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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Characterization of Asbestos Containing 
Materials (ACMs) by SWIR-HSI. 

• Automated non-destructive ACMs 
detection in Construction and Demoli
tion Waste (C&DW). 

• Evaluation of different HSI classification 
models and comparison with micro-XRF 
maps. 

• Proposing a robust and efficient strategy 
for classifying hazardous materials in 
C&DW.  
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A B S T R A C T   

In this study, different multivariate classification methods were applied to hyperspectral images acquired, in the 
short-wave infrared range (SWIR: 1000–2500 nm), to define and evaluate quality control actions applied to 
construction and demolition waste (C&DW) flow streams, with particular reference to the detection of hazardous 
material as asbestos. Three asbestos fibers classes (i.e., amosite, chrysotile and crocidolite) inside asbestos- 
containing materials (ACM) were investigated. Samples were divided into two groups: calibration and valida
tion datasets. The acquired hyperspectral images were first explored by Principal Component Analysis (PCA). The 
following multivariate classification methods were selected in order to verify and compare their efficiency and 
robustness: Hierarchical Partial Least Squares-Discriminant Analysis (Hi-PLSDA), Principal Component Analysis 
k-Nearest Neighbors (PCA-kNN) and Error Correcting Output Coding with Support Vector Machines (ECOC- 
SVM). The classification results obtained for the three models were evaluated by prediction maps and the values 
of performance parameters (Sensitivity and Specificity). Micro-X-ray fluorescence (micro-XRF) maps confirmed the 
correctness of classification results. The results demonstrate how SWIR-HSI technology, coupled with multi
variate analysis modelling, is a promising approach to develop both “off-line” and “online” fast, reliable and 
robust quality control strategies, finalized to perform a quick assessment of ACM presence.  
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1. Introduction 

Every year a huge amount of construction and demolition waste 
(C&DW) is generated, arising from construction sites and the demolition 
of buildings and infrastructures. These materials have a high potential 
for recycling and reuse [1], in particular, inert C&DW (i.e., concrete and 
brick) can be recycled into aggregates (RA) [2,3]. However, a small 
portion of C&DW contains asbestos, a hazardous material that severely 
impacts human health, natural environment and society [4]. Asbestos is 
the common name for a family of fibrous minerals such as chrysotile and 
crocidolite, the most common asbestos minerals on earth, followed by 
amosite [5,6]. Asbestos was utilized in an endless number of industrial 
applications due to its technological properties and outstanding char
acteristics, such as resistance to heat and chemicals and its relatively low 
cost [6,7]. Asbestos is commonly found in the so-called asbestos-con
taining materials (ACM), in which asbestos fibers are combined with 
cement matrices, and nowadays, there are still more than 2 billion m2 of 
cement-asbestos slates and approximately 300 million m3 of friable 
asbestos in both indoor and outdoor environments [5]. However, despite 
its properties, since the ‘80s, asbestos has been recognized as hazardous 
to human health and banned in many industrialized countries. Asbestos 
is potentially dangerous due to the potential release in the air of fibers, 
whose harmfulness is well known if inhaled or ingested due to degra
dation/alteration phenomena and manipulation/handling activities 
[8,9]. 

During the C&DW recycling process, ACM must be collected and 
separated from the other wastes to minimize contamination risks. The 
regulations required ACM to be removed through packaging and storage 
in controlled landfills, so they were no longer hazardous. Moreover, the 
subsequent detection of ACM in C&DW makes recycling impractical, 
and thus it is dumped in landfills [10]. Environmental impacts associ
ated with low C&DW recycling rates include high energy consumption 
and depletion of valuable resources in the production of building ma
terials, both for new construction and post-disaster reconstruction, 
rather than using existing waste materials [11–13]. So, a solution 
capable of separating hazardous from non-hazardous materials is 
fundamental and needed to reduce landfilling and improve C&DW 

recycling. 
Recently an alternative way to dumping ACM was shown by several 

authors [14,15], based on an industrial process for the thermal trans
formation of ACM and recycling of the end product. This process allows 
the direct annealing of cement-asbestos slates or loose friable packages 
using a tunnel kiln with certain temperature conditions. The composi
tion results are similar to a natural clinker except for a more significant 
aluminium, iron and magnesium content. It can eventually be recycled 
as a secondary raw material for producing various industrial materials 
[15]. From this perspective, identifying and removing ACM from C&DW 
could be profitable to manage ACM and recycle C&DW. In order to find 
the best solution to characterize and separate this waste, it is necessary 
to adopt innovative technology that can identify hazardous contami
nants such as asbestos fibers in a C&DW stream. 

Hyperspectral imaging (HSI) could be a valuable solution to detect 
asbestos fibers and to identify different types of ACM and C&DW. 
Indeed, different studies have been carried out to characterize asbestos 
fibers in ACM and to classify ACM samples from C&DW, using HSI 
techniques [16–20]. HSI has the advantage of being non-destructive, 
non-invasive and it does not need any sample preparation, thus allow
ing the acquisition of large quantities of samples in a short time and to 
handle huge amounts of C&DW, improving worker safety at the same 
time. 

