s with 3 Ghz clock frequency. The average time depends mainly
on the clock frequency. Thus, by increasing the system clock frequency of PL-side
the processing time decreases. Increased clock frequency, anyway, can lead to the
so-called "timing violation" which occurs when the execution time requested by
sections of code is shorter than execution time the bitfile achieves after compiling.
To avoid this issue, the design should be separated by adding registers between
combinational logic modules. Anyway, this solution will give rise to more resources
usage on the FPGA and increases its power consumption. The best practice is to
make, instead, a trade-off between processing time and resource usage and check if
the real-time requirement is met. Other parameters that can have minor effects on
the processing time are the number of segments, objects detected, and the size of the
image. Considering the Pause Analysis requirement to be satisfied, the 143 ms value
is lower than 2.9 seconds and this proves that the following hardware implementation
approach is in compliance with the project time constraints.

The three image sequence on which this time was measured is shown in Figure
7.44. The design was implemented on the Xilinx Zybo Board Zynq-7000 FPGA using
Vivado 2018.3, System Generator, and SDK. A summary of FPGA resources usage
is shown in the Table7.8. DSP is highly consumed due to the high use of arithmetic
operations. Regarding the Figure 7.45, the FPGA, where the SPOT algorithms
have been implemented, shows a power consumption around 0, 397 W which is the

7.1 Mission Goals 175

Figure 7.44. Three consecutive and merged images of a real passage. ISS is the brightest
object while the weakest is a Starlink (on the left) .

summation of PL-Static power (0.157 W) plus PL-Dynamic power (0.240 W).

Table 7.8. Resources Utilization

Resource Utilization Available Utilization (%)
LUT 18786 53200 35.31

LUTRAM 1125 17400 6.47
FF 16822 106400 15.81

BRAM 76 140 54.29
DSP 187 220 85.00

Summary of the SPOT Activity

In this chapter SPOT project has been presented and described, individuating
the context and the need of such a mission in the SSA and SST panorama. The
description and high level design of both the units have been shown. In particular
a deeper level of description was done for the on-board part which I personally
lead as Co-PI of this project together with a team of five people. The on-board
unit was entirely described with support figures and tested: both on an Intel-based
personal computer and on a Soc/FPGA Zynq-7000 based hardware for real time
applications and On-Board SPOT unit validation. Tests were conducted both using
simulated ST images and real images from an equivalent Reflex camera (equivalent
in terms of CMOS technology). Test results show that On-Board SPOT is capable of
tracking objects while being compliant with time constraints (mission requirements)
on the target hardware. The implementation approach using System Generator

7.2 Activity Status and Next Steps 176

Figure 7.45. Power consumption

made it more practical and faster in comparison to the other software solutions. The
techniques applied for the implementation show a significant effect in terms of area
usage and the data throughput of the FPGA, resulting in a suitable solution for the
use in real-time missions.

The V&V of the hardware implemented algorithm against the theoretical results
is proved. Moreover, in the ISS passage tests with real images it was possible to
compare On-Board SPOT results against an AI-based RSOs detection and tracking
design.

In the future the implementation of State Machine on the Microprocessor part
of the SoC for controlling data flow and decision making will be carried out. These
will include the implementation of a CAN protocol interface to connect it to the
on-board camera as well as other communication protocols to exchange data with
the on-board computer.

7.2 Activity Status and Next Steps
At the moment of writing the SPOT project went up a change of mission platform
and target hardware for the implementation. These last months several activities
of integration on the new target hardware were performed and the removal of Pre-
processing, Clustering and Cluster Fusion units was carried out, being them already
implemented on the selected ST model. In this way, with just the implementation
of Antitracking and Cluster Growth, it was possible to select a new SoC/FPGA
Hardware with less resources which proved to be suitable for the real time working

7.2 Activity Status and Next Steps 177

of this new On-Board SPOT version.
The selected hardware is PHOEBE Board [117] (Figure 7.46). It was used by

School of Aerospace Engineering for the STECCO (Space Travelling Egg-Controlled
Catadioptric Object) mission. PHOEBE Board Features include the following:

• Microcontroller to handle data and tasks;

• FPGA for fast image data processing;

• Low power consumption: up to 0.3 W;

• Small Satellites Protocol: CAN, I2C and RS485;

• Low Mass: 54 g;

• Dimensions: 99 × 19 × 29 mm3.

Figure 7.46. PHOEBE board, (Credits to School of Aerospace Engineering).

