
Weighted simplicial complexes and their representation power
of higher-order network data and topology

Federica Baccini,1, 2 Filippo Geraci,2 and Ginestra Bianconi3, 4

1Department of Computer Science, University of Pisa, and IIT-CNR of Pisa, Italy
2Institute for Informatics and Telematics, CNR, Pisa, Italy

3School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
4The Alan Turing Institute, The British Library, London NW1 2DB, United Kingdom

Hypergraphs and simplical complexes both capture the higher-order interactions of complex systems, ranging
from higher-order collaboration networks to brain networks. One open problem in the field is what should drive
the choice of the adopted mathematical framework to describe higher-order networks starting from data of
higher-order interactions. Unweighted simplicial complexes typically involve a loss of information of the data,
though having the benefit to capture the higher-order topology of the data. In this work we show that weighted
simplicial complexes allow to circumvent all the limitations of unweighted simplicial complexes to represent
higher-order interactions. In particular, weighted simplicial complexes can represent higher-order networks
without loss of information, allowing at the same time to capture the weighted topology of the data. The higher-
order topology is probed by studying the spectral properties of suitably defined weighted Hodge Laplacians
displaying a normalized spectrum. The higher-order spectrum of (weighted) normalized Hodge Laplacians is
here studied combining cohomology theory with information theory. In the proposed framework, we quantify
and compare the information content of higher-order spectra of different dimension using higher-order spectral
entropies and spectral relative entropies. The proposed methodology is tested on real higher-order collaboration
networks and on the weighted version of the simplicial complex model “Network Geometry with Flavor”.

I. INTRODUCTION

Higher-order networks [1–10] capture the higher-order in-
teractions of complex systems, including collaboration net-
works, face-to-face social interaction networks, brain net-
works, and chemical reaction networks. For instance, in a col-
laboration network among scientists, higher-order networks
allow to capture interactions of a team of co-authors formed
by two or more scientists [11, 12]. Higher-order networks
include hypegraphs and simplicial complexes. Hypergraphs
are formed by a set of hyperedges, describing higher-order
interactions. Simplicial complexes are formed by simplices,
where an n-simplex is formed by n + 1 nodes. In the litera-
ture there is an increasing attention in determining the differ-
ences between these two mathematical frameworks, both tai-
lored to model higher-order data. The difference between un-
weighted simplicial complexes and hypergraphs is that hyper-
graphs are arbitrary set of hyperedges, while simplicial com-
plexes are sets of simplices closed under the inclusion of the
faces of each simplex in the simplicial complex. This addi-
tional property implies, for instance, that if a three-way in-
teraction (2-simplex, or filled triangle) [A, B,C] among the
nodes A, B and C is present in the simplicial complex, then
we must include in the simplicial complex also all the links
(pairwise interactions) and all the nodes which constitute the
faces of the triangle, i.e. we should also include the simplices
[A, B], [B,C], [A,C], [A], [B], [C]. This can be perceived as a
limitation in some application domains, such as in collabo-
ration networks. Indeed, if three authors in a collaboration
network have co-authored a paper together, it is not generally
the case that also two-author papers written by each pair of
scientist in the triangle exist. On the other hand, simplicial
complexes provides the network scientists with very power-
ful tools coming from algebraic topology [1, 13–15] to char-
acterize the structure of higher-order datasets [6, 8, 16–22],

and the interplay between topology and dynamics [1, 23–50].
One direction to solve this dichotomy between hypergraphs
and simplicial complexes is to introduce the notion of alge-
braic topology to treat hypergraphs [51, 52]. Here we pursue
another direction and we propose to study weighted simplicial
complexes, which are attracting increasing attention [53–55],
where each simplex of the simplicial complex is associated to
a real number called weight. Weighted simplicial complexes
retain the property that they are closed under the inclusion of
the faces of each simplex. However, in this paper we show
that if the weights of the simplices are defined according to
our algorithm, it is possible to distinguish between simplices
that are only included in the simplicial complex for the clo-
sure condition to be satisfied (and do not describe bare higher-
order interactions present in the data), and simplices that are
also encoding for bare higher-order interactions. Therefore,
with the proposed choice of weights, simplicial complexes can
be used interchangeably to hypergraphs, as they can retain all
the information present in the data. Moreover, we show that
the proposed choice of weights for the weighted simplicial
complexes also allows to use algebraic topology of weighted
simplicial complexes, and hence to investigate their higher-
order topology. Indeed, the proposed choice of weights of the
simplices allows us to define normalized Hodge Laplacians of
every dimension. Normalized Hodge Laplacians are particu-
larly useful to compare the spectral properties of a simplicial
complex at different dimension, revealing important aspects of
its higher-order structure. Here we show how the higher-order
spectral entropies, that generalize the notion of spectral or Von
Neumann entropy of networks [56–62], can be used for char-
acterizing the properties of higher-order diffusion processes
[25, 26, 31, 32, 63] and their associated characteristic time-
scales. These theoretical insights have been applied to a real
dataset of higher-order scientific collaboration network,and to
the weighted simplicial complex model “Network Geometry

ar
X

iv
:2

20
7.

04
71

0v
4 

 [
ph

ys
ic

s.
so

c-
ph

] 
 2

7 
Se

p 
20

22



2

with Flavor” [63–67] revealing the information content en-
coded in these higher-order network structures. Importantly,
when analysing the higher-order collaboration network, we
also propose a way to quantify the bare weights associated
to each team of collaborators, thus extending to higher-order
networks the popular choice of network weights for scientific
collaboration networks proposed by Newman in Ref. [68].

Note that in this paper our focus is establishing how
weighted simplicial complexes can be used to capture real
data without loss of information. Therefore our approach is
different in nature and scope with respect to other recent works
[69] aimed at exploring the dynamical effects emerging when
different higher-order representations are considered.

The paper is organized as follows. In Sec. II we discuss
weighted simplicial complexes and our proposed choice of the
topological weights. In Sec. III we introduce the fundamen-
tal aspects of algebraic topology that lead to the definition of
higher-order normalized Hodge Laplacians and of normalized
Dirac operator. In Sec. IV we discuss the higher-order spec-
tral entropies of simplicial complexes and their properties. In
Sec. V and VI we present the application of the proposed
mathematical framework to a real collaboration network and
to the model “Network Geometry with Flavor”, respectively.
Finally, in Sec. VII we provide some concluding remarks. The
paper is enriched by an Appendix providing the proof that the
proposed Hodge Laplacians are normalized at every order.

II. WEIGHTED SIMPLICIAL COMPLEXES

A simplicial complex K is a type of higher-order network
[1] that is increasingly used to study the underlying topology
of data. A simplicial complex encodes the higher-order inter-
actions of complex systems, i.e. the interactions between two
ore more nodes. In other words, simplicial complexes allow to
go beyond the network description of complex systems based
exclusively on pairwise interactions.

