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A B S T R A C T

In the context of deep learning models, attention has recently been paid to studying the surface of the
loss function in order to better understand training with methods based on gradient descent. This search
for an appropriate description, both analytical and topological, has led to numerous efforts in identifying
spurious minima and characterize gradient dynamics. Our work aims to contribute to this field by providing a
topological measure for evaluating loss complexity in the case of multilayer neural networks. We compare deep
and shallow architectures with common sigmoidal activation functions by deriving upper and lower bounds
for the complexity of their respective loss functions and revealing how that complexity is influenced by the
number of hidden units, training models, and the activation function used. Additionally, we found that certain
variations in the loss function or model architecture, such as adding an 𝓁2 regularization term or implementing
skip connections in a feedforward network, do not affect loss topology in specific cases.
1. Introduction

In recent years, the investigation into the theoretical foundations
of Machine Learning (ML) and Deep Learning (DL) models has gained
increasing attention as the research community has decided to delve
deeper into the reasons why these models can achieve exceptional
performance in different application fields (Devlin, Chang, Lee, &
Toutanova, 2018; Koren, Bell, & Volinsky, 2009; Krizhevsky, Sutskever,
& Hinton, 2017; Radford, Narasimhan, Salimans, Sutskever, et al.,
2018; Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini, 2008). On
the one hand, as the automated decisions provided by these algorithms
can have a relevant impact on people’s lives, their behavior has to
be aligned with the values and principles of individuals and society.
This demands designing automated methods we can trust, fulfilling the
requirements of fairness, robustness, privacy, and explainability (Oneto
et al., 2022). On the other hand, a wide range of tools that have arisen
from different areas of mathematics and statistical mechanics have been
taken into account to give proper explanations to the behavior of ML
and DL models according to different mathematical aspects, such as
the gradient descent dynamics (Goodfellow, Vinyals, & Saxe, 2014;
Maennel, Bousquet, & Gelly, 2018; Williams et al., 2019), the role
of the activation functions (Ramachandran, Zoph, & Le, 2017), and
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the importance of the number of layers (Bianchini & Scarselli, 2014).
From the theoretical point of view, along with the aforementioned
features, the characterization of the loss function to be minimized is
a crucial aspect, as the whole training efficiency relies on its shape,
which in turn depends on the network architecture. Several works
have already dealt with the analysis of the surface of the loss function,
identifying conditions for the presence (or absence) of spurious valleys
in a theoretical (Venturi, Bandeira, & Bruna, 2018) or empirical-driven
way (Safran & Shamir, 2018), pointing out the role of saddle points in
slowing down the learning (Dauphin et al., 2014), and giving hints on
the topological structure of the loss for networks with different types of
activation functions (Freeman & Bruna, 2016; Nguyen & Hein, 2017).

Our contribution fits into the latter line of research, providing a
characterization of the complexity of loss functions based on a topo-
logical argumentation. More precisely, given a layered neural network
 and a loss function  computed on some training data, we will
measure the complexity of  by analyzing the topological complexity
of the set 𝑆 = {𝜃| (𝜃) ≤ 𝑐}. Such an approach is natural, since 𝑆 ,
observed at each level 𝑐, provides the form of the loss function: for
example, if  has 𝑘 isolated minima, then 𝑆 has 𝑘 disconnected
regions for some small 𝑐.
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In the paper, we will provide a bound on the sum of Betti numbers
(Bredon, 2013) of the set 𝑆 . In algebraic topology, Betti numbers can
e exploited in order to distinguish spaces with different topological
roperties. More precisely, for any subset 𝑆 ⊂ R𝑛, there exist 𝑛 Betti
umbers 𝑏𝑖(𝑆), 0 ≤ 𝑖 ≤ 𝑛 − 1. Intuitively, the first Betti number 𝑏0(𝑆)
s the number of connected components of the set 𝑆 that, in the case
f 𝑆 = 𝑆 , corresponds to the number of basins of attraction of the
oss function. The 𝑖th Betti number 𝑏𝑖(𝑆) counts the number of (𝑖 + 1)-
imensional holes in 𝑆, which provides a measure of the complexity of
he error function on a given level set.

The upper bound is derived for feedforward neural networks with
ifferent numbers of layers, number of neurons per layer, and number
f training samples. Moreover, we consider networks with skip con-
ections, such as ResNet, both Binary Cross Entropy (BCE) and Mean
quared Error (MSE) loss functions, with or without regularization
erms. Finally, we treat networks with Pfaffian activation functions.
he class of Pfaffian maps is broad and includes most of the func-
ions, with continuous derivatives, commonly used in Engineering and
omputer Science, such as the hyperbolic tangent, the logistic sigmoid,
olynomials and their compositions. Most of the elementary functions
re Pfaffian, for example, the exponential and trigonometric functions.
he concept of a Pfaffian function was first introduced in Khovanski
1991), where an analog of Bézout’s theorem was proved. Bézout’s
lassic theorem states that the number of complex solutions of a set
f polynomial equations can be estimated based on their degree (to be
recise, it is equal to the product of their degree). The analog of this
heorem proposed in Khovanski (1991) holds for some classes of real
nd transcendental equations: for a wide class of real transcendental
quations (including all real algebraic ones), the number of solutions
f a set of 𝑘 such equations in 𝑘 real unknowns is finite, and can
e explicitly estimated in terms of the ‘‘complexity’’ of the equations.
n the Pfaffian setting, Gabrielov and Vorobjov introduced a suitable
otion of complexity or format (Gabrielov & Vorobjov, 2004). We will
efine these concepts formally in the Preliminaries section.

It is worth mentioning that this work takes inspiration from Bian-
hini and Scarselli (2014), where a similar topological argumentation
as been used to study the complexity of the functions realized by a
eural network, showing that deep architectures can implement more
omplex functions than shallow ones while using the same number
f parameters. While the results in Bianchini and Scarselli (2014)
re about the network function, namely what a network can do, the
esults in this paper are about the error function, namely how hard the
ptimization problem is.

In this work, we attempt to provide an answer to the following
uestions:

1. Can a topological measure effectively assess the complexity of the
loss implemented by layered neural networks?

2. How do the complexity bounds of deep and shallow neural architec-
tures relate to the number of hidden units and the selected activation
function?

ur contribution
This work paves the way toward a more comprehensive under-

tanding of the landscape of loss functions in deep learning models.
he sum of Betti numbers of the sublevel sets of the loss function is
sed to measure the complexity of the empirical risk landscape. More
recisely, we derive upper bounds on the complexity of empirical risk
or deep and shallow neural architectures employing the theory of
faffian functions. This study highlights the dependence of the error
urface complexity on crucial factors such as the number of hidden
nits, the number of training samples, and the specific choice of the
ctivation function.
2

Our main contributions are summarized below. s
Table 1
Summary of the obtained upper bounds for 𝐵(𝑆) as
a function of different hyperparameters. ℎ denotes the
width of the layers; 𝑚 is the number of samples, and 𝐿
is the number of layers of the network. 𝜅 is a constant
greater than 2. The activation function can be either
the hyperbolic tangent or the sigmoid function; the
loss can be either the MSE or the BCE function. When
examining the impact of the number of neurons per
layer, ℎ, a qualitative difference emerges between the
shallow (𝐿 = 2) and the deep (𝐿 > 2) networks.
Hyperparameter Layers Bound

𝑚 any 𝜅𝑂(𝑚2 )

ℎ 𝐿 = 2 𝑂(ℎ)𝑂(ℎ)

ℎ 𝐿 > 2 𝑂(ℎ2)𝑂(ℎ2 )

𝐿 any 2𝑂(𝐿2 )𝑂(𝐿2)𝑂(𝐿)

• We derive the Pfaffian format of common loss functions, i.e., the
Mean Square Error (MSE) loss function and the Binary Cross-
Entropy (BCE) loss function, when training feedforward networks;
the Pfaffian format is computed with respect to the weights
and involves the knowledge of the Pfaffian format of Pfaffian
activation functions.

• We provide bounds on the complexity of the loss functions, in
terms of Betti numbers’s characterization. Table 1 shows the
derived bound w.r.t. the number of layers, the number of neurons
per layer, and the size of the training set. In particular, it is shown
that the order of growth w.r.t. the number of neurons is different
in networks with only one hidden layer and deeper networks. The
complexity of the loss function increases super-exponentially with
the number of layers or neurons per layer and exponentially with
the number of training samples.

• We prove that adding a 𝓁2 regularization term to the loss function
does not influence its topological complexity under our theoreti-
cal analysis.

• We demonstrate that incorporating skip connections (as in
ResNets (He, Zhang, Ren, & Sun, 2016)) into the network does
not affect the Betti numbers’ bounds.

The paper is organized as follows. In Section 2, we briefly review the
iterature on the characterization of the loss surface and the topological
ools used to evaluate the computational power and generalization
bility of feedforward networks. In Section 3, some notations and
reliminary definitions are introduced, while in Section 4, the main
esults proposed in this paper are presented. All proofs are collected
n the Appendix to ensure easy reading. Finally, conclusions and future
erspectives are reported in Section 5.