The PHOEBE system on Chip/Field Programmable Gate Array (SoC/FPGA)
hardware offers parallel computation capabilities of the FPGA which boost the data
processing time for real-time applications.

The selected ST is SAGITTA Star Tracker from ARCSEC SPACE (Figure 7.47).
Its most important features for these purposes are the following:

• FOV: 24.8 deg (squared);

• Sensor Size: 2048 × 2048 px

• Cut-Off Magnitude: 7;

• Working Frequency: Up to 10 Hz;

• Accuracy: 2 arc seconds (1 sigma) cross-bore-sight, 10 arc seconds (1 sigma)
around bore-sight.

With dimensions of 45×50×95 mm3, a mass of 275 g and a low power consumption
of 1.4 W, SAGITTA is compact and suitable for microsatellites and cubesats missions.
This device can perform image segmentation and clustering functions retrieving just
the centroids and rough magnitudes of the objects in the FOV.

The integrated Antitracking and Cluster Growth modules are being tested with
real images. Some night sky acquisitions were performed in the last two months

7.2 Activity Status and Next Steps 178

Figure 7.47. Sagitta ST, (Credits to ARCSEC SPACE).

to learn in handling and commanding the SAGITTA ST in the proper way to get
objects centroids and a reliable quaternion information. These tests made me and my
team starting a remote correspondence to change the ST firmware for improving the
amount of output centroids to a useful number for the SPOT mission requirements.
In parallel quaternion retrieval tests, centroids download tests both from single image
and from a sequence of images have been carried out. Antitracking and Cluster
Growth have been tested with these centroids and quaternion information. Now the
next step is the interface protocol implementation between PHOEBE and SAGITTA
for data and commands exchange. In the future, real time acquisition and processing
tests will be carried out on the field to assess the correct working of the integrated
SAGITTA-PHOEBE system. Then the whole payload will be mounted on a small
satellite from School of Aerospace Engineering for its IOV mission. IOV mission
activity is being defined in these months. In case of a successful IOV mission the
design of a dual-purpose ST with the flight proven SPOT units will be pursued in
parallel with the proposal of an IOV mission for the AI-based dual-purpose streaks
detection algorithm.

179

Chapter 8

Conclusions

This work condenses the most important achievements during my PhD activity in
these years. It has brought me to the right maturity for the conceptualization of
a wider and future activity which is the development of the TRIDAENT ST. This
work shows step by step the evolution of my PhD project. It starts from the urgent
problem of space debris tracking and surveillance to be solved in the Space Domain
Awareness panorama. It evolves into a research activity based on the AI technology
for space debris detection starting from optical sensor images. My work reaches,
then, the development of a dual-purpose AI-based algorithm for RSOs tracking and
HAR estimation. This constitutes the starting point to realize a real space product
whose preliminary design takes place within this work.

To face this activity I relied on my ability in real night sky images acquisition and
post-processing in order to create all the material I needed for CNNs training and
test. Moreover, I led acquisition campaigns which aimed to record into sequences
the RSOs passages. I organized and classified these data both for Training and
Validation Datasets, as well as for algorithm tests. Besides this, I used the HFST
to generate simulated images for the datasets’ dimension extension. This was
needed to increase CNNs training accuracy. Datasets were created both for images
segmentation and detection tasks. After this data organization and bibliography
research, the realization of a U-Net based segmentation algorithm was possible. The
result was the creation of a segmentation product which shows good and generalized
segmentation properties for what concern the night sky images. This algorithm was
named BOSS and was compared with the state of the art showing its robustness
against several noise levels without requiring any calibration activity after its design.
At this point the target moved on achieving the detection capabilities of RSOs which
appear as streaks in most of the cases. I identified YOLOs NNs starting from the v3
and evolving into v4 to achieve streaks detection purposes. In order to train YOLO
models, a combination of real night sky binarized images and a MATLAB streaks
simulator was used to produce the needed datasets. Several kind of datasets were
created with this own made dataset generation method for YOLOs TL processes.
This was needed to increase the NNs robustness against the high fragmented streaks,
achieving a satisfying mAP of 86% in streaks detection. Images segmentation and
detection capabilities were successfully tested on real images before developing the
Tracking algorithm, based on the minimization of a proposed cost function.

180

The entire algorithm chain was extensively tested and improved with the intro-
duction of filtering actions to increase the reliability of tracked objects while avoiding
the loss of precious information. Every process of building up streaks detection and
tracking algorithm has been described, justified and detailed within this work and
within related published papers.

