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A B S T R A C T

The shallow-water Capo Mortola succession (Liguria, NW Italy) yields diverse assemblages of smaller benthic and
planktic foraminifera, larger benthic foraminifera (LBF), and calcareous nannofossils. With the aim of improving
the understanding of the Middle Eocene Climatic Optimum (MECO) impact on the shallow-water marine biotic
communities due to global warming, we provide biostratigraphic and stable isotope data to achieve a reliable
stratigraphic constraint of the MECO. The correlation of the stable isotope oxygen data with datasets of similar
age from other regions suggests that only the onset of the MECO interval is recorded in the Capo Mortola section.
Quantitative analyses of smaller benthic foraminiferal assemblages indicate that the shallow-water setting of
Capo Mortola was not particularly affected by the onset of the MECO perturbance because no variation in
nutrient supply or oxygen level were detected. A different scenario is recorded by the LBF genera Operculina and
Discocyclina, which increased in abundance across the MECO onset, probably due to a rise in temperature and
adapting to the increase in nutrient supply. In the upper water column, the variations in calcareous plankton
communities appear to be controlled by both the MECO warming and a moderate increase in eutrophic condi-
tions related to the enhanced hydrological cycle. Nutrients, mostly consumed in the upper water column, reached
the seafloor in a limited amount, as benthic foraminifera record a meso-oligotrophic environment across the
studied MECO interval.

1. Introduction

Past climatic events and their impact on the marine biosphere permit
inferences on possible ecological responses to future global warming
scenarios. The Eocene epoch was a crucial, climatically dynamic interval
when the highest temperatures were reached during both the Paleocene-
Eocene Thermal Maximum (PETM) and the Early Eocene Climatic Op-
timum (EECO). The peak temperatures were followed by a long-term
cooling trend that lasted through the middle and late Eocene (Zachos
et al., 2001; Katz et al., 2008; Zachos et al., 2008; Bijl et al., 2010;
Westerhold et al., 2020). This cooling trend has been reported as a
“doubthouse” climate, which is comprised between the “hot and

warmhouse” (sensu Westerhold et al., 2020) conditions of the early
Paleogene (with high temperatures, high pCO2 levels, and no permanent
polar ice sheets) and the “cool and icehouse” regime (sensu Westerhold
et al., 2020), which follows the establishment of the Antarctic conti-
nental ice sheet during the Priabonian and the Eocene-Oligocene tran-
sition (~34 Ma; Miller et al., 1987; Zachos et al., 1996; Zachos et al.,
2001; Coxall et al., 2005; Miller et al., 2005; Katz et al., 2008; Zachos
et al., 2008; Lear et al., 2008; Cramer et al., 2009; Anagnostou et al.,
2016; Barr et al., 2022). The term “doubthouse” refers to the evidence
that the cooling trend was not straightforward but interrupted by tran-
sient episodes of warming (Tripati et al., 2005; Sexton et al., 2006; Edgar
et al., 2007; Bohaty et al., 2009), the most prolonged and intense of
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which was the Middle Eocene Climatic Optimum (MECO; Bohaty and
Zachos, 2003). During the MECO, the δ18O values of marine carbonate
sediments and of benthic foraminifera tests declined by roughly 1‰ in
over ~400 kyr, which is usually interpreted as a 4–6 ◦C rise in global
temperature, with a gradual onset and a brief temperature peak centered
at ~40 Ma followed by a rapid return to pre-event conditions (Bohaty
and Zachos, 2003; Jovane et al., 2007; Zachos et al., 2008; Bohaty et al.,
2009; Edgar et al., 2010; Luciani et al., 2010; Spofforth et al., 2010;
Savian et al., 2013; Boscolo Galazzo et al., 2014; D’Onofrio et al., 2021).

The MECO is one of the most mysterious global warming events of
the Cenozoic due to a number of factors, such as its longer duration with
respect to the Eocene hyperthermals and the lack of a globally coherent
negative δ13C excursion in marine carbonates (Sluijs et al., 2013). It has
been suggested that the MECO warming was triggered by atmospheric
CO2 increases by paroxysmal continental arc volcanism (Sluijs et al.,
2013; van der Boon et al., 2021), even though the correlation of these
events is not well constrained. Furthermore, precise data on paleo-
environmental changes and specific resilience of the biosphere across
the MECO are still limited and are mostly focused on deep-water envi-
ronments (Luciani et al., 2010; Edgar et al., 2013; Boscolo Galazzo et al.,
2013, 2014; D’Onofrio et al., 2021).

Conversely, the impact of the MECO on biota in shallow-water set-
tings is yet poorly investigated (Brachert et al., 2023; Gandolfi et al.,
2023) despite the fact that shallow-water sedimentary records represent
crucial archives to unravel how biodiversity reacted to global warming
events. Shallow-water sedimentary successions are indeed more chal-
lenging to study in relation to climatic perturbations for several reasons,
including the limited biostratigraphic resolution and the problems in
correlation with deep-sea settings (Pekar et al., 2005). In addition to the
global controls, shallow-water deposits are more influenced than deep-
sea sediments by local tectonic patterns of sediment accretion and
higher hydrodynamic activity that may induce unconformities. The
MECO event was studied in a shallow-water setting (Sealza section),
located in the Liguria region of northwestern Italy (Gandolfi et al.,
2023). This section provides data from several taxonomic groups
including smaller, larger benthic (SBF and LBF, respectively) and
planktic foraminifera (PF), together with nannofossil and stable isotope
data. The MECO interval in Sealza is characterized by a decrease in
oxygenation at the seafloor, as indicated by a decline in the abundance
of epifaunal taxa, an increase in organic matter content (TOC), and the
occurrence of infaunal genera (Gandolfi et al., 2023).

The available literature on the MECO warming is almost only related
to deep-sea successions and documents marked variations in planktic
foraminiferal communities, such as a permanent decline in abundance of
the large-sized mixed-layer dweller Acarinina, that has not yet been
clearly explained, as this genus is recognized as warm index and thus
should have benefited from the MECO warming (Luciani et al., 2010;
D’Onofrio et al., 2021). The hypothesis that the loss of the symbiotic
relationship with microalgae, adapted to thrive in oligotrophic envi-
ronments, may have been responsible for the recorded decline was
disproved by the record of a single transitory episode of bleaching
(Edgar et al., 2013).