The building blocks of a simplicial complex are the sim-
plices. A n-dimensional simplex α (or n-simplex) is formed
by a set of n + 1 nodes

α = [v0, v1, . . . , vn], (1)

with an assigned orientation.
Based on this definition, a 0-simplex is a node, a 1-simplex

is a link, a 2-simplex is a triangle, and so on. The n′-
dimensional faces of a n-simplex α are defined as the sim-
plices formed by a proper subset of the nodes in α. Finally,
a simplicial complex is a set of simplices closed under the in-
clusion of the faces of each simplex. The dimension d of a
simplicial complex is the largest dimension of its simplices.
The simplices of a simplicial complex that are not faces of
any other simplex are called facets.

Here and in the remainder of this work we indicate with N[n]
the number of simplices of dimension n present in a simplicial
complex. Therefore, N[0],N[1] and N[2] indicate, respectively,
the total number of nodes, links and triangles present in the
simplicial complex.

As an example, a higher-order collaboration network can
be described by a simplicial complex where one considers
all the teams of co-authors of at least one paper as simplices,
and includes the corresponding simplex and all its faces in the
simplicial complex [11, 12]. Therefore, given an unweighted
simplicial complex constructed in this way the collaboration
network cannot be fully reconstructed, as only the facets will
indicate for sure a higher-order collaboration.

Our aim is to show that weighted simplicial complexes are
instead able to capture faithfully the higher-order collabora-
tion data without any loss of information, provided that a
proper choice of weights is made.

In a general framework, weighted simplicial complexes are
enriched by topological weights wα > 0 associated to each
simplex α of the simplicial complex. The question that we
want to address is: how to best choose these topological
weights without loosing the information present in higher-
order network data?

We assume to have as input data some bare affinity weights
ωα ≥ 0 associated to each simplex of a simplicial complex.
For instance, in the collaboration network that will be used for
the present analysis, the bare affinity depend on the number
of papers co-authored by the team represented by the generic
simplex α. Therefore, we can have a triangle [1, 2, 3] with a
positive bare weight ω[1,2,3] > 0 indicating the existence of at
least one paper written by the corresponding three authors. At
the same time, we might also have one of more of its faces
with null bare weights; for instance, we could have ω[1,2] = 0,
indicating that there are no two-author papers written by au-
thors 1 and 2. Starting from collaboration data, we propose
a way to derive the topological weights wα, which are posi-
tive for every simplex of the simplicial complex. In the above
example, for instance, we would have w[1,2,3] > 0, as well as
w[1,2] > 0. Given a d-dimensional simplicial complex, the
proposed choice of topological weights associated to the sim-
plices α′ of dimension d is equal to the bare affinity weights

wα′ = ωα′ . (2)

However the topological weights of simplices α′ of dimension
n′ = nα′ < d are defined iteratively as the sum of the topolog-
ical weights of the n′ + 1 dimensional simplices α incident to
it plus the bare affinity weights ωα′ , i.e.

wα′ =
∑
α⊃α′

wαδ̃(nα, nα′ + 1) + ωα′ , (3)

where here δ̃(x, y) indicates the Kronecker delta, i.e. δ̂(x, y) =

1 if x = y and δ̂(x, y) = 0 otherwise. For example, in a simpli-
cial complex of dimension d = 2 formed by nodes, links and
triangles, the topological weights associated to the triangles
are the bare affinity weights, while the topological weights
associated to the links are the sum of all the weights of the tri-
angles incident to them, plus their bare affinity weights. Sim-
ilarly, the topological weight of the nodes will be the sum of
the topological weights of their incident links plus their bare
affinity weight.

It is easy to check that since Eq.(2) and Eq.(3) are linear,
they are invertible. Therefore, with this choice of topological
weights, it is always possible to reconstruct the bare affinity
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weights and have a faithful representation of the data, also if
the data includes a set of higher-order interactions that is not
closed under the inclusion of the subset of their nodes as in
general collaboration data.

The topological weights of a simplicial complex can even-
tually evolve and fluctuate in time and, in that case, they are
properly called topological signals, whose dynamics has re-
cently attracted large attention [1, 23–32, 34–37]. In this pa-
per, however, we will consider only topological weights con-
stituted by single snapshots of topological signals, or by topo-
logical signals that are constant in time.

III. HIGHER-ORDER SPECTRUM OF WEIGHTED
SIMPLICIAL COMPLEXES

Weighted simplicial complexes are able not only to faith-
fully represent higher-order network data without any loss of
information, but allow also the investigation of their higher-
order spectrum thus revealing important properties of higher-
order diffusion [26, 31, 32]. In this section we introduce
the key algebraic topology background to study the higher-
order spectrum of weighted simplicial complexes, which con-
stitutes a fundamental pathway to relate higher-order structure
to higher-order dynamics. Interesting background literature
for this section include the References [1, 13–15, 69, 70].

A. Chains and Co-chains

An n-chain is an element of the free abelian group Cn with
basis the n simplices of the simplicial complex defined with
respect to the field Z. Therefore, any n-chain σ ∈ Cn can be
written as a linear combination of n-simplicies with integer
coefficients, i.e.

σ =
∑
α

σαα, (4)

with σα ∈ Z. The boundary operator ∂n : Cn → Cn−1 is a
linear operator that maps n-chains to (n − 1)-chains, and it is
completely defined by its action on each n-simplex as follows:

∂n[v0, . . . , vn] =

n∑
p=0

(−1)p[v0, . . . , v̂p . . . , vn], (5)

where the notation v̂p denotes the fact that vertex vp is miss-
ing from the simplex [v0, . . . v̂p . . . , vn]. From Eq. (5) it is clear
that the boundary of a n-simplex is a (n − 1)-chain formed by
the (n−1)-dimensional simplices at its boundary, and oriented
in the same way as the n-simplex. One of the major topolog-
ical properties of the boundary operator is that “the boundary
of the boundary is null” which translates into the following
algebraic condition:

∂n∂n+1 = 0. (6)

Given a basis for the simplices of a simplicial complex, the
boundary operator ∂n is represented by incident matrices B[n]
which are Nn−1 × Nn rectangular matrices of elements

Bn(α′, α) = (−1)p, (7)

where α′ and α are the simplicies

α′ = [v0, v1, . . . , v̂p, . . . , vn], (8)
α = [v0, v1, . . . , vn]. (9)

Since the boundary operator satisfies Eq.(6), we have

B[n]B[n+1] = 0, (10)

for every n > 0.
An n-cochain f in the cochain group Cn is an homeomor-

phism between the n-chains Cn and the set of real numbers R.
Given a n chain σ =

∑
α∈Qn

σαα we have that

f (σ) =
∑
α∈Qn

σα f (α). (11)

It follows that a n-cochain f is uniquely determined by the
vector f of elements given by fα = f (α). The coboundary
operator δn is a linear operator mapping n co-chains f , (i.e.
linear functions defined on n-simplices) to n + 1 cochains (i.e.
linear functions defined on n + 1 simplices). In particular, the
n-coboundary operator δn : Cn → Cn+1 is defined by

(δn f )[v0, . . . , vn+1] = an

n∑
p=0

(−1)p f ([v0, . . . , v̂p, . . . , vn+1]),(12)

where here we have introduced the constant an ∈ R
+ that de-

pends only on n for later convenience. Typically, an is taken
to be one, namely an = 1, but in the present setting an can
be assigned a value equal to any real positive constant. For
an = 1 the coboundary operator δn is the dual of the boundary
operator ∂n+1, and for any value of an it satisfies

(δn f )[v0, . . . , vn+1] = an f (∂n+1[v0, . . . , vn+1]). (13)

The topological properties that the “boundary of the bound-
ary is null” stated in Eq. (6) implies the following analogous
algebraic property of the co-boundary operator:

δn+1δn = 0. (14)

Given a basis for the simplices of a simplicial complex, the
coboundary operator δn−1 is represented by the matrix B̂[n],
which is a Nn × Nn−1 rectangular matrix of elements

B̄n(α, α′) = an(−1)p, (15)

where α and α′ are the simplices

α′ = [v0, v1, . . . , vp−1vp+1, . . . , vn], (16)
α = [v0, v1, . . . , vn]. (17)

Therefore, we have that B̄[n] is simply related to the transposed
of B[n], i.e.