. Related work

The characterization of the loss landscape has gained more and
ore attention in the last few years; attempts to provide a satisfying de-

cription have been made through several approaches. In Choromanska,
enaff, Mathieu, Arous and LeCun (2015), Choromanska, LeCun and
rous (2015), the spin-glass theory is exploited to quantify, in probabil-

ty, the presence of local minima and saddle points. Unfortunately, the
onnection between the loss function of neural networks and the Hamil-
onian of the spherical spin-glass models relies on a number of possibly
nrealistic assumptions, yet the empirical evidence suggests that it
ay exist also under mild conditions. In Dauphin et al. (2014), the

uthors propose a method that quickly avoids high-dimensional saddle
oints, unlike gradient descent and quasi-Newton methods. Based on
esults from statistical physics, random matrix theory, neural network
heory, and empirical evidence, it is argued that the major difficulty
n using local optimization methods originates from the proliferation
f saddle points, instead of local minima, especially in high dimen-

ional problems of practical interest. Saddle points are surrounded
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by plateaus that can dramatically slow down the learning process.
In Venturi, Bandeira, and Bruna (2019), the topological property of the
loss function defined as presence or absence of spurious valleys (i.e., local
minima) is addressed for one-hidden layer neural networks, providing
the following contributions: (1) the Empirical Risk Minimization loss
for any continuous activation function and the Expected Value loss
with polynomial activations do not exhibit spurious valleys as long as
the network is sufficiently over-parametrized; (2) for non-polynomial
and non-negative activations, for any hidden width, there exists a data
distribution that produces spurious valleys (with non-zero dimension),
whose value is arbitrarily far from that of the global minimum; (3)
finally, drawing on connections with random feature expansions, in
general, their measure decreases as their width increases, even if spuri-
ous valleys may appear. This holds up to a low energy threshold, when
approaching the global minimum at a speed inversely proportional to
the size of the hidden layer.

Based on computer-driven empirical proof, similar results regarding
the characterization of the loss surface in terms of the presence of spu-
rious valleys are also reported in Safran and Shamir (2018). In Freeman
and Bruna (2019), the loss surface is studied in terms of level sets,
where it is shown that the landscape of the loss functions of deep
networks with linear activation functions is significantly different from
those exploiting half-rectified ones: in the absence of nonlinearities, the
level sets are connected, while, in the half-rectified case, the topology is
intrinsically different and clearly dependent on the interplay between
data distribution and model architecture. Finally, a comprehensive
research survey focused on analyzing the loss landscape can be found
in Berner, Grohs, Kutyniok, and Petersen (2021).

In algebraic topology, Betti numbers are used to distinguish spaces
with different topological properties. Betti numbers have been ex-
ploited either to give a topological description of the complexity of
the function implemented by neural networks with Pfaffian activation
functions or to describe their generalization capabilities. In Karpinski
and Macintyre (1997), by such a technique, bounds on the VC di-
mension of feedforward neural networks are provided; this work has
been later extended to Recurrent and Graph Neural Networks (Scarselli,
Tsoi, & Hagenbuchner, 2018). In Bianchini and Scarselli (2014), bounds
on the sum of Betti numbers are provided in order to describe the
complexity of the map implemented by feedforward networks with
Pfaffian activation functions. In Naitzat, Zhitnikov, and Lim (2020),
the relative efficacy of ReLUs over traditional sigmoidal activations
is justified based on the different speeds with which they change the
topology of a dataset – as it passes through the layers of a well-
trained neural network2 – representing two classes of objects in a binary
classification problem. This dataset is viewed as a combination of two
components: the first component represents the topological manifold
of elements from the first class, and the second component encom-
passes the elements from the second class. A ReLU-activated neural
network (neither a homeomorphism nor Pfaffian) can sharply reduce
Betti numbers of the two components, but not a sigmoidal-activated one
(which is a homomorphism). Reducing the Betti numbers means that
the neural network simplifies the structure of the dataset by reducing
the number of connected components, holes, or voids within the data
manifold. This reduction suggests that the network is indeed simpli-
fying or transforming the dataset topology, making it more amenable
to analysis and classification. Finally, this research suggests that, when
dealing with higher topological complexity data (meaning the data has
more intricate or complex shapes and relationships), we need neural
networks with greater depth (more layers) to adequately capture and
understand these complexities.

2 This corresponds to a network with perfect accuracy on its training set
nd a near-zero generalization error.
3

3. Preliminaries

In this section, we introduce the notation, basic concepts, and
definitions that will be necessary for the subsequent description of the
main results. In the following sections, we will exclusively focus on
feedforward neural networks, defined as follows:

Feedforward neural networks —. Let 𝜃 = {𝑊̃ 1, 𝑏1,… , 𝑊̃ 𝐿, 𝑏𝐿} be the set
of the trainable network parameters, where 𝑊̃ 𝑙 ∈ R𝑛𝑙×𝑛𝑙−1 , 𝑏𝑙 ∈ R𝑛𝑙×1,
𝑙 = 1,… , 𝐿 identifies each layer, and 𝑛0,… , 𝑛𝐿 ∈ N denote the number
of neurons per layer. In the following, we assume, without loss of
generality, that the network has a single output, i.e., 𝑛𝐿 = 1. Note that
the last assumption is unnecessary to demonstrate the Pfaffian nature
of the loss function. However, its inclusion significantly simplifies the
subsequent calculations involved in the analysis. The total number of
parameters is 𝑛̃ =

∑𝐿
𝑙=1 𝑛𝑙(𝑛𝑙−1 + 1).

Let 𝑥 ∈ R𝑛0 be the input to the neural network. The function
implemented by the layered network is 𝑓𝜃(𝑥) ∶ R𝑛0 → R, where
𝑓𝜃(𝑥) = 𝑔(𝑊̃ 𝐿𝜎(𝑊̃ 𝐿−1 ⋯ 𝜎(𝑊̃ 1𝑥 + 𝑏1))⋯ + 𝑏𝐿−1) + 𝑏𝐿, where 𝜎 is the
hidden layer activation function and 𝑔 is the activation function of the
output neuron.

To simplify the notation, we will aggregate the weights and bias
from the same layer into a single matrix, the augmented weight matrix
𝑊 𝑙 = [𝑏𝑙 , 𝑊̃ 𝑙]; moreover, we will denote by 𝑧𝑙 the output of the 𝑙th
layer and by 𝑎𝑙 the neuron activations at the same layer. Thus, we have

𝑧0 =
[

1
𝑥

]

, 𝑎𝑙 = 𝑊 𝑙𝑧𝑙−1, 𝑧𝑙 =
[

1
𝜎(𝑎𝑙)

]

, for 1 ≤ 𝑙 ≤ 𝐿,

and 𝑓𝜃(𝑥) = 𝑔(𝑎𝐿).

Loss functions —. Let 𝐷 = (𝑥𝑖, 𝑦𝑖)𝑚𝑖=1 be a set of training data, with
𝑥𝑖 ∈ R𝑛0 and 𝑦𝑖 ∈ R. Let  be a generic loss to be minimized over the
parameters 𝜃. The empirical risk of loss (or cost) function is defined
as the average of the per-sample contributions, where each sample
contribution is a measure of the error between the network output and
the target value for that sample:

(𝜃,𝐷) = 1
𝑚

𝑚
∑

𝑖=1
𝑙𝑜𝑠𝑠(𝑓𝜃(𝑥𝑖), 𝑦𝑖),

eing 𝑦𝑖 the target for the 𝑖-the pattern 𝑥𝑖. In this work we will
tudy the topological complexity of the landscape of the Mean Square
rror (MSE) and Binary Cross-Entropy (BCE) loss functions, which are
efined as

MSE(𝜃,𝐷) = 1
𝑚

𝑚
∑

𝑖=1
(𝑦𝑖 − 𝑓𝜃(𝑥𝑖))2,

BCE(𝜃,𝐷) =
𝑚
∑

𝑖=1
−𝑦𝑖 log(𝑓𝜃(𝑥𝑖)) − (1 − 𝑦𝑖) log(1 − 𝑓𝜃(𝑥𝑖)).

In the following, we will remove the dependency on the dataset 𝐷
n the notation of empirical risk. We will focus solely on its reliance
n the network parameters 𝜃. Indeed, we want to study the topological
omplexity of the sublevel set of the empirical risk as a function of the
arameters of the network, considering the dataset samples as fixed.
nless specified otherwise, the notation (𝜃) in the following represents

he empirical risk corresponding to the loss function  applied to a
ataset containing 𝑚 pairs (𝑥𝑖, 𝑦𝑖). In general, we consider the targets
o be real numbers. Notice that since we compute the topological
omplexity of the empirical risk, the complexity obtained using the
faffian format will also depend on the number of samples in 𝐷.
owever, for classification problems where the Binary Cross-Entropy

BCE) loss is used, each target 𝑦𝑖 is either 0 or 1.
Moreover, we consider a regularized form for the objective function

hat can be expressed as

̃(𝜃) = (𝜃) + 𝜆𝛺(𝜃),

here 𝛺(𝜃) is a regularization term, for instance, 𝛺(𝜃) = 1
2‖𝑤‖

2
2 (𝓁2

regularization norm).
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Pfaffian functions —. Pfaffian functions (Khovanskii, 1991) are analytic
unctions satisfying triangular systems of first order partial differential
quations with polynomial coefficients. For this kind of function, an
nalogous of the Bézout theorem holds. The classical Bézout theorem
tates that the number of complex solutions of a set of 𝑘 polynomial
quations in 𝑘 unknowns can be estimated in terms of their degrees (it
quals the product of the degrees).

For a wide class of real transcendental equations (including all real
lgebraic ones), the number of solutions of a set of 𝑘 such equations
n 𝑘 real unknowns is finite and can be explicitly estimated in terms of
he ‘‘complexity’’ of the equations, which leads to the version of Bézout
heorem for Pfaffian curves and Pfaffian manifolds (Khovanskii, 1991).