In shallow-water settings, the relationships between the foraminif-
eral assemblages and the MECO event are not fully understood either.
Rodelli et al. (2018) gave some information regarding the LBF assem-
blages from the Baskil section (eastern Turkey), including high-
resolution biostratigraphy and correlation with magnetostratigraphy,
planktic foraminiferal, and calcareous nannofossil biozones; this section
includes the MECO interval, but unfortunately the authors do not pro-
vide isotopic data and do not discuss the changes in LBF assemblages
around this interval. Kövecsi et al. (2022), describing the nummulite
banks from the Transylvanian Basin (Romania), pointed out that these
peculiar accumulations are dated just above the inferred position of the
MECO, thus implying that post-MECO conditions were suitable for the
bloom of large species of the genus Nummulites. Morabito et al. (2024)
reported a comprehensive study of the Monte Saraceno section

(southern Italy), including LBF assemblages, high-resolution biostra-
tigraphy, and isotopic data allowing to connect the nummulite accu-
mulations with the MECO and post-MECO intervals, followed by the
fading of very large nummulites up to the end of SBZ 17. According to
these data, one may infer that the rise in temperatures had apparently a
positive effect on the large nummulites, possibly followed by a gradual
deterioration in the post-MECO, as evidenced by the faunal changes
passing into the subsequent SBZ 18.

With the aim of improving the understanding of the MECO impact on
the shallow-water marine communities as related to global warming, we
present here the analysis of the Capo Mortola succession outcropping in
Liguria (NW Italy; Fig. 1A). This section contains a diverse assemblage of
both benthic and planktic foraminifera, as well as calcareous nanno-
fossils, thus allowing an integrated approach. We provide biostrati-
graphic and stable isotope data to achieve a reliable stratigraphic
constraint for the MECO. Quantitative analyses of the recorded taxa are
also presented to highlight changes in fossil communities, which are
essential to correctly evaluate the biotic response.

2. Geological setting

The promontory of Capo Mortola is located within the municipality
of Ventimiglia and flanks the Hanbury Botanical Gardens (Fig. 1A, B1,
B2, B3). The promontory itself and its prospicient submarine areas are
included in the Hanbury Botanical Gardens Regional Protected Area,
and rock sampling is forbidden without valid permission. Although the
previous work by Carbone et al. (1981) provided a comprehensive
sampling of the entire stratigraphic succession, this study focuses only
on the upper part of the section (Fig. 1A, B1–B3, C).

From a lithostratigraphic perspective, the regional succession starts
with the marly limestones of the Trucco Formation (Santonian-lower
Maastrichtian), continues with the sporadic Microcodium Formation
(which has very uncertain dating), and passes into the Capo Mortola
Calcarenite (upper Lutetian-lower Bartonian according to the regional
literature), which represents the first member of the Boussac/Sinclair
Trilogy (Varrone and Clari, 2003; Sztrákos and du Fornel, 2003). The
succession continues with the Olivetta San Michele Silty Marl (Marne a
Globigerine = Globigerina marls: Bartonian-lower Priabonian) and ends
with the Ventimiglia Flysch (upper Bartonian-lower Priabonian) (Gèze
et al., 1968; Lanteaume, 1968; Carbone et al., 1981; Dallagiovanna
et al., 2012; Seno et al., 2012; Coletti et al., 2021). The tectonic structure
of this sector of the Provençal domain is mainly due to the superposition
of the Alpine events on the Pyrenean-Provençal ones; the ensuing tec-
tonic setting is subsequently involved in the Miocene deformations
related to the Corsica-Sardinia Block anticlockwise rotation and in the
Pliocene to Recent neotectonic events (Gèze et al., 1968; Lanteaume,
1968; de Graciansky et al., 2010; Giammarino et al., 2010; Dallagio-
vanna et al., 2012; Seno et al., 2012; Morelli et al., 2022).

The Capo Mortola Calcarenite Formation was deposited in the south-
eastern Provençal paleogeographic domain (Arc de la Roya, Southern
Subalpine Chain, European Plate) (Giammarino et al., 2010; Seno et al.,
2012), which comprises sedimentary rocks deposited from the Upper
Cretaceous to the upper Eocene. During the Eocene, the Western and
Ligurian Alps’ orogenic wedge was thrust onto this region of the Euro-
pean Plate, resulting in the formation of a foreland-foredeep system
(Lanteaume, 1968; Varrone, 2004; de Graciansky et al., 2010; Giam-
marino et al., 2010; Seno et al., 2012; Marini et al., 2022). The tecton-
ically controlled sedimentation is characterized by shallow-water
limestones grading upward to marlstones capped by siliciclastic turbi-
dite deposits, known as the Priabonian Trilogy (Boussac, 1912) or Sin-
clair Trilogy (Sinclair, 1997).

The Capo Mortola section was measured along the western limb of
the narrow, non-cylindrical syncline of Capo Mortola and exhibits a
good exposure of the transgressive facies of the Capo Mortola Calcar-
enite Formation (known in the literature as Nummulitic Limestone =

Calcareniti di Capo Mortola, Dallagiovanna et al., 2012; Seno et al.,
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Fig. 1. A) Map showing the location of the Capo Mortola promontory (Liguria, NW Italy) and the studied section. B1) Outcrop in the upper part of the Capo Mortola
section (red band); B2) LBF lining the wall of Nummipera burrows (near CM-38). B3) Outcrop photograph showing abundant tests of Assilina (about 1 cm in diameter)
(near CM-31). C) Stratigraphic column of the Capo Mortola section (yellow shaded band represents the studied part) and relative abundances of LBF recorded in thin
sections (0: absent; 1: common; 2: abundant). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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2012) resting on the weathered marly limestones of the Trucco For-
mation. The Olivetta San Michele Silty Marl is very poorly exposed, and
the Microcodium Formation does not crop out in the area.

3. Material and methods

3.1. Field sampling

The Capo Mortola section, from the base of the Capo Mortola Cal-
carenite Formation to the top of the exposition, has a total thickness of
49.3 m. The entire succession is shown in Fig. 1B1, C, and the litho-
logical and paleontological description of all samples is reported as
supplementary data. In this study, we focused on the interval from 27.0
to 49.3 m (Fig. 1B1, C), which records the major climatic perturbations
that happened during the Bartonian.