B̄[n] = anB>[n]. (18)

Since the coboundary operator satisfies Eq.(14) we obtain

B̄[n+1]B̄[n] = 0, (19)

for every n > 0.
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B. The coboundary operator and its dual

We introduce now a non trivial “metric” induced by the
affinity weights wα > 0 of the simplices α of the simplicial
complex. Using a similar notation used in Grady and Polimeni
[70] we define the matrices G−1

[n] as the diagonal N[n]×N[n] ma-
trices having as diagonal elements the topological weights of
the n-simplices, i.e.

G−1
[n](α, α) = wα. (20)

The matrices G−1
[n] are used to define a L2 norm between n-

cochains. In particular, indicating with f (1) and f (2) two n-
dimensional cochain, the L2 norm between the two cochains
as

〈 f (1), f (2)〉 =
∑
α∈Qn

wα f (1)
α f (2)

α = (f(1))>G−1
[n]f

(2). (21)

Based on this norm, the definition of B̄∗[n] as the adjoint oper-
ator of B̄[n] is derived. Formally, for any n-cochain f and any
(n + 1) cochain g, the adjoint operator B̄∗[n] satisfies

〈g, B̄[n] f 〉 = 〈B̄∗[n]g, f 〉. (22)

From this definition we deduce the explicit expression of B̄∗[n]
in terms of the coboundary operator B̄[n] and the matrices G[n].
Indeed, given Eq. (22) we obtain

g>G−1
[n]B̄[n]f = g>(B̄∗[n])

>G−1
[n−1]f. (23)

Since this expression should hold for any arbitrary f and g,
we obtain

G−1
[n]B̄[n] = (B̄∗[n])

>G−1
[n−1], (24)

from which we get the explicit expression of the adjoint of the
coboundary operator given by

B̄∗[n] = G[n−1]B̄>[n]G
−1
[n]. (25)

This operator [14] is sometimes referred to in the literature
as the “weighted boundary operator” [53, 54]. In fact, if the
metric matrices are trivial, i.e, G[n] = I, the above expression
reduces to the boundary operator multiplied by an, i.e.

B̄∗[n] = B̄>[n] = anB[n]. (26)

C. Higher-order Weighted Laplacians and Hodge
decomposition

The graph Laplacian is a well known operator that describes
diffusion from nodes to nodes through links in a network.
Higher-order Laplacians L[n], also called Hodge Laplacians
[13, 14, 34], generalize the notion of graph Laplacian to de-
scribe higher-order diffusion. For instance, if we consider dif-
fusion from links to links (n = 1), the Hodge Laplacian can
describe diffusion through nodes or through triangles. On a

d-dimensional simplicial complex the higher-order Laplacian
(or Hodge Laplacian) L[n] is defined for each n = 0, . . . , d as

L[0] = Lup
[0],

L[n] = Ldown
[n] + Lup

[n] for n > 0, (27)

where Ldown
[n] and Lup

[n] describe diffusion from n-simplices to
n-simplices through (n − 1) simplices and (n + 1) simplices,
respectively. They are formally defined as

Ldown
[n] = B̄nB̄∗n,

Lup
[n] = B̄∗n+1B̄n+1. (28)

From the definition of the higher-order Laplacians (Eq.(27))
and from Eqs. (28) it follows immediately that not only Lup

[n]
and Ldown

[n] commute, but they also obey the additional stronger
property that

Lup
[n]L

down
[n] = 0,

Ldown
[n] Lup

[n] = 0. (29)

This property implies that

kerLup
[n] ⊇ imLdown

[n] ,

kerLdown
[n] ⊇ imLup

[n]. (30)

Therefore any eigenvector of L[n] corresponding to a non-zero
eigenvalue λ > 0 is either a non-zero eigenvector of Lup

[n] or
a non-zero eigenvector of Ldown

[n] with the same eigenvalue λ.
This implies that the set of cochains Cn obeys the Hodge de-
composition, as we have

Cn = im(B̄[n]) ⊕ ker(L[n]) ⊕ im(B̄∗[n+1]). (31)

For example, a n = 1 signal can be decomposed into a gradient
flow, an harmonic flow and a solenoidal flow.

D. The Weighted Dirac operator

The topological Dirac operator [28, 71–73] is an impor-
tant topological operator that can be interpreted as the “square
root” of the Laplacian and can be used to treat simultaneously
topological signals of different dimensions. On a weighted
simplicial complex we define the weighted topological Dirac
operators as the linear operator acting on the direct sum of all
the n-cochains defined in the system, i.e. acting in the linear
space ⊕d

n=1Cn and having as matrix representation the M × M
matrix where M =

∑d
n=1 N[n] of elements

Dα,α′ =

{
B̄∗[n](α, α

′) if nα′ = n = nα + 1,
B̄[n](α, α′) if nα = n = nα′ + 1. (32)

In the case of a simplicial complex of dimension d = 2 includ-
ing nodes, links and triangles, the weighted topological Dirac
operator has dimension M × M, with M = N[0] + N[1] + N[2],
and a block matrix structure of the form

D =


0 B̄∗[1] 0

B̄[1] 0 B̄∗[2]
0 B̄[2] 0

 . (33)
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From the definition of the weighted topological Dirac opera-
tor one concludes that the square of the Dirac operator is the
direct sum of the higher-order Laplacians

D2 = L[1] ⊕ L[2] ⊕ L[3] ⊕ . . . L[n]. (34)

This implies for a simplicial complex of dimension d = 2 that

D2 =

 L[0] 0 0
0 L[1] 0
0 0 L[2]

 . (35)

Moreover it follows that the weighted topological Dirac oper-
ator is self-adjoint, i.e.

D∗ = D. (36)

The eigenvalues λ of the weighted topological operators are in
absolute value equal to the singular values of the coboundary
operators of the simplicial complex under consideration.