The proposed work aimed to apply HSI working in the Short-Wave 
InfraRed range (SWIR: from 1000 to 2500 nm) for classifying and 
identifying different kinds of C&DW and ACM samples. The novelty of 
this work is the comparison of different classification techniques to 
determine the best approach for identifying ACM with the lowest false 
positive prediction in non-ACM samples. The acquired hyperspectral 
data were first examined using principal component analysis. Then three 
classification models were built, and the results were compared in order 
to find the most robust and reliable strategy for recognizing C&DW and 
identifying ACM and asbestos fibers. In particular, a hierarchical partial 
least squares-discriminant analysis (Hi-PLSDA), a principal component 
analysis k-nearest-neighbors (PCA-kNN), and in the end, Error Cor
recting Output Codes Support Vector Machine (ECOC-SVM) were 
applied. Their performances were evaluated in terms of prediction maps 

Fig. 1. RGB colour images of the acquired milled and raw fibrous asbestos samples used for calibration dataset, composed of: (a) milled amosite sample, (b) milled 
chrysotile sample, (c) milled crocidolite sample, (d) raw amosite sample, (e) raw chrysotile sample and (f) raw crocidolite sample. 
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and statistical parameters. Moreover, micro-X-ray fluorescence (micro- 
XRF) maps were obtained and compared with the HSI prediction maps. 

2. Materials and methods 

The investigated samples 
For this study, different samples were investigated in order to create 

a calibration and validation dataset, that is:  

• Asbestos (raw and milled) and Asbestos Containing Material (ACM) 
samples were provided and certified by the National Institute for 
Insurance against Accidents at Work (INAIL) and characterized in 

previous work [20]. In particular, these samples containing amosite 
(Fe2+)2(Fe2+, Mg)5Si8O22(OH)2), chrysotile Mg3(Si2O5) (OH)4 and 
crocidolite Na2(Mg, Fe)6Si8O22(OH)2 fibers.  

• C&DW samples were provided by COSMARI, a stationary recycling 
plant located in Macerata (Italy) province, responsible for sorting 
and managing post-earthquake debris. Among these samples, con
crete and plasterboard were selected as they are among the most 
used in the construction sector. In particular, concrete and cement 
matrices are the most used in combination with asbestos fibers to 
obtain ACM. Moreover, plaster was also included in the dataset 
inasmuch was present on the top of the plasterboard. 

Fig. 2. RGB colour images of the acquired C&DW samples used for calibration dataset, composed of: (a) Plasterboard (inside) sample, (b) Plasterboard (back side) 
sample, (c) Plasterboard (front side, covered by Plaster) sample and(d) Concrete sample. 

Fig. 3. RGB colour images of the acquired ACM samples used for calibration dataset, composed of: (a) chrysotile rope, (b) chrysotile and crocidolite in a cement 
matrix, (c) amosite in a cement matrix and (d) chrysotile and crocidolite in a cement matrix. 

Fig. 4. RGB colour images of the acquired C&DW samples used for validation dataset, composed of: (a) Plasterboard (inside) sample, (b) Plasterboard (back side) 
sample, (c) Plasterboard (front side, covered by Plaster) sample and (d) Concrete sample. 
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More in detail, the calibration dataset was built with three milled and 
three raw asbestos samples (Fig. 1), four C&DW samples (Fig. 2) and 
four different typologies of ACM (Fig. 3). 

In order to test and compare the classification model results, a vali
dation dataset was created by four C&DW samples (concrete and plas
terboard) (Fig. 4) and seven ACM samples (Fig. 5): amosite insulator 
product, chrysotile rope, chrysotile mortar, chrysotile gasket, milled 
chrysotile fibers, insulator product, asbestos panel, asbestos panel. The 
different ACM samples have been identified and characterized following 
a micro-X-ray Fluorescence approach, and the results have been 
compared with those of prediction maps. 

In total, six classes of samples were investigated: concrete, plaster, 
plasterboard, amosite, crocidolite and chrysotile. 

Hyperspectral imaging system 
Hyperspectral imaging acquisitions were carried out at RawMaLab of 

the Department of Chemical Engineering, Materials and Environment 
(Sapienza - University of Rome, Italy). Hyperspectral images were ac
quired using SISUChema XL™ Chemical Workstation (Specim, Finland) 
equipped with ImSpector™ N25E imaging spectrograph (Specim, 
Finland) working in the SWIR range (1000–2500 nm). A macro lens with 
a field of view of 10 mm was adopted, with a resolution of 30 µm/pixel, 
allowing to perform asbestos identification of classification. Chem
aDAQ™ software was used to acquire and collect hyperspectral data. 

Data processing and image analysis 
Hyperspectral data pre-processing 
Hyperspectral data were analyzed utilizing the PLS_Toolbox 

(Eigenvector Research, Inc.) running inside MATLAB (The Mathworks, 
Inc., Natick, MA, USA) to perform PCA and Hi-PLSDA, and Statistics and 
Machine Learning Toolbox™ for Principal Component Analysis k- 
Nearest Neighbors (PCA-kNN) and Error Correcting Output Coding with 
Support Vector Machines (ECOC-SVM) classification models. 