The dataset comprises 30 rock samples that have been treated for
foraminiferal analyses and 43 additional powder samples, obtained at
around 30 cm intervals by pressure drillers (from 36.9 to 49.3 m;
Figs. 1C, 2), used to extract carbon and oxygen stable isotopes. Due to
intense local weathering and sea wave action on the rock surfaces,
powder samples were collected after drilling an initial hole at least 2 cm
deep. The powder was collected using a funnel and then immediately

placed in polypropylene vials for storage.

3.2. Stable isotopes

The carbon and oxygen stable isotope analyses were performed at the
Laboratory of Paleoclimatology and Isotopic Stratigraphy of the
Department of Physics and Earth Sciences of the University of Ferrara,
using isoFLOW (Elementar©) operating in continuous flow with a Pre-
cisION Isotopic Ratio Mass Spectrometer (IRMS; Elementar©). The 43
powder samples (CMP1-CMP43) were tested; roughly 150 g of homo-
geneous powder was weighted and placed in vials. To replace the
ambient air in the glass tube, each vial was flushed with pure He using a
needle situated in the autosampler. The powder in each vial reacted with
heated, viscous, water-free orthophosphoric acid for 3 h at 50 ◦C,
causing CO2 to be released from the samples. The released CO2 sample
gas was collected and transported to the IRMS for simultaneous C and O
analysis using the same needle that had previously flushed the vial. The
13C/12C and 18O/16O isotopic ratios were expressed with the δ notation
(in‰ units) relative to V-PDB. The in-house MAQ-1 standard was used
for single-point calibration, and the quality of the analysis was moni-
tored using two control standards (IAEA 603 and Carrara Marble). The
analytical uncertainties (1 σ) for the isotope studies were in the range of

Fig. 2. Oxygen (δ18O, green line) and Carbon (δ13C, blue line) isotope data from bulk samples plotted against the stratigraphic log of the Capo Mortola section and
LBF biozones (SBZ following Serra-Kiel et al., 1998), planktic foraminifera (E zones following Wade et al., 2011), and calcareous nannofossils (MNP zones following
Fornaciari et al., 2010 and CNE zones following Agnini et al., 2014). Biostratigraphy and age model of the Capo Mortola section for the middle Eocene based on
calcareous nannofossil and planktic foraminifera events. The composite standard reference section (CSRS) of the middle Eocene (Bartonian) shows the absolute age
model of Speijer et al. (2020). The pink-shaded band outlines the Middle Eocene Climatic Optimum (MECO) onset correlated to Chron C18r, according to Speijer
et al. (2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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±0.1‰ for δ13C and δ18O, respectively.

3.3. Foraminifera

Planktic and smaller benthic foraminifera were successfully extrac-
ted from rock samples using the surfactant Rewoquat© W 3690. The
procedure consists of crushing samples into pieces of size 1–2 cm using a
mechanic press and then soaking them in pure Rewoquat© for two days.
Each sample was then washed through a single 63 μm-mesh sieve, and
the residues were dried at 50 ◦C. Microfossils were picked, placed in
microslides, and identified under a binocular stereomicroscope (Optech
GZ808) equipped with an Invenio 6EIII DeltaPix camera. The taxonomic
criteria adopted in this study are based on Loeblich and Tappan (1987,
1994) and Holbourn et al. (2013) for benthic foraminiferal genera,
whereas Pearson et al. (2006) was used for planktic foraminiferal taxa.
Washed residues were split (microsplitter) to a workable amount to get,
whenever possible, at least 300 specimens per sample, and then stan-
dardized to 2 g of dried sediment and expressed as a percentage (see
Supplementary data). Benthic and planktic foraminiferal absolute
abundances, retrieved from the picking procedure, are abbreviated as
BFN and PFN, respectively. In addition, the ratio between planktic and
benthic foraminifera was evaluated as P/(P + B) *100 as a tool to
establish the paleodepth (van der Zwaan et al., 1990).

Larger benthic foraminifera (LBF), mostly too large to be retrieved in
the washed material (except for the genus Operculina), were studied
from rock-thin sections. Equatorial sections were obtained by grinding
specimens directly collected on the outcrop surface; in the case of hard
lithology, rock samples were soaked in a Rewoquat© for ~two days to
isolate the LBF tests. A total of 274 oriented sections have been prepared
and analyzed, and most of them permit identification at species level.
Whenever possible and reliable, subspecies identification was achieved,
mostly on discocyclinids. To identify the nummulitids, we adopted the
typological criteria by Herb and Hekel (1975) and Schaub (1981), which
require a variety of biometric measurements. The taxonomic criteria for
discocyclinids, followed by Özcan et al. (2006, 2022), also required
numerous biometric data measurable on each equatorial section.

For LBFs, this study adopted the biozonation SBZ (Shallow Benthic
Zones) of Serra-Kiel et al. (1998) as amended by Papazzoni et al. (2017),
while the zonal scheme of Orthophragminid Zones (OZ) by Özcan et al.
(2022) was adopted for the discocyclinids. Planktic foraminiferal bio-
zones were identified,according to Wade et al. (2011).

3.4. Calcareous nannofossils

Fourteen samples from the Capo Mortola section, covering the in-
terval from 27.0 to 49.3 m, were analyzed as smear-slides using the
standard techniques of preparation (see Bown and Young, 1998). Semi-
quantitative biostratigraphic analysis was performed using transmitted-
light microscopy (Leitz) in cross-polarized (XPL) and phase contrast (PC)
light at ~1000× magnification. Semi-quantitative data were recorded
by scanning five traverses of each slide (see Supplementary data). For
this reason, five abundance classes are recorded following Gandolfi et al.
(2023): very abundant (D: taxon with abundances >50% of the assem-
blage), abundant (A: 5 specimens per field of view (FOV), common (C:
1–5 specimens per FOV), few (F: 1 specimen per 1–10 FOV), and rare (R:
1 specimen per >10 FOV). Calcareous nannofossils were identified to
species level where possible following the taxonomy of Perch-Nielsen
(1985) and Nannotax (Young et al., 2022). This study adopted the bio-
zonations MNP and CNE by Fornaciari et al. (2010) and Agnini et al.
(2014), respectively.