E. Normalized Higher-order Laplacians

Defining normalized Laplacians is a central theme in spec-
tral graph theory [74]. For graphs, the Hodge Laplacian
L[0] = B̄∗[0]B̄[0] depends on the choice of suitable metric ma-
trices. For the choice of the metric matrices G[0] = I and
G[1] = I, and for a1 = 1, we obtain the un-normalized (or
combinatorial) Laplacian

L[0] = K[0] − A, (37)

where K[0] is the diagonal matrix having the degree of the
nodes as diagonal elements and where A is the weighted ad-
jacency matrix of the network. The normalized (weighted)
Laplacian can instead be obtained by considering the weights
of the links wi j as arbitrary (positive) values, the weight of
the nodes as given by the node strength, i.e. the sum of the
weights of the incident links, and imposing also that the met-
ric matrices given by Eq. (20), i.e.

G−1
[1]([i, j], [i, j]) = wi j,

G−1
[0]([i], [i]) = wi =

N[0]∑
j=1

wi j. (38)

This choice of the metric matrices, together with the choice
a1 = 1, implies that

L[0] = I − K[0]
−1A, (39)

where now K−1
0 = G[0] is the diagonal matrix having the in-

verse of the strength of the nodes as diagonal elements. This
normalized Laplacian is well known to have a real bounded
spectrum with eigenvalues 0 ≤ λ ≤ 2 (see discussion in [74]).
This implies that by considering the metric matrices given by
Eq. (38), but taking a1 =

√
2, we obtain a Laplacian matrix

whose eigenvalues are non-negative and not larger than one,
with

L[0] =
1
2

[
I − K[0]

−1A
]
, (40)

One important question is whether we can follow similar ar-
guments to propose a normalized version of the higher-order
Laplacian. In general, proposing a normalized higher-order
Laplacian is an important problem in graph theory. How-
ever, this issue has only been addressed in a few papers until
now (see for instance [14, 34]). Here we show that with our
choice of topological weights given by Eq. (2) and Eq. (3), by
using metric matrices whose diagonal elements are given by
Eq.(20), the higher-order Hodge Laplacians are automatically
normalized provided that we choose

an = (n + 1)1/2, (41)

for any n up to the order of the simplicial complex. Under
these hypotheses, it can be shown that the eigenvalues of the
Hodge Laplacians are always in the interval [0, 1] (see Ap-
pendix A).

Note that the choice of topological weights proposed in
this work, i.e. Eq.(2) and Eq.(3), naturally generalizes to the
higher order case the choice of weights that is usually adopted
for normalizing the graph Laplacian that, as discussed above,
assigns to nodes the sum of the weights of the incident links.

IV. HIGHER-ORDER SPECTRAL ENTROPY OF
SIMPLICIAL COMPLEXES

A. Definition of higher-order spectral entropy

In order to characterize the information content encoded
in the spectrum of networks and generalized network struc-
tures, the spectral entropy, also called Von Neumann entropy
of networks, has been introduced. [56–61]. The spectral en-
tropy of a network is defined as the quantum mechanics von
Neumann entropy [75], where the density operator is taken
to be a semi-definite positive operator associated to the net-
work and having normalized trace. Therefore, typical choices
for the density operator are taken to be functions of the graph
Laplacian. Here we define the higher-order spectral entropy of
weighted simplicial complexes and use this quantity, together
with the associated higher-order relative entropy, in order to
evaluate the information content of the higher-order spectrum
of weighted simplicial complexes.

Given a simplicial complex of order d, we define the higher-
order spectral density ρn as:

ρn =
e−βL[n]

Zn
, (42)

where Zn = Tr[e−βL[n] ]. Note that for n = 0 this definition
reduces to the spectral density of networks proposed in [59].

The spectral entropy of order n, also called n-order von
Neumann entropy, is then defined as:

S n = −Tr[ρn ln ρn]. (43)

Note that here and in the following we choose for convenience
to use the natural logarithm, as it is common practice in ma-
chine learning and statistical mechanics [76, 77]. As usual for
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the von Neumann entropy it is straightforward to derive the
following compact form of S n:

S n = β 〈λ〉n + ln Zn, (44)

where

〈λ〉n =

∑
i e−βλi(L[n])λi(L[n])

Zn
, (45)

and λi(L[n]) denotes the generic i−th eigenvalue of L[n]. It
is useful to recall that based on the Hodge decomposition, if
n > 0 the eigenvalues of the higher order Laplacian L[n] can
be partitioned into:

- Zero eigenvalues (harmonic), denoted as {λh};

- Nonzero eigenvalues of Lup
[n], denoted as {λu};

- Nonzero eigenvalues of Ldown
[n] , denoted as {λd}

In the case n = 0, instead, the eigenvalues are either zero
(harmonic eigenvalues) or non-zero eigenvalues of Lup

[0] = L[0].

B. Spectral density and return time distribution

The adoption of Eq. (42) as a network density can be inter-
preted in terms of a higher-order diffusion process, as we will
discuss in this paragraph. From this observation we will be
able to derive a higher-order relation between the entropy, the
specific heat and the temporal scales of higher-diffusion pro-
cesses which represent the higher-order version of the anal-
ogous relations on networks [62]. Higher-order diffusion
[25, 26, 31, 32, 63] describes diffusion from n-simplices to
n-simplices going either though n − 1 simplices or n + 1 sim-
plices. The diffusion corresponding dynamics is dictated by
the Laplacian L[n] as described by the following system of dif-
ferential equations [26]:

Ẋ(t) = −L[n]X(t), (46)

where X(t) is a column vector representing a n-cochain, and
can be seen as a function describing the distribution of infor-
mation on the n-dimensional simplices of a simplicial com-
plex at time t. By solving the above equation and using the
spectral decomposition of the Hodge Laplacian, we can ex-
press X(t) as

X(t) =
∑
λ

cλ(t)uλ, (47)

where uλ is the eigenvector associated to the eigenvalue λ of
L[n], and every cλ follows the temporal evolution

cλ(t) = e−λtcλ(0). (48)

Let us suppose that a random walker starts a walk in the
network at a simplex α0. Then, we will have

Xα(t) =
∑
λ

cλ(0)e−λtuλα. (49)

We observe that at time t = 0 we have:

Xα(0) = δα,α0 =
∑
λ

cλ(0)uλα (50)

From Eq. (50) we derive that cλ(0) = uλα0
; thus, Xα(t) can

be expressed as

Xα(t) =
∑
λ

e−λtuλα0
uλα. (51)

Finally, the return time distribution on simplex α0 is ob-
tained as:

Xα0 (t) =
∑
λ

e−λtuλα0
uλα0

. (52)

Taking the average over all the possible n-dimensional sim-
plices and using the normalization of the eigenvectors of L[n]
we obtain that return time probability p(t) is given by

p(t) =
1
N

∑
λ

e−λt. (53)

It follows that, classically, it is possible to interpret the den-
sity operator ρn in terms of the average return time distribu-
tion. Indeed, since Zn =

∑
λ e−βλ, if we interpret β as time t,

Zn can be seen as the return time distribution associated to the
higher-order diffusion of order n. By consequence, the density
ρn introduced in Eq. (42) tells how much each eigenvalue con-
tributes to the return time probability p(t) for t = β, and the
spectral entropy tells how many eigenvalues contribute signif-
icantly to the return time distribution. In the analysis of the
spectral entropy of a network it has been recently proposed
[62] to monitor the specific heat whose local minima and max-
ima capture the characteristic scale of diffusion on nodes and
links. Here we propose to use the higher-order specific heat
Cn given by the derivative of the higher-order spectral entropy

Cn =
∂S n

∂β
, (54)

to monitor and to characterize the typical temporal scales of
higher-order diffusion on simplicial complexes.

