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Abstract
In this paper, we consider a multi-agent portfolio optimization model with life insurance for
two players with random lifetime under a dynamic game approach. Each player is a price-
taker and invests in the market to maximize her own utility for consumption and bequest. The
market is complete and consists of n different assets, ofwhich n−1 are riskywith prices driven
by Geometric Brownian motion, while one is risk-free. We analyze both the non-cooperative
and cooperative scenarios, and by considering the family of CRRA utility functions, we
determine the closed-form expressions of the optimal consumption, investment, and life
insurance for both players. A sensitivity analysis is provided both to illustrate the impact
of the biometric and risk aversion parameters on the optimal controls and to compare the
non-cooperative strategies with the cooperative ones. As a result, we suggest that cooperation
favors the consumption optimality, while non-cooperation promotes the coverage of the risk
of death.

Keywords Dynamic games · Non-cooperative vs cooperative games · Portfolio choice ·
Lifetime uncertainty · Life insurance

JEL Classification G11 · C61 · C70 · G22

1 Introduction

The theory of portfolio management has received, during the last century, a great deal of
research attention with several contributions and developments. The classical Markowitz
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portfolio model (Markowitz, 1952) is the most important in this vein, despite its limited
way of describing the uncertainty related to the portfolio decision and its static formulation,
whichdoes not permit portfolio rebalancingwithin the investment horizon.Different extended
portfolio models have been proposed to deal with the presence of multiple criteria as well
as the notion of uncertainty and incomplete information, see, e.g., Ben Abdelaziz and Masri
(2005); La Torre and Mendivil (2018). Meanwhile, there are several papers considering
dynamic portfolio allocation models, and among them, the most famous is surely the one
introduced by Merton (1969) (see also Merton (1971)). The portfolio model described in
Merton (1969) is a continuous-time problem in which the investor with known lifetime has
to decide the allocation of her wealth among several investable risky assets and a risk-free
one to maximize her intertemporal utility. One of the generalizations of Merton’s model
was proposed by Richard (1975) by including optimal consumption, investment, and life
insurance decisions for an investor with an arbitrary but known distribution of lifetime. Such
a work served as a bridge between Merton’s model and the insurance literature, starting with
Yaari’s work (Yaari, 1965) and the vast number of life-cycle + mortality papers published
over the last four decades, as, e.g., Fischer (1973), Davies (1981), Butler (2001) and Lachance
(2012). Coming back to Richard (1975), some assumptions have been introduced to simplify
the model and make it more tractable from a mathematical perspective. In particular, the
market is assumed to be perfect and frictionless, with assets traded continuously. All the
assets have a limited liability, and the price of all the risky ones follows aGeometric Brownian
Motion process. Finally, there is no default risk for the issuer of the financial assets. Under
these assumptions, the author uses stochastic dynamic programming to derive the optimal
controls for investment, consumption, and life insurance for the investor, which maximizes
her expected utility for consumption and bequest. Moreover, he finds that the uncertain
lifetime (that constitutes the uncertain time horizon) and life insurance in no way affect the
investment strategies, and this is in part due to the individual’s expending (receiving) funds
to buy (sell) life insurance.

Several versions of Richard’s model have incorporated different features into the models,
such as the introduction of transaction costs (Liu & Loewenstein, 2002), the interpretation of
the fixed planning horizon as the wage earner’s retirement date (see, e.g., Stanley and Jinchun
(2007)) or the assumption that the conditional distribution function of the time horizon is
stochastic and correlated to stock returns, with subsequent impact on portfolio choices, as
in Blanchet-Scalliet et al. (2008). The latter (Blanchet-Scalliet et al., 2008) proved that
if the probability of leaving the market increases (respectively, decreases) with the risky
asset return, then the share of wealth invested in the risky asset is lower than (respectively,
greater than) in the case of a certain time horizon. Other works consider the correlation
between the dynamics of human and financial capital (Huang et al., 2008) or include a
different way to price the risky assets (Pirvu & Zhang, 2012). In Huang et al. (2008), the
authors consider the interaction between the constant relative risk aversion (CRRA) utility-
maximizing demand for life insurance and the optimal consumption-investment of a family,
as opposed to separating consumption and bequest. They show that the optimal amount of
life insurance a family should have depends on the volatility of the income process as well
as its correlation to investment returns. In Pirvu and Zhang (2012), allowing the stock price
to have a mean reverting drift, the impact of the stochastic market price of risk (MPR) on
the optimal investment strategies is analyzed. It is shown that the stock optimal investment
strategy is significantly affected by MPR and increases in the MPR. Other extensions can be
found, for instance, in Chang (2004), Hamacher et al. (2007) and references therein.

There is also a stream of literature which consider the optimal consumption-investment
and life-insurance problem from the viewpoint of a household comprising multiple wage
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earners, see, e.g., Kenneth Bruhn and Steffensen (2011), Wei et al. (2020) and Wang et al.
(2021). InWei et al. (2020), a couple of wage earners is considered, wherein both individuals
independently purchase a life insurance with their partner nominated as the beneficiary.
Moreover, the couple has correlated lifetimes, which aremodelled using copula and common-
shockmodels.Wang et al. (2021), instead, allows the income of a household consisting of two
consecutive generations, say, parents and children, to increase in a random and unobservable
way and allow for market ambiguity. Finally, a recent contribution in this area is Moagi and
Doctor (2022), which proposes a zero-sum differential game between the market, consisting
of a risk asset and a risk-free one, and the investor,which is subject to consumption, purchasing
life insurance and stochastic income with inflation risk. In particular, the investor wants to
minimize the risk of her terminal wealth to maximize the monetary returns, while the market
minimizes the chances of the investor maximizing the investment. The optimal strategies
are determined for two different life stages of the investor, pre-death and post-death, and by
using both the CRRA utility function and the constant absolute risk aversion (CARA) one.

In this paper, we propose an extension of Richard’s model to the case of two players,
representing members of two competing households, which do not receive any income but
acting on the same financial market and sharing the possibility to invest their wealth in a fixed
and common number of possible risky and risk-free assets. Each player aims to maximize
her own utility for consumption to the detriment of the other player and does so by deciding
the optimal share of wealth to allocate to each asset and the overall level of consumption.
Moreover, she selects the optimal amount of life insurance to be purchased to maximize the
death benefit paid to the beneficiary or to be sold to maximize her wealth. By considering a
CRRA utility function, we determine, for both players, the optimal consumption, the optimal
investments across different assets, and the optimal life insurance to buy/sell in both coop-
erative and non-cooperative scenarios. Then, we analyze the impact of the constant relative
risk aversion and mortality intensity on the optimal strategies. We compare such strategies,
illustrating that, from one side, the cooperative case is preferable to the non-cooperative one
in terms of optimality regarding the consumption activity. On the other side, we highlight
that the non-cooperative case promotes the coverage of the risk of death in old age.