Spectral data were pre-processed using a combination of algorithms 
to highlight the differences between the classes and optimize the 
recognition. In the following a brief description of the adopted pre- 
processing procedures is reported: 

• Multiplicative Scatter Correction (MSC) is one of the most used al
gorithms that reduce the scattering effects [21].  

• Standard Normal Variate (SNV) allows the resolution of source or 
detector variations or other general instrumental sensitivity effects. 
It is one of the most used algorithms for correcting scattering effects 
[22]. 

• Derivative is an algorithm for removing baseline signal from sam
ples, where each variable in a sample is subtracted from its imme
diate neighboring variable [21].  

• Mean Center (MC) is a method for deleting data offsets that are not of 
interest for the interpretation of data variance and is a type of 
Centering algorithm that corresponds to a translation of the axis 
origin at the centroid of the data [23]. 

Principal Component Analysis (PCA) 
After pre-processing, an exploratory analysis was performed by 

applying PCA to the spectral data [24]. PCA is an unsupervised method 
that reduces the data dimensionality by projecting samples into a lower- 
dimensional subspace, where the axes (i.e., principal components - PC) 
point in the direction of maximum variance. The first few PCs, resulting 
from PCA, are generally used to analyze the standard features among 
samples and their grouping: in fact, samples characterized by similar 
spectral signatures tend to aggregate in the score plots of the first two or 
three components. PCA was thus utilized to remove the background and 
evaluate the best pre-processing combinations according to the separa
tion in the score plots of the six classes [24,25]. In order to process and 
build PCA-kNN and ECOC-SVM models, data reduction was made using 
PCA. 

Classification models and performance metrics 
In order to define the best model able to identify ACM and C&DW, 

three models were created and tested. More in detail, a hierarchical 
approach based on PLS-DA was selected as the most common classifi
cation model based on the covariance or variance of the data [26]. A 
PCA-kNN was then adopted, it is a ’mixed’ classification method 
combining a linear approach with a nonlinear one [27]. Finally, an 
ECOC-SVM was also applied: it represents an effective strategy for 
solving multiple classification tasks by splitting them into many two- 

Fig. 5. RGB colour images of the acquired ACM samples used for validation dataset, composed of: (a) amosite insulator product, (b) chrysotile rope, (c) chrysotile 
mortar, (d) chrysotile gasket, (e) milled chrysotile fibers, (e) insulator product, (f) asbestos panel and (g) asbestos panel. In the red box the samples used in the 
validation dataset are highlighted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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classification ones [28]. 
The calibration dataset was used to train the different models, in 

which each pixel is assigned to a class. Then a cross-validation phase is 
performed in order to define the principal components/latent variables 
and choose the correct complexity of the model. In the end, each model 
was tested on the validation dataset, and the metric performances of 
Sensitivity and Specificity were evaluated. 

Moreover, the prediction results obtained by the three-classification 
models were compared with the micro-XRF maps obtained for each 
sample in order to validate the model. 

A detailed description of each classifier is reported in the following. 
Hierarchical Partial Least Squares - Discriminant Analysis (Hi- 

PLSDA) 
PLS-DA is a supervised technique allowing to build a model that 

predicts known classes in an unknown image. It is a classification 
technique combining the partial least squares regression features with 
the discriminant ability of a classification technique. In PLS-DA a prior 
knowledge of the data is required, indeed known samples were used to 
build the model able to predict unknown ones [26,29,30]. In this work, a 
hierarchical PLS-DA was developed, where each object is divided ac
cording to its differences and isolated from each other into subsets and 
then into further subsets until each subset contains a single object. For 
each object, a PLS-DA classification model was performed. An example 
of the Hi-PLSDA result is shown in Fig. S1 through a dendrogram. 

PCA-kNN 
PCA-kNN classification is one of the most basic and simple algo

rithms used in classification methods. It is a powerful non-parametric 
classification system based on no prior knowledge of the data distribu
tion [31]. kNN classification was developed to perform discriminant 
analysis when reliable parametric estimates of probability densities are 
unknown or difficult to obtain [31]. The kNN classification algorithm 
attempts to find the k nearest neighbors of a query vector and uses a 
majority vote to determine its class label among the predefined classes. 
Without prior knowledge, the kNN classifier usually uses Euclidean 
distance as a distance metric. The performance of a kNN classifier is 
primarily determined by the choice of k and the distance metric applied 
[32]. 