The streaks detection capabilities have been exploited in another context such
as the case of spinning optical sensors to test the algorithms output quality for
HAR estimation. This was possible by coupling the developed algorithm with a
least-square based module for angular rate determination. Moreover, the HAR
estimation investigation brought me to design and propose a metric to solve stars’
streaks from RSOs’ streaks. The presented metric is just a starting point with
very encouraging preliminary results. Extensive tests were carried out for HAR
estimation in a wide range of angular speeds [5°/s, 15°/s] and for several angular
rate directions showing the non controllable effect of initial attitude, angular rate
direction and module on the number of tracked stars and the consequent quality of
the HAR estimate.

This algorithm then, paved the way to the development of the AI-based ST idea
for dual-purpose application. The idea is shown in Chapter 6, the main work-flow
and modules are presented, described and the suggested solutions for each module
implementation are highlighted. The main part of these solutions is developed in
the previous chapters.

After the development of AI-based algorithms for SSA and SN, several points
still need to be analyzed and studied in the future:

• Heuristic optimization of Cost Function weights through extensive tests (Monte
Carlo simulations) can be performed to select the right weights for achieving
the correct streaks tracking once the sensor features have been specified;

• Monte Carlo simulations to statistically evaluate the performances of the
HAR estimation algorithm against initial attitude, angular rate directions and
angular rate module;

• Improvement of the geometric based metric for resolving RSOs and stars with
the introduction of a velocity based contribute to resolve moving RSOs parallel
to stars trajectories;

• Streaks centroids’ uncertainties characterization for the investigation of a
statistical approach to solve the tracking problem;

• Study of the image segmentation problem through BlendMask and comparison
w.r.t. U-Net based algorithm;

• Study of the streaks and points detection problem through YOLOv4 and v7,
comparing their performances;

• Implementation of the previous NNs on a dedicated HW as NVIDIA Jetson or
Raspberry Pi 5 coupled with a Neural Compute Stick or NCS (Intel) to get a
real time HW deployed version of the AI-based algorithm to perform on the
field preliminary ground based tests.

181

Last but not least, during this PhD activity I led and carried on the SPOT
project through its preliminary and final design from architecture, SW, HW selection
and documentation point of view. The experience and know-how gained as a Co-PI
of the on-board SPOT project since 2019 helped me a lot during my PhD activity.
The project was close related to my PhD research and while SPOT is in the final
stage of implementation, my work represents its future in an AI-based way.

182

Bibliography

[1] Esa debris. https://www.esa.int/ESA_Multimedia/Images/2020/05/ESA_
2019_report_on_space_debris_-_evolution_in_all_orbits. Accessed:
2020-05-07.

[2] Esa about space debris. https://www.esa.int/Space_Safety/Space_
Debris/About_space_debris. Accessed: 2023-09-28.

[3] Victor Jungnell. Guidance methods for earth observation satellites, 2012.

[4] C.C. Liebe. Accuracy performance of star trackers - a tutorial. IEEE Transac-
tions on Aerospace and Electronic Systems, 38(2):587–599, 2002.

[5] Benjamin B. Spratling and Daniele Mortari. A survey on star identification
algorithms. Algorithms, 2(1):93–107, 2009.

[6] Jens Utzmann and Axel Wagner. Sbss demonstrator: A space-based telescope
for space surveillance and tracking.

[7] Dario Spiller, Edoardo Magionami, Vincenzo Schiattarella, Fabio Curti, Clau-
dia Facchinetti, Luigi Ansalone, and Alberto Tuozzi. On-orbit recognition of
resident space objects by using star trackers. Acta Astronautica, 177:478–496,
2020.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[9] What is padding in neural network? https://www.geeksforgeeks.org/
what-is-padding-in-neural-network/. Accessed: 2023-05-04.

[10] Rajalingappaa Shanmugamani. Deep Learning for Computer Vision: Expert
techniques to train advanced neural networks using TensorFlow and Keras.
Packt Publishing Ltd, 2018.

[11] R Abay, S Gehly, S Balage, M Brown, R Boyce, et al. Maneuver detection of
space objects using generative adversarial networks. In Advanced Maui Optical
and Space Surveillance Technologies Conference, 2018.