The outline of the paper is as follows. Section2 summarizes Richard’s model for an
agent in continuous time. In Sect. 3, we present our Richard-type multi-agent model after
showing how to pass from a stochastic problem to a deterministic one. Section4 characterizes
the cooperative and non-cooperative equilibrium outcomes, deriving explicitly the players’
optimal strategies.

In Sect. 5, we perform an empirical implementation through a sensitivity analysis aiming
to compare the non-cooperative and the cooperative strategies. Finally, Sect. 6 presents con-
cluding remarks and highlights directions for future research. All mathematical technicalities
are presented in Appendix A.

2 The standard Richard’s model

Richard’s model is a continuous time model for optimal consumption, investment, and life
insurance rules for an investor with arbitrary but known distribution of lifetime. It is defined
as a stochastic optimal control problem, and it is solved by means of the Hamilton-Jacobi-
Bellman equation. As anticipated in the Introduction, the mathematical tractability of the
model is due to the following assumptions: themarket is assumed to be perfect and frictionless
with assets traded continuously; all the assets have limited liability, and the price of all the
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risky ones follows a geometric Brownian motion process; there is no default risk for the
issuer of the financial assets. Moreover, the model formulation considered in this paper is
based on the following conditions:

• the investor does not receive any income and chooses his portfolio by selecting from
n−1 risky assets which have known normal distribution of returns, and a risk-free asset;

• one can consume any fractional amount of wealth at any time;
• the investor aims at maximizing lifetime utility for consumption and bequest;
• consumption utilityU : R+ → R is a strictly concave C2 (twice differentiable with con-

tinuous derivatives) function, while the bequest function F(˜T , Z(˜T )) is strictly concave
in the contingent bequest Z(˜T ) ∈ R

+, being ˜T ∈ [0, T ] a random variable denoting the
age of death of the investor, with T the maximal age beyond which nobody will live.

Therefore Richard’s model reads as follows:

max
c,y1,...,yn−1,Q

J (W , c, y1, . . . , yn−1, Q) := E

[

∫
˜T

0
e−ρtU (c(t)) dt + F(˜T , Z(˜T ))

]

(1)
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⎩

dW (t) =
[(

n−1
∑

i=1

yi (t)(μi − μn) + μn

)

W (t) − c(t) − θQ(t)

]

dt +
n−1
∑

i=1

yi (t)W (t)σi d Bi (t),

W (0) = W0 > 0 given,

W (t) > 0 ∀ t ∈ [0, T ],
dPi (t) = Pi (t)(μi dt + σi d Bi (t)), Pi (0) > 0 given, i = 1, . . . , n − 1

dPn(t) = μn Pn(t) dt, Pn(0) > 0 given,
n

∑

i=1

yi (t) = 1,

0 ≤ yi (t) ≤ ξi , i = 1, . . . , n.

(2)

In (1), ρ is the discount factor derived from factors other than lifetime uncertainty, the state of
the investor at age t ∈ [0, ˜T ] is the wealthW (t), while the control at the same age is described
by the triple (c(t), yi (t), Q(t)), where: c(t) > 0 is the consumption of any fractional amount
of wealth W (t), yi (t), i = 1, . . . , n − 1, is the share of wealth invested in the i-th asset and
Q(t) is the amount of life insurance of an instantaneous term variety, purchased or sold.
The price of the i-th risky asset, denoted by Pi (t), is generated by a geometric Brownian
motion:

dPi (t) = Pi (t)(μi dt + σi d Bi (t)), i = 1, . . . , n − 1 (3)

where μi is the instantaneous conditional expected rate of Pi per unit time, σi > 0 is the
volatility per unit time and dBi (t) is aWiener process independent from each others for every
i . The n-th asset is purely deterministic and its price Pn(t) is given by

dPn(t) = μn(t)Pn(t) dt, (4)

where μn stands for the risk-free interest rate.
Denoting by Ni (t) the units of asset i owned by the investor at age t , it follows that her

total wealth can be defined as

W (t) =
n

∑

i=1

Ni (t)Pi (t). (5)
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Since Ni (t) can be expressed in terms of yi (t) and Pi (t), i.e., Ni (t) = yi (t)W (t)/Pi (t), then
by (5) follows that

n
∑

i=1

yi (t) = 1. (6)

Moreover, differentiating (5) and taking into account the expression of Ni (t), (3), (4) as well
as the consumption c and life insurance Q, one derive the budget equation:

dW (t) =
[(

n−1
∑

i=1

yi (t)(μi − μp) + μn

)

W (t) − c(t) − θQ(t)

]

dt

+
n−1
∑

i=1

yi (t)W (t)σi (t)dBi (t), (7)

where θ > 0 is the constant insurance premium per dollar of coverage and accordingly θQ(t)
is the whole insurance premium. Finally, we denote by ξi ∈ (0, 1] the weight in terms of
volume of the asset i on the total market volume. Note that this formulation implies that
should the investor die at age t , the wealth left behind plus eventual life insurance will go to
the beneficiary.

3 Amulti-agent model’s formulation

In this section, we extend Richard’s model with a single player (investor) to the case of two
players representing members of two competing households and investing in the same finan-
cial market. Our formulation consists of a finite-horizon dynamic game where the terminal
date, ˜Tj , is the age of death of each player j , j = 1, 2, and hence a random variable. We start
by showing that Richard’s extended model can be converted into a deterministic model by
using the survival function of each player, and, after that, by focusing on the deterministic
problem, we determine the non-cooperative and cooperative optimal strategies.

As is common in the literature, we assume that there is a maximal age T beyond which no
onewill live and callπ j (t) the probability that the player j dies at age t , so that

∫ T
0 π j (t) dt =

1. Then, we define the survival function at the age t , namely the probability for the player j
to live t years or more, as

S j (t) =
∫ T

t
π j (s) ds.

By definition, S j (0) = 1, S j (T ) = 0 and S j (t)′ < 0. The force of mortality is defined as

λ j (t) = π j (t)

S j (t)
= − d

dt
log S j (t), j = 1, 2

therefore, the survival function takes the form

S j (t) = e− ∫ t
0 λ j (s) ds j = 1, 2.