ECOC-SVM 
The Support Vector Machine (SVM) approach is a powerful tool 

based on a classical machine learning method used in data science and 
chemometric analysis for classification [33] and regression of complex 
systems [34]. SVM is a reliable and efficient method for spectral data. It 
is based on a supervised classification method with good generalization 
capabilities that can efficiently handle linear and nonlinear data 
[35–37]. This approach optimizes a trade-off between the training in
stances’ accuracy and the function’s complexity and is usually defined 
for binary classification tasks. Instead, the ECOC framework was 

suitable for solving multiclass learning problems [28]. 
Classification performance metrics 
The parametric performances of the three selected classification 

methods were evaluated and compared in terms of the values assumed 
by the statistical parameters: Sensitivity and Specificity in calibration ad 
cross-validation [38]. Sensitivity expresses the ability of the model to 
detect samples belonging to the class in question correctly and is defined 
by equation (2), in which TP represents the total number of true posi
tives and FN the total number of false negatives. Sensitivity expresses 
the model ability to recognize samples belonging to the considered class 
correctly, and it is defined by Equation (1), in which TP represents the 
total number of True Positive and FN the total number of False Nega
tive. Specificity describes the model ability to reject samples belonging 
to all the other classes correctly and it is defined by Equation (2), in 
which TN represents the total number of True Negative and FP the total 
number of False Positive. Sensitivity and Specificity can assume values 
between 0 and 1, the latter being the ideal value for a prediction model. 

Sensitivity : TP/(TP+FN) (1)  

Specificity : TN/(TN +FP) (2)  

Micro X-ray fluorescence 
Micro-XRF analyses were carried out at the RawMaLab (Raw Mate

rials Laboratory) of the Department of Chemical Engineering, Materials 
& Environment (Sapienza - University of Rome, Italy) using a Bruker 
Tornado M4 equipped with an Rh tube, operating at 50 kV, 200 μA, with 
a 25 μm spot obtained with poly-capillary optics. Mapping acquisition 
conditions are 10 ms/pixel and step size 100 μm in vacuum at 25 mBar. 

The analyzed elements for the identification of asbestos material are 
silicon (Si), magnesium (Mg) and iron (Fe). More in detail, amosite and 
crocidolite were recognized by the presence of Fe. Instead, the Chryso
tile was recognized by the presence of Mg. The mosaics of two-element 
maps, particularly the combination of Si-Mg and Si-Fe, were compared 
with those obtained by HSI classification. 

3. Experimental results 

Raw and pre-processed average reflectance spectra 
The raw and pre-processed average reflectance spectra of the six 

classes of the selected samples are reported in Fig. 6, for asbestos 
(Fig. 6a) and C&DW samples (Fig. 6b), respectively. Amosite spectra was 
mainly characterized by absorption around 1380 and 1420 nm, related 
to the OH group of 1st overtone [39]; absorptions from 2313 to 2353 nm 
show characteristic frequencies related to Fe-OH stretching vibrations 
[39–42]; moreover, an absorption between 1000 and 1050 nm repre
sents Fe3+ influence [39,42] (Fig. 6a). Chrysotile shows two strong and 
characteristic absorptions at 1370–1450 nm and 1909 nm due to the 

Fig. 6. Average raw reflectance spectra of: (a) amosite, chrysotile and crocidolite classes and (b) concrete, plaster, plasterboard classes.  
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hydroxyl group of the 2nd overtone region [40,41]; furthermore, a 
significant absorption feature is located from 2308 to 2388 nm, attrib
uted to the hydroxyl combination band of Mg-OH [40–43] (Fig. 6a). 
Crocidolite shows absorptions around 1050 nm due to iron influence 
[39,42] and around 1420 nm, related to the hydroxyl group of the 
combination band [40,41]; moreover, absorption features of amphiboles 
occur in the 2320 nm and 2380 nm wavelength regions [39–42], over
lapping with di- and tri-octahedral phyllosilicates containing Fe3+

[39,42] (Fig. 6a). 
Concrete class is characterized by absorptions around 1454 and 

1921 nm due to overtones caused by OH and molecular water, respec
tively [39]; the absorption at 2330–2380 nm is related to CO3

2– [44–46] 
(Fig. 6b). Plasterboard spectra present absorption features around 1454, 
1750, 1950 and 2221 nm. Bands located near 1450 and 1950 nm are 
produced by OH stretching [39]; most of the features displayed can be 
explained in terms of overtone and combination tones of the molecular 
water, which are essential in the gypsum structure [47–49] (Fig. 6b). 
Plaster expresses absorption at 1905 nm, due to the hydroxyl group 
(OH–) of the 2nd overtone region, absorption at 2000 nm attributed to 
OH– of the 1st overtone region [39] and, two absorptions around 2300 
nm and 2310 nm mainly related to C–H bond and CO3

2– [39,44,50] 

(Fig. 6b). 
In order to emphasize the spectral features identified in the six 

classes, data were sequentially pre-processed with the following algo
rithms: MSC, Derivative and MC (Fig. 7). 

PCA results 
The PCA score plot related to raw and milled asbestos samples show 

three different clouds, representative of the selected asbestos reference 
samples (Fig. 8). The PC1-PC2 scores highlight 3 different clusters cor
responding to the 3 types of analyzed asbestos (i.e., amosite, chrysotile 
and crocidolite). The PCA model confirms that the preprocessing strat
egy allows to identify the three asbestos minerals independently from 
their texture (i.e., fibrous or milled material). 

To evaluate the spectral feature and the variability of asbestos fibers 
compared to C&DW samples, three PCA were investigated and reported 
in the following (Fig. 9). The analyzed PCA score plots show a complex 
scenario with clusters of asbestos fibers close to those of the different 
C&DW materials. 