[12] Roberto Furfaro, Richard Linares, and Vishnu Reddy. Shape identification of
space objects via light curve inversion using deep learning models. In AMOS
Technologies Conference, Maui Economic Development Board, Kihei, Maui,
HI, 2019.

https://www.esa.int/ESA_Multimedia/Images/2020/05/ESA_2019_report_on_space_debris_-_evolution_in_all_orbits
https://www.esa.int/ESA_Multimedia/Images/2020/05/ESA_2019_report_on_space_debris_-_evolution_in_all_orbits
https://www.esa.int/Space_Safety/Space_Debris/About_space_debris
https://www.esa.int/Space_Safety/Space_Debris/About_space_debris
https://www.geeksforgeeks.org/what-is-padding-in-neural-network/
https://www.geeksforgeeks.org/what-is-padding-in-neural-network/

Bibliography 183

[13] James Allworth, Lloyd Windrim, James Bennett, and Mitch Bryson. A transfer
learning approach to space debris classification using observational light curve
data. Acta Astronautica, 181:301–315, 2021.

[14] Stefano Silvestrini and Michèle Lavagna. Neural-aided gnc reconfiguration
algorithm for distributed space system: development and pil test. Advances in
Space Research, 67(5):1490–1505, 2021.

[15] Lorenzo Pasqualetto Cassinis, Robert Fonod, Eberhard Gill, Ingo Ahrns, and
Jesús Gil-Fernández. Evaluation of tightly-and loosely-coupled approaches
in cnn-based pose estimation systems for uncooperative spacecraft. Acta
Astronautica, 182:189–202, 2021.

[16] David Rijlaarsdam, Hamza Yous, Jonathan Byrne, Davide Oddenino, Gianluca
Furano, and David Moloney. Efficient star identification using a neural network.
Sensors, 20(13):3684, 2020.

[17] Haris Iqbal. Harisiqbal88/plotneuralnet v1.0.0, December 2018.

[18] Sairaj Neelam. Yolo for object detection, architec-
ture explained. https://medium.com/analytics-vidhya/
understanding-yolo-and-implementing-yolov3-for-object-detection-
5f1f748cc63a. Accessed: 2023-05-04.

[19] Evaluating detection (intersection over union). https://www.oreilly.
com/library/view/hands-on-convolutional-neural/9781789130331/
a0267a8a-bd4a-452a-9e5a-8b276d7787a0.xhtml. Accessed: 2023-05-10.

[20] Fares Fourati and Mohamed-Slim Alouini. Artificial intelligence for satellite
communication: A review. Intelligent and Converged Networks, 2(3):213–243,
2021.

[21] Space debris and human spacecraft. https://www.nasa.gov/mission_pages/
station/news/orbital_debris.html. Accessed: 2021-08-07.

[22] Harold D Black. A passive system for determining the attitude of a satellite.
AIAA journal, 2(7):1350–1351, 1964.

[23] Craig L Cole and John L Crassidis. Fast star-pattern recognition using planar
triangles. Journal of guidance, control, and dynamics, 29(1):64–71, 2006.

[24] Vincenzo Schiattarella, Dario Spiller, and Fabio Curti. A novel star identi-
fication technique robust to high presence of false objects: The multi-poles
algorithm. Advances in Space Research, 59(8):2133–2147, 2017.

[25] Space surveillance and tracking - sst segment. https://www.esa.int/Safety_
Security/Space_Surveillance_and_Tracking_-_SST_Segment. Accessed:
2021-08-07.

[26] Eu-sst. https://www.eusst.eu. Accessed: 2021-08-07.

https://medium.com/analytics-vidhya/understanding-yolo-and-implementing-yolov3-for-object-detection-5f1f748cc63a
https://medium.com/analytics-vidhya/understanding-yolo-and-implementing-yolov3-for-object-detection-5f1f748cc63a
https://www.oreilly.com/library/view/hands-on-convolutional-neural/9781789130331/a0267a8a-bd4a-452a-9e5a-8b276d7787a0.xhtml
https://www.oreilly.com/library/view/hands-on-convolutional-neural/9781789130331/a0267a8a-bd4a-452a-9e5a-8b276d7787a0.xhtml
https://www.oreilly.com/library/view/hands-on-convolutional-neural/9781789130331/a0267a8a-bd4a-452a-9e5a-8b276d7787a0.xhtml
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://www.esa.int/Safety_Security/Space_Surveillance_and_Tracking_-_SST_Segment
https://www.esa.int/Safety_Security/Space_Surveillance_and_Tracking_-_SST_Segment
https://www.eusst.eu

Bibliography 184

[27] Tim Flohrer and Holger Krag. Space surveillance and tracking in esa’s ssa pro-
gramme. In Proceedings 7th European Conference on Space Debris, Darmstadt,
Germany, https://conference. sdo. esoc. esa. int, volume 1, 2017.