Within this framework, where the force of mortality is deterministic, by Fubini’s theorem
follows that the expected utility for consumption and bequest that each player wants to
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maximize can be written as

E

⎡

⎣

2
∑

j=1

(

∫
˜Tj

0
e−ρtU j (c1(t), c2(t)) dt + F(˜Tj , Z j (˜Tj ))

)

⎤

⎦

=
2

∑

j=1

∫ T

0
π j (t)

[∫ t

0
e−ρsU j (c1(s), c2(s)) ds + F(t, Z j (t))

]

dt .

Using integration by parts and the equality S j (t)′ = −π j (t), we get

2
∑

j=1

∫ T

0
π j (t)

[∫ t

0
e−ρsU j (c1(s), c2(s)) ds + F(t, Z j (t))

]

dt

=
2

∑

j=1

[

−S j (t)

(∫ t

0
e−ρsU j (c1(s), c2(s)) ds

) ∣

∣

∣

∣

T

0

+
∫ T

0
e−ρt S j (t)Uj (c1(t), c2(t)) + π j (t)F(t, Z j (t)) dt

]

=
∫ T

0
e−ρt

2
∑

j=1

S j (t)Uj (c1(t), c2(t)) + π j (t)F(t, Z j (t)) dt

(8)

Now, by considering the last expression of the objective function in (8), we formulate the
optimization problem that each of the two players, j = 1, 2, aims to solve:

max
c j ,y1, j ,...,yn−1, j ,Q j

J (Wj , c j , y1, j , . . . , yn−1, j , Q j )

= max
c j ,y1, j ,...,yn−1, j ,Q j

∫ T

0
e−ρt

2
∑

j=1

S j (t)Uj (c1(t), c2(t)) + π j (t)F(t, Z j (t))dt (9)
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⎪

⎪

⎩

dWj (t) =
[(

n−1
∑

i=1

yi, j (t)(μi − μn) + μn

)

Wj (t) − c j (t) − θ j Q j (t)

]

dt

+
n−1
∑

i=1
yi, j (t)Wj (t)σi d Bi (t)

Wj (0) = Wj > 0 given,

Wj (t) > 0 ∀ t ∈ [0, T ],
dPi (t) = Pi (t)(μi dt + σi d Bi (t)), Pi (0) > 0 given, i = 1, . . . , n − 1

dPn(t) = μn Pn(t) dt, Pn(0) > 0 given,
n

∑

i=1

yi, j (t) = 1, j = 1, 2

0 ≤
2

∑

j=1

yi, j (t) ≤ ξi , i = 1, . . . , n.

(10)

Most of the parameters and the equations listed in (9)–(10) can be seen as a natural
extension of those presented in the previous section for a single investor. However, the
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following considerations hold: the two players invest in the same financial market consisting
of n available assets, n − 1 of which are risky and one is risk-free, and they share the same
number of investments. As a result, it is necessary that each player’s utility function also
depends on the consumption of the other. Indeed, the utility is defined asUj : R+×R

+ → R,
j = 1, 2, and it is a strictly concave C2 (twice differentiable with respect to both variables
and with continuous derivatives) function, while the bequest function F(t, Z j (t)) is strictly
concave in the contingent bequest Z j , from which the demand for life insurance is derived,
with Z j (t) such that

Z j (t) = Wj (t) + Q j (t).

Denoting by yi, j (t), i = 1, . . . , n − 1, the share of wealth invested in the i-th asset by the
player j , follows that

n
∑

i=1

yi, j (t) = 1, j = 1, 2. (11)

Moreover, we can establish the following constraint:

0 ≤
2

∑

j=1

yi, j (t) ≤ ξi , (12)

which states that the sum of the shares of wealth of both players invested in the same asset
i will at most be equal to the weight, in terms of volume, of the asset i on the total market
volume. By (11) and (12) follows the technical condition,

n
∑

i=1

ξi ≥ 2, (13)

because 0 ≤ yi, j (·) ≤ 1 for every i = 1, . . . , n and j = 1, 2, and then the sum of the upper
bounds ξi has to be greater or equal than 2. It expresses the fact that the total availability, in
terms of volume, of all the n assets in the market has to be greater or equal than 2.

Note that the constraint (12) will get the following form

2
∑

j=1

yi, j (t) = ξi , (14)

when the cooperative case is considered, as it represents the external enforcement, which
allows the coalition among the players. Every player j aims to find the optimal policy that
maximizes her objective function (9). To do that, shewill decide the optimal share ofwealth to
allocate to the asset i by considering each risky asset’s volatility and the overall consumption
level. Moreover, she will select the optimal amount of life insurance Q j (t) to be purchased
to maximize the death benefit paid to the beneficiary or to be sold to maximize her wealth.

In the following section, we discuss how to obtain the optimal strategies for both players
in non-cooperative and cooperative contexts and determine the optimal solution to the HJB
equation in the case of power utility and Gompertz force of mortality.
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4 Equilibrium outcomes

We now investigate, separately, the scenarios in which the two players do not and do coop-
erate in their wealth allocation choices. The comparison between the non-cooperative and
cooperative strategies will be dealt with in Sect. 5.

4.1 Non-cooperation

In a non-cooperative framework, the player 1 solves problem (9)–(10) by taking the optimal
strategies of the player 2 as exogenous data, meaning that each player cares only about her
investments, consumption, and life insurance. As a consequence, it is equivalent for the player
1 to solve (9) or another maximization problem in which the utility functionU1 only depends
on c1(t), as c2(t) can be considered exogenous and, therefore, it will not affect the calculation
of the maximum. The player 1 also knows the shares of wealth of player 2 invested in all
assets i , as this data is provided exogenously. Then, it is possible to show (the proofs of all
the propositions are presented in Appendix A) that the following result for player 1 holds.
An equivalent result also holds for the player 2 (see Remark 1).