C. Relative entropy

In quantum information theory [75] the Von Neumann rel-
ative entropy (or quantum Kullback-Leibler divergence) be-
tween two densities operators ρ and σ acting over the same
space is defined as

KL(ρ‖σ) = Tr[ρ(ln ρ − lnσ)]. (55)

Note that analogously to the classical Kullback-Leibler diver-
gence, the quantum relative entropy KL(ρ‖σ) is not symmet-
ric. When associating density operators to networks, the con-
dition that ρ and σ should act on the same space imposes that
the number of nodes of the two considered networks must be
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the same. In particular, in Ref. [59] the spectral relative en-
tropy of networks has been studied to perform a pairwise com-
parison of the layers of a multiplex network. In our setting, as
we will show in the remainder of this analysis, the quantum
relative entropy KL(ρ‖σ) is suitable to perform a comparison
between density matrices constructed on higher-order Lapla-
cians starting from the weighted or the unweighted version
of the same dataset (i.e. a dataset in which the bare affinity
weights can be chosen to be heterogeneous, or instead to be
homogeneous and all equal to one).

When studying the spectral properties of simplicial com-
plexes, it is desirable to compare also the density operators
associated to Hodge Laplacians of different orders, with the
aim of revealing differences in the diffusion processes occur-
ring at different dimensions. However, the generalization of
Eq. (55) is not straightforward, as ρn and ρn+1 act on spaces
of different dimension.

To overcome the dimensional incompatibility, we propose
to consider the projected density operator ρ̂n+1,n given by

ρ̂n+1,n = B̄∗n+1
e−βL[n+1]

Ẑn
B̄n+1, (56)

where Ẑn is the normalization constant given by

Ẑn = Tr[B̄∗n+1e−βL[n+1] B̄n+1]. (57)

Using the projected density operator ρ̂n+1,n we can use the
quantum relative entropy to compare the densities operators
associated to different orders:

KL(ρ̂n+1,n||ρn) = Tr[ρ̂n+1,n(ln ρ̂n+1,n − ln ρn)]. (58)

This relative entropy can be also written as

KL(ρ̂n+1,n||ρn) = J(ρ̂n+1,n||ρn) − Ŝ (ρ̂n+1,n), (59)

where Ŝ (ρ̂n+1,n) is the Von-Neumann entropy associated to the
projected density operator ρ̂n+1,n and J(ρ̂n+1,n||ρn) is the quan-
tum cross-entropy, i.e.

Ŝ (ρ̂n+1,n) = −Tr[ρ̂n+1,n ln ρ̂n+1,n],
J(ρ̂n+1,n||ρn) = −Tr[ρ̂n+1,n ln ρn]. (60)

A straightforward calculation shows that we can express
Ŝ (ρ̂n+1,n) and J(ρ̂n+1,n||ρn) as

Ŝ (ρ̂n+1,n) = β
〈
λn,u

〉
↑ −

〈
ln λn,u

〉
↑ + ln Ẑn.

J(ρ̂n+1,n||ρn) = β
〈
λn,u

〉
↑ + ln Zn, (61)

in which we have used the notation

〈
λn,u

〉
↑ =

∑M
i=1 e−βλ

(i)
n,u

(
λ(i)

n,u

)2

Ẑn
,

〈
ln λn,u

〉
↑ =

∑M
i=1 e−βλ

(i)
n,uλ(i)

n,u ln
(
λ(i)

n,u

)
Ẑn

, (62)

where M denotes the number of non-zero eigenvalues of the
Lup

[n] Laplacian. Note that while Ẑn only depends on the non-
zero spectrum of Lup

[n], Zn depends both on the non zero spec-
trum of Lup

[n] and to the non zero spectrum of Ldown
[n] .

V. APPLICATION TO HIGHER-ORDER
COLLABORATION NETWORKS

A. The topological weights of higher-order collaboration
networks

Let Q be the set of simplices formed by the teams of co-
authors of the papers included in a collaboration network,
where p is the largest dimension of a simplex in Q. First, let
us work under the assumption that the higher-order collabora-
tion network is encoded in a simplicial complex of dimension
d = p. In this ideal hypothesis, the higher-order collaboration
network is a simplicial complexKp including all the simplices
belonging to Q, together with all their faces. We indicate with
mn(α) the number of papers written by the team of n + 1 co-
authors forming the simplex α of dimension nα = n, and we
indicate with ωα a measure of the strength of the collaboration
of team of co-authors α ∈ Q. The aim is to define the correct
definition of the bare affinity weights ωα such that the topo-
logical weight (given by Eq.(3)) associated to each node of the
simplicial complex is equal to the number of papers written by
the corresponding author. With the definition of the topolog-
ical weight given by Eq.(3) it is easy to show that since each
n-simplex includes n faces of dimension n − 1, if we want to
enforce a topological weight of the nodes equal to the number
of paper written by the corresponding author, the strength of
the collaboration encoded by the simplex α ∈ Q is uniquely
defined as

ωα =
mn(α)

nα!
. (63)

For instance the strength of a collaboration of a team formed
by two authors is just equal to the number of two-author pa-
pers they have written together, while the strength of a collab-
oration of a team of three authors is equal to the number of
three-authors papers they have wrote together divided by two,
etc. (see Figure 1).

Note that both the recursive equations Eq.(3) and Eq. (63)
are also perfectly defined nα′ = 0 and for nα = 0, thus allowing
to consider also single author papers.

Since in higher-order collaboration data p might be large,
for computational reasons it might be convenient to encode
the data in a simplicial complex Kd of dimension d strictly
smaller than p. In the special case in which d = 1 the collabo-
ration network K1 is obtained, in which each pair of nodes is
connected if the linked authors have written a paper together.
The collaboration networkK1 retains only the nodes and links
of Kp and is referred to as the network skeleton of Kp. Sim-
ilarly, in the case d = 2, the simplicial complex K2 , will be
considered, which is the 2-skeleton of Kp retaining only the
nodes, links and triangles present in Kp.

Our goal is to define a proper measure of the strength of the
collaboration ωα associated to the simplices ofKd, so that the
topological weights defined recursively by Eq. (3) attribute
to each node a topological weight given by the number of the
paper they have co-authored.

In this case we want to recover the normalization pro-
posed in Ref. [68] for collaboration networks, where the link
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weights are given by

ωα =
∑
α′⊃α

m1,n′ (α′)
n′

. (64)

Here m1,n(α′) indicates how many papers a team α′ of (n +

1) co-authors, including the two authors of the link α have
written together.