4. Results

4.1. Biostratigraphy

In this study, biostratigraphy relies on planktic foraminifera,
calcareous nannofossils, and larger benthic foraminifera; all biozones
identified are shown in Fig. 2. In terms of planktic foraminifera, we were
able to identify the Total Range Zone E12 (Wade et al., 2011), which
largely corresponds to the MECO interval (Sexton et al., 2006; Bohaty
et al., 2009; Agnini et al., 2021), as evidenced by the occurrence of
Orbulinoides beckmanni in the interval from 39.7 to 49.2 m. The interval
below the base of O. beckmanni is referred to as Zone E11 due to the
absence of Guembelitrioides nuttallii and O. beckmanni.

Calcareous nannofossils in the Capo Mortola section vary between
poorly and well preserved; they are generally scarce in almost all cal-
cirudites and calcarenites but more abundant in samples that correspond
to fine-grained calcisiltite. In all studied samples,reworked Cretaceous
taxa occurred, but this did not hamper the biostratigraphic attribution of
the Eocene succession. The most significant species recognized are
illustrated in Fig. 3. According to the biozonation study by Agnini et al.
(2014), we identified two biozones. Biozone CNE14 (27.3 m - 43.7 m) is
characterized by the common occurrence (CO) of Reticulofenestra retic-
ulata, R. umbilicus, and Sphenolithus furcatolithoides. This biozone spans
an interval of 16.4 m between samples CM-18 and CM-38. Biozone
CNE15 (43.7–49.3 m) is marked by the first occurrence (FO) of Dictyo-
coccites bisectus in sample CM-41 (43.7 m), and this zone continues until
the top of the studied section.

Likewise, three biozones are recognized according to the biozonation
by Fornaciari et al. (2010). Biozone MNP16A (27.3–33.7 m) is indicated
by the common presence of S. furcatolithoides and the occurrence of
R. reticulata and R. umbilicus. In sample CM-26, S. furcatolithoides is more
abundant than the previous one. Successively, the biozone MNP16Ba
(33.7–43.7 m) is defined by the continuous occurrence of Sphenolithus
spiniger between the high occurrence (HO) of S. furcatolithoides and the
lowest common occurrence (LCO) of D. bisectus. This biozone is char-
acterized by the common presence of Dictyococcites scrippsae,
R. reticulata, Coccolithus pelagicus, and Cyclicargolithus floridanus. Finally,
the biozone MNP16Bb (43.7–49.3 m) is determined by the FO of
D. bisectus and the common and continuous occurrence of S. spiniger.
This biozone correlates with biozone CNE15 and continues until the top
of the studied section. Within this zone, it is possible to record the
common presence of D. scrippsae, R. reticulata, C. pelagicus, C. floridanus,
and S. spiniger.

Larger benthic foraminifera are represented by species indicating
SBZ 17. The assemblage is dominated by Nummulites perforatus,
N. biarritzensis, N. puigsecensis, and N. striatus (Fig. 4). Among these
species,N. puigsecensis is considered by Serra-Kiel et al. (1998) as limited
to SBZ 16; however, the range of this species is reported as extended to
the Bartonian (“Biarritzian”) by both Schaub (1981) and Serra-Kiel
(1984). Therefore, we consider the range ofN. puigsecensis as SBZ 16–17.
As regards N. striatus, reported as SBZ 18–19 (lower part) by Serra-Kiel
et al. (1998), we follow Seddighi et al. (2015), extending its strati-
graphic range also to SBZ 17.

The only species recovered belonging to the genus Assilina is
A. exponens. The most common orthophragminids are Discocyclina pul-
chra baconica and D. dispansa sella. Toward the uppermost part of the
profile, twomore subspecies occur: D. augustae olianae and D. trabayensis
elagizensis, which are all related to OZ 13 and could start from sample
CM-45. This indicates that the succession was deposited during the
uppermost part of SBZ 17, possibly very close to the boundary with SBZ
18.

4.2. Trends in oxygen and carbon stable isotope values

The results of bulk oxygen and carbon stable isotope analyses are
shown in Fig. 2; the δ18OVPDB(bulk) values vary between − 3.7‰ and
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− 1.2‰ with two positive peaks at 37.8 and 39.2 m and two negative
peaks at 38.5 and 38.8 m. Several minor shifts toward higher or lower
values are recorded between − 3‰ and − 2‰, but with an increasingly
negative overall trend ending at − 3.7‰.

The δ13CVPDB(bulk) values vary between − 0.8‰ and 0.6‰, with one
positive peak at 38.5 m. The δ13Cbulk curve records show a slight in-
crease from 37.2 to 43.0 m with several major/minor shifts and values
around 0‰ and 0.5‰, followed by a decrease from 49.0 m with values
moving between − 0.5‰ and 0‰. In addition, there are two negative
peaks at 49.0 and 49.1 m with values of − 0.6‰ and − 0.7‰, respec-
tively, followed by a return to values between − 0.5‰ and 0‰.

In the Capo Mortola section, variations in isotopic values linked to
lithostratigraphic changes, as seen in the Sealza section (Gandolfi et al.,
2023), are not observable.

4.3. Foraminiferal abundances

The preservation of both benthic and planktic foraminiferal tests is
sufficient to correctly identify the genera and sometimes the species. The
abundances of benthic and planktic foraminifera are shown in Figs. 5
and 6, respectively, and the most significant taxa are illustrated in Fig. 7.