Proposition 1 Assume that the force of mortality λ1(t) follows the Gompertz law, i.e,

λ1(t) = λ1(0) e
γ1t , λ1(0) > 0, γ1 > 0,

and that the utility function takes the form:

U1(c1(t), c2(t)) = 1

1 − α1
(c1(t))

1−α1 + 1

1 − α2
(c2(t))

1−α2 ,

with constant relative risk aversion α j > 0, α j �= 1 for j = 1, 2. If, in addition,

α1 > max

{

μ1 − μn

(σ1)2(ξ1 − y1,2)
,

μ2 − μn

(σ2)2(ξ2 − y2,2)
, . . . ,

μn−1 − μn

(σn−1)2(ξn−1 − yn−1,2)

}

, (15)

and G1(t) > 0 ∀ t ∈ [0, T ) then the non-cooperative optimal consumption, the share of
wealth invested on the i-th asset and the optimal amount of life insurance of the player 1 are
respectively given by:

c1(t) =
(

1

G1(t)

) 1
α1

W1(t), (16)

yi,1(t) = μi − μn

α1(σi )2
, i = 1, . . . , n − 1, (17)

Q1(t) =
[

(

λ1(0) eγ1t

θ1 G1(t)

)
1
α1 − 1

]

W1(t), (18)

where G1(t) is given by:

G1(t) =e
{ν1(t−T )+ λ1(0)

γ1
(eγ1 t−eγ1T )}

×
[

k
1

α1 +
∫ T

t

(

1 + (θ1)
α1−1
α1 (λ1(0))

1
α1 e

γ1s
α1

)

e
{− ν1

α1
(s−T )− λ1(0)

α1γ1
(eγ1s−eγ1T )}

ds

]α1

,

(19)

with

ν1 = −(1 − α1)

(

1

2

n−1
∑

i=1

(μi − μn)
2

α1(σi )2
+ μn − ρ

1 − α1
+ θ1

)

. (20)
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Provided that some technical conditions hold, Proposition 1 determines, in closed form,
the expressions of the optimal consumption, the share of wealth invested in the i−th risky
asset and the optimal amount of life insurance. Note that (15) translates the condition 0 ≤
yi,1 < ξi − yi,2, i = 1, . . . , n − 1, that follows from (12) in the non-cooperative framework.
We can observe that the consumption is linear in wealth, and the share of wealth invested
in the i−th risky asset is constant as in Merton’s model (Merton, 1971). Moreover, from
Proposition 1 we also derive the optimal quantity of contingent bequest

Z1(t) = Q1(t) + W1(t) =
(

λ1(0) eγ1t

θ1 G1(t)

)
1
α1

W1(t),

which is proportional to wealth. This fact is in line with the standard result on life insurance
‘a la Fischer’ (Fischer, 1973). In case that Z1(t) < W1(t), as observed in Richard (1975), the
consumer becomes the seller and not the buyer of life insurance. Apart from these intuitive
observations, we cannot say much about the effects of both biometric and financial parame-
ters on consumption and life insurance, as the expressions in (16) and (18) are particularly
cumbersome due to the form of G1(t) in (19). Therefore, in Sect. 5, we will present a sensi-
tivity analysis to scrutinize the impact of these parameters on optimal controls. Finally, the
optimal controls (16), (17) and (18) can be used inside the budget equation (7), which, if
solved, gives the optimal wealth of the player 1.

Remark 1 As anticipated, for player 2, an equivalent result to Proposition 1 holds. Indeed,
proceeding as in Proposition 1, we get that the optimal controls for the player two are given
by:

c2(t) =
(

1

G2(t)

) 1
α2

W2(t), (21)

yi,2(t) = μi − μn

α2(σi )2
, i = 1, . . . , n − 1, (22)

Q2(t) =
[

(

λ2(0) eγ2t

θ2 G2(t)

)
1
α2 − 1

]

W2(t), (23)

where G2(t) is similar to the one in (19).

4.2 Cooperation

In this section, we focus on the cooperative setup where the two players, sharing market
information forced by (14), agree on the investments to be made. Such a binding agreement
implies that the two players are active in the financial market in the same years, meaning
that the two players must have the same residual lifetime. Therefore, we assume that they
have the same survival probability and insurance coverage, i.e., S1(t) = S2(t) = S(t) for
every t ∈ [0, T ] and θ1 = θ2 = θ > 0. From the equivalence of the survival probabilities
follows the ones of the forces of mortality, λ1(t) = λ2(t) = λ(t). Moreover, we assume that
the players are characterized by the same constant risk aversion, i.e., α1 = α2 = α. Then,
the following holds.

Proposition 2 Assume that the force of mortality λ(t) follows the Gompertz law, i.e,

λ(t) = λ(0) eγ t , λ(0) > 0, γ > 0,

123



Annals of Operations Research

and that the utility functions U1 and U2 in (9) take the same form:

U1(c1(t), c2(t)) = U2(c1(t), c2(t)) = 1

1 − α

[

(c1(t))
1−α + (c2(t))

1−α
]

, α > 0, α �= 1.

If G(t) > 0 ∀ t ∈ [0, T ) then the cooperative optimal consumption, the share of wealth
invested on the i-th asset and the optimal amount of life insurance of the two players j = 1, 2
are respectively given by:

c j (t) =
(

2

G(t)

) 1
α

Wj (t), (24)

yi, j (t) = μi − μn

α(σi )2
, i = 1, . . . , n − 1, (25)

Q j (t) =
[

(

λ(0) eγ t

θ G(t)

)
1
α − 1

]

Wj (t), (26)

where G(t) is given by:

G(t) = e{ν(t−T )+ λ(0)
γ

(eγ t−eγ T )}

×
[

( k )
1
α +

∫ T

t

(

2
1
α + θ

α−1
α λ(0)

1
α e

γ s
α

)

e{− ν
α
(s−T )− λ(0)

αγ
(eγ s−eγ T )}ds

]α

, (27)

with

ν = −(1 − α)

(

1

4

n−1
∑

i=1

ξi (μi − μn) + μn − ρ

1 − α
+ θ

)

. (28)

Provided that a technical condition holds true, Proposition 2 gives in closed form the
expressions of the consumption, the share of wealth invested in the i−th risky asset and the
optimal amount of life insurance in a cooperative setting. Similar considerations to the ones
provided under Proposition 1 for the optimal strategies and the optimal quantity of contingent
bequest Z j (t) hold. The optimal wealth of each player j can be obtained still solving equation
(7) but now considering the optimal controls (24), (25) and (26) which, also in this case due
their form do not allow the impact of the parameters on them to be observed; hence we refer
to the numerical Sect. 5 for that analysis.

5 Empirical implementation

In the present section, we propose an empirical implementation of the theoretical frame-
work exposed in Sects. 3, 4. Such a study is performed through two steps of analysis and
distinguishing between the cooperative and non-cooperative cases.