In detail, the PCA score plot in Fig. 9a shows the variability related to 
asbestos fibers and concrete. The score plot of PC1 and PC2 shows four 
main clouds representing the selected asbestos references and concrete 
samples. Concrete and chrysotile classes are mainly concentrated in the 

Fig. 7. Pre-processed reflectance spectra of: (a) amosite, chrysotile and crocidolite classes and (b) concrete, plaster, plasterboard classes.  

Fig. 8. (a) PCA score plot of amosite, chrysotile and crocidolite classes, and (b) image of score representative of the classes set on the PCA score plot.  
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second quadrant, close to each other and almost intersecting, whereas 
amosite and crocidolite clusters show very close clouds. 

The PCA score plot in Fig. 9b shows the variability related to asbestos 
fibers and plaster. The PC1-PC2 score shows two clouds in the first and 
second quadrants, close to each other, belonging to amosite and 
crocidolite classes. Plaster and chrysotile classes are mainly concen
trated in the third quadrant, which are not well separated and almost 
overlapping. 

Finally, in Fig. 9c, the PCA score plot shows the variability related to 
asbestos fibers and plasterboard. In the PC1-PC2 score plot, the plas
terboard cloud almost intersects with the amosite and chrysotile clus
ters, showing a larger variability. Moreover, the chrysotile and 
crocidolite clusters are mainly concentrated in the third quadrant, 
almost overlapped and not well separated. 

Starting from the results obtained through the PCA models, in order 
to improve the spectral variability and create a more representative 
calibration model, four samples of ACM, in which the fibers have been 
previously characterized [20], were added. 

Classification model results 
Hi-PLSDA 
Starting from the calibration dataset, a hierarchical PLS-DA model 

based on 9 rules was defined, set up and cross-validated, adopting a 
Venetian blind with window data splits equal to 10 and 1 sample per 

spectrum for each rule (Fig. 10). 
Rule 1 has been adopted to remove the background. 
Rule 2 allowed to perform the further four steps of classification to be 

carried out, enabling the identification in the next three rules (Rule 3–4- 
5) of C&DW materials (concrete, gypsum and gypsum board) from the 
raw asbestos minerals. A further “refinement” (Rule 6) allowed the 
identification of different types of raw asbestos (amosite, chrysotile and 
crocidolite). 

More in detail, Rule 3 classifies chrysotile from the macro-class 
amosite/crocidolite/concrete. Rule 4 recognizes chrysotile and plaster 
from the macro-class amosite/crocidolite. Rule 5 separates chrysotile 
and plasterboard from the macro-class amosite/ crocidolite. Rule 6 
identifies the raw fibers of amosite, chrysotile and crocidolite. Rule 7 
separates concrete from crocidolite and amosite in ACM samples. Rule 8 
and Rule 9 classify amosite from crocidolite from the output of plaster 
and plasterboard, respectively (Rule 4 and Rule 5). 

Different pre-processing algorithms sequence was adopted for each 
rule to perform the separation between classes. The pre-processing 
strategy selected for each rule are summarized in Table 1. 

The correctness of the developed Hi-PLSDA, for each rule, was 
evaluated by Sensitivity and Specificity in Calibration (Cal) and Cross- 
Validation (CV), as reported in Table 2. It can be noticed as the Hi- 
PLSDA classifiers show high-quality parametric performances. In 

Fig. 9. PCA score plots of: (a) PC1-PC2 representative of amosite, chrysotile, crocidolite and concrete classes, (b) PC1-PC2 representative of amosite, chrysotile, 
crocidolite and plaster classes and (c) PC1-PC2 representative of amosite, chrysotile, crocidolite and plasterboard classes. 

G. Bonifazi et al.                                                                                                                                                                                                                                



Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 307 (2024) 123672

8

detail, Sensitivity ranges from 0.89 to 1.00 in Calibration and from 0.89 
to 1.00 in CV, and Specificity values range from 0.92 to 1.00 in Cali
bration and from 092 to 1.00 in Cross-Validation. 

PCA-kNN results 
PCA-kNN model was evaluated in terms of Sensitivity and Specificity 

(Table 3). In detail, Sensitivity ranging 0.94 (i.e., crocidolite class) to 
1.00 (i.e., plaster and plasterboard classes), and Specificity ranges from 
0.99 (i.e., chrysotile class) to 1.00 (i.e., plaster and plasterboard classes), 
both in Calibration and Cross-Validation. The results in terms of para
metric performance (Table 3) confirm the excellent quality of the model. 

ECOC-SVM results 
The classification results obtained by ECOC-SVM in terms of Sensi

tivity and Specificity in Calibration and Cross-Validation (Table 4) are 
similar to those obtained by the PCA-kNN model, with slightly low 
values in both the parameters. In more detail, Sensitivity ranges from 
0.88 (i.e., crocidolite class) to 1.00 (i.e., plaster and plasterboard clas
ses), and Specificity ranges from 0.98 (i.e., concrete class) to 1.00 (i.e., 
plaster and plasterboard classes), both in Calibration and Cross- 
Validation (Table 4). 