The class of Pfaffian functions includes a wide variety of known
unctions, e.g. the elementary functions, including exponential, loga-
ithm, tangent, and their combinations (Gabrielov & Vorobjov, 2004).
nterestingly, many common activation functions used in neural net-
orks, such as the sigmoid function and hyperbolic tangent, can be

lassified as Pfaffian functions. Intuitively, a function is Pfaffian if
ts derivatives can be defined in terms of polynomials of the original
unction and/or a chain of other Pfaffian functions. Formally, we can
tate the following definition.

efinition 3.1. A Pfaffian chain of order 𝓁 ≥ 0 and degree 𝛼 ≥ 1,
n an open domain 𝑈 ⊆ R𝑛, is a sequence of real analytic functions
1, 𝑓2,… , 𝑓𝓁 , defined on 𝑈 , satisfying the differential equations
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑥) = 𝑃𝑖𝑗 (𝑥, 𝑓1(𝑥),… , 𝑓𝑖(𝑥)),

or 1 ≤ 𝑖, 𝑗 ≤ 𝓁 and 𝑥 = (𝑥1,… , 𝑥𝑛) ∈ 𝑈 . Here, 𝑃𝑖𝑗 (𝑥, 𝑦1,… , 𝑦𝑖) are
olynomials in the 𝑛 + 𝑖 variables 𝑥1,… , 𝑥𝑛, 𝑦1,… , 𝑦𝑖 of degree not
xceeding 𝛼.

efinition 3.2. Let (𝑓1,… , 𝑓𝓁) be a Pfaffian chain of length 𝓁 and
degree 𝛼, and let 𝑈 be its domain. A function 𝑓 defined on 𝑈 is called

Pfaffian function of degree 𝛽 in the chain (𝑓1,… , 𝑓𝓁) if there exists
a polynomial 𝑃 in 𝑛 + 𝓁 variables, of degree at most 𝛽, such that
𝑓 (𝑥) = 𝑃 (𝑥, 𝑓1(𝑥),… , 𝑓𝓁(𝑥)), ∀𝑥 ∈ 𝑈 . The triple (𝛼, 𝛽,𝓁) is called the
format of 𝑓 .

The polynomial 𝑃𝑖𝑗 itself may explicitly depend on 𝑥. Moreover,
even if 𝑃𝑖𝑗 does not have a direct dependence on 𝑥, it can still depend
on 𝑥 indirectly through the function 𝑓1(𝑥). We say that the polynomial
𝑃𝑖𝑗 depends directly on 𝑥 if there are occurrences of 𝑥 that are not
of the type 𝑓𝑖(𝑥). For example, consider the function 𝑓 (𝑥) = arctan(𝑥),
which falls into the second category of functions described above since
it can be represented by the chain (𝑓1, 𝑓2), where 𝑓2(𝑥) = arctan(𝑥)
and 𝑓1(𝑥) = (1 + 𝑥2)−1. In this case, 𝜕𝑓2

𝜕𝑥 = 𝑃1(𝑥, 𝑓1) = 𝑓1(𝑥), and
𝜕𝑓1
𝜕𝑥 = 𝑃2(𝑥, 𝑓1) = 𝑥𝑓1(𝑥)2, with 𝑃2 that explicitly depend on 𝑥. On
he other hand, the tanh function is a Pfaffian function falling under
he first category. It can be represented by the chain containing only
1(𝑥) = tanh(𝑥), and 𝜕𝑓1(𝑥)

𝜕𝑥 = 𝑃1(𝑥) = 1 − 𝑓1(𝑥)2. In this case, there
s no explicit dependence on 𝑥 in the polynomial 𝑃1. This distinction
ill be crucial to assess the right computations in the statement of
heorem 4.1.

Let us now introduce the notion of Pfaffian variety and semi-Pfaffian
ariety.

efinition 3.3. The set 𝑉 ⊂ 𝑈 is a Pfaffian variety if there are Pfaffian
unctions 𝑝1,… , 𝑝𝑟 in the chain (f1,… , f𝓁) such that 𝑉 = {𝑥 ∈ 𝑈 ∶
1(𝑥) = ⋯ = 𝑝𝑟(𝑥) = 0}.

efinition 3.4. A basic semi-variety 𝑆 on the variety 𝑉 is a subset
f 𝑉 defined by a set of sign conditions (inequalities or equalities)
ased on the Pfaffian functions 𝑝1,… 𝑝𝑠 in the chain (𝑓, … , 𝑓𝓁) such
hat 𝑆 = {𝑥 ∈ 𝑉 ∶ 𝑝1(𝑥)𝜀10 ∧ ⋯ ∧ 𝑝𝑠(𝑥)𝜀𝑠0}, where 𝜀1,… , 𝜀𝑠 are any
4

omparison operator among {<;>;≤,≥; =}. a
As outlined in the Introduction, our focus in this work is directed to-
wards exploring the complexity of the topological space defined by the
sublevel set of the empirical risk related to the loss function , namely
𝑆 = {𝜃 ∶ (𝜃) ≤ 𝑐}. This set represents the collection of parameter
values 𝜃 for which the empirical risk of the loss function is less than
or equal to a constant 𝑐. When the empirical risk of the loss function
is a Pfaffian function with respect to the parameters of the network,
this set is exactly a Pfaffian semi-variety. Level curves or basins of
attractions can be often described in terms of Pfaffian varieties, whose
complexity can be measured through the characterization of their Betti
numbers (Bianchini & Scarselli, 2014) or counting directly the number
of connected components (Gabrielov & Vorobjov, 2004).

Betti numbers —. Betti numbers are topological objects that can be used
to describe the complexity of topological spaces. More formally, the
𝑖th Betti number of a space 𝑋 is defined as the rank of the (finitely
generated) 𝑖th singular homology group of 𝑋. Roughly speaking, it
counts the number of 𝑖th dimensional holes of a space 𝑋3 and captures a
topological notion of complexity that can be used to compare subspaces
of R𝑑 . The reader can refer to algebraic topology textbooks for a
more comprehensive introduction to homology (Bredon, 2013; Hatcher,
2002).

Informally, Betti numbers quantify the number of ‘‘holes’’ of various
dimensions in a topological space. Each Betti number, 𝑏𝑖, represents
the number of i-dimensional ‘‘independent’’ holes or cycles that cannot
be continuously deformed into each other. For instance, the 0-th Betti
number, 𝑏0, counts the number of connected components in the space.
The first Betti number, 𝑏1, counts the number of independent loops
or one-dimensional holes. Higher Betti numbers, such as 𝑏2, 𝑏3, and so
on, count holes of increasing dimensionality. To give some examples, a
circle has one connected component (𝑏0 = 1) and one hole of dimension
one (𝑏1 = 1). On the contrary, a 2-dimensional unit sphere, {𝑥 ∈
R2 ∶ ‖𝑥‖2 = 1}, has one connected component (𝑏0 = 1) and no holes
(𝑏1 = 0) but has one two-dimensional cavity (𝑏2 = 1) . A torus, like
a doughnut, has one connected component (𝑏0 = 1) two independent
holes (𝑏1 = 2), and one two-dimensional cavity (𝑏2 = 1). This distinction
can be understood visually: a sphere is a solid shape with no internal
holes, while a torus has a hole in its center and an additional loop
around the hole.

When applied to sub-level sets of the loss function {𝜃 ∶ (𝜃) ≤ 𝑐},
Betti numbers offer insights into the complexity of its loss landscape ,
such as the presence of multiple local minima and regions of attraction.
In other words, Betti numbers can be considered a tool to analyze the
configuration of critical points in the optimization function landscape.

The following result connects the theory of Pfaffian functions and
Betti numbers; in particular, it gives a bound on the Betti numbers for
varieties defined by equations, including Pfaffian functions.

Theorem 3.5 (Sum of the Betti Numbers for a Pfaffian Variety (Zell,
1999)). Let 𝑆 be a compact semi-Pfaffian variety in 𝑈 ⊂ R𝑛̃, given on
a compact Pfaffian variety 𝑉 , of dimension 𝑛′, defined by 𝑠 sign conditions
of Pfaffian functions. If all the functions defining 𝑆 have complexity at most
(𝛼, 𝛽,𝓁), then the sum of the Betti numbers of 𝑆 is

(𝑆) ∈ 𝑠𝑛
′
2(𝓁(𝓁−1))∕2𝑂((𝑛̃𝛽 + min(𝑛̃,𝓁)𝛼)𝑛̃+𝓁). (1)

In this paper, the theorem is applied to the Pfaffian variety 𝑆 =
𝜃 ∈ 𝑈, s.t. (𝜃) ≤ 𝑐} as determined by the unique sign condition
(𝜃) ≤ 𝑐 — for a given threshold 𝑐. This way, we obtain a bound on the

um of the Betti numbers of 𝑆 . Therefore, we must first demonstrate
hat the loss function is a Pfaffian function and compute its format,
hich can be achieved by writing the loss derivates in terms of the
etwork parameters and a Pfaffian chain. We will make use of the chain
ule of Backpropagation to write the derivatives of the loss function.

3 A 𝑖th dimensional hole is a 𝑖-dimensional cycle that is not a boundary of
(𝑖 + 1)-dimensional manifold.
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The constraints on the compactness of 𝑈 and 𝑉 can be removed
without affecting the bounds, as shown in Zell (2003). In our case,
we consider 𝑈 = R𝑛, because the parameters have R𝑛 as their do-
main. Additionally, the semi-Pfaffian variety is defined by a single sign
condition, so 𝑠 = 1.