First of all, we proceed to set the value of parameters characterizing the equilibrium
outcomes. In particular, given the set of all parameters involved in optimal controls, i.e.,

� = {

α1, α2, α, λ1(0), λ(0), γ1, γ, θ1, θ, μi , μn, σi , ρ, k, k̄
}

,

we proceed to estimate separately the following three sets of parameters, namely:

Financial parameters : �(F) = {μi , μn, σi } , i = 1, . . . , n − 1

Non-Financial parameters : �(NF) = {

α1, α2, α, θ1, θ, ρ, k, k̄
}
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Table 1 Estimates for financial
parameters

i Asset Parameters
μi σi

1 S&P500 0.0178 0.1875

2 FTSE100 0.0105 0.1435

3 NIKKEI 0.0178 0.1873

4 DAX 0.0176 0.1865

5 3TB 0.0067 –

All the daily time series employed in the estimation concern the period
01/01/2021–07/06/2023

Table 2 Estimates for biometric
and non-financial parameters

λ1(0) = λ(0) γ1 = γ θ1 = θ k = k̄ ρ

0.00128 0.11539 0.2 1 0.01

Biometric parameters : �(B) = {λ1(0), λ(0), γ1, γ }
Concerning the financial parameters, we assume that the players can invest their wealth in a
financial market composed of four risky assets and a risk-free one. The former are given by
the Standard & Poor’s 500 Index (S&P500), the Financial Times Stock Exchange 100 Index
(FTSE100), the Japan’sNikkei 225StockAverage (NIKKEI), and theDeutscherAktien Index
(DAX). On the other side, the risk-free asset is portrayed by the U.S. 3-month Treasury Bill
(3TB). To estimate the risky assets parameters, we collect the daily time series of closing
prices from Yahoo Finance and, applying the methods of moments to (3), the estimates for
μi and σi , for i = 1, . . . , 4, are the sample mean and the sample standard deviation of the
observed log-returns, respectively. The parameter μ5, instead, is calibrated on the daily time
series of the U.S. 3-month Treasury Bill returns gathered by the Federal Reserve Economic
Data repository (https://fred.stlouisfed.org/). The estimated values of financial parameters
are reported in Table 1.

The biometric parameters are assessed using the mortality data provided by the Human
Mortality Database (2018). In particular, we consider period death counts and exposures for
the 2019 Italian female population, referring to the age range [50, 100]. Then, our player 1
in the non-cooperative case is an Italian female aged 50, which may reach the age T = 100,
while player 2 is an agent with a different lifetime (e.g., an Italian male). Note that the age
T = 100 serves as the maximum attainable age while the age 50 represents the inception
age. Conversely, Proposition 2 assumptions imply that, in the cooperative case, we deal
with two identical biometrically Italian females. Consequently, we pose λ1(0) = λ and
γ1 = γ , and, coherently, the same insurance premium per dollar of coverage, i.e. θ1 = θ .
To estimate the biometric parameters, λ1(0) and γ1, we employ the non-linear least square
method concerning Gompertz’s mortality law parametrized as in Propositions 1 and 2. The
obtained values are displayed in Table 2. The latter also contains the values of some of the
parameters in �(NF), which are established by assumption. Regarding the constant relative
risk aversion parameters, we set α1 = 2 and α2 = 15 for the non-cooperative case and, with
the aim to compare the two scenarios, α = α1 is considered for the cooperative situation.

In addition, the optimal control expressions also incorporate the wealth W1(t) and the
G1(t) function in the non-cooperative case, while in the cooperative ones, we have Wj (t)
and G(t). Concerning the wealth, their expressions are derived by solving the stochastic
differential equation in (10) at the equilibrium. In particular, for the non-cooperative scenario,
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we get:

W1(t) = W1(0) exp

{∫ t

0

4
∑

i=1

(μi − μn)
2

α1(σi )2

(

1 − 1

2α1

)

+ μn − θ1 −
(

1

G1(s)

) 1
α1

×
(

1 +
(

λ1(0)e
γ1s θ

α1−1
1

) 1
α1

)

ds +
4

∑

i=1

μi − μn

α1σi
(Bi (t) − Bi (0))

}

,

(29)

while for the cooperative scenario holds the following:

Wj (t) = Wj (0) exp

{∫ t

0

4
∑

i=1

(μi − μn)
2

α(σi )2

(

1 − 1

2α

)

+ μn − θ −
(

1

G(s)

) 1
α

×
(

2
1
α + (

λ(0)eγ s θα−1)
1
α

)

ds +
4

∑

i=1

μi − μn

ασi
(Bi (t) − Bi (0))

}

.

(30)

We notice that integrals in (29) and (30), as well as the functions G1(t) and G(t), do not have
an explicit solution. Then, their value has been obtained by numerical approximation through
the trapezoidal rule and by using a constant discretization step with amplitude � = 0.001.

Afterwards, we perform a sensitivity analysis showing how parameters affect the optimal
allocation of player wealth between consumption, financial assets, and life insurance. To this
end, we consider biometric parameters and select the constant relative risk aversion as the
more relevant non-financial parameter. For the latter we pose α1 ∈ [2, 4], so that α varies in
the same range. Regarding the biometric parameters, we assume three possible deterministic
outcomes: (a) the central scenario, (b) themortality-increasing scenario, and (c) themortality-
decreasing scenario. The central scenario stems from using biometric parameters mentioned
in Table 2 to determine the optimal controls. Instead, scenarios (b) and (c) are obtained by
applying, respectively, an instantaneous upward and downward shock to the force ofmortality
defined in the central scenario. To define such a shock, the following parametrization of
Gompertz’s mortality law is considered:

λ1(t) = 1

b1
exp

(

t + τ − M1

b1

)

,

whereb1 = 1
γ1
, t is the considered age (t = 50 inour application), t+τ, τ > 0, is an attainable

age, and M1 = t − b ln (bλ1(0)) is the modal age for the player 1. The mortality-increasing
(decreasing) scenario is defined by augmenting (reducing) the biometric parameters of the
central scenario. Then, for the parameter M1, the mortality shocks are derived by shifting the
modal age of the central scenario (approximately 89). In the mortality-decreasing scenario,
such a shift is equal to the relative variation of the Italian females’ modal age over the
period 1980–2019 (approximately +12, 41%), and it is applied to 2019’s modal age. In the
mortality-increasing scenario, the shift is employed with the opposite sign. Concerning the
parameter λ1(0), the shift is determined as the relative variation of the b1 parameter over the
period 1980–2019. The achieved biometric parameters for scenarios (b) and (c) are collected
in Table 3. Such values for the non-cooperative case are also adopted in the cooperative one.