Classification results in prediction 
The three developed classification models were tested on different 

samples to evaluate their performance in prediction. More in detail, the 
models were carried out on C&DW samples in order to evaluate the false 
positive recognition of asbestos fibers, and thereafter, the models were 
tested on ACM samples. In order to verify the accuracy of the models, the 
prediction results were compared with those obtained by micro-XRF 
maps. 

Results of C&DW samples 
The prediction maps obtained from the three models applied to 

Fig. 10. Dendrogram showing the hierarchical model built to classify the ACM and C&DW classes.  

Table 1 
Description of the pre-processing strategies sequences applied to the spectra for 
each rule of Hi-PLSDA model.  

Rule Pre-processing 

1 Multiplicative Scatter Correction (MSC) (median)  
1st Derivative (window: 15)  
Mean Center 

2 Multiplicative Scatter Correction (MSC) (median)  
Mean Center 

3 Multiplicative Scatter Correction (MSC) (median)  
1st Derivative (window: 11)  
Mean Center 

4 Multiplicative Scatter Correction (MSC) (median)  
1st Derivative (window: 27)  
Mean Center 

5 Multiplicative Scatter Correction (MSC) (median)  
1st Derivative (window: 11)  
Mean Center 

6 Multiplicative Scatter Correction (MSC) (median)  
1st Derivative (window: 21)  
Mean Center 

7 Standard Normal Variate (SNV)  
1st Derivative (window: 15)  
Mean Center 

8 Multiplicative Scatter Correction (MSC) (median)  
1st Derivative (window: 11)  
Mean Center 

9 Multiplicative Scatter Correction (MSC) (median)  
1st Derivative (window: 15)  
Mean Center  
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C&DW samples are reported in Fig. 11. Comparing the prediction maps 
with the corresponding RGB colour image, it is possible to observe a 
good recognition of plasterboard, plaster and concrete samples. 

Few misclassifications occur due to the morphology of the samples, 
showing that some regions are not perfectly in focus, thus affecting 
pixels quantification. More in detail, each sample obtained by the three 
prediction maps was quantitatively evaluated by the population statis
tics. The results show that some asbestos classes (amosite, chrysotile and 
crocidolite classes) pixels were incorrectly assigned to C&DW samples. 
In particular, the Hi-PLSDA model wrongly assigned 67 pixels to the 
amosite class, 414 pixels to the chrysotile class and 319 pixels to the 
crocidolite class. On the contrary, the PCA-kNN model wrongly assigned 
5789 pixels to the amosite class, 931 pixels to the chrysotile class and 5 
to the crocidolite class. Finally, the ECOC-SVM model incorrectly assigns 
1489 pixels to the amosite class and 591 pixels to the chrysotile class. 

The Hi-PLSDA model shows the best performance in terms of true 
negative detection with few misclassified pixels in asbestos classes, 
followed by ECOC-SVM and PCA-kNN. The highest number of misclas
sification pixels, for both ECOC-SVM and PCA-kNN results, were 
detected in the edges of concrete and plasterboard samples. The detected 
classification errors are mainly due to the high variability of concrete 
materials and the edge effect of the analysed samples. 

Results of ACM samples 
Amosite insulator product 
The insulator product sample was identified and classified as amosite 

by all the three HSI-based models and the micro-XRF map confirmed 
such result (Fig. 12). More in detail, the presence of iron (Fe) and silicon 
(Si) in Fig. 12e can be associated to the distribution of amosite fibers, 
covering all the acquired area. 

The classification results obtained by Hi-PLSDA, PCA-KNN and 
ECOC-SVM show similar results in recognition of amosite inside the 
insulator product. 

Chrysotile rope 
The prediction maps for the chrysotile rope sample obtained by the 

application of the three different HSI-based models provided different 
results (Fig. 13). In particular, the Hi-PLSDA prediction map (Fig. 13a) 
shows the presence of chrysotile on the entire investigated area, whereas 
in PCA-kNN and ECOC-SVM prediction maps (Fig. 13b and 13c, 
respectively), it was detected a variable amount of concrete with 
chrysotile, greater in the latter case. The correctness of classification 
results, especially for the first two models, are confirmed by the micro- 
XRF map obtained on the same sample area, allowing to identify the 
distribution of chrysotile based on the presence of magnesium (Mg) 
(Fig. 13d). 

Table 2 
Sensitivity and Specificity in calibration (Cal) and cross-validation (CV) for each 
rule of Hi-PLSDA model.  