4. Main results

In this section, we present our theoretical analysis of the topology
of the loss function landscape. We measure the complexity of the loss
function  by bounding the sum of Betti Number of the sub-level sets
𝑆 = {𝜃 ∶ (𝜃) ≤ 𝑐}. We assume that the network is a feedforward with
a Pfaffian activation function 𝜎 having format (𝛼𝜎 , 𝛽𝜎 ,𝓁𝜎 ). Our analysis
is structured around the following two steps:

• We prove that the loss function is Pfaffian and determine its
format, which depends on both the format of the activation
function and the meta-parameters of the network (Theorems 4.2
and 4.1);

• Utilizing Theorem 3.5 we establish a bound on the Betti number
of 𝑆. The formula allows to deduce how the complexity of 
depends on the network meta-parameters (Theorem 4.5).

We start computing the formats of the MSE and the BCE loss
functions. The formats are provided showing the dependency on the
format of 𝜎, the number of layers, and the number of neurons per layer.

Theorem 4.1 (MSE Loss). Let 𝝈 ∶ R → R be a function for which exists
a Pfaffian chain (𝝈1,… ,𝝈𝓁) and 𝓁𝜎 + 1 polynomials 𝑄 and 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝓁𝜎
of degree 𝛽𝜎 and 𝛼𝜎 , respectively s.t. 𝜎 is Pfaffian with format (𝛼𝜎 , 𝛽𝜎 ,𝓁𝜎 ).

Moreover, let 𝑔 ∶ R → R be a function for which there exists a Pfaffian
chain (𝑔1,… , 𝑔𝓁𝑔 ) and 𝓁𝑔 +1 polynomials, 𝑄𝑔 and 𝑃 𝑖

𝑔 , 1 ≤ 𝑖 ≤ 𝓁𝑔 of degree
𝛽𝑔 and 𝛼𝑔 , respectively, s.t. 𝑔 is Pfaffian with format (𝛼𝑔 , 𝛽𝑔 ,𝓁𝑔).

Let 𝑓 (𝜃, 𝑥) be the function implemented by a neural network with
parameters 𝜃 ∈ R𝑛̃, input 𝑥 ∈ R𝑛0 , 𝐿 layers, and an activation function
𝜎 for all layers except the last. The last layer can either have an activation
function 𝑔 or be linear. Then, the MSE Loss function is Pfaffian with format
(

(degree(𝜎′) + 1)(𝐿 − 2) + degree(𝜎′), 2(𝛽𝜎 + 1), 𝑚𝓁𝜎
𝐿−1
∑

𝑘=1
𝑛𝑘

)

,

when the last layer is linear. Here:

degree(𝜎′) =
{

𝛽𝜎 + 𝛼𝜎 − 1 case 1
𝛽𝜎 + 𝛼𝜎 − 1 + 𝛼𝜎 (𝛽𝜎 + 1) case 2

where case 1 refers to 𝑃 𝑖
𝜎 (𝑎, 𝜎1(𝑎),… , 𝜎𝓁𝜎 (𝑎)) not depending explicitly on 𝑎,

namely occurrences of 𝑎 appear that are not of the type 𝜎𝑖(𝑎); case 2 refers to
the case where they depend on it. Moreover, we assume that the polynomials
𝑃 𝑖
𝑔(𝑎, 𝑔1(𝑎),… , 𝑔𝓁𝑔 (𝑎)) do not depend explicitly on 𝑎.

The format of the chain becomes
(

(degree(𝜎′) + 1)(𝐿 − 2) + degree(𝜎′) + degree(𝑔′) + 1, 2𝛽𝑔 , 𝑚(𝓁𝜎

𝐿−1
∑

𝑘=1
𝑛𝑘 + 𝓁𝑔)

)

if the nonlinearity 𝑔 is applied also to the last layer. The definition of
degree(𝑔′) is analogous to that of degree(𝜎′).

For the BCE Loss function, we only explore the case where the
last layer contains a non-linearity, namely 𝑓𝜃(𝑥) = 𝑔(𝑎𝐿) since BCE
loss is commonly used in binary classification problems where the
output is a probability of the input belonging to one of two classes. In
such problems, the last layer of the model typically uses a sigmoidal
activation function to ensure that the output is between 0 and 1,
representing the probability of the input belonging to a certain class.

Theorem 4.2 (BCE Loss). Let the hypothesis of Theorem 4.1 hold. If the
activation function 𝑔 is also used in the last layer, the BCE Loss function is
Pfaffian with format
(

(𝐿 − 2)(degree(𝜎′) + 1) + degree(𝜎′) + degree(𝑔′) + 3, 1, 𝑚(𝓁𝜎

𝐿−1
∑

𝑛𝑘 + 𝓁𝑔 + 4)

)

.

5

𝑘=1
If the last activation function is the sigmoid function, the BCE Loss
function has the format:
(

(𝐿 − 2)(degree(𝜎′) + 1) + degree(𝜎′) + 3, 1, 𝑚(𝓁𝜎
𝐿−1
∑

𝑘=1
𝑛𝑘 + 1) + 1

)

.

Theorems 4.1 and 4.2 hold in general for any Pfaffian activation
function and any layer widths (𝑛0, 𝑛1,… , 𝑛𝐿) and their proofs can be
found in Appendix A.2. Intuitively, proofs are carried out by means of
chain rule computation, as the derivatives of the loss function  with
respect to layer 𝑙 depend on the derivatives of  computed with respect
to layer 𝑙+1. This computation can be recursively extended up to layer
1. Thus, to characterize the Pfaffian chain of  and the derivatives of
the functions in the Pfaffian chain, we need to include in the chain all
the derivatives of the loss function with respect to each layer computed
on each input sample. In addition, we have to take into account the
length of the Pfaffian chain of the considered activation function.

In the following, we present the outcomes for the particular scenario
in which the activation function of the intermediate layers is either a
sigmoid or a hyperbolic tangent. Additionally, for the sake of simplicity,
we assume that all hidden layers share the same width, denoted as ℎ.

Corollary 4.3. Consider a feedforward perceptron network where all
hidden layers have the same width ℎ. The activation function of intermediate
layers can be either the hyperbolic tangent (tanh) or the sigmoid function
(logsig), and the loss function is the Mean Squared Error. In this setting,
the following holds:

• when the last layer of the network is linear, the Pfaffian format of the
loss function is given by

(3(𝐿 − 2), 4, 𝑚 (𝐿 − 1)ℎ) ;

• when the last layer is passed through a sigmoid activation function,
the Pfaffian format of the loss function is:

(3(𝐿 − 2) + 5, 2, 𝑚(ℎ(𝐿 − 1) + 1))

We can state an analogous result for the BCE loss function.

Corollary 4.4. For a feedforward perceptron network where all the
hidden layers have the same width ℎ, trained using BCE loss function and
a non-linear last layer, the following holds:

• if the non-linearity used is the sigmoid function, the Pfaffian format
of the loss function is

(3(𝐿 − 2) + 5, 1, 𝑚 ((𝐿 − 1)ℎ + 1) + 1)

• if the non-linearity used is tanh(𝑥), the Pfaffian format of the loss
function is

(3(𝐿 − 2) + 7, 1, 𝑚((𝐿 − 1)ℎ + 5)).

We now state the main results of our work.
The presented theorem investigates the dependence of the sum of

etti numbers associated with the semi-Pfaffian variety 𝑆 , which rep-
esents the parameter set where the loss is non-negative, on factors such
s the number of samples, network width, and network depth. Using
orollaries 4.3 and 4.4, we can derive the bounds on the Betti numbers
f the Pfaffian semi-variety for both MSE and BCE loss functions.

heorem 4.5. Let us consider a deep feedforward perceptron network
with 𝐿 ≥ 3 layers all having width ℎ. The activation function can

e either the hyperbolic tangent or the sigmoid function, the loss is either
he MSE or the BCE function, and the last layer is either linear (only for
SE) or nonlinear. Moreover, let us denote by 𝑆 the semi-Pfaffian variety

iven by the set of parameters where the loss function is non-negative,
.e. 𝑆 = 𝑆 = {𝜃|(𝜃) ≤ 𝑐} for a threshold 𝑐 ∈ R+. Then, the sum of
he Betti numbers 𝐵(𝑆) is bounded as follows.
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• With respect to the number of samples 𝑚, fixing ℎ and 𝐿 as constants,
we have that 𝐵(𝑆) ∈ 𝜅𝑂(𝑚2)

1 , where 𝜅1 is a constant greater than 2.
• With respect to ℎ, we have 𝐵(𝑆) ∈ 𝑂(ℎ2)𝑂(ℎ2).
• Finally, with respect to 𝐿, 𝐵(𝑆) ∈ 2𝑂(𝐿2)𝑂(𝐿2)𝑂(𝐿).

On the other hand, in the case of a shallow network with one hidden
ayer, i.e., 𝐿 = 2, the following results hold.

• With respect to 𝑚, the bound is the same we obtained for deep
networks, 𝐵(𝑆) ∈ 𝜅𝑂(𝑚2)

2 , where 𝜅2 is a constant greater than 2.
• With respect to ℎ, we have 𝐵(𝑆) ∈ 𝑂(ℎ)𝑂(ℎ).

The proof with detailed computations can be found in Appendix A.5.
It is worth emphasizing that the bounds concerning ℎ and 𝐿 offer

an insight into the relationship between the topological complexity of
the loss landscape and the total number of parameters 𝑛̃. In the first
case, we explore the effect of changing the network width by fixing the
depth. In the second case, we investigate the impact of altering network
depth 𝐿 by performing the converse.

A first major remark from Theorem 4.5 is that the upper bound on
the Betti numbers associated to the loss function is only exponential in
the number of samples 𝑚, while it is superexponential in the number
of neurons ℎ or in the number of layers 𝐿. Intuitively, the take-
home message is that the topological complexity of the loss function
is less conditioned by the number of samples than by the number of
parameters.