From the disaggregated samples, a total of eight smaller and one

larger benthic foraminiferal genera were recognized (Fig. 5). With the
only exception of Operculina, which was found in washed residues,
larger foraminifera such as Nummulites, Assilina, and Discocyclina have
not been retrieved in the disaggregated samples and are treated sepa-
rately in thin sections (Fig. 1C). The most abundant genus is Heterolepa
(H. dutemplei; mean abundance 40.4%), which is characterized by some
oscillations from 27.3 to 39.0 m and displays a slight abundance
decrease from 39.0 to 41.0 m, followed by a return to the previous
abundance that remains constant in the upper part of the section. The
genus Cibicidoides (mean abundance 12.5%) shows its maximum abun-
dance in the lower part of the selected interval, followed by a decrease
from 31.0 to 38.3 m and then a further increase at 39.0 m. A similar
trend is followed by the genus Anomalinoides, sparsely occurring in the
lower part of the selected interval. The genus Operculina (mean value:
12.2%) is almost absent from 27.3 to 39.0 m (occurring only in samples
CM-23 and CM-28), but it markedly increases from 39.0 m to the end of
the section. The infaunal genus Uvigerina is scarcely represented in this
section (mean value: 1.5%), especially from 39.0 to 49.3 m. The major
peaks of abundance occur at 33.7, 36.0, and 39.7 m. Other minor in-
creases are recorded in the upper part of the section. The genera
Nodosaria and Quinqueloculina occur only in samples CM-28, CM-32,
CM-45, CMPL3, and CM-48, constituting a minor component of the

Fig. 3. Photomicrographs of selected calcareous nannofossils from the Capo Mortola section. The scale bar of 5 μm applies to all figs. 1. Sphenolithus spiniger Bukry,
1971 (CM-26); 2. Dictyococcites scrippsae Bukry and Percival, 1971 (CM-42); 3. Chiasmolithus sp. (CM-45); 4. Discoaster sp. (CM-32); 5. Sphenolithus furcatolithoides
Locker, 1967 (CM-26); 6. Reticulofenestra reticulata (Gartner and Smith, 1967) Roth and Thierstein, 1972 (CM-33); 7. Coccolithus pelagicus (Wallich, 1877) Schiller,
1930 (CM-41); 8. Reticulofenestra umbilicus (Levin, 1965) Martini and Ritzkowski, 1968 (CM-33); 9. Dictyococcites bisectus (Hay, Mohler and Wade 1966) Bukry and
Percival, 1971 (CM-42).
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assemblages. In turn, Lenticulina and Dentalina do not show significant
changes in abundance and are present almost continuously from the
base to the top of the interval analyzed. These last four genera
mentioned, scarcely represented, are indicated in Fig. 5 as “other
benthics.”

As for planktic foraminifera, five taxa were identified: Subbotina
hagni, S. eocaena, Acarinina praetopilensis, Morozovelloides sp., and
Orbulinoides beckmanni (Fig. 6). The most abundant genus is Subbotina
(mean value 17.3%), which is recorded in all samples and shows an
increase in abundance from 32.5 to 38.3 m, followed by a decrease at
38.3 m. Above this decrease, the abundance of Subbotina gradually re-
covers up to the top section. The genus Acarinina is less abundant than
Subbotina but follows a similar trend, with an increase in abundance in
the interval from 32.5 to 38.3 m, with three peaks at 33.7, 36.0, and
38.3 m. The main difference with Subbotina is that Acarinina is very
scarce, from 39.0 m to the top of the profile. The genusMorozovelloides is

absent in the lower part of the section and occurs from 40.8 to 49.3 m,
albeit with very low percentages and minor oscillations; it increases in
abundance in the uppermost portion of the section. Finally, Orbulinoides
beckmanni is recorded in the interval spanning from 39.7 to 49.3 m in
each sample, except for CM-36, CM-39, and CM-41.

5. Discussion

5.1. Isotopic record of the MECO

The Capo Mortola section displays a marked negative excursion of
~1‰ of the δ18Obulk in the interval from 39.20 to 49.30 m. Nevertheless,
this negative excursion is correlated with the E12 biozone as well as with
CNE14 and 15, so it is here interpreted as chronologically related to the
MECO event (Fig. 2; Bohaty and Zachos, 2003; Sexton et al., 2006; Edgar
et al., 2007; Bohaty et al., 2009; Edgar et al., 2010; Boscolo Galazzo

Fig. 4. Drawings and photomicrographs of selected larger benthic foraminifera from the Capo Mortola section. Scale bars of 1 mm apply to all figs. 1. Nummulites
puigsecensis (CM-5); 2. Nummulites incrassatus (CM-5); 3. Nummulites perforatus (CM-8); 4. Nummulites brongniarti (CM-6); 5. Assilina exponens (CM-40); 6. Assilina
exponens (CM-35); 7. Discocyclina radians radians (CM-40); 8. Discocyclina augustae olianae (CM-41); 9. Discocyclina pratti pratti (CM-38); 10. Discocyclina pulchra
baconica (CM-39); 11. Discocyclina dispansa sella (CM-40).
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et al., 2014; Borelli et al., 2014; Giorgioni et al., 2019). Correlating the
δ18Obulk curve of the CapoMortola section with those from other settings
(Fig. 8), it is possible to interpret our data as limited only to the onset of
the whole event. The composite standard reference section shown in
Fig. 2 allows us to fix the onset recorded by the δ18Obulk signal at 40.43
Ma and its minimum peak at 40.06 Ma, thus resulting in approximately
370 kyr. The duration of this event (onset and peak) is estimated to be
~500 kyr, as recorded worldwide in deep-water settings (Bohaty and
Zachos, 2003; Sexton et al., 2006; Bohaty et al., 2009; Edgar et al.,
2010). Nonetheless, in some sections of the Neo-Tethys, the MECO is
reported to have a longer duration of ~600 kyr (Bohaty et al., 2009;
Edgar et al., 2010; Bijl et al., 2010; Witkowski et al., 2014; Giorgioni
et al., 2019). This evidence is consistent with our assumption that only
the onset of MECO is recorded at Capo Mortola.

The δ18Obulk record from the Capo Mortola section shows absolute
values that are more negative than those obtained from the deep-water
sites (Bohaty et al., 2009; Edgar et al., 2010; Spofforth et al., 2010). In
turn, negative values of the δ18Obulk records have been linked to deltaic
environments, which were coupled with diagenetic processes (Gandolfi
et al., 2023; Peris-Cabré et al., 2023). Despite the differences in the
δ18Obulk absolute values, the isotopic signal of the Capo Mortola section
correlates clearly with similar data from other sections that register the
incipient stage of the MECO onset, thus providing new perspectives into
the MECO in mixed carbonate-siliciclastic shallow-water environments
(Fig. 9). However, we cannot exclude that the lower δ18Obulk values

recorded at Capo Mortola are also influenced by a diagenetic overprint
on the primary isotopic signal or other alteration factors (Fig. 9)
(Marshall, 1992; Schrag et al., 1995).