[28] François Chollet. Deep Learning with Python. Manning, November 2017.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[30] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89,
2020.

[31] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L2 regularization
for learning kernels. arXiv preprint arXiv:1205.2653, 2012.

[32] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How
does batch normalization help optimization? arXiv preprint arXiv:1805.11604,
2018.

[33] Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for im-
proving deep learning in image classification problem. In 2018 international
interdisciplinary PhD workshop (IIPhDW), pages 117–122. IEEE, 2018.

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–1958,
2014.

[35] Artificial intelligence in space. https://www.esa.int/Enabling_Support/
Preparing_for_the_Future/Discovery_and_Preparation/Artificial_
intelligence_in_space. Accessed: 2023-05-16.

[36] Satguard artificial intelligence to monitor spacecrafts’ health. https://www.
iai.co.il/p/satguard. Accessed: 2023-05-16.

[37] Shamim Sanisales and Reza Esmaelzadeh Aval. Artificial intelligence techniques
for spacecraft health monitoring system - a survey. 03 2023.

[38] Richard Linares and Roberto Furfaro. Space objects maneuvering detection
and prediction via inverse reinforcement learning. In Advanced Maui Optical
and Space Surveillance (AMOS) Technologies Conference, volume 46, page 46,
2017.

[39] Alejandro Pastor, Guillermo Escribano, and Diego Escobar. Satellite maneuver
detection with optical survey observations. In Advanced Maui Optical and
Space Surveillance Technologies Conference (AMOS), 2020.

https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Artificial_intelligence_in_space
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Artificial_intelligence_in_space
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Artificial_intelligence_in_space
 https://www.iai.co.il/p/satguard
 https://www.iai.co.il/p/satguard

Bibliography 185

[40] Ben Bradley and Penina Axelrad. Lightcurve inversion for shape estimation
of geo objects from space-based sensors. In Univ. of Colorado. International
Space Symposium for Flight Dynamics, 2014.

[41] Mikko Kaasalainen and Johanna Torppa. Optimization methods for asteroid
lightcurve inversion: I. shape determination. Icarus, 153(1):24–36, 2001.

[42] Richard Linares, Roberto Furfaro, and Vishnu Reddy. Space objects classifica-
tion via light-curve measurements using deep convolutional neural networks.
Journal of the Astronautical Sciences, 67(3):1063–1091, 2020.

[43] David Rijlaarsdam, Hamza Yous, Jonathan Byrne, Davide Oddenino, Gianluca
Furano, and David Moloney. A survey of lost-in-space star identification
algorithms since 2009. Sensors, 20(9), 2020.

[44] Tamer Mekky Ahmed Habib. Artificial intelligence for spacecraft guidance,
navigation, and control: a state-of-the-art. Aerospace Systems, 5(4):503–521,
2022.

[45] Maksim Shirobokov, Sergey Trofimov, and Mikhail Ovchinnikov. Survey of
machine learning techniques in spacecraft control design. Acta Astronautica,
186:87–97, 2021.

[46] David Rijlaarsdam, Hamza Yous, Jonathan Byrne, Davide Oddenino, Gianluca
Furano, and David Moloney. A survey of lost-in-space star identification
algorithms since 2009. Sensors, 20(9):2579, 2020.

[47] Ari Silburt, Mohamad Ali-Dib, Chenchong Zhu, Alan Jackson, Diana Valencia,
Yevgeni Kissin, Daniel Tamayo, and Kristen Menou. Lunar crater identification
via deep learning. Icarus, 317:27–38, 2019.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[49] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[50] Usha Ruby and Vamsidhar Yendapalli. Binary cross entropy with deep learning
technique for image classification. Int. J. Adv. Trends Comput. Sci. Eng, 9(10),
2020.

[51] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[52] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

Bibliography 186

[53] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Op-
timal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934,
2020.

[54] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances
in neural information processing systems, 28, 2015.

[55] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[56] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Com-
mon objects in context. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V
13, pages 740–755. Springer, 2014.

[57] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[59] Yi Zhu and Shawn Newsam. Densenet for dense flow. In 2017 IEEE Interna-
tional Conference on Image Processing (ICIP), pages 790–794, 2017.