Unsurprisingly, Theorem 4.5 also suggests that the complexity of
the loss landscape with respect to deep networks increases with the
number of neurons ℎ at a much faster pace than the one with respect
to the shallow networks, going from a dependence of the type 𝑂(ℎ2)𝑂(ℎ2)

to a dependence of the type 𝑂(ℎ)𝑂(ℎ). Such a difference in behavior is
coherent with results present in literature (Li, Xu, Taylor, Studer, &
Goldstein, 2018), where it is proven that for sufficiently deep networks
the loss landscapes quickly move from being nearly convex to being
highly chaotic.

4.1. Regularization terms and residual connections

4.1.1. The role of regularization
One could be interested in seeing how the introduction of reg-

ularization terms influences our analysis. In particular, we consider
the scenario in which an 𝓁2 regularization term, 𝛺(𝜃) =

∑

𝑖 ‖𝑊̄𝑖‖
2,

polynomial in the parameters 𝜃, is added to the loss function. This term
only affects the term 𝛽 of the format of the Pfaffian function ̄(𝜃) =
(𝜃) + 𝜆𝛺(𝜃), as it affects the degree of the polynomial with respect
to the weights, by adding a monomial term of degree 2; nevertheless,
the bound on the Betti numbers is not affected by it. This can be
easily derived using the computations carried out in the Appendix for
the proof of Theorem 4.5. The 𝓁2 regularization does not promote
sparsity (which is instead promoted by the 𝓁1 regularization) (Hastie,
Tibshirani, Friedman, & Friedman, 2009), but it affects the magnitude
of the weights. This could suggest that the regularization term may
provide a scaling of the loss function, and therefore, all local minima
may still be present; however, it is possible that our theoretical bounds
may not be able to catch the influence of the regularization term in the
loss landscape.

4.1.2. Residual connections
Skip connections or residual connections, are widely employed in

neural networks to alleviate the vanishing gradient problem and en-
hance information flow across layers. The ResNet model popularized
this architectural design (He et al., 2016) and has since then been
adopted in various network architectures.

Introducing a residual term at each layer in a neural network,
thus creating a Residual Neural Network (ResNet), does not impact
the bounds provided in our analysis. It does not affect either the
6

number of functions required in the chain or the maximum degree
of the polynomials. The addition of skip connections combines the
output of a previous layer with that of a subsequent layer through
summation. Regarding our analysis, the essential factors, such as the
degree of polynomials and the length of the Pfaffian chain, remain
the same. The only change lies in the specific terms to be included
within the chain (see Appendix A.6 for more details). Consequently, it
implies that utilizing a ResNet rather than a conventional feedforward
neural network does not alter the topology of the loss function or its
optimization process. Instead, the primary advantage lies in enhancing
the network’s expressive capacity.

Skip connections allow gradients to flow more easily during back-
propagation, facilitating the training of deeper networks. It has been
observed that skip connections promote flat minimizers and prevent
the transition to chaotic behavior (Li et al., 2018). Our current the-
oretical framework is limited in capturing the reduced complexity of
the loss landscape induced by skip connections. Specifically, our theory
provides an upper bound on the number of minima, whilst lacking a
lower bound, which implies that our estimate may exceed the actual
value. Moreover, the analysis in Li et al. (2018) focuses solely on the
minima, while our proposed bound encompasses the sum of all non-
zero Betti numbers. Finally, it is worth observing that the optimization
algorithms do not explore the whole space but only a part where the
complexity of the function might be lower. Therefore, regularization
and skip connections could be mechanisms for which only submanifolds
are explored by the optimization algorithm, and such behavior may not
be captured by what the global bound suggests.

5. Conclusions

In our investigation, we determined that when employing a Pfaffian
non-linearity, both the MSE and BCE loss functions can be represented
as Pfaffian functions. Subsequently, we analyzed the respective Pfaffian
chains obtained in each case. Specifically, we examined the differences
in the complexity and performance of the Pfaffian chains resulting from
the use of the two loss functions.

When studying the complexity of the loss landscape, a superex-
ponential dependency on the network parameters has been found;
interestingly, a qualitative difference can be highlighted between the
shallow and the deep case, as we focus on the impact of the number of
neurons ℎ. Indeed, the superexponential dependency in ℎ encountered
for 𝐿 = 2 changes in ℎ2 as the network becomes deeper.

This result is aligned with the general intuition and previous works
in literature (Bianchini & Scarselli, 2014). In any case, the asymptotic
analysis shows that the sum of Betti numbers has an exponential
dependency on the square of the number of samples 𝑚.

It is worth underlying the characterization of the topological com-
plexity we derived for loss functions with an additional 𝓁2 term; the
presence of a regularization term does not have an impact in the bounds
derived with our analysis, pointing to a different role of the regu-
larization itself in the training of the network, e.g., the optimization
process. Nevertheless, there remains space for deeper analysis since
these boundaries are not tight.

Bounds provided by the sum of Betti numbers are not tight; our
analysis suggests a qualitative interpretation more than a quantitative
one. Obtaining a bound on the number of connected components 𝐵0(𝑆)
rather than 𝐵(𝑆) would give a more accurate characterization of the
topology of the loss landscape; this is a perspective to be considered
for future works.

To the best of our knowledge, we are not aware of methods that
may allow to effectively count the local minima in an error function.
Recognizing local minima and distinguishing them from saddle points
and strange behaviors of learning algorithms is difficult. Hence, t is
difficult to measure the impact of local minima more generally. Such a
fact is often mentioned in the literature (see e.g., Dauphin et al. (2014)),
where the only available studies involve very simplified architectures
and/or algorithms (e.g., Choromanska, Henaff et al. (2015), Venturi
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et al. (2019)). For this reason, a future matter of research could be the
design of an effective experimental framework to measure the number
of local minima in the loss surface.

Our analysis does not cover loss landscapes for networks with
piecewise polynomial functions, e.g. ReLU networks, as these func-
tions are not Pfaffian. However, we are considering expanding our
study to include this function class in the future. One potential ap-
proach to reach such a goal might involve methodologies similar to
those exploited in bounding the VC-dimension for piecewise polyno-
mial functions (see Bartlett, Harvey, Liaw, and Mehrabian (2019),
Bartlett, Maiorov, and Meir (1998)). In those works, the bounds on
the VC dimension are obtained by studying the number of connected
components defined by the function realized by the neural network
w.r.t. the weights.

Moreover, it would be interesting to connect our results with the
mode connectivity framework, specifically through the lens of Morse the-
ory (Akhtiamov & Thomson, 2023), which provides a characterization
of the set of configurations of a neural network with respect to a fixed
empirical loss value. Indeed, improving our analysis with Morse theory
could help to define the connectivity maps at many dimension levels,
leading to a better quantification of each single Betti number.

Finally, it would be worth investigating the connection between
the stability of residual connections in neural networks and the char-
acterization of the loss landscape, e.g., the effects of BIBO-stability
and zero-stability on the bound of Betti numbers (Chen, Jin, & Shang,
2022).
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Appendix

A.1. Making derivatives explicit using Backpropagation

Let (𝜃), = 1
𝑚
∑𝑚

𝑖=1 𝑙𝑜𝑠𝑠(𝑓𝜃(𝑥𝑖), 𝑦𝑖) be a generic loss. We aim to de-
termine the gradient for a given input–output pair (𝑥𝑖, 𝑦𝑖), with respect
o the weight variables 𝑤𝑙

𝑗𝑘 (connecting the 𝑗th neuron of layer 𝑙 − 1,
with the 𝑘th neuron of layer 𝑙), which are elements of the augmented
weight matrix 𝑊 𝑙. The gradient components 𝜕

𝜕𝑤𝑙
𝑗𝑘

can be calculated
hrough the chain rule. The Backpropagation algorithm provides an
fficient method of spreading the error contribution back through the
ayers for updating weights.

Let us define 𝛿𝑙𝑘 = 𝜕
𝜕𝑎𝑙𝑘

, for 𝑙 = 1,… , 𝐿, as the derivative of the cost

function with respect to the activation 𝑎𝑙𝑘 of the 𝑘th neuron of layer 𝑙.
Then
𝜕
𝜕𝑤𝑙

𝑖,𝑗
= 𝛿𝑙𝑗𝑧

𝑙−1
𝑖 ,

which represents a polynomial function in 𝛿𝑙𝑗 , 𝑧
𝑙−1
𝑖 , so that all 𝛿𝑙𝑗 , 𝑧

𝑙−1
𝑖

and their derivatives belong to the Pfaffian chain describing . More-
over, by the chain rule, we have that

𝛿𝑙𝑗 =
𝜕
𝜕𝑎𝑙𝑗

=
𝑛𝑙+1
∑

𝑘=0

𝜕
𝜕𝑎𝑙+1𝑘

𝜕𝑎𝑙+1𝑘

𝜕𝑎𝑙𝑗
=

𝑛𝑙+1
∑

𝑘=0
𝛿𝑙+1𝑘

𝜕𝑎𝑙+1𝑘

𝜕𝑎𝑙𝑗
=

𝑛𝑙+1
∑

𝑘=0
𝛿𝑙+1𝑘 𝑤𝑙+1

𝑘,𝑗 𝜎
′(𝑎𝑙𝑗 ),

hich means that 𝛿𝑙𝑗 is polynomial in all 𝑛𝑙+1, 𝛿𝑙+1𝑖 and 𝜎′(𝑎𝑙𝑗 ), so that
e have also to include all 𝛿𝑙+1𝑗 and all 𝜎′(𝑎𝑙𝑗 ) and their derivatives in

he Pfaffian chain.
Summing up, fixing an input 𝑥𝑖, 𝑦𝑖 and proceeding backward

hrough the layers, we can derive that
𝜕
𝜕𝑤𝑙

𝑖,𝑗
=poly(𝛿𝐿1 ,… , 𝛿𝐿𝑛𝐿 , 𝜎

′(𝑎𝐿1 ),… , 𝜎′(𝑎𝐿𝑛𝐿 ),

… , 𝜎′(𝑎𝑙+11 ),… 𝜎′(𝑎𝑙+1𝑛𝑙+1
), 𝜎′(𝑎𝑙𝑗 ), 𝜎(𝑎

𝑙−1
𝑖 )).