Diagenetic alteration has a more pronounced effect on oxygen iso-
topes than on carbon isotopes because of the high amount of oxygen
relative to carbon present in post-depositional fluids (Marshall, 1992;
Schrag et al., 1995; Fio et al., 2010). For this reason, carbonates with low
δ18O values can originate from freshwater input, increasing tempera-
ture, and meteoric diagenesis, whereas 18O enrichment could suggest
either a lower temperature or evaporation. On the contrary, carbon
isotopes are more resistant to diagenetic alteration because they are not
influenced by temperature (Marshall, 1992; Patterson and Walter, 1994;
Schrag et al., 1995; Peris-Cabré et al., 2023). However, the values of
δ13Cbulk can be strongly modified by other factors such as the organic
matter source, water circulation, extra-basinal carbonate input, strati-
fication, runoff supply, and weathering (Saltzman and Thomas, 2012;
Giraldo-Gómez et al., 2017; Läuchli et al., 2021; Peris-Cabré et al.,
2023).

The degree of diagenetic alteration recorded in the Capo Mortola
section is possibly attributed to post-depositional pore water carbonate
disequilibria (low values of δ13Cbulk, δ18Obulk; Fig. 9), due to partial
organic matter oxidation. These lower values of δ18O are probably
linked to both burial diagenesis often recorded in proximal settings (e.g.,
Lavastre et al., 2011), and the subsequent tectonic deformation, well
constrained in the region. Indeed, the thin sections observed from the

Fig. 5. Abundances of selected LBF and SBF foraminiferal genera (>63 μm fraction) before and across the onset of the MECO (pink-shaded band) in the Capo Mortola
section plotted against lithology and samples collected. The genus Discocyclina is very abundant from meter 40 to 45. BFN: benthic foraminiferal number (specimens/
2 g sediment); other benthics include the minor components of the assemblage (Lenticulina, Nodosaria, Quinqueloculina, and Dentalina). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Capo Mortola succession show intense fragmentation of nummulitic
tests as evidence of burial and compaction, all further compromised by
tectonic folding. Consequently, pore water chemistry differs from the
original seawater chemistry, and the original isotopic signal could be
altered (Veizer et al., 1999; Zachos et al., 2001; Giraldo-Gómez et al.,
2017). These features can explain the lack of correlation between the
δ13Cbulk curve from Capo Mortola and the deep-sea records.

5.2. Environmental conditions at the seafloor

The investigation of the benthic foraminiferal assemblages from the
Capo Mortola section, coupled with isotopic records, provides evidence
of the paleoenvironmental changes across the MECO onset that differ
from those known from the coeval Sealza section, cropping out a few
kilometers northward (Gandolfi et al., 2023).

The great abundance of Heterolepa, together with common Cibici-
doides (Fig. 5), during the pre-MECO interval suggests a well‑oxygenated
seafloor and poor nutrient supply because these genera are recognized as
epifaunal benthic foraminifera living in well‑oxygenated environments
(van der Zwaan, 1982; Speijer, 1994; Speijer and Schmitz, 1998; Rögl
and Spezzaferri, 2002; Giraldo-Gómez et al., 2018a, 2018b; Russo et al.,
2022). In the MECO onset interval, although Heterolepa records a slight

decrease in abundance, low nutrient supply to the seafloor and
well‑oxygenated conditions are confirmed by abundant LBF (Fig. 1) and
the scarcity of infaunal taxa like Uvigerina. Interestingly, in this interval,
the abundances of Heterolepa and Cibicidoides look out of phase, indi-
cating probably a competition between these two genera for life re-
sources and/or specific hydrodynamic preferences on the seafloor, given
the fact that Cibicidoides might prefer more agitated waters than Heter-
olepa (Murray, 2006). Smaller benthic foraminifera however, were not
particularly impacted by the onset of the MECO perturbance and
therefore no significant variations either in nutrient supply or in oxygen
level are interpreted. Conversely, in the shallow-water Sealza section
(Gandolfi et al., 2023), in the lower part of the MECO interval, possibly
correlating with the onset of the event at Capo Mortola, increased
eutrophication and scarcely oxygenated seafloor conditions are clearly
documented by modifications in benthic foraminiferal communities.

Additional clues are provided by abundance and distribution data of
LBF (Fig. 1), which should normally thrive on illuminated seafloors and
flourish in nutrient-depleted environments. Both Operculina and ortho-
phragmines are abundant in the uppermost part of the section (Fig. 5),
which suggests deposition in the deeper part of the photic zone, at
depths below 50 m and below the storm weather wave base (Molina
et al., 2016; Briguglio and Rögl, 2018; Kövecsi et al., 2022; Arena et al.,

Fig. 6. Abundances of planktic foraminiferal genera (>63 μm fraction) before and during the MECO onset (pink-shaded band) in the Capo Mortola section plotted
against lithology and samples collected. PFN: planktic foraminiferal number (specimens/2 g sediment); P/B: planktic to benthic (P/B) ratio calculated as P/(P + B)
*100 and expressed as percentages of planktic foraminifera in the total foraminiferal assemblage. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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2024), but still within the photic zone. At such depths, the genus
Nummulites is known to be less abundant, and along the section it dis-
appears almost completely as soon as Discocyclina becomes abundant.
The genus Operculina is almost absent in the pre-MECO phase, but it
becomes very abundant across the MECO onset. A similar trend is fol-
lowed by the genus Discocyclina (Fig. 1), which becomes quite abundant
immediately after the beginning of the MECO onset and occurs in rock-
forming amounts, especially from meter 40.0 to 45.0 along the section.
Orthophragmines are so abundant that domichnion traces of Nummipera
are solely constituted by their tests (Fig. 1B3), building amazing struc-
tures preserved in situ. Such a sudden increase in the abundance of LBF
tests (i.e., both Operculina and Discocyclina) may point to peculiar
environmental conditions related to their specific physiology. The
MECO warming might have caused an enhanced hydrological cycle,

which could have provided specific advantaged for these foraminifera:
continuous flux of nutrients and significant seafloor irradiation reduc-
tion. It is so far under debate whether symbionts in discocyclinids could
have preferred a light nutrient input as additional intake beside photo-
synthesis (Molina et al., 2016; Briguglio et al., 2017; Briguglio and Rögl,
2018; Kövecsi et al., 2022; Arena et al., 2024), but this seems evident in
some modern oligophotic symbiont-bearing benthic foraminifera (Eder
et al., 2017, 2018, 2019; Hohenegger et al., 2019). The continuous flux
in nutrient supply and terrigenous influx could easily contribute to the
sudden reduction of seafloor irradiation, thus favoring LBF taxa that are
usually considered deeper dwellers in the depth gradient, such as
orthophragmines, which could move to shallower depths adapting to
specific irradiation levels (Egger et al., 2013).