[60] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector.
In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 21–37.
Springer, 2016.

[61] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988, 2017.

[62] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In
Proceedings of the European conference on computer vision (ECCV), pages
734–750, 2018.

[63] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and
Qi Tian. Centernet: Keypoint triplets for object detection. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

[64] Abdullah Rashwan, Agastya Kalra, and Pascal Poupart. Matrix nets: A
new deep architecture for object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, pages 0–0, 2019.

Bibliography 187

[65] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional
one-stage object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyra-
mid pooling in deep convolutional networks for visual recognition. IEEE
transactions on pattern analysis and machine intelligence, 37(9):1904–1916,
2015.

[67] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence, 40(4):834–848, 2017.

[68] Songtao Liu, Di Huang, et al. Receptive field block net for accurate and fast
object detection. In Proceedings of the European conference on computer vision
(ECCV), pages 385–400, 2018.

[69] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation
network for instance segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8759–8768, 2018.

[70] Wei Xu, Qi Li, Hua-jun Feng, Zhi-hai Xu, and Yue-ting Chen. A novel star
image thresholding method for effective segmentation and centroid statistics.
Optik, 124(20):4673–4677, 2013.

[71] Carl Christian Liebe. Accuracy performance of star trackers-a tutorial. IEEE
Transactions on aerospace and electronic systems, 38(2):587–599, 2002.

[72] Likai Xu, Jie Jiang, and Lei Liu. Rpnet: A representation learning-based star
identification algorithm. IEEE Access, 7:92193–92202, 2019.

[73] Zhaokui Wang and Yu-lin Zhang. Algorithm for ccd star image rapid locating.
Chinese journal of space science, 26(3):209–214, 2006.

[74] Dario Spiller and Fabio Curti. A geometrical approach for the angular velocity
determination using a star sensor. Acta Astronautica, 196:414–431, 2022.

[75] John Bernsen. Dynamic thresholding of gray-level images. In Proc. Eighth
Int’l conf. Pattern Recognition, Paris, 1986, 1986.

[76] Dongju Liu and Jian Yu. Otsu method and k-means. In 2009 Ninth Inter-
national Conference on Hybrid Intelligent Systems, volume 1, pages 344–349.
IEEE, 2009.

[77] W Niblack. An introduction to image processing (pp. 115–116), 1986.

[78] Jiu-Lun Fan and Bo Lei. A modified valley-emphasis method for automatic
thresholding. Pattern Recognition Letters, 33(6):703–708, 2012.

Bibliography 188

[79] Kan Jin, Yilun Chen, Bin Xu, Junjun Yin, Xuesong Wang, and Jian Yang. A
patch-to-pixel convolutional neural network for small ship detection with polsar
images. IEEE Transactions on Geoscience and Remote Sensing, 58(9):6623–
6638, 2020.

[80] Dong Zhao, Huixin Zhou, Shenghui Rang, and Xiuping Jia. An adaptation of
cnn for small target detection in the infrared. In IGARSS 2018 - 2018 IEEE
International Geoscience and Remote Sensing Symposium, pages 669–672,
2018.

[81] Zunlin Fan, Duyan Bi, Lei Xiong, Shiping Ma, Linyuan He, and Wenshan
Ding. Dim infrared image enhancement based on convolutional neural network.
Neurocomputing, 272:396–404, 2018.

[82] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[83] Nasser M. Nasrabadi. Deeptarget: An automatic target recognition using
deep convolutional neural networks. IEEE Transactions on Aerospace and
Electronic Systems, 55(6):2687–2697, 2019.

[84] Manshu Shi and Huan Wang. Infrared dim and small target detection based on
denoising autoencoder network. Mobile Networks and Applications, 25(4):1469–
1483, 2020.

[85] Xiaozhong Tong, Bei Sun, Junyu Wei, Zhen Zuo, and Shaojing Su. Eaau-
net: Enhanced asymmetric attention u-net for infrared small target detection.
Remote Sensing, 13(16):3200, 2021.

[86] Danna Xue, Jinqiu Sun, Yaoqi Hu, Yushu Zheng, Yu Zhu, and Yanning Zhang.
Starnet: convolutional neural network for dim small target extraction in star
image. In 2018 IEEE Fourth International Conference on Multimedia Big
Data (BigMM), pages 1–7. IEEE, 2018.