(A.1)

Remark A.1. Notice that if 𝜎 is Pfaffian. It follows that the derivative
𝜎′ is polynomial in the factor of the chain, and the degree of the
polynomial is at most 𝛼𝜎 , while the degree of 𝜎 in its chain is 𝛽𝜎 .

Consequently, being 𝜕
𝜕𝑤𝑙

𝑖,𝑗
= 𝛿𝑙𝑗𝑧

𝑙−1
𝑖 , we have:

𝜕
𝜕𝑤𝑙

𝑖,𝑗
= poly(𝛿𝐿1 ,… , 𝛿𝐿𝑛𝐿 , 𝜎1(𝑎

𝐿
1 ),… , 𝜎𝓁𝜎 (𝑎

𝐿
1 ),… , 𝜎1(𝑎𝐿𝑛𝐿 ),… , 𝜎𝓁𝜎 (𝑎

𝐿
𝑛𝐿
)

(A.2)
… , 𝜎1(𝑎𝑙+11 ),… , 𝜎𝓁𝜎 (𝑎

𝑙+1
1 ),… , 𝜎1(𝑎𝑙+1𝑛𝑙+1

),… , 𝜎𝓁𝜎 (𝑎
𝑙+1
𝑛𝑙+1

),

(A.3)

… , 𝜎1(𝑎𝑙𝑗 ),… , 𝜎𝓁𝜎 (𝑎
𝑙
𝑗 ), 𝜎1(𝑎

𝑙−1
𝑖 ),… , 𝜎𝓁𝜎 (𝑎

𝑙−1
𝑖 )). (A.4)

A.2. Proof of Theorems 4.1 and 4.2

A.2.1. Preliminaries
We want to prove that the MSE loss function and the BCE loss

functions are Pfaffian functions with respect to the parameters of the
network, in the hypothesis that the non-linearities 𝜎 and 𝑔 are Pfaffian.
To do so, we need to find a Pfaffian chain so that the loss function can
be written as a polynomial in that chain, and we need to compute the
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degree of this polynomial in the parameters and the maximum degree
of the derivatives of the functions in the chain with respect to the
parameters of the network.

Notice that in this particular case of the MSE,

𝑙𝑜𝑠𝑠MSE(𝑓 (𝑥𝑖), 𝑦𝑖) =
1
2
(𝑓 (𝜃, 𝑥𝑖) − 𝑦𝑖)2.

meaning that if 𝑓 is a Pfaffian function of a given format (𝛼𝑓 , 𝛽𝑓 ,𝓁𝑓 ),
the loss is a Pfaffian function with respect to the same chain with format
(𝛼𝑓 , 2𝛽𝑓 ,𝓁𝑓 ).

In the case of the BCE loss function,

𝑙𝑜𝑠𝑠BCE(𝑓 (𝑥𝑖), 𝑦𝑖) = −𝑦𝑖 log(𝑓𝜃(𝑥𝑖)) − (1 − 𝑦𝑖) log(1 − 𝑓𝜃(𝑥𝑖)).

always assuming that 𝑓 is a Pfaffian function of a given format
(degree(𝑓 ′)−1, 𝛽𝑓 ,𝓁𝑓 ) we can consider two possible chains. The first one
s the chain in which we add to the chain of 𝑓 the functions log(𝑓𝜃(𝑥𝑖))

and log(1 − 𝑓𝜃(𝑥𝑖)) and their derivatives meaning that the format of
he chain becomes (max{degree(𝑓 ′)+2, 𝛼𝑓 }, 1,𝓁𝑓 +4), where degree(𝑓 ′)

is the degree of 𝑓 ′ as polynomial in the chain, we will specify which
chain in the various cases. In case we have a sigmoid as the final
activation function, we could consider a different chain in which we
include the loss in the chain; in this case, as we will see in ?? to obtain
a Pfaffian chain, we also need to include the sigmoid function applied
to 𝑓 , 𝜎(𝑓 (𝑥)) so the format becomes (degree(𝑓 ′) + 2, 1,𝓁𝑓 + 2).

To determine the degree of 𝑓 ′ we will need to compute the degree
of 𝜎′. This will be useful for all the different cases considered, so we
are doing it in this section.

If 𝑦𝑖 = 𝜎𝑖(𝑎):

𝑑𝜎(𝑎)
𝑑𝑎

|

|

|

|

𝑎=𝑎𝑙ℎ
=

𝑑𝑄(𝑦1,… , 𝑦𝓁)
𝑑𝑎

|

|

|

|

𝑎=𝑎𝑙ℎ
=

(

𝓁
∑

𝑠=1

𝜕𝑄(𝑦1,… , 𝑦𝓁)
𝜕𝑦𝑠

𝑃𝑢(𝑎, 𝑦1,… , 𝑦𝑢)
)

|

|

|

|

1≤𝑢≤𝓁
𝑦𝑢=𝜎𝑢 (𝑎𝑙ℎ )

𝑎=𝑎𝑙ℎ

𝜕𝑄(𝑦1 ,…,𝑦𝓁 )
𝜕𝑦𝑠

has degree 𝛽𝜎 − 1 and 𝑃𝑢(𝑎, 𝑦1,… , 𝑦𝑢) has degree 𝛼𝜎 in

𝜎1(𝑎),… , 𝜎𝓁(𝑎). In conclusion 𝑑𝜎(𝑎)
𝑑𝑎

|

|

|

|𝑎=𝑎𝑙ℎ

is a polynomial of degree 𝛽𝜎 +

𝜎 − 1 if, ∀𝑖, 𝑃𝑖 does not depend directly on 𝑎, and it is 𝛽𝜎 + 𝛼𝜎 − 1 +
𝜎 (𝛽𝜎 + 1) in the general case. Indeed if 𝑃𝑖 depends on 𝑎, we have that
(𝑎𝑙ℎ, 𝜎1(𝑎

𝑙
ℎ),… , 𝑎𝑙ℎ) has degree 𝛼𝜎 (𝛽𝜎+1), since the degree of 𝑎𝑙ℎ is 𝛽𝜎+1

n the Pfaffian chain. Notice that 𝑎𝑙ℎ = 𝑊 𝑙𝜎(𝑎𝑙−1) and 𝜎(𝑎𝑙−1) has degree
𝜎 .

Summarizing :

egree(𝜎′) =
{

𝛽𝜎 + 𝛼𝜎 − 1 case 1
𝛽𝜎 + 𝛼𝜎 − 1 + 𝛼𝜎 (𝛽𝜎 + 1)case 2

(A.5)

where case 1 refers to the case where 𝑃 𝑖
𝜎 (𝑎, 𝜎1(𝑎),… , 𝜎𝓁𝜎 (𝑎)) do not

depend explicitly 𝑎 and case 2 where they depend on it.

A.2.2. MSE loss function

Proof of Theorem 4.1. In our hypothesis 𝑛𝐿 = 1, so 𝛿𝐿, 𝑎𝐿 and
𝑓𝜃(𝑥) are scalars. Depending on whether the last layer is linear or the
non-linearity 𝑔 is applied, we have that

𝑓𝜃(𝑥) =

{

𝑎𝐿

𝑔(𝑎𝐿).

Linear last layer. In the case of linear activation, given that 𝑎𝐿 =
𝑊 𝐿𝜎(𝑎𝐿−1) and that 𝜎 is Pfaffian with respect to the chain 𝜎1,… , 𝜎𝓁𝜎
we obtain that 𝑓𝜃(𝑥) = 𝑎𝐿 is polynomial in the functions following chain

(((𝜎𝑘(𝑎
𝑗
𝑖 ))𝑘=1,…𝓁𝜎

)𝑖=1,…,𝑛𝑗 )𝑗=1,…,𝐿−1

The degree of the Pfaffian function 𝑓 in this chain is 𝛽𝑓 = 𝛽𝜎 + 1;
the maximum degree of the derivatives depends on the degree of 𝜎′
8

in (A.5) and is given by the chain rule, the worst case is given by
deriving of the term of the vector 𝜎(𝑎𝐿−1) with respect to one of the
weights of the first layer. In this case, applying the chain rule and going
backward layer by layer, we obtain that every step, we multiply the
weight of one layer and the 𝜎′ it follows that the degree of 𝜕𝜎(𝑎𝐿−1)

𝜕𝑤1
𝑖,𝑗

is
degree(𝜎′) + 1)(𝐿 − 2) + degree(𝜎′)

Taking into account what was said in Appendix A.2.1, we obtain
hat for a single input point, 𝑥, we obtained that the MSE loss with
inear activation for the last layer is Pfaffian with respect to the
ollowing chain of length 𝓁𝜎

∑𝐿−1
𝑘=1 𝑛𝑘:

((𝜎𝑘(𝑎
𝑗
𝑖 ))𝑘=1,…𝓁𝜎

)𝑖=1,…,𝑛𝑗 )𝑗=1,…,𝐿−1 (A.6)

The order of the chain is given, going from the inner cycle to the
uter cycle.