5.1 Non-cooperation versus cooperation

In the following, the sensitivity analysis results are shown comparing the non-cooperative
and the cooperative strategies. We stress that the comparison is performed assuming α = α1.
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Table 3 Biometric parameters for
each mortality scenario

Scenario Parameters
λ1(0) γ1

Mortality-increasing 0.00187 0.14362

Central 0.00128 0.11539

Mortality-decreasing 0.0009 0.09643

Table 4 Optimal share of wealth
invested in financial assets: the
non-cooperative versus
cooperative case

Asseti ξi Non-cooperation Cooperation
yi,1 yi,2 yi, j

S&P 500 0.3167 0.1583 0.0211 0.1583

FTSE 100 0.1875 0.0938 0.0125 0.0938

NIKKEI 0.3169 0.1585 0.0211 0.1585

DAX 0.3149 0.1575 0.0210 0.1575

3TB 0.8639 0.4319 0.9243 0.4319

Values are rounded to the fourth decimal. Since α1 = α, we observe that
yi,1 = yi, j , for i = 1, . . . , 4 and y5,1 = y5, j

Table 4 exhibits the optimal share of wealth allocated in financial assets. Looking at the
non-cooperative case, it is worth noting that the constraint (12) is satisfied for all assets except
for the risk-free investment. Indeed, by using the optimal strategies (17) and (22) relative
to risky investments, the two players have to allocate their residual share of wealth to the
risk-free asset to fulfil the condition (6). This fact implies that the sum of optimal risk-free
investments exceeds the current asset volume available in the financial markets. Therefore,
in the non-cooperative scenario, one of the two players will have to adopt a suboptimal
strategy with respect to risk-free investment. On the contrary, due to (14), the cooperative
case requires that players are constrained to invest an amount of wealth such that the overall
market volume is saturated. On the one hand, this implies that both players optimally allocate
their wealth also on the risk-free asset; on the other, both players may have a lower amount
of wealth for consumption and life insurance purchasing than in the non-cooperative case.

We notice that, under the assumption α1 = α, both the non-cooperating player 1 and the
cooperating players assign the same optimal shares of wealth to financial assets. Then, their
allocation of wealth differs in terms of both consumption and life insurance.

Fig. 1 illustrates the effect of an increasing risk aversion on the optimal share of wealth
assigned to financial assets. As expected, more wealth is attributed to the risk-free asset when
the risk aversion increases. Looking at the risky assets side, both the non-cooperating player
1 and the cooperating players prefer to invest in DAX, S&P500, and NIKKEI indices. As
emerged in Table 1, the FTSE100 index is characterized by the lower ratio between return
and riskiness, where the latter is represented by σi . Hence, the players tend to allocate a lower
portion of wealth in the FTSE100, preferring other risky investments, despite an increasing
portion of wealth being transferred to the risk-free asset as risk aversion augments.

Figure 2 shows the optimal consumption at three ages, i.e. when the player is 65 years old,
75 years old, and 85 years old, respectively, and how such a consumption varies according
to risk aversion increments. For both the non-cooperative and cooperative scenarios, we
observe a growing consumption by age and risk aversion, albeit the consumption appears
more sensitive to age variations rather than risk aversion changes. Moreover, the cooperative
scenario is characterized by a greater consumption activitywith respect to the non-cooperative
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Fig. 1 Optimal share of wealth varying the constant relative risk aversion

Fig. 2 Optimal consumption varying the constant relative risk aversion: non-cooperative (lhs) versus cooper-
ative (rhs)

ones, by age and risk aversion. Such an interesting finding is justified by the behaviour of
both the wealth, W1(t) and Wj (t), and the functions G1(t) and G(t).

Recalling the optimal control (16), we stress that the consumption for non-cooperating
player 1 is proportional to the wealthW1(t), where the coefficient of proportionality contains
the G1(t) function. Similarly, by the expression of the optimal control (24), the consumption
of cooperating players is proportional to the wealth Wj (t), and the function G(t) shapes the
proportionality coefficient. Figure3 exhibits both the G1(t) and G(t) functions, as well as
the expectation about the wealthW1(t) andWj (t). We note that, on average, the cooperation-
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Fig. 3 The left-hand side plot shows G1(t) and G(t), while the right-hand side plot contains the expectation
of the wealth W1(t) and Wj (t) at the equilibrium. The latter are represented on a log-scale exclusively to
facilitate graphic display. For both plots, α1 = α = 2 is considered

Fig. 4 Optimal life insurance amount varying the constant relative risk aversion: non-cooperative (lhs) versus
cooperative (rhs)

based wealth becomes bigger and bigger than the non-cooperation-based one, so that a higher
consumption activity for cooperating players is allowed. As (29) and (30) state, the wealth
expressions are characterized by the presence of G1(t) and G(t) functions, respectively, but
only the G(t) function embeds the investment constraints ξi (see (28)). To some extent, the
condition (14) implies, on one side, that cooperating players have to employwealth to saturate
the market volume; on the other, the return on the overall investment activity will be higher
than in the non-cooperative scenario, so that cooperating players accrue a greater wealth.

The comparison between the non-cooperative and the cooperative scenarios highlights
significant gaps in terms of optimal allocations of life insurance. For instance, Fig. 4 reveals
that the non-cooperating player 1 purchases life insurance when older ages are approached,
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Fig. 5 Optimal consumption for both players varying the biometric parameters: the non-cooperative case(lhs)
versus the cooperative case (rhs)

while cooperating players act always as life insurance sellers. As argued in Richard (1975), an
agent may either buy or sell life insurance depending on her risk aversion and her preference
for consumption or inheritance. Then, in our framework, the cooperating players prefer to
sell life insurance aiming to support consumption and, to some extent, they are not, or less,
sensitive to the risk of death. On the contrary, the non-cooperating player places more and
more importance on the risk of death as she gets older. To understand the feelings driving
the players about the optimal life insurance allocations, let us consider:

λ̃1(t) :=
(

λ1(0)

θ1G1(t)

) 1
α1

, γ̃1 := γ1

α1
, λ̃(t) :=

(

λ(0)

θG(t)

) 1
α

, γ̃ := γ

α
.

Then, the optimal control expressions (18) and (26) can be rewritten, respectively, as:

Q1(t) =
(

λ̃1(t)e
γ̃1t − 1

)

W1(t), (31)

Q j (t) =
(

λ̃(t)eγ̃ t − 1
)

Wj (t). (32)

The terms λ̃1(t)eγ̃1t and λ̃(t)eγ̃ t have theGompertzmortality law’s formwith time-dependent
baseline mortality, and they express a measure of the exposition to the risk of death for each
unit of wealth. Therefore, if λ̃1(t)eγ̃1t > 1 then the exposure to the risk of death becomes
greater than the available wealth W1(t), and it is optimal to purchase life insurance. On the
contrary, it is preferable to sell life insurance. Since the G1(t) function characterizing λ̃1(t)
quickly decreases, the exposition to the risk of death grows as the age increases, and the non-
cooperating player uses a portion of her wealth to buy life insurance. The opposite situation
occurs by considering the cooperative case because the G(t) function reduces slowly.