[87] Danna Xue, Jinqiu Sun, Yaoqi Hu, Yushu Zheng, Yu Zhu, and Yanning Zhang.
Dim small target detection based on convolutinal neural network in star image.
Multimedia Tools and Applications, 79(7):4681–4698, 2020.

[88] Marco Mastrofini. nightskyunet, 2022.

[89] Georg Zotti and Alexander Wolf. Stellarium 0.19. 0 user guide. Technical report,
Technical report. Available online at github. com/Stellarium/stellarium . . . ,
2019.

[90] F Curti, D Spiller, L Ansalone, S Becucci, D Procopio, F Boldrini, and P Fidan-
zati. Determining high rate angular velocity from star tracker measurements.
In Proc. 66th Int. Astron. Congr., pages 1–13, 2015.

[91] Fabio Curti, Dario Spiller, Luigi Ansalone, Simone Becucci, Dorico Procopio,
Franco Boldrini, Paolo Fidanzati, and Gianfranco Sechi. High angular rate
determination algorithm based on star sensing. In Advances in the Astronautical
Sciences Guidance, Navigation and Control 2015, Vol. 154, page 12. 2015.

Bibliography 189

[92] Vincenzo Schiattarella, Dario Spiller, and Fabio Curti. Star identification
robust to angular rates and false objects with rolling shutter compensation.
Acta Astronautica, 166:243–259, 2020.

[93] Vincenzo Schiattarella, Dario Spiller, and Fabio Curti. Efficient star identifi-
cation algorithm for nanosatellites in harsh environment. In Advances in the
Astronautical Sciences, Vol. 163, pages 287–306. 2018.

[94] Nobuyuki Otsu. A threshold selection method from gray-level histograms.
IEEE transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

[95] Derek Bradley and Gerhard Roth. Adaptive thresholding using the integral
image. Journal of Graphics Tools, 12(2):13–21, 2007.

[96] Laila Kazemi, John Enright, and Tom Dzamba. Improving star tracker cen-
troiding performance in dynamic imaging conditions. In 2015 IEEE Aerospace
Conference, pages 1–8. IEEE, 2015.

[97] Rafael C Gonzalez, Richard E Woods, et al. Digital image processing, 2002.

[98] Daniel Chapman, Asad M Aboobaker, Derek Araujo, Joy Didier, Will Grainger,
Shaul Hanany, Seth Hillbrand, Michele Limon, Amber Miller, Britt Reichborn-
Kjennerud, et al. Star camera system and new software for autonomous and
robust operation in long duration flights. In 2015 IEEE Aerospace Conference,
pages 1–11. IEEE, 2015.

[99] Nasa-juno star reference unit camera. https://www.jpl.nasa.gov/images/
pia24436-high-energy-and-junos-stellar-reference-unit. Accessed:
11-01-2022.

[100] Marco Mastrofini, Gilberto Goracci, Ivan Agostinelli, and Mohamed Salim.
Resident space objects detection and tracking based on artificial intelligence. In
Proceedings of the Astrodynamics Specialist Conference AAS/AIAA, Charlotte,
NC, USA, pages 7–11, 2022.

[101] Daniel L Oltrogge and Salvatore Alfano. The technical challenges of better
space situational awareness and space traffic management. Journal of Space
Safety Engineering, 6(2):72–79, 2019.

[102] Nikolaus Salvatore and Justin Fletcher. Learned event-based visual perception
for improved space object detection. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 2888–2897, 2022.

[103] AI Bobrovsky, MA Galeeva, AV Morozov, VA Pavlov, and AK Tsytsulin.
Automatic detection of objects on star sky images by using the convolutional
neural network. In Journal of Physics: Conference Series, volume 1236, page
012066. IOP Publishing, 2019.

[104] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

https://www.jpl.nasa.gov/images/pia24436-high-energy-and-junos-stellar-reference-unit
https://www.jpl.nasa.gov/images/pia24436-high-energy-and-junos-stellar-reference-unit

Bibliography 190

[105] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788, 2016.

[106] Marco Mastrofini, Francesco Latorre, Ivan Agostinelli, and Fabio Curti. A
convolutional neural network approach to star sensors image processing algo-
rithms. Astrodynamics Specialist Conference AAS/AIAA, Big Sky, Montana,
USA, August 9-11, 2021.

[107] Marco Mastrofini. Test on 20 image sequences. https://www.youtube.com/
watch?v=RGZbLHRshSI. Accessed: 2022-06-22.