Considering that we have to consider all the input points, the length
f the chain becomes 𝑚𝓁𝜎

∑𝐿−1
𝑘=1 𝑛𝑘. The format of the chain of the MSE

loss function is therefore

((degree(𝜎′) + 1)(𝐿 − 2) + degree(𝜎′), 2(𝛽𝜎 + 1), 𝑚𝓁𝜎
𝐿−1
∑

𝑘=1
𝑛𝑘) (A.7)

on-linear last layer with non-linearity 𝑔. In this case, we need to add
o the chain described in Eq. (A.6) the terms (𝑔𝑘(𝑎𝐿))𝑘=1,…,𝓁𝑔 . The final
hain will be:

(((𝜎𝑘(𝑎
𝑗
𝑖 ))𝑘=1,…𝓁𝜎

)𝑖=1,…,𝑛𝑗 )𝑗=1,…,𝐿−1, (𝑔𝑘(𝑎𝐿))𝑘=1,…,𝓁𝑔 ] (A.8)

The degree of the function 𝑓 in this chain is given by 𝛽𝑔 , the
aximum degree of the derivatives is the degree of 𝜕𝑔(𝑎𝐿)

𝜕𝑤1
𝑖,𝑗

and is
(degree(𝜎′) + 1)(𝐿 − 2) + degree(𝜎′) + degree(𝑔′) + 1.

Using the argument we used before for 𝜎′, we have that the degree
f 𝑔′(𝑎) is 𝛽𝑔 + 𝛼𝑔 − 1 if, ∀𝑖, 𝑃 𝑖

𝑔 does not depend directly on 𝑎, and it is
𝑔 + 𝛼𝑔 − 1 + 𝛼𝑔(𝛽𝑔 + 1) in the general case.

egree(𝑔′) =
{

𝛽𝑔 + 𝛼𝑔 − 1 case 1
𝛽𝑔 + 𝛼𝑔 − 1 + 𝛼𝑔(𝛽𝑔 + 1) case 2

(A.9)

Summarizing the format of the chain in the case of non-linear
ctivation for the last layer is

(degree(𝜎′)+1)(𝐿−2)+degree(𝜎′)+degree(𝑔′)+1, 2𝛽𝑔 , 𝑚(𝓁𝜎

𝐿−1
∑

𝑘=1
𝑛𝑘+𝓁𝑔)) □

(A.10)

.2.3. BCE loss function

roof of Theorem 4.2. We study the two cases when the intermediate
ctivation 𝑔 is the sigmoid and when it is a different function.
on-linear activation 𝑔 different from the sigmoid function. In this case, the
faffian chain for the loss function will be the chain described in (A.8)
o which we add the following terms 1

𝑔(𝑎𝐿) , log(𝑔(𝑎
𝐿)), 1

1−𝑔(𝑎𝐿) , log(1 −
(𝑎𝐿)). The length of the chain will be ∑𝐿−1

𝑘=1 𝑛𝑘+𝓁𝑔+4. The degree of the
oss function with respect to this chain is 1, and the maximum degree
f the derivatives is given by the degree of the following derivative

𝜕1∕𝑔(𝑎𝐿)
𝜕𝑤1

𝑖,𝑗
that is (𝐿 − 2)(degree𝜎′ + 1) + degree(𝜎′) + degree(𝑔′) + 3.

It follows that the format of the chain for the BC loss function with
sigmoid activation for the last layer is

((𝐿−2)(degree(𝜎′)+1)+degree(𝜎′)+degree(𝑔′)+3, 1, 𝑚(𝓁𝜎
𝐿−1
∑

𝑘=1
𝑛𝑘+𝓁𝑔+4))

Non-linear activation 𝑔 is the sigmoid function. In this case, we want to
include the loss in the chain and use the trick of backpropagation intro-
duced in Appendix A.2.1 to be sure that its derivatives are polynomial
in the chain. Eq. (A.1) shows that the derivative of the loss with respect
to the parameters is poly in 𝛿𝐿𝑖 and in the terms of the chain (A.8), in
this case with 𝑔 equal to the sigmoid function.
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If we consider only a single sample 𝑥 and the output of the network
𝜃(𝑥) = 𝑔(𝑎𝐿). We have that
𝜕𝑙𝑜𝑠𝑠BCE(𝑦, 𝑓𝜃(𝑥))

𝜕𝑎𝐿
= 𝑔′(𝑎𝐿) 1

𝑔(𝑎𝐿)(1 − 𝑔(𝑎𝐿))
(𝑦𝑖 − 𝑓𝜃(𝑥)) = (A.11)

𝑚
∑

𝑖=1

𝑔′(𝑎𝐿)
𝑔(𝑎𝐿)(1 − 𝑔(𝑎𝐿))

(𝑦𝑖 − 𝑔(𝑎𝐿)).

If the non-linearity 𝑔 is the sigmoid function
(

𝑔(𝑥) = 1
1+𝑒−𝑥

)

, the term
𝑔′(𝑎𝐿)

𝑔(𝑎𝐿)(1−𝑔(𝑎𝐿)) becomes 1, and we do not need to deal with it and the
egree of 𝛿𝐿 is the degree of 𝑔(𝑎𝐿), that is 𝛽𝑔 that for the sigmoid

function is 1. We recall that the sigmoid function is Pfaffian with format
(2, 1, 1).

It follows that the format of the chain for the BC loss function with
sigmoid activation for the last layer is

((𝐿−2)(degree(𝜎′)+1)+degree(𝜎′)+degree(𝑔′)+1, 1, 𝑚(𝓁𝜎
𝐿−1
∑

𝑘=1
𝑛𝑘+1)+1)

The last +1 in the length is given by the fact that we are also adding
the loss function computed on the input dataset to the chain. Moreover,
we can compute degree(𝑔′) that is this case is 2, notice that this is
smaller than the worst case proposed in (A.9) that would be equal to
4.

The final format of the chain will be

((𝐿 − 2)(degree(𝜎′) + 1) + degree(𝜎′) + 3, 1, 𝑚(𝓁𝜎
𝐿−1
∑

𝑘=1
𝑛𝑘 + 1) + 1) □

A.3. Proof of Corollary 4.3

Proof. It is enough to remark that the format of the hyperbolic tangent
and the sigmoid function is (𝛼𝜎 , 𝛽𝜎 ,𝓁𝜎 ) = (2, 1, 1). Substituting these
values in Theorem 4.1 leads straightforwardly to the statement. □

A.4. Proof of Corollary 4.4

Proof. The result for the hyperbolic tangent activation function can
be obtained by applying Theorem 4.2 with its corresponding format
of (2, 1, 1). On the other hand, for the sigmoid function, we have that
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)). This allows us to obtain a linear dependency on
𝜎(𝑥) in the derivative of the BCE loss function. Indeed,
𝜕(𝑓 )
𝜕𝜃

= − 𝜕
𝜕𝜃

(𝑦 log(𝜎(𝑓 (𝜃))) + (1 − 𝑦) log(1 − 𝜎(𝑓 (𝜃))))

= −[
𝑦

𝜎(𝑓 (𝜃))
𝜎′(𝑓 (𝜃))

𝜕𝑓 (𝜃)
𝜕𝜃

−
1 − 𝑦

1 − 𝜎(𝑓 (𝜃))
𝜎′(𝑓 (𝜃))

𝜕𝑓 (𝜃)
𝜕𝜃

]

= −𝑦(1 − 𝜎(𝑓 (𝜃)))
𝜕𝑓 (𝜃)
𝜕𝜃

+ (1 − 𝑦)𝜎(𝑓 (𝜃))
𝜕𝑓 (𝜃)
𝜕𝜃

= (𝜎(𝑓 (𝜃)) − 𝑦)
𝜕𝑓 (𝜃)
𝜕𝜃

□

.5. Proof of Theorem 4.5

roof. We can use Theorem 3.5 with 𝑈 = R𝑛̃, with 𝑛̃ = ℎ(𝑛0 + 1) +
(ℎ + 1)(𝐿 − 2) + ℎ + 1 = ℎ2(𝐿 − 2) + ℎ(𝑛0 + 𝐿) + 1 the total number of
arameters of the network.

In this case the term 𝑠𝑛′ in Eq. (1) can be ignored since 𝑠 = 1.
ounds for MSE loss function: deep case. For 𝐿 ≥ 3:

• if the last layer has a linear activation, we have that

𝐵(𝑆) ∈ 2[𝑚(𝐿−1)ℎ(𝑚(𝐿−1)ℎ−1)]∕2𝑂(𝑓 (𝑛0, ℎ, 𝐿, 𝑚)ℎ
2(𝐿−2)+ℎ(𝐿+𝑛0+𝑚(𝐿−1))+1)

(A.12)

with

𝑓 (𝑛0, ℎ, 𝐿, 𝑚) =4[ℎ2(𝐿 − 2) + ℎ(𝐿 + 𝑛0) + 1]+

3(𝐿 − 2) ⋅min(ℎ2(𝐿 − 2) + ℎ(𝐿 + 𝑛0) + 1, 𝑚(𝐿 − 1)ℎ)
9

If 𝑚 ≫ ℎ it becomes

𝐵(𝑆) ∈ 2(𝑚(𝐿−1)ℎ(𝑚(𝐿−1)ℎ−1))∕2𝑂(4[ℎ2(𝐿 − 2) + ℎ(𝐿 + 𝑛0) + 1]+

+3(𝐿 − 2)(ℎ2(𝐿 − 2) + ℎ(𝐿 + 𝑛0) + 1))ℎ
2(𝐿−2)+ℎ(𝐿+𝑛0+𝑚(𝐿−1))+1

If ℎ ≫ 𝑚, and we consider 𝐿 and 𝑚 as constant it becomes

𝐵(𝑆) ∈ 2(𝑚(𝐿−1)ℎ(𝑚(𝐿−1)ℎ))∕2𝑂(4[ℎ2(𝐿 − 2)+

+ℎ(𝐿 + 𝑛0) + 1]3(𝐿 − 2)ℎ𝑚(𝐿 − 1))ℎ
2(𝐿−2)+ℎ(𝐿+𝑛0+𝑚(𝐿−1))+1

It is important to note that the overparametrized regime falls
within this scenario.