R1  All classes Background   

Sensitivity 
(Cal) 

0.95 0.99   

Specificity 
(Cal) 

0.99 0.95   

Sensitivity 
(CV) 

0.95 0.99   

Specificity 
(CV) 

0.99 0.95   

R2  Concrete Plaster Plasterboard  
Sensitivity 
(Cal) 

1.00 1.00 1.00  

Specificity 
(Cal) 

0.99 1.00 1.00  

Sensitivity 
(CV) 

0.96 1.00 1.00  

Specificity 
(CV) 

1.00 0.95 1.00  

R3  Amosite-Crocidolite- 
Concrete 

Chrysoltile   

Sensitivity 
(Cal) 

0.98 0.92   

Specificity 
(Cal) 

0.92 0.98   

Sensitivity 
(CV) 

0.99 0.95   

Specificity 
(CV) 

0.95 0.99   

R4  Amosite-Crocidolite Chrysoltile Plaster  
Sensitivity 
(Cal) 

0.98 0.90 1.00  

Specificity 
(Cal) 

0.93 0.93 0.99  

Sensitivity 
(CV) 

0.99 0.93 1.00  

Specificity 
(CV) 

0.95 0.97 1.00  

R5  Chrysotile Plasterboard Amosite- 
Crocidolite  

Sensitivity 
(Cal) 

0.89 1.00 0.95  

Specificity 
(Cal) 

0.98 0.98 0.94  

Sensitivity 
(CV) 

0.89 1.00 0.95  

Specificity 
(CV) 

0.98 0.98 0.94  

R6  Amosite Chrysoltile Crocidolite  
Sensitivity 
(Cal) 

0.92 0.89 0.93  

Specificity 
(Cal) 

0.98 0.93 0.94  

Sensitivity 
(CV) 

0.96 0.90 0.92  

Specificity 
(CV) 

0.97 0.98 0.94  

R7  Amosite Crocidolite Concrete  
Sensitivity 
(Cal) 

0.98 0.93 0.92  

Specificity 
(Cal) 

0.98 0.94 0.92  

Sensitivity 
(CV) 

0.98 0.93 0.92  

Specificity 
(CV) 

0.98 0.94 0.92  

Table 2 (continued ) 

R1  All classes Background   

R8  Amosite Crocidolite   
Sensitivity 
(Cal) 

0.99 0.97   

Specificity 
(Cal) 

0.97 0.99   

Sensitivity 
(CV) 

0.99 0.97   

Specificity 
(CV) 

0.97 0.99   

R9  Amosite Crocidolite   
Sensitivity 
(Cal) 

0.99 0.97   

Specificity 
(Cal) 

0.97 0.99   

Sensitivity 
(CV) 

0.99 0.97   

Specificity 
(CV) 

0.99 0.97   
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Chrysotile mortar 
The prediction maps obtained by the application of the three 

developed HSI-based classification models are shown in Fig. S2. The 
sample was classified as chrysotile by the three models, with some 
misclassified pixels attributed to crocidolite in the case of ECOC-SVM 
map (Fig. S2d). The correctness of classification results, especially for 
the first two models, are confirmed by the micro-XRF map obtained on 
the same sample area, allowing to identify the distribution of chrysotile 

based on the presence of high magnesium (Mg), compared with silicon 
(Si) (Fig. S2e). 

Chrysotile gasket 
The prediction maps based on the three HSI classification models for 

the chrysotile gasket sample are shown in Fig. S3. The sample was 
classified as chrysotile and three prediction maps showed similar results. 
The correct identification of chrysotile is confirmed by the micro-XRF 
map based on the identification of Mg on the entire investigated area 

Table 3 
Sensitivity and Specificity in calibration (Cal) and cross-validation (CV) for PCA-kNN model.   

Class Amosite Chrysotile Crocidolite Concrete Plaster Plasterboard 

PCA-kNN Sensitivity (Cal)  0.99  0.99  0.94  0.94  1.00  1.00 
Specificity (Cal)  0.99  1.00  0.99  0.99  1.00  1.00 
Sensitivity (CV)  0.99  0.99  0.94  0.94  1.00  1.00 
Specificity (CV)  0.99  1.00  0.99  0.99  1.00  1.00  

Table 4 
Sensitivity and Specificity in calibration (Cal) and cross-validation (CV) for ECOC-SVM model.   

Class Amosite Chrysotile Crocidolite Concrete Plaster Plasterboard 

ECOC-SVM Sensitivity (Cal)  0.95  0.95  0.88  0.92  1.00  1.00 
Specificity (Cal)  0.99  0.99  0.98  0.98  1.00  1.00 
Sensitivity (CV)  0.95  0.95  0.88  0.92  1.00  1.00 
Specificity (CV)  0.99  0.99  0.98  0.98  1.00  1.00  

Fig. 11. (a) RGB colour image of the acquired C&DW samples (plasterboard, plaster and concrete) and prediction maps of the three developed HSI-based classi
fication models: (b) Hi-PLSDA, (c) PCA-kNN and (d) ECOC-SVM. 

Fig. 12. (a) RGB colour image detail of the acquired amosite insulator product sample and prediction maps of the three developed HSI-based classification models: 
(b) Hi-PLSDA, (c) PCA-kNN, (d) ECOC-SVM, and (e) micro-XRF map of the same sample showing the main detected elements (Fe and Si). 
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(Fig. S3e). 
Chrysotile blending fibers 
In Fig. S4 the prediction maps obtained by the application of the 

three HSI-based classification models to the chrysotile blending fibers 
sample are shown. The sample was classified as chrysotile by the first 
two models (Fig. S4b and S4c), whereas in the case of ECOC-SVM model 
some pixels were incorrectly classified as crocidolite (Fig. S4d). The 
correctness of classification results, especially for the first two models, 
are confirmed by the micro-XRF map obtained on the same sample area, 
allowing to identify the distribution of chrysotile based on the presence 
of Mg (Fig. S4e). 