Finally, Figs. 5 and 6 show how optimal controls vary when different mortality scenarios
are addressed (see Table 3). In the non-cooperative case, as well as in the cooperative one,
a downward shock of mortality translates into a consumption reduction. The opposite result
emerges if an upward shock of mortality occurs. Then, if the non-cooperating player lives
longer, she prefers to limit consumption allocating amajority share ofwealth to life insurance.
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Fig. 6 Optimal life insurance amount for both players varying the biometric parameters: the non-cooperative
case (lhs) versus the cooperative case (rhs)

Regarding the cooperating players, Fig. 6 represents the impact of mortality shocks on the
cooperative-based allocation of life insurance. Essentially, in line with the central mortality
scenario, the cooperative players prefer life insurance selling to support the wealth allocation
between financial investments and consumption.

Then, the cooperative players continue to exploit life insurance as an asset financing
investments and consumption, independently of mortality shocks and coherently with the
central mortality scenario, while the non-cooperative player promotes a greater(lesser) life
insurance purchasing(selling) when a mortality-increasing(decreasing) scenario occurs.

6 Conclusion

This work presents a multi-agent portfolio optimization model with life insurance for two
players with random lifetimes under a dynamic game approach. In particular, the two players
act on the same financial market andmaximize their own utility for consumption and bequest.
Then, the optimal consumption, investments across different assets, and life insurance are
provided in cooperative and non-cooperative scenarios using a CRRA utility function.

We test our theoretical results through a sensitivity analysis, aiming to investigate the
effects on optimal controls of changes in risk aversions and biometric parameters. Such
analysis suggests that cooperation is preferable to non-cooperation in terms of optimal wealth
allocation in consumption. Conversely, non-cooperation promotes the coverage of the risk
of death. In future research, we aim to extend our theoretical framework by incorporating
stochastic volatilitymodels for risky asset prices. In addition, wewill consider age-dependent
insurance premiums per dollar of coverage.
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A Appendix

A.1 Non-cooperation

By defining V 1(t,W1(t)) ∈ C1,2 (once differentiable with respect to t and twice with respect
to W1(·), with continuous derivatives) the value function associated with the problem (9)–
(10) for the player 1, the quadruple (W1(t), c1(t), yi,1(t), Q1(t)) is its solution if V 1 solves
the following HJB equation:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

DtV 1 + max{c1,yi,1,Q1}

{[(

n−1
∑

i=1

yi,1(t)(μi − μn) + μn

)

W1(t) − c1(t) − θ1Q1(t)

]

DW1V
1

+e−ρt S1(t)U1(c1(t), c2(t)) + π1(t)F(t, Z1(t))

+1

2

n−1
∑

i=1

(yi,1(t))
2(σi )

2(W1(t))
2D2

W1
V 1

}

= 0,

V 1(W1(T ), T ) = 0,

(33)

where DtV 1 is the first derivative of the value function V 1 with respect to t , while DW1V
1

and D2
W1

V 1 are, respectively, the first and second derivative of V 1 with respect toW1(·). The
Hamiltonian H1 associated with the problem (9)–(10) is:

H1(W1(t), c1(t), yi,1(t), Q1(t), DW1V
1, D2

W1
V 1)

=
[(

n−1
∑

i=1

yi,1(t)(μi − μn) + μn

)

W1(t) − c1(t) − θ1Q1(t)

]

DW1V
1

+ e−ρt S1(t)U1(c1(t), c2(t)) + π1(t)F(t, Z1(t)) + 1

2

n−1
∑

i=1

(yi,1(t))
2(σi )

2(W1(t))
2D2

W1
V 1.

In that framework the constraint 0 ≤ yi,1(t) < ξi − yi,2(t) has to be satisfied for every
i = 1, . . . , n − 1, and hence

α1 > max

{

μ1 − μn

(σ1)2(ξ1 − y1,2)
,

μ2 − μn

(σ2)2(ξ2 − y2,2)
, . . . ,

μn−1 − μn

(σn−1)2(ξn−1 − yn−1,2)

}

with μi − μn ≥ 0, ∀ i = 1, . . . , n − 1. Moreover, by assuming

λ1(t) = λ1(0) e
γ1t , λ1(0) > 0, γ1 > 0, (34)

U1(c1(t), c2(t)) = 1

1 − α1
(c1(t))

1−α1 + 1

1 − α2
(c2(t))

1−α2 , α j > 0, α j �= 1, j = 1, 2,

(35)
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V 1(t,W1(t)) = e−ρt

1 − α1
S1(t)G1(t)(W1(t))

1−α1 , G1(t) ∈ R, α1 > 0, α1 �= 1, (36)

F(t, Z1(t)) = e−ρt

1 − α1
(Z1(t))

1−α1 , α1 > 0, α1 �= 1, (37)

we can apply the first order conditions, i.e., ∂H1/∂c1 = 0, ∂H1/∂ yi,1 = 0 and H1/∂Q1 = 0.
Therefore, we get

c1(t) =
(

1

G1(t)

) 1
α1

W1(t), (38)

yi,1(t) = μi − μn

α1(σi )2
, i = 1, . . . , n − 1, (39)

Z1(t) =
(

λ1(0) eγ1t

θ1 G1(t)

)
1
α1

W1(t) −→ Q1(t) =
[

(

λ1(0) eγ1t

θ1 G1(t)

)
1
α1 − 1

]

W1(t). (40)

Note that since c1(t) > 0 for every t ∈ [0, T ] then G1(t) �= 0 for every t ∈ [0, T ]. Now, by
inserting the expressions of (34)–(40) into (33) and recalling that the utilityU1 only depends
on the c1(t) term (due the equivalence of the maximization problems discussed at the begin
of the section 4.1) we get that G1(t) must satisfy the following Bernoulli equation

Ġ1(t) =
[

−(1 − α1)

(

1

2

n−1
∑

i=1

(μi − μn)
2

α1(σi )2
+ μn − ρ

1 − α1
+ θ1

)

+ λ1(0)e
γ1t

]

G1(t)

− α1

(

1 + (θ1)
α1−1
α1 (λ1(0))

1
α1 e

γ1 t
α1

)