In the general case in which the higher-order collaboration
network is the d skeleton Kd, we can generalize Eq.(64) in
the following way. Let mn,n′ (α′) denote the number of papers
written by the team represented by the n′-simplex α′ includ-
ing the n+1 authors of the group of co-authors α, with n ≤ n′.
A simple combinatorial calculation provides the strength of
collaboration of the simplex α ∈ Kd that ensures that the
topological weights defined in Eq. (3) are consistent with a
topological weight of the nodes that is equal to the number of
papers written by that author. In particular, for nα < d Eq.
(63) applies, while for nα = d we get

ωα =
1
d!

∑
α′⊇α

md,n′ (α′)θ(n′, d)(
n′

d

) , (65)

where θ(x) = 1 if x ≥ 0 and θ(x) = 0 if x < 0
Figure 1 is an example helping to visualize the result of the

weight assignment. Starting from the left, the trivial case of a
single paper written by two coauthors is depicted. Then, the
case of a paper written by three authors, followed by a more
general situation, are depicted. It is easily verified from case
(c) that the bare affinity weight of a link can be obtained by
subtracting the topological weight of the link by the sum of
the topological weights of the triangles incident to it.

B. Higher-order collaboration dataset

In order to perform our analysis, we build our own collabo-
ration dataset starting from a list of articles downloaded from
Scopus (https://www.scopus.com/ accessed on 2022-01-
29). Specifically, we selected data and metadata of articles
whose metadata contained the expression “multilayer net-
work”, referred to five years (2017-2021). Only articles pub-
lished on scientific journals were selected, while papers pub-
lished on conference acts were excluded, for a total of 686
articles. The original and processed data are available and
can be downloaded from https://github.com/DedeBac/
WeightedSimplicialComplexes.git. In view of studying
collaboration between authors, articles with only one author
were filtered out. This results into 2, 169 authors with at least
one collaboration. We encode the higher-order collaboration
data into a weighted simplicial complex of dimension d = 2
where the affinity weights are choosen accounding to Eq.(65)
for triangles (with n = d) and Eq.(63) nodes and links (with
n < d). Overall, the simplicial complex consists of 2, 169
vertices, 5, 296 edges and 9, 279 triangles.

As expected, the network skeleton of the simplicial com-
plex is a disconnected graph, reflecting the fact that there
might be isolated groups of collaborating authors. Since the

study of the Von Neumann entropy can be interpreted in terms
of information diffusion through the simplicial complex, we
restrict our analysis to the simplicial complex originated by
the largest connected component of the network skeleton. In
Figure 2 we show the network skeleton of the considered sim-
plicial complex that has a rich community structure. The
resulting simplicial complex has much smaller size than the
original dataset, and consists of 356 nodes, 1, 172 edges, and
2, 614 triangles.

C. Higher-order spectral entropy of the higher-order
collaboration network

In this section we reveal the information content encoded in
the higher-order spectrum of the simplicial collaboration net-
work by studying the higher-order spectral entropy and the
relative entropy. A numerical analysis was carried out on
the higher-order spectrum of both the weighted and the un-
weighted version of the simplicial collaboration network. In
the unweighted simplicial complex all the affinity weights are
set to one, i.e. ωα = 1 for every simplex α.

In Figure 3 the Von Neumann entropy and its derivative are
plotted as functions of 1/β in logarithmic scale. The continu-
ous line represents the entropy, while the dotted line indicates
the specific heat. The first row shows the results obtained for
the unweighted network, and the second row shows those ob-
tained for the weighted network. Starting from the left, the
entropy of each order up to the order of the simplicial com-
plex (2 in this case) is plotted. From the picture, a multi–scale
behaviour of the entropy emerges from the observation of the
entropy of order 0 and 1. This is highlighted by the presence
of local minima/maxima in the derivative. More specifically,
while a plateaux with very shallow local minima and maxima
can be observed for order 0 and 1 in the unweighted network, a
more clear separation of time scales determined by two more
pronounced peaks is observed for the weighted case. These
different time scales are related to the meso-scale commu-
nity structure of the collaboration simplicial complexes and
its large scale topology. We note, however that this separation
of time scale is not apparent from the analysis of the spec-
tral entropy of order 2, and this is explained by the fact that
different communities typically are formed by triangles con-
nected to triangles only through nodes, which does not allow
any diffusion from triangles to triangles through links.

Figure 4 displays the relative entropy between the weighted
and unweighted version of the collaboration complex at each
order. It emerges that the weights are responsible for changing
significantly the diffusion properties at large time scales, as
revealed by the larger values of the relative entropy for small
values of 1/β.

Finally, in Figure 5, the relative entropy between the net-
work density of order 1 and 2 and their projections onto the
0−chains and 1−chains, are shown. The analysis is performed
both on the weighted and the unweighted version of the sim-
plicial complex as well. This last analysis reveals a very
rich structure of local maxima and minima when the spec-
tral properties of order 0 and 1 are compared, thus demon-

https://www.scopus.com/
https://github.com/DedeBac/WeightedSimplicialComplexes.git
https://github.com/DedeBac/WeightedSimplicialComplexes.git
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Figure 1. Examples of bare affinity weights (indicated in blue) and topological weights (indicated in black) for higher-order collaboration
networks captured by simplicial complexes of dimension d = 2. Nodes, labeled with capital letters, represent authors; a blue link indicates
a collaboration between two authors which coauthored a two-author paper; a filled triangle represents a collaboration among three authors
leading to at least one three author paper. In panel (a) we consider the trivial case where a single article written by two coauthors is considered.
Panel (b) represents the case of a single article written by three coauthors, while panel (c) is a more general situation where 3 papers are
considered, each of which with a variable number of authors. In each of the studied cases, it can be verified that the topological weight of a
node given by the sum of the topological weights of the links incident to it, is given by the number of papers written by that node (author).
From panel (c) it results that the topological weight of a link results in general (see case of the [BD] link) from the sum of the topological
weights of the triangles incident to it and the bare affinity weight.

strating the non-trivial effect of studying the higher-order dif-
fusion properties of the simplicial complex. Indeed, while
ρ0 is only dependent on L[0], which captures the diffusion
from nodes to links, ρ1,0 is dependent on both Ldown

[1] and Lup
[1],

which describe diffusion from links to links through nodes
and through triangles, respectively. Therefore the relative en-
tropies KL(ρ̂1,0||ρ0) and its weighted version KL(ρ̂W

1,0||ρ
W
0 ) are

able to capture the effect of coupling diffusion processes oc-
curring on different dimensions. Since the considered collab-
oration dataset is a simplicial complexes of dimension d = 2,
when ρ1 and ρ̂2,1 are compared we only see a decreasing be-
havior of the relative entropy with increasing values of 1/β.

VI. APPLICATION TO THE NETWORK GEOMETRY
WITH FLAVOR

In this section we study the higher-order spectrum of the
weighted simplicial complex model called “Network Geom-
etry with Flavor” [64, 65, 67], which is a very interesting
textbench to validate our proposed methodology. The analysis
follows the same steps of that carried out on the collaboration
complex described in the previous section.