[108] Giancarmine Fasano, Giancarlo Rufino, Domenico Accardo, and Michele Grassi.
Satellite angular velocity estimation based on star images and optical flow
techniques. Sensors, 13(10):12771–12793, 2013.

[109] Dario Spiller and Fabio Curti. A geometrical approach for the angular velocity
determination using a star sensor. Acta Astronautica, 196:414–431, 2022.

[110] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-yuan Liao. Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors. 07 2022.

[111] Yolov7: The most powerful object detection algorithm (2023 guide). https:
//viso.ai/deep-learning/yolov7-guide/. Accessed: 2023-09-15.

[112] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, and
Youliang Yan. Blendmask: Top-down meets bottom-up for instance segmen-
tation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8570–8578, 2020.

[113] Malcolm David Shuster and S D_ Oh. Three-axis attitude determination from
vector observations. Journal of guidance and Control, 4(1):70–77, 1981.

[114] F Landis Markley. Attitude determination using vector observations and the
singular value decomposition. Journal of the Astronautical Sciences, 36(3):245–
258, 1988.

[115] Hanspeter Schaub, Lee EZ Jasper, Paul V Anderson, and Darren S McKnight.
Cost and risk assessment for spacecraft operation decisions caused by the space
debris environment. Acta Astronautica, 113:66–79, 2015.

[116] Dario Spiller and Fabio Curti. A geometrical approach for the angular velocity
determination using a star sensor. Acta Astronautica, 2020.

[117] Phoebe, school of aerospace engineering. https://sites.google.com/
uniroma1.it/stecco-sia/home, 03 2021.

https://www.youtube.com/watch?v=RGZbLHRshSI
https://www.youtube.com/watch?v=RGZbLHRshSI
https://viso.ai/deep-learning/yolov7-guide/
https://viso.ai/deep-learning/yolov7-guide/
https://sites.google.com/uniroma1.it/stecco-sia/home
https://sites.google.com/uniroma1.it/stecco-sia/home

	Introduction
	Space Navigation & SST
	Space Navigation
	Space Attitude Navigation
	Star Sensors

	Space Surveillance and Tracking
	SST Panorama in USA and Europe
	Space Based SST Systems

	On-Board Electro-Optical Sensors

	AI: How It Has Changed the Space and How It Is Involved in This Research
	A Short Introduction of AI Techniques & Deep Learning
	AI & Deep Learning
	Convolutional Neural Networks

	AI and Space: Research and Existing Applications
	RSOs Maneuver Detection and Estimate
	RSOs Shape/Properties Estimate
	AI Applied to SN

	Machine Learning Models for Images Segmentation and Objects Detection in this work
	U-Net
	YOLOv3: You Only Look Once, Version 3
	YOLOv4, What's New?

	AI Based On-Board Image Processing
	Image Segmentation
	Dataset Creation and Description
	Algorithm Design and Configuration
	Results
	Summary of Findings for AI-based Night Sky Image Segmentation

	Objects Detection & Tracking
	Dataset Creation and Description
	Algorithm Design and Configuration
	Tests and Results

	Summary of Findings for the AI-Based RSOs Detection and Tracking Algorithm

	Dual-Purpose of the Segmentation Detection and Tracking Chain
	Space Navigation Application
	HAR Estimation Module Description

	Tests of the AI-Based HAR Estimation Algorithm
	Test at |ref|=5 , 7, 10, 13, 15 °/s with No Noise Sources
	Test for HAR Estimation at |ref|=5 , 7, 10, 13, 15 °/s with Noise Sources

	Test with RSOs in HAR Conditions
	RSOs-Star Resolving Method
	RSOs-Star Resolving Work-Flow

	Summary of Findings for the Dual-Purpose

	Design and Development of a Dual-Purpose AI-based Autonomous Star Sensor for Attitude Navigation and Space Surveillance: TRIDAENT
	TRIDAENT Design
	Points/Streaks Detection & Tracking Module
	Stars and RSOs Classifier
	LISA, Attitude and Angular Rate Determination

	TRIDAENT Development Planning: From Preliminary Design to IOV Mission Proposal

	SPOT: Star sensor image Processing for orbiting Objects deTection
	Mission Goals
	On-Board SPOT Unit
	Ground SPOT Unit
	On-Board SPOT Feasibility Tests
	On-Board SPOT Hardware Implementation
	FPGA
	Test and Results for Hardware/Software SPOT Integration

	Activity Status and Next Steps

	Conclusions
	Bibliography