Asbestos panel 1 

In Fig. 14 the prediction maps obtained by the application of the 
three HSI-based classification models to the asbestos panel 1 sample are 
shown. The results of Hi-PLSDA prediction maps clearly show how most 
of the detected fibers were assigned to amosite in the concrete matrix, 
with few pixels assigned to chrysotile. PCA-kNN model identified more 
amosite fibers in the concrete matrix compared to those detected by the 
Hi-PLSDA model. Finally, the ECOC-SVM model assigned almost all the 
pixels to the amosite class and few pixels to concrete class. Comparing 
the HSI-based classification results with the micro-XRF map, it can be 
noticed as Hi-PLSDA results fit better the detected Fe distribution. In 
fact, the prediction results obtained by PCA-KNN and ECOC-SVM 
showed an overestimation of amosite in the sample. 

Fig. 13. (a) RGB colour image detail of the acquired chrysotile rope sample and prediction maps of the three developed HSI-based classification models: (b) Hi- 
PLSDA, (c) PCA-kNN, (d) ECOC-SVM, and (e) micro-XRF map of the same sample showing the main detected elements (Si and Mg). 

Fig. 14. (a) RGB colour image detail of the acquired asbestos panel sample and prediction maps of the three developed HSI-based classification models: (b) Hi- 
PLSDA, (c) PCA-kNN, (d) ECOC-SVM, and (e) micro-XRF map of the same sample showing the main detected elements (Si and Fe).Yellow box in the prediction 
maps correspond to micro-XRF map detail. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Asbestos panel 2 
The prediction maps based on the three HSI classification models for 

the asbestos panel 2 sample are shown in Fig. S5. The Hi-PLSDA pre
diction map show that the detected fibers were classified as amosite in a 
concrete matrix, with few fibers assigned to chrysotile. 

PCA-kNN results identified more amosite fibers in the concrete ma
trix compared to those detected by the Hi-PLSDA model, and also a 
greater number of pixels were attributed to chrysotile, especially at the 
border of the sample. Finally, ECOC-SVM prediction model assigned 
almost all the pixels to the amosite class, with some pixels assigned to 
concrete and to chrysotile. 

Comparing the HSI-based classification results with the micro-XRF 
map related to Fe and Si elements, it appears that Hi-PLSDA model 
provided the best classification results, even if it does not detect all the 
asbestos fibers. Furthermore, both PCA-kNN and ECOC-SVM models 
assigned some pixels to chrysotile class near the border of the sample, 
furthermore, the latter model overestimated the presence of amosite. 

Comparison of the different classification models 
The three models in calibration and cross-validation show similar 

results with slight variations of Sensitivity and Specificity values. The 
parametric performances show that, in Cal and CV, the best model is 
PCA-kNN, followed by Hi-PLSDA and ECOC-SVM. 

Instead in prediction, the results referred to C&DW samples highlight 
how the ECOC-SVM and PCA-kNN models tend to misclassify some 
pixels by incorrectly assigning them to the asbestos fibers considered. In 
contrast, Hi-PLSDA shows few misclassified pixels that were not 
reducing the effectiveness of recognition. 

Finally, the three models applied to ACM samples generally show 
good performances. However, Hi-PLSDA shows a better fit with the re
sults obtained by micro-XRF maps of the same area, while PCA-kNN and 
ECOC-SVM tend to overestimate the presence of asbestos in the samples. 
The better performance of the Hi-PLSDA model compared with PCA- 
kNN and ECOC-SVM is probably due to the possibility of using 
different pre-processing for each rule in order to maximize the separa
tion and recognition of classes. 

4. Conclusions 

In the present study, an HSI procedure in the SWIR range was 
developed and implemented in order to identify and recognize asbestos 
fibers in construction and demolition materials. 

Three different classification models (i.e., Hi-PLSDA, PCA-kNN and 
ECOC-SVM) were developed and applied to recognize the presence of 
asbestos, without performing a physical sampling of the material, and to 
define the most robust strategy for automatic classification. 

The results were compared with those obtained by micro-XRF 
elemental mapping, performed to identify asbestos fibers, and confirm 
the validity of the proposed HSI-based modelling. The best prediction 
results were obtained by the Hi-PLSDA model. The main advantage of 
the Hi-PLSDA (i.e., ensemble methods) was in the use of multiple clas
sification models that perform a better predictive result than the PCA- 
kNN and ECOC-SVM. 

The HSI approach has great potential compared with the traditional 
analytical protocols currently used on a laboratory scale for asbestos 
identification. Inasmuch, this system allows rapid identification and less 
risk of exposure for operators. Moreover, this procedure can be directly 
applied to unknown materials without physical sampling. For that 
reason, the proposed SWIR-HSI approach could be profitably imple
mented in situ to avoid handling hazardous material. Future studies aim 
to recognize asbestos fibers in different matrices with a high-efficiency 
degree combining different classification models in an ensemble classi
fication approach. 
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