• if the last layer has a nonlinear activation, we have that:

𝐵(𝑆) ∈ 2[(𝑚(ℎ(𝐿−1)+1))(𝑚(ℎ(𝐿−1)+1)+1)]∕2⋅ (A.13)

⋅𝑂(𝑔(𝑛0, ℎ, 𝐿, 𝑚))ℎ
2(𝐿−2)+ℎ(𝐿+𝑛0+𝑚(𝐿−1))+2

with

𝑔(𝑛0, ℎ, 𝐿, 𝑚) = 2[ℎ2(𝐿 − 2) + ℎ(𝐿 + 𝑛0) + 1] + (3(𝐿 − 2) + 5)⋅

⋅minℎ2(𝐿 − 2) + ℎ(𝐿 + 𝑛0) + 1, 𝑚(ℎ(𝐿 − 1) + 1)

If 𝑚 ≫ ℎ it becomes

𝐵(𝑆) ∈ 2[(𝑚(ℎ(𝐿−1)+1))(𝑚(ℎ(𝐿−1)+1)+1)]∕2𝑂
(

2[ℎ2(𝐿 − 2) + ℎ(𝐿 + 𝑛0) + 1]+

+(3(𝐿 − 2) + 5)(ℎ2(𝐿 − 2)) + ℎ(𝐿 + 𝑛0) + 1
)ℎ2(𝐿−2)+ℎ(𝐿+𝑛0+𝑚(𝐿−1))+2

If ℎ ≫ 𝑚, and we consider 𝐿 and 𝑚 as constant it becomes

𝐵(𝑆) ∈ 2[(𝑚(ℎ(𝐿−1)+1))(𝑚(ℎ(𝐿−1)+1)+1)]∕2𝑂
(

2[ℎ2(𝐿 − 2) + ℎ(𝐿 + 𝑛0) + 1]+

+(3(𝐿 − 2) + 5)𝑚(ℎ(𝐿 − 1) + 1)
)ℎ2(𝐿−2)+ℎ(𝐿+𝑛0+𝑚(𝐿−1))+2

In both cases, we can see that, as a function of the number of
samples 𝑚, fixing ℎ and 𝐿 as constants, we have that 𝐵(𝑆) ∈ 𝑐𝑂(𝑚2),
where 𝑐 is a constant greater than 2. As a function of ℎ, considering the
other variables as constants 𝐵(𝑆) ∈ 𝑂(ℎ2)𝑂(ℎ2). Eventually, as a function
of 𝐿, considering 𝑚 and ℎ as constants, 𝐵(𝑆) ∈ 2𝑂(𝐿2)𝑂(𝐿2)𝑂(𝐿).
Bounds for MSE loss function: shallow case.

In the case of 𝐿 = 2, all the terms in which 𝐿 − 2 occurs vanish.
Therefore,

• if the last layer has a linear activation, Eq. (A.12) simplifies in the
following way:

𝐵(𝑆) ∈ 2[𝑚ℎ(𝑚ℎ−1)]∕2𝑂([4ℎ(2 + 𝑛0) + 4]ℎ(2+𝑛0+𝑚)+1)

• if the last layer has a nonlinear activation since the number of
samples is usually larger than the input dimension, min(ℎ(2+𝑛0)+
1, 2𝑚ℎ) = ℎ(2 + 𝑛0) + 1. This simplify Eq. (A.13) in the following
way:

𝐵(𝑆) ∈ 2[2𝑚ℎ(2𝑚ℎ−1)]∕2𝑂([9ℎ(2 + 𝑛0) + 9]ℎ(2+𝑛0+2 𝑚)+1)

As a function of 𝑚 the results are the same as we obtained for deep
networks, 𝐵(𝑆) ∈ 𝑐𝑂(𝑚2). Conversely, as a function of ℎ, the dependency
changes and we obtain 𝐵(𝑆) ∈ 𝑂(ℎ)𝑂(ℎ).
Bounds for BCE loss function: deep case. For 𝐿 ≥ 3:

• if the last layer has a sigmoid activation function, we have that

2[(𝑚((𝐿−1)ℎ+1)+1)(𝑚((𝐿−1)ℎ+1))]∕2⋅

⋅𝑂(𝑔(𝑛0, ℎ, 𝑚, 𝐿)ℎ(𝑚(𝐿−1)+𝑛0+2+(ℎ+1)(𝐿−2))+𝑚+2)

with

𝑔(𝑛0, ℎ, 𝑚, 𝐿) =

= ℎ2(𝐿 − 2) + ℎ(𝑛0 + 𝐿) + 1 + [3(𝐿 − 2) + 5]⋅

⋅min(ℎ2(𝐿 − 2) + ℎ(𝑛0 + 𝐿) + 1, [𝑚((𝐿 − 1)ℎ + 1) + 1])

If 𝑚 ≫ ℎ, 𝑔(𝑛0, ℎ, 𝑚, 𝐿) becomes
𝑔(𝑛0, ℎ, 𝑚, 𝐿) =
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= ℎ2(𝐿−2)+ℎ(𝑛0 +𝐿) + 1+ [3(𝐿−2)+ 5](ℎ2(𝐿−2)+ℎ(𝑛0 +𝐿) + 1)

On the other side, if ℎ ≫ 𝑚 and we consider 𝑚 and 𝐿 as constant,
we have that

𝑔(𝑛0, ℎ, 𝑚, 𝐿) =

= ℎ2(𝐿 − 2) + ℎ(𝑛0 + 𝐿) + 1 + [3(𝐿 − 2) + 5][𝑚((𝐿 − 1)ℎ + 1) + 1].

Bounds for BCE loss function: shallow case. For 𝐿 = 2:

• if the last layer has a non-linear activation function, we have that

2[(𝑚(ℎ+1)+1)(𝑚(ℎ+1))]∕2𝑂(𝑔(𝑛0, ℎ, 𝑚)ℎ(𝑚+𝑛0+2)+𝑚+2) (A.14)

with 𝑔(𝑛0, ℎ, 𝑚) = ℎ(𝑛0 + 2) + 1 + 5min(ℎ(𝑛0 + 2) + 1, 𝑚(ℎ + 1) + 1)
If 𝑚 ≫ ℎ, 𝑔(𝑛0, ℎ, 𝑚, 𝐿) becomes

𝑔(𝑛0, ℎ, 𝑚) = ℎ(𝑛0 + 2) + 1 + 5(ℎ(𝑛0 + 2) + 1).

On the other side, if ℎ ≫ 𝑚 and we consider 𝑚 and 𝐿 as constant,
we have that

𝑔(𝑛0, ℎ, 𝑚, 𝐿) = ℎ(𝑛0 + 2) + 1 + 5[𝑚(ℎ + 1) + 1].

Resulting in asymptotic bounds equal to those derived previously for
the MSE loss with non-linear activation. The same holds with similar
computations in case the last activation function is the hyperbolic
tangent.

We remark that for the BCE loss, our focus is primarily on studying
the case where the last layer of the neural network has a non-linear
activation function since it is commonly used for binary classification
tasks. □

A.6. Residual connections

Without loss of generality, we can consider the case in which
we utilize skip connections that provide the previous layer’s output,
through summation, as an additional input to the subsequent layer. In
this case, denoting by 𝑧𝑖 the output of the 𝑖th layer, if we consider the
case, we have that

𝑧1 = 𝜎(𝑊 1𝑥)

𝑧2 = 𝜎(𝑊 2𝑧1) + 𝑧1
𝑧3 = 𝜎(𝑊 3𝑧2) + 𝑧2
⋮

𝑧𝑙 = 𝜎(𝑊 𝑙𝑧𝑙−1) + 𝑧𝑙−1
⋮

If we want to obtain the derivative of 𝑧𝑙 with respect to a parameter
of the network 𝑤𝑘 = 𝑊 𝑘

𝑖 with 𝑘 < 𝑙 and 𝑖 ∈ {1,… , 𝑛𝑘}, we have that

𝜕𝑧𝑙
𝜕𝑤𝑘 = 𝑊 𝑙𝜎′(𝑊 𝑙𝑧𝑙−1)

𝜕𝑧𝑙 − 1
𝜕𝑤𝑘 +

𝜕𝑧𝑙 − 1
𝜕𝑤𝑘

We observe that the derivative 𝜕𝑧𝑙−1
𝜕𝑤𝑘 appears twice in the equation.

owever, due to the multiplication with other terms in the first term,
t only affects the degree of the polynomial in the first term of the
um. Therefore, we can disregard the second term in the equation
hen interested in computing the format of the Pfaffian chain. This

easoning can be extended to all layers, demonstrating that the degrees
f the derivatives will remain unchanged, just as we computed for
imple feedforward perceptron neural networks. Similarly, the length
f the chain remains unaltered. In this case, as well, the functions to be
ncluded in the chain are the outputs of the layers, which are exactly the
ame in number as those in feedforward networks, albeit with different
orms.
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