A. Network Geometry with Flavor as a model of weighted
simplicial complex

“Network Geometry with Flavor” (NGF) [64, 65, 67] is a
model of weighted growing simplicial complexes which gen-
erates simplicial complexes whose network skeleton is small-
world, modular, and hyperbolic. The model is very compre-
hensive and general and admits several important extensions
[1, 63, 66]. Here we focus on its original formulation for a d
dimensional simplicial complex in which each node j is as-
sociated a feature called energy ε j drawn from a distribution
g(ε) that does not change in time. The energy εα associated to

every simplex α of dimension n > 0 is given by the sum of the
energy of its nodes, i.e.

εα =
∑
j⊂α

ε j. (66)

The fitness ηα of simplex α is given by

ηα = e−β̂εα , (67)

where β̂ ≥ 0 is a tunable parameter of the model. (Note that
for β̂ = 0 all fitnesses are the same, i.e. ηα = 1 for any simplex
α). Therefore for every simplex α of dimension n > 0 they
obey

ηα =
∏
j⊂α

η j, (68)

where η j indicates the fitness associated to the generic node j
belonging to the simplex α. The NGF is a model for a growing
d-dimensional simplicial complex defined as follows. Starting
at time t = 1 from a single d-simplex, at each time a new d
dimensional simplex is added to the network. The new sim-
plex has a single new node and it is attached to an existing
(d − 1)-dimensional face α chosen with probability

Πα =
ηα(1 − s + skd,d−1(α))

Ẑ
, (69)

where s ∈ −1, 0, 1 is a parameter called flavor, kd,d−1(α) in-
dicates how many simplices of dimension d are incident al-
ready to the face α, and Ẑ is the normalization constant.
Here we focus on NGFs with flavor s = −1 and dimen-
sion d = 2 with energy distribution g(ε) = 1/10 for ε ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. These are hyperbolic manifolds
(random Farey graphs) that as a function of the parameter β̂
undergo a topological transition from a small world network
for low values of β̂ to a finite dimensional network for large
values of β̂ [67]. In other words, the diameter of the network
skeleton grows only logarithmically with the network size for
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Figure 2. Network skeleton of weighted collaboration simplicial complex. Nodes and edges are coloured according to their modu-
larity class. Size of nodes is proportional to their weighted degree. Edge thickness is proportional to the edge weight. The net-
work is plotted with the Gephi software [78] using the ForceAtlas2 visualization algorithm [79]. Different colours correspond to dis-
tinct communities computed using the Louvain algorithm [80] by setting the resolution parameter to 1 [81].The modularity score asso-
ciated to the partition is 0.873. Here for clarity we represent the network as unlabelled. For a labelled version of the network see
https://github.com/DedeBac/WeightedSimplicialComplexes.git.

small values of β̂, while it grows as a power of the network
size for large values of β̂ (see Figure 6 for visualization of in-
stance with β̂ = 0 (small world topology) and with β̂ = 5, 10
(in the finite (Hausdorff) dimensional regime)).

B. Higher-order entropy of Network Geometry with Flavor

As the entropy can be interpreted as a quantity describing a
mechanism of diffusion of information through the network, it
is relevant to compare the behaviour of this quantity computed
at different orders. We have considered both an unweighted
and a weighted version of the NGF model. By unweighted
version of the NGF we indicate the case in which each simplex
has bare affinity weights all equal to 1, i.e. ωα = 1, for every
simplex α of the simplicial complex. In other words, in the
unweighted version of the NGFs the bare affinity weights are
independent from the fitness. On the contrary, the weighted

version of the NGF indicates the case in which the bare affinity
weights are given by the simplices fitnessωα = ηα. In both the
weighted and the unweighted version of NGFs the topological
weights are calculated according to Eq.(3).

First, we calculated the higher-order spectral entropy and
the higher-order specific heat of NGFs of flavor s = −1 and
dimension d = 2. This allows us to characterize the typical
temporal scale of higher-order diffusion processes as a func-
tion of their order n.

Figure 7 shows the higher-order spectral entropy of order
0, 1 and 2 and the corresponding higher-order specific heat as
functions of 1/β for the unweighted NGF with s = −1, d = 2
and β̂ ∈ {0, 5, 10}; Figure 8 refers to the weighted NGF plot-
ted here only for the relevance cases β̂ ∈ {5, 10}. All the sim-
ulations are performed on simplicial complexes of N = 200
nodes. Moreover, results from Fig.7 and 8 were obtained
by averaging the results obtained over 100 realizations of the
NGFs. From Figures 7 and 8 we clearly notice that diffusion

https://github.com/DedeBac/WeightedSimplicialComplexes.git
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(a) (b) (c)

(f)(e)(d)

Figure 3. Von Neumann entropy of order 0 ((a), (c)), 1 ((b), (d)), and 2 ((e), (f)) of collaboration network as a function of 1/β (β is the density
parameter). Purple lines refer to the unweighted version of the network. Yellow lines refer to the weighted version. Dotted lines represent the
derivative of the entropy with respect to the logarithm of β.

(a) (b) (c)

Figure 4. Relative entropy between weighted and unweighted simplicial complexes of collaboration data as a function of 1/β. (a), (b), and (c)
depict the relative entropy between the unweighted and weighted densities (ρn and ρW

n , n = 0, 1, 2) for the Hodge Laplacian of order 0, 1, 2,
respectively. Purple lines represent the quantity KL(ρn||ρ

W
n ); yellow lines represent the quantity KL(ρW

n ||ρn).

at different order can have different temporal scales, indicated
by the local maxima and minima of the higher-order specific
heat. Moreover, it emerges that taking into account the fitness
of the simplices as the bare affinity weights of the diffusion
dynamics, clearly allows to establish characteristic scales of
the higher-order diffusion dynamics that are more clearly dis-
tinguished and well defined, since the peaks of the specific
heat are more narrow in the weighted case.

Fig. 9 depicts the quantum relative entropy between the
weighted and the unweighted version of the NGF simplicial
complex for β̂ = 5. This quantity generally follows a decreas-
ing behaviour, reflecting the fact that the weights impact sig-

nificantly on the diffusion properties of the complex at large
time scales. Interestingly, at order 0, Fig. 9 (a) highlights that
the quantum relative entropy is not monotonic, but admits a
local minimum and a local maximum.

In Figures 10 and 11 we plot the quantum relative entropy
calculated respectively on the unweighted and weighted ver-
sion of the NGF with flavor s = −1, dimension d = 2 and
β̂ ∈ {0, 5, 10} (for the unweighted case) and β̂ ∈ {5, 10} (for
the weighted case). Interestingly the effect of changing β̂ is
noticeable from the study of the quantum relative entropy. In-
deed the quantum relative entropy KL(ρ̂1,0||ρ0) develops a non
monotonicity for β̂ = 5, 10 in the unweighted case, and a very
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(a) (b)

(c) (d)

Figure 5. Each plot depicts the relative entropy KL(ρ̂n,n−1||ρn−1), for n = 1 (a, c) and n = 2 (b, d) as a function of 1/β. Purple curves refer to the
unweighted collaboration network; yellow curves refer to the weighted version.

well defined peak for the weighted case.