The abundance of Discocyclina agamonts is very high, as observed in

Fig. 7. Scanning electron microscope (SEM) images of the most significant taxa retrieved in this study in the Capo Mortola section. Scale bars of 100 μm apply to all
figs. 1) Operculina sp.; 2) Uvigerina sp.; 3) Anomalinoides sp.; 4) Heterolepa dutemplei (d’Orbigny, 1846); 5) Cibicidoides sp. 6) Subbotina eocaena (Guembel, 1868); 7)
Subbotina hagni (Gohrbandt, 1967); 8) Acarinina praetopilensis (Blow, 1979); and 9) Orbulinoides beckmanni (Saito, 1962).
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the field (see Fig. B2) and suggests low hydrodynamic conditions on the
seafloor (Seddighi et al., 2015; Briguglio et al., 2017); in fact, agamonts
are favored in low hydrodynamic settings as gametes have higher
chances of merging after the gamonts’ reproduction (Briguglio et al.,
2017).

Our data suggest that the sudden increase of Operculina and Dis-
cocyclina and the demise of Nummulites were not solely controlled by a
deepening of the depositional setting; in fact, P/B values and the benthic
foraminiferal assemblages do not support significant changes in paleo-
depth (Fig. 6). Furthermore, if depth was the controlling factor, the
ecological replacement in LBF would have been much smoother and not
as abrupt as is visible in the succession.

5.3. Environmental conditions in the upper water column

At the Capo Mortola succession, planktic foraminifera are not
abundant (see also the P/B ratio in Fig. 6); this is somehow expected in a
shallow-water succession dominated by LBF.

The genus Subbotina is the most abundant taxon among planktic
foraminiferaand is regarded as a deep-water thermocline dweller (e.g.,
Pearson et al., 2006; D’Onofrio et al., 2021) (Fig. 6). We cannot exclude
the possibility that subbotinids may have moved higher in the upper
column, as suggested by the stable isotope data from Northwest Atlantic
Site U1408 (Kearns et al., 2021). Nonetheless, Subbotina is not only
recognized as a cold-water index but may also indicate meso- to eutro-
phic conditions (e.g., Pearson et al., 2006; D’Onofrio et al., 2021).
Within the MECO onset, the lower abundance of Subbotina could be
related to the rise in temperature. However, Subbotina keeps slowly up
(Fig. 6), and it is reasonable to suppose that it was initially affected by
the incipient warming, but afterwards it probably benefited from the
nutrient supply related to the enhanced hydrological cycle, commonly
associated with warming events (D’Onofrio et al., 2021). The abundance
of this genus in pre-MECO is possibly related to a relatively eutrophic
environment, as also suggested by the moderately low abundance of LBF
or to the colder pre-MECO conditions.

The decline in abundance of Acarinina across the MECO onset here

Fig. 8. Stratigraphic correlation of δ18O between the Capo Mortola section (this study) and global δ18O records during the MECO, both in deep- and shallow-water
environments. Records from correlated sites show the onset and peak of the MECO: Atlantic Ocean: ODP 1051, ODP 702, and ODP 748 (Bohaty et al., 2009); Italy:
Alano (Spofforth et al., 2010); Spain: Belsué and Yebra de Basa (Peris-Cabré et al., 2023). The light, gray-shaded band marks the onset of the MECO, whereas the dark
gray-shaded band shows the peak of the MECO.

Fig. 9. Cross-plot of carbonate δ13C vs. δ18O isotope ratios for the middle
Eocene of the Capo Mortola section, showing the pre-MECO interval and the
onset of the MECO event. Seawater δ13C and δ18O ranges as reported by Veizer
et al. (1999) and Zachos et al. (2001) for the Eocene and the MECO. The gray
arrow displays the alteration pathway in seawater.
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recorded appears unusual for a warm-water index genus (e.g., Pearson
et al., 2001, 2006) that could have benefited from the warming trend
and needs different explanations. A reduction of the symbiotic rela-
tionship (bleaching) of Acarininawas documented during the peak of the
MECO for ~100 kys at Sites 748 and 1051 (Southern Ocean and mid-
latitude North Atlantic, respectively) by Edgar et al. (2013). These au-
thors relate this bleaching episode to the ecological stress induced by
increased sea-surface temperatures. However, the Capo Mortola section
does not record the MECO peak of temperature; therefore, it seems
unlikely that a bleaching episode caused the decrease in abundance of
Acarinina. Nevertheless, a marked decline ofAcarininawas also observed
in other deep-sea sediments, e.g., in the middle-bathyal Baskil (eastern
Turkey) and Alano sections (north-eastern Italy) (Luciani et al., 2010;
D’Onofrio et al., 2021). It has been suggested that modifications in
salinity and a rise in eutrophic conditions, associated with freshwater
input due to the intensified hydrological cycle, impacted the habitat of
the specialized, oligotrophic mixed-layer dweller acarininids (e.g.,
Boersma et al., 1987; Pearson et al., 1993, 2001, 2006; D’Onofrio et al.,
2021). It is reasonable to suppose that all these factors recorded in those
sections may be the reason behind the decline of Acarinina in Capo
Mortola and possibly for the rise of Subbotina.

The sporadic occurrence of Morozovelloides and O. beckmanni within
the MECO onset does not permit further interpretations. Nevertheless,
they are recognized as warm-water indicators that dominated the
tropical and subtropical assemblages in the upper Paleocene to middle
Eocene (Boersma et al., 1987; Pearson et al., 1993, 2001; Edgar et al.,
2010).