(G1(t))
α1−1
α1 ,

(41)

with terminal condition G1(T ) = k ∈ R \ {0} obtained by evaluating (36) in T and by
imposing it equal to 0. Indeed, being S1(T ) = 0 by definition, then G1(T ) can assume every
real value different from zero. Now, denoting by

ν1 = −(1 − α1)

(

1

2

n−1
∑

i=1

(μi − μn)
2

α1(σi )2
+ μn − ρ

1 − α1
+ θ1

)

,

the solutions of (41) dependent on the constant k are the following

G1(t) = e
{ν1(t−T )+ λ1(0)

γ1
(eγ1 t−eγ1T )}

×
[

k
1

α1 +
∫ T

t

(

1 + (θ1)
α1−1
α1 (λ1(0))

1
α1 e

γ1s
α1

)

e
{− ν1

α1
(s−T )− λ1(0)

α1γ1
(eγ1s−eγ1T )}

ds

]α1 (42)

Therefore, for the value function V 1 to be concave for t ∈ [0, T ), as its second derivative
with respect to W1 evaluated in T is equal to zero, is required that G1(t) > 0 for t ∈ [0, T )

and this happens in three cases:

• if α1 > 1 and k > 0,
• if 0 < α1 < 1 with α1 = 1

m such that m
2 ∈ Z, m ≥ 2 and k ∈ R\{0},

• if 0 < α1 < 1 with α1 = 1
m such that m

2 /∈ Z and k > 0.

Finally, by substituting (19) in (38) and (40) we obtain the closed-form expression of the
controls given by (16), (17), and (18), respectively.
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A.2 Cooperation

Let V (t,W1(t),W2(t)) ∈ C1,2 (once differentiable with respect to t and twice both with
respect toW1 andW2, with continuous derivatives) be the value function associated with the
problem (9)–(10) in the cooperative setting. The quadruple (Wj (t), c j (t), yi, j (t), Q j (t)) for
j = 1, 2 is the solution of the problem if V solves the following HJB equation:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

DtV + max{c1,c2,yi,1,yi,2,Q1,Q2}

⎧

⎨

⎩

2
∑

j=1

〈

(

n−1
∑

i=1

yi, j (t)(μi − μn) + μn

)

Wj (t) − c j (t) − θQ j (t), DWj V

〉

+e−ρt S(t)U1(c1(t), c2(t)) + π(t)F(t, Z1(t))

+e−ρt S(t)U2(c1(t), c2(t)) + π(t)F(t, Z2(t))

+ 1

2

2
∑

j,k=1

(

n−1
∑

i=1

(yi, j (t))(yi,k(t))(σi )
2(Wj (t))(Wk(t))D

2
WjWk

V

)}

= 0,

V (T ,W1(T ),W2(T )) = 0.

(43)

where DWj V is the first derivative of V with respect to Wj , while D2
WjWk

V is its second
partial derivative first with respect to Wj and then with respect to Wk , for j, k = 1, 2.

We denote by H(W , c, yi , Q, DWV , D2
WV ) the Hamiltonian associated with the problem

(9)–(10), where

W = [W1,W2], c = [c1, c2], yi = [yi,1, yi,2], DWV = [DW1V , DW2V ],
and

D2
WV =

(

D2
(W1)2

V D2
W1 W2

V

D2
W2 W1

V D2
(W2)2

V

)

.

Supposing that

λ(t) = λ(0) eγ t , λ(0) > 0, γ > 0, (44)

U1(c1(t), c2(t)) = U2(c1(t), c2(t)) = 1

1 − α

[

(c1(t))
1−α + (c2(t))

1−α
]

, α > 0, α �= 1, (45)

V (t,W1(t),W2(t)) = e−ρt

1 − α
S(t)G(t)

[

(W1(t))
1−α + (W2(t))

1−α
]

, G(t) ∈ R, α > 0, α �= 1,

(46)

F(t, Z j (t)) = e−ρt

1 − α
(Z j (t))

1−α, α > 0, α �= 1, j = 1, 2 (47)

we can apply, as in the non-cooperative case, the first order conditions so to get the expressions
of the controls:

c j (t) =
(

2

G(t)

) 1
α

Wj (t), j = 1, 2 (48)

yi, j (t) = μi − μn

α(σi )2
, j = 1, 2, i = 1, . . . , n − 1, (49)

Z j (t) =
(

λ(0) eγ t

θ G(t)

)
1
α

Wj (t) −→ Q j (t) =
[

(

λ(0) eγ t

θ G(t)

)
1
α − 1

]

Wj (t), j = 1, 2. (50)
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Note that by (48) follows G(t) �= 0 for every t ∈ [0, T ]. Furthermore, by plugging the
expressions (44)–(50) we get that G(t) has to satisfy a Bernoulli equation:

Ġ(t) =
[

−(1 − α)

(

1

2

n−1
∑

i=1

(μi − μn)
2

α(σi )2
+ μn − ρ

1 − α
+ θ

)

+ λ(0)eγ t

]

G(t)

− α
(

2
1
α + θ

α−1
α λ(0)

1
α e

γ t
α

)

G(t)
α−1
α ,

(51)

with terminal condition G(T ) = k ∈ R \ {0} obtained by evaluating (46) in T and by
imposing it equal to 0. Since we are in the cooperative scenario, to the solution of (51) has
to be applied the constraint (14),

∑2
j=1 yi, j (t) = ξi , which by using (49) can be written as

μi − μn

α(σi )2
= ξi

2
, i = 1, · · · , n − 1.

Finally, denoting by

ν = −(1 − α)

(

1

4

n−1
∑

i=1

ξi (μi − μn) + μn − ρ

1 − α
+ θ

)

,

the solutions of (51) dependent on k are

G(t) = e{ν(t−T )+ λ(0)
γ

(eγ t−eγ T )}

×
[

( k )
1
α +

∫ T

t

(

2
1
α + θ

α−1
α λ(0)

1
α e

γ s
α

)

e{− ν
α
(s−T )− λ(0)

αγ
(eγ s−eγ T )}ds

]α

. (52)

Similarly to the non-cooperative case, it is necessary that G(t) > 0 ∀ t ∈ [0, T ) to
guarantee the concavity of the value function V . The positive sign of G(t) is provided under
the following cases:

• if α > 1 and k > 0,
• if 0 < α < 1 with α1 = 1

m such that m
2 ∈ Z, m ≥ 2 and k ∈ R\{0},

• if 0 < α < 1 with α = 1
m such that m

2 /∈ Z and k > 0.

Finally, by inserting (27) in (48) and (50) we get the cooperative closed-form expression of
the controls given by (24), (25), (26), respectively.
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