VII. CONCLUSIONS

Here we propose to study weighted simplicial complexes
with a precise convention for the weights of the simplices to
overcome the limitation of simplicial complexes to capture
arbitrary higher-order network data. The advantage of the
proposed mathematical framework is that the weighted sim-
plicial complexes have a rich higher-order structure that can
be probed with higher-order weighted and normalized Hodge
Laplacians. The spectrum of the higher-order Hodge Lapla-
cians allows to use tools of information theory to quantify the
information content included in the higher-order spectrum of
the simplicial complex and the properties of higher-order dif-
fusion processes. Indeed, we propose the notion of higher-
order spectral entropy and we show that this quantity can be
used to characterize the typical temporal scales of higher-
order diffusion. Moreover, the higher-order relative spectral
entropy allows us to compare the information content encoded

in the spectrum of Hodge Laplacians of different dimensions.
The proposed approach is here tested on a real higher-order

collaboration dataset that is extracted from bibliometric data
by adopting a procedure to weight the higher-order collabora-
tions that is based on an extension of a widely used convention
adopted for simple networks.

Finally the approach is also applied to the weighted ver-
sion of the simplicial complex model “Network Geometry
with Flavor”. The analysis reveals a the dependence of the
higher-order diffusion properties on the simplicial complex as
a function of a control parameter. This give an insight on how
the higher-order spectral properties of the simplicial complex
depend on its underlying topology.

We believe that the proposed choice of weights for simpli-
cial complexes, and the associated normalized Hodge Lapla-
cian, will constitute a very useful tool to capture the structure
of higher-order network data. In addition, since Hodge Lapla-
cians are increasingly used to capture the dynamics of topo-
logical signals on simplicial complexes, we believe that the
proposed normalized and weighted Hodge Laplacians would
be a very useful tool to describe the dynamics of topological
signals on weighted simplicial complexes.
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Figure 6. Visualization of the network skeleton of the NGF with flavor s = −1, dimension d = 2 and β̂ = 0 (panel (a)), β̂ = 5 (panel (b)),
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Appendix A: Normalized higher-order Laplacians

Thanks to the Hodge decomposition of L[n] the non-zero
eigenvalues of L[n] are either non-zero eigenvalues of Ldown

[n] or
non-zero eigenvalues of Lup

[n]. Moreover, we note that Lup
[n] and

Ldown
[n+1] are isospectral, i.e. they have the same non-zero eigen-

values. It follows that to demonstrate that for a given choice of

an and the metric matrices G[n] all the higher-order Laplacians
L[n] are normalized, it can be equivalently demonstrated that
under these conditions every higher-order up Laplacian Lup

[n] is
normalized, independently on the value of n with 0 ≤ n < d.
In order to do that we first notice that Lup

[n] given by

Lup
[n] = G[n]B̄∗[n+1]G

−1
[n+1]B̄[n+1] (A1)

is isospectral to the symmetrically normalized higher order
Laplacian Lup,symm

[n] given by

Lup,symm
[n] = G1/2

[n] B̄∗[n+1]G
−1
[n+1]B̄[n+1]G

1/2
[n] . (A2)

The spectrum of Lup,symm
[n] can be studied by considering the

Rayleigh quotient [74]. Given a generic column vector X de-
fined on the n-simplices of the considered simplicial complex,
then the Rayleigh quotient of the symmetrically normalised
higher order Laplacian is given by

RQ(Lup,sym
[n] , X) =

XT Lup,symm
[n] X
XT X

, (A3)

and we have for every eigenvalues λ of Lup,symm
[n]

0 = min
X

RQ(Lup,sym
[n] , X) ≥ λ ≤ max

X
RQ(Lup,sym

[n] , X). (A4)

Let us use the following notation. With wτ(r,s) is the topolog-
ical weight of the n + 1 simplex τ(r, s) incident to a chosen
pair of n-simplices r and s that are up adjacent. With sr we

http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
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indicate the sum of the weights of the n + 1 simplices incident
to the n-simplex r, i.e.

sr =
∑
τ⊃r

wτ. (A5)

We the introduce the N[n] × N[n] matrices A[n]
↑↓

and A[n]
� . The

matrix A[n]
↑↓

has elements A[n]
↑↓

(r, s) = 1 if the n-simplex r is
up adjacent to the n-simplex s and r and s have the oppo-
site orientation with respect to the common (n + 1) simplex
τ(r, s); otherwise a[n]

↑↓
(r, s) = 0. Similarly, A[n]

� has elements
A[n]
� (r, s) = 1 if an only if r and s are up adjacent with the same

orientation with respect to τ(r, s) and otherwise has elements
a[n]
� (r, s) = 0. Note that given the definition of the matrices

A↑↓ and A�, for any choice of a pair of simplices r and s we
cannot have simultaneously A[n]

↑↓
(r, s) = 1 and A[n]

� (r, s) = 1,
therefore we have

|A[n]
↑↓

(r, s) − A[n]
� (r, s)| ≤ 1. (A6)

By setting Y = G1/2
[n] X the Rayleigh quotient can be ex-

pressed as

RQ(Lup,sym
[n] , X) =

YT L̂up
[n]Y

YT G−1
[n]Y

, (A7)

where L̂up
[n] is the N[n] × N[n] matrix of elements

L̂up
[n](r, s) =

1
n + 2

[
s[n]

r δ̃r,s − wτ(r,s)

(
A[n]
↑↓

(r, s) − A[n]
� (r, s)

)]
.(A8)

We can easily show that

Y>L̂[n]Y ≤
∑

r

srY2
r . (A9)

Indeed, by using Eq. (A6) and the inequality 2|xy| ≤ x2 + y2

we obtain∣∣∣∣(A[n]
↑↓

(r, s) − A[n]
� (r, s)

)
YrYs

∣∣∣∣ ≤ YrYs ≤
1
2

[Y2
r + Y2

s ].(A10)

Therefore we obtain

Y>L̂[n]Y =
∑
r,s

Yr L̂up
[n]Ys

≤
1

n + 2

∑
r

srY2
r +

∑
r,s

wτ(r,s)Y2
r

 . (A11)

Now we note that since every n + 1-simplex τ incident to r is
also incident to other n + 1 n-simplices, we obtain∑

s

wτ(r,s) = (n + 1)sr. (A12)

Using this relation in Eq. (A11) Eq. (A9) follows directly.
Finally, using the definition of the matrix G−1

[n] given by
Eq.(20) with topological weights given by Eq.(3), since the
bare affinity weight satisfy ωα ≥ 0 for every simplex α, it
follows immediately that

Y>G−1
[n]Y ≤

∑
r

srY2
r . (A13)

Therefore, using Eq.(A9) and Eq.(A13) we obtain that the
Rayleigh quotient, and hence the spectrum of Lup,symm

[n] , is
bounded by one. As a consequence of this, the eigenvalues
of λ of Lup

[n] satisfy

0 ≤ λ ≤ 1. (A14)

This concludes the proof that the spectrum of the higher-order
Laplacian L[n] is normalized and has an upper bound one, for
any order n, provided that the topological weights are chosen
according to Eq.(3).
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