In this study, as in the Sealza section (Gandolfi et al., 2023), the
absence of Globigerinatheka is another atypical feature, especially
considering that several species of this genus should co-occur with
O. beckmanni, which is considered the end member of the Globiger-
inatheka curryi-euganea lineage (Proto Decima and Bolli, 1970). This
genus is regarded as a symbiont-bearing mixed layer dweller, recording
depleted δ18O and enriched δ13C values (Boersma et al., 1987; Pearson
et al., 1993; Premoli Silva and Jenkins, 1993; Pearson et al., 2001; Wade
and Kroon, 2002; Wade, 2004), thus possibly comparable for its
ecological requirements and significance with Acarinina. However, the
genus Acarinina is recorded, though in low abundance, throughout the
Capo Mortola section, whereas Globigerinatheka is completely absent.
The hypothesis that the increased nutrient supply at the MECO onset
may have prevented Globigerinatheka from thriving does not explain the
absence of this genus below the MECO interval. The reasons for its
absence are probably related to a different ecological behavior of Glo-
bigerinatheka with respect to Orbulinoides beckmanni, as supposed for the
Sealza section (Gandolfi et al., 2023). Following the supposition that
Subbotina migrated upward in the water column to occupy a similar
habitat as Globigerinatheka (Kearns et al., 2021), it is not excluded that
the latter lost the competition with Subbotina. The supposed eutrophi-
cation at Capo Mortola was much less intense with respect to the MECO
interval from the deep-water Alano section, as we do not record the
occurrence of highly opportunistic and eutrophic taxa such as Chilo-
guembelina, Jenkinsina, and Pseudoglobigerinella bolivariana, conversely
recorded in high abundance at Alano (Luciani et al., 2010; D’Onofrio
et al., 2021).

Although the calcareous nannofossil assemblages were only semi-
quantitatively estimated and show variable preservation, some
changes may give information on variations in the photic zone on the
basis of the recognized ecological affinities of the taxa recorded. Spe-
cifically, enhanced temperature and eutrophy at the MECO onset can be
deduced by the increase in abundance of Dictyococcites scrippsae and by
the occurrence of D. bisectus (that was not detected in the interval
below), as these taxa have been considered adapted to warm and
eutrophic waters (Wei and Wise, 1990; Villa et al., 2008) (see Supple-
mentary data). In this interval, this assumption is supported by the
virtual absence of oligotrophic taxa such as Sphenolithus furcatulithoides,
Cyclicargolithus floridanus, and Zygrhablithus bijugatus (Young, 1998;

Aubry, 1998; Bralower, 2002; Agnini et al., 2007; Gibbs et al., 2004). In
addition, reworking of Cretaceous nannofossils increases at the base of
the MECO onset, which is a further signal of transient enrichment in
nutrients (see Supplementary data). Similar variations have been
detected in the MECO of the Baskil section in Turkey (D’Onofrio et al.,
2021).

6. Conclusions

This work provides a significant opportunity to examine the MECO in
the shallow-water context of the Capo Mortola section (NW Italy) and
assess the resilience of the examined groups to this environmental
perturbation. The recorded response allows an interesting comparison
with the record from the most widely analyzed deep-water settings.

The MECO interval was identified by means of the calcareous
plankton biostratigraphy and the oxygen stable isotope signal, which
displays a marked negative excursion of ~1‰ in the interval from 39.20
to 49.30 m. This negative excursion is included within biozone E12 as
well as within biozones CNE14 and 15, which largely correspond to the
MECO event. However, the correlation of our δ18O curve with those
from deep-sea settings indicates that our succession corresponds only to
the onset of the MECO.

Our records on smaller benthic foraminifera from Capo Mortola
highlight that they were not particularly sensitive to the initial MECO
perturbance because only minor variations in nutrient supply and no
de‑oxygenation at the seafloor were detected. In turn, the LBF fauna
shifted to a new ecological regime during the MECO perturbation and
demonstrated resilience. Indeed, the genera Operculina and Discocyclina
became very abundant across the MECO onset; this suggests that the
increase in temperature, coupled with additional nutrient supply,
created a suitable environment where oligophotic LBF could thrive. The
accumulation of abundant agamonts indicates low hydrodynamic con-
ditions with the absence of bottom currents that would have prevented
sexual reproduction by fusion of gametes. The supposed enhanced
eutrophy, though moderate, to explain the calcareous plankton fora-
miniferal record does not contrast with the general oligotrophic condi-
tions recorded by smaller benthic foraminifera and whether nutrients
were mainly consumed by the former groups.

Interestingly, the variation in planktic foraminiferal abundance
recorded at Capo Mortola shows some similarities with those analyzed
from other areas of the Tethys that record an increase of subbotinids and
a decrease of acarininids as well (Luciani et al., 2010; D’Onofrio et al.,
2021). These changes have been tentatively related, in agreement with
our scenario, mainly to an increased nutrient supply that, however, was
much less intense in the Capo Mortola setting, possibly due to the dis-
tance from the fluvial input associated with a different paleogeography.

Our analysis emphasizes that the biotic response to the MECO per-
turbance is complex and reflects both the dissimilar adaptability of the
diverse taxa and the different regional settings.
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Briguglio, A., Rögl, F., 2018. The Miocene (Burdigalian) Operculinids of Channa Kodi,
Padappakkara, Southern India. Palaeontographica (A) 312 (1–4), 17–39.

Briguglio, A., Seddighi, M., Papazzoni, C.A., Hohenegger, J., 2017. Shear versus settling
velocity of recent and fossil larger foraminifera: new insights on nummulite banks.
Palaios 32, 321–329.

Carbone, F., Giammarino, S., Matteucci, R., Schiavinotto, F., Russo, A., 1981.
Ricostruzione paleoambientale dell’affioramento nummulitico di Capo Mortola.
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Giammarino, S., Fanucci, F., Orezzi, S., Rosti, D., Morelli, D., Cobianchi, M., De
Stefanis, A., Di Stefano, A., Finocchiaro, F., Fravega, P., Piazza, M., Vannucci, G.,
2010. Note Illustrative della Carta Geologica d’Italia alla scala 1:50.000 - Foglio "San
Remo" n.258- 271. ISPRA - Regione Liguria, 130 pp. A.T.I. - SystemCart s.r.l. - L.A.C.
s.r.l. - S.EL.CA, Firenze.

Gibbs, S., Shackleton, N., Young, J., 2004. Orbitally forced climate signals in mid-
Pliocene nannofossil assemblages. Mar. Micropaleontol. 51, 39–56.

Giorgioni, M., Jovane, L., Rego, E.S., Rodelli, D., Frontalini, F., Coccioni, R